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INTRODUCTION

The Grothendieck-Lefschetz trace formula tells us that, to understand the Galois module
structure on the l-adic cohomology of a variety defined over a number field, it is important
to have a good grasp of its reductions at the finite places of that field. Moreover, in the
situation where the variety is not proper, we would like to have good compactifications of
these reductions that can facilitate the computation of the cohomology. A class of varieties
that plays a very important role in the realization of the Langlands program, and whose
cohomology we would like to understand well, are Shimura varieties. In [Kis10], Kisin
constructed good integral models for a large class of Shimura varieties; these can then be
used to study their reductions. The goal of this thesis is to construct good compactifications
for these integral models.

Integral models of Shimura varieties
A Shimura variety Sh (G, X) (see [Del79]) arises from three pieces of data:
e A reductive group G over Q.

e A G(R)-conjugacy class X of homomorphisms
S = Res¢/gr Gm — Gr
satisfying certain properties.
e A compact open sub-group K C G(Ay) of the finite adélic points of G.

It is a quasi-projective variety defined over a number field F(G, X) C C associated with
the pair (G, X), and its C-points are given by

Shi (G, X)(C) = G(Q)\ X x GlA)/K.

The existence of canonical integral models! for Shimura varieties at places where G is
unramified was conjectured by Langlands in [Lan76]. For certain Shimura varieties, those of
PEL type, which parametrize abelian varieties equipped with Polarization, Endomorphisms
and Level structure, it is possible to construct integral models using the moduli of abelian
schemes; see, for instance, [Kot84].

Since, for arbitrary Shimura data, we no longer have moduli interpretations of the as-
sociated Shimura varieties, there is no global moduli-theoretic method that will work in

1. where ‘canonical’ was later made precise by Milne. See [Mo0098]: the original version had
to be corrected slightly.



general. Even when the Shimura variety parametrizes polarized abelian varieties with cer-
tain additional Hodge cycles, since the Hodge conjectures are still beyond current expertise,
this moduli interpretation cannot be extended in any natural way to finite characteristic.
Nonetheless, consider the following conditions:

v|p is a place of E' = E(G, X), with p > 2;

The p-primary component K, C G(Qp) is of the form ¥(Z), for a reductive model ¥
over Zjy for G. Such a maximal compact is called hyperspecial and exists whenever
G is quasi-split at p and split over an unramified extension Zj,.

The prime-to-p level KP is small enough;

(G, X) is of Hodge type: that is, we have an embedding (G, X) < (GSp, ST) into
the symplectic Shimura datum.

Under these hypotheses, Kisin, employing an idea of Faltings, has constructed a canonical
model for Shx (G, X) over Op , in [Kis10].2 3 Let us denote this model by . g (G, X ).

Integral compactifications

The work in this article arose from thinking about the following natural question:

e Suppose Shy (G, X) is projective (this happens precisely when G/Z(G) is anisotropic
over Q, and is equivalent to saying that there are no non-trivial unipotent elements
in G(Q); see [BB66]); then is the canonical model .7 i (G, X )y proper over Of ,,?

We show that the answer is in the affirmative.
More generally, we have the following result:

Theorem 1. The integral canonical model ¥ = . (G, X )y admits a good toroidal com-
pactification . = .7 (G, X)y over OF - In particular, étale locally around any point, the
embedding .7 C . is isomorphic to a torus embedding T C T (see [AMRT10]), and the
boundary % \ & is an effective Cartier divisor over O E,v- Moreover, the boundary admats

a stratification parametrized by a conical complex that can be described explicitly in terms
of the Shimura datum (G, X, K).

2. A proof along these lines of the existence of these models has also been claimed by Vasiu in
[Vas99].

3. In fact, Kisin has extended this construction to Shimura varieties of the more general abelian
type as well. We will consider the problem of their compactification in a future paper. He can
also work with p = 2 under some further restrictions, but we will not have anything to say about
the even prime in this article.



In particular, the boundary divisor is flat over Op ,,, and is therefore empty if and only
if it is already empty over F; that is, . i (G, X)y is proper if and only if Shy (G, X) is.

Remark 1. The compactification we construct is log smooth, but not necessarily smooth,
and the boundary divisor is not necessarily one with normal crossings. This is an artifact
of our method of construction. But the singularities of the compactification can be system-
atically resolved by the general theory of torus embeddings from [KKMSD73]. Once this
is done, we will have an affirmative answer to Conjecture 2.18 in [Mil92] on the existence
of smooth toroidal compactifications of ..

Such good compactifications were originally constructed in complete generality over
C by Mumford and his collaborators in [AMRT10]. Later on, Faltings-Chai constructed
integral compactifications for the Siegel modular variety in [FC90], and their methods were
amplified and extended to the case of Shimura varieties of PEL type by Kai-Wen Lan in
[Lan08]. We note that our construction is the first (that we are aware of) that works for
spin groups associated with odd-dimensional quadratic forms (type Bjp, n > 2). Indeed,
by the Kottwitz classification in [Kot92], such groups can never appear in Shimura data of
PEL type.

Morita’s conjecture

Theorem 1 has the following pleasant consequence:

Theorem 2. Suppose A is an abelian variety defined over a number field F', and suppose
its Mumford-Tate group G is anisotropic modulo its center. Then, for every p > 2 such
that G' has a reductive model over Zy and for every finite place v|p of F', A has potentially
good reduction over Iy .

The hypothesis on the Mumford-Tate group ensures that A does not ‘degenerate in
characteristic 0. The theorem says that this is enough to keep it from degenerating in
finite characteristic as well. This result proves a good part of Yasuo Morita’s conjecture
(see [Mor75]), in whose statement there is no restriction on p. Other such partial results
can be found in [Pau04],[Vas08] and [LanlOb]. The first two papers, as part of their
hypotheses, impose certain local conditions on GG, but prove the full conjecture of Morita,
without restriction on p, for G that satisfy these constraints. In the last cited paper, Lan
also proves the full conjecture as long as A appears in the family of abelian varieties over
a compact Shimura variety of PEL type. This is a consequence of a more general group-
theoretic bound on the toric rank of semi-stable abelian varieties appearing at the boundary
of Shimura varieties of PEL type.

On the other hand, in the statement of Theorem 2 above, there is no restriction what-
soever on the Mumford-Tate group G; but we have nothing to say about the reduction of
A at primes where G is ramified.



Method of construction

Let us now give a short description of the method used in the proof of Theorem 1. It is
more or less a direct generalization of that used in [Kis10] to construct the canonical model
<. Since (G, X) is of Hodge type, we can embed the Shimura variety Shy (G, X) inside
Shz(GSp, S+, for some compact open K’/ C GSp(Af) containing K. The latter Shimura
variety has a natural integral model .’ over & E,» Tepresenting a certain moduli problem
for principally polarized abelian varieties equipped with level structures. By the theory
of [FC90] and [Lan08], .#’ admits a smooth toroidal compactification .#’ with boundary
divisor D' = .77\ .’. Let . be the normalization of the Zariski closure of Shy (G, X) in
7" this is our candidate for a good compactification of ..

Take a closed point sy € .7 \ < at the boundary with residue field k&, and consider the

completions ﬁyﬁo and 0 = ﬁ?/ 0 of .7 and %" at sg. Choose some lift §) € S (Ok),

for some finite extension K/Q, with residue field &, and let O be the co-ordinate ring of
the normalization of the irreducible component of Spf = s containing sp. We show that

Spf ¢ intersects the boundary divisor transversally and that it is log smooth with respect
to the log structure induced from the boundary divisor.

To do this, just as in the construction in [Kis10], we build an explicit model R — R for
the map 0 — 0 that, by its very definition, has the properties that we need. In loc. cit.,
this is accomplished, using an idea of Faltings, through the deformation theory of p-divisible
groups and its relation via Dieudonné theory to certain linear algebraic objects. For us, it
would have been natural to push the analogous story through for their degenerate cousins,
the log p-divisible groups, defined and studied by Kato (cf. [Katal,[Katb]). Unfortunately,
this theory and its Dieudonné theoretic counterpart are yet to be fully published (though,
see [BCCO04]). For our purposes, however, we are able to get by with the use of log 1-motifs
(cf. [KKNO8b]), which are essentially a generalization to the logarithmic situation of the
data used to construct degenerating abelian varieties in [FC90]. We show that the local
models at the boundary of the toroidal compactifications of Faltings-Chai are essentially
deformation rings (in an appropriate sense) for log 1-motifs. We can associate logarithmic
F-crystals with log 1-motifs and study their deformations using log crystalline theory. In
this way, we obtain an explicit description of the Faltings-Chai local models.

The first step towards our construction is an extension of the ‘Key Lemma’ of Kisin
[Kis10, 1.3.4], which allows us to perform integral transfer of absolute Hodge cycles from
étale cohomology to log crystalline cohomology. More precisely, let A be the semi-stable
abelian variety over K attached to the lift 3y, and set A = H1 (A7, Zp): since A is semi-
stable, A is equipped with a natural weight-monodromy filtration WeA. The Hodge tensors
over Shy (G, X) give rise to Galois-invariant tensors {sq} C A% (see (2.1.2.2) for an expla-
nation of this notation) defining a reductive sub-group GZp C GL(A) (the p-adic realization
of G). Let k be the residue field of K, let W = W (k) be the ring of Witt vectors over k, and

let Ko =W [%} . By Fontaine’s theory, we have a canonical p-adic comparison isomorphism

A ®g, Bst = D ®, Bst,
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where D = Dg(A) is the weakly admissible filtered (¢, N)-module covariantly associated
with A. Under the isomorphism, the tensors {sq} go over to tensors {sq s} C D¥. Our
result is then the following:

Proposition 1. There is a natural W-lattice My C D such that {sast} C M8§> Moreover,
let k be an algebraic closure of k; then there exists an isomorphism

A @z, W(k) = Mo @y W (k)

that takes sq®1 to sq 5t @1, and preserves the weight filtrations on both sides. In particular,
the point-wise stabilizer Gy C GL(My) of {sast} is a pure inner form of Gz, ®W, and
is therefore itself reductive.

In fact, the lattice My (after a Frobenius twist) arises from the logarithmic F-crystal
attached to A.

Once we have this in hand, with some more input from p-adic Hodge theory, we can
build our model using the ‘log crystalline’ realizations s, st and additional information from
the degeneration data associated with A. Essentially, our local model will be the sub-space
of ' where the tensors {5a,st} propagate to parallel, g-invariant tensors in FilV of the
filtered log F-crystal associated with the family of degenerating abelian varieties over &”.
This is in perfect analogy with the global situation over C, where variations of log Hodge
structures (cf. [KU09, KKN08a]) replace filtered log F-crystals.

For simplicity, let us explain this in the case where A is principally polarized and has
multiplicative reduction to a split torus 7" with character group Y. Let V = A ® Qp; the
weight-monodromy filtration arises from a short exact sequence:

0 = Hom(Y,Qp) =V =Y ®Q, — 0,

attached to an analytic uniformization T8 /Y = A?" of rigid analytic K-varieties. Let
U C GL(V) be the unipotent sub-group associated with the weight-monodromy filtration.
Then B(Y)Q, the vector space of rational symmetric bilinear forms on Y, embeds naturally
inside the Lie algebra Lie U. The local model for 0 is the completion at a closed point of
a normal, affine torus embedding E, of a torus E over W; the co-character group X«(E)
is naturally a Z-lattice within B(Y)p. We would then like our local model R¢ for 0 to
be the completion of a torus embedding for a quotient torus F; of E. The only natural
possibility for the co-character group of E¢q is X«(Eqg) = Lie(GZp) NX«(E) C B(Y)q. A
priori, this could even be empty! But we have the important:

Lemma 1. X, (Eqg) generates the Zy-module Lie(GZp) N Lie(U).

We note that a closely related statement has been considered by André; cf. [And90,
V.1.6].

To explain the subtlety and interest of this lemma, suppose that A is actually defined
over a field embedded in C. Then we are relating two different rational structures on
A: one coming from the complex analytic uniformization of A¢ via Artin’s comparison
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isomorphism, embodied by the Hodge tensors {sq} and the group GZp; and another arising
from the p-adic analytic uniformization of A over K, embodied in the weight filtration on A.
These a priori have little to do with each other. If all Hodge tensors on A were generated by
endomorphisms and polarizations, then everything would follow trivially from functoriality.

However, in the generality we need, we end up having to again appeal to the global
theory of toroidal compactifications. We situate A within a family of degenerating abelian
varieties appearing at the boundary of a toroidal compactification of .%’ (perhaps different
from the family over o' ), and then show that, for all semi-stable abelian varieties A’ in
this family arising from points of Shy (G, X), the monodromy N 4/, naturally an element
of B(Y) ® Q, kills the tensors sq, and thus gives us an element of X4(Eq) ® Q. Then, a
simple lemma (cf. 3.3.2.2) shows that this gives us sufficiently many linearly independent
elements of this vector space to fill up Lie(GQp) N Lie(U).

To show the claim about N4/, we use results of Coleman-lovita (cf. [CI99]). They
construct an explicit Hyodo-Kato type isomorphism (cf. [HK94])

Dsi(A) @, K = Hig(A)

under which Fontaine’s monodromy operator on the left hand side is taken to the map
induced by N4 on the right hand side. Moreover, if A" = H 1<AIF’ Zp), then there is a

canonical p-equivariant isomorphism Dgt(A') = Dgt(A). To now show that NN 4 kills sq,
it is enough to see that, under the isomorphisms:

N ® By — Dgt(N) ® Bgr — Dst(A) ® By,

the étale realizations {s, 4/} in A’ of the Hodge tensors over Shg (G, X) are carried over to
{sast}; for the crystalline realizations {s,, o 4/} in Dg(A’) are killed by N 4. By the main
result of [Bla94|, we only have to check that the isomorphism marked ? in the diagram
below takes the de Rham realizations {s, 4.4r} to {s, a7 qr}-

?
Hp(A) — Hip (A"

Dst(A) ® K f Dst(A/) ® K.

This is accomplished by showing that ? is given by parallel transport along the Gauss-
Manin connection on the de Rham cohomology with log poles of the degenerating family
of abelian varieties.

When the reduction of A has a non-trivial abelian factor, our local models R and R
will be completed torus embeddings over certain explicit deformation spaces for p-divisible
groups similar to the ones employed in [Kis10]. To finish the proof, we identify ¢” with the



explicit model R, and show? that every point of the analytic space (Spf 0 )2 corresponding
to a semi-stable abelian variety factors through (Spf Rg)®". We can now conclude that
¢ and R are isomorphic via Zariski-density of such points and dimension counting. The
ingredients that go into this last step are very similar and closely related to the ones
sketched above

Tour of contents

In Chapter 1, we begin with a straight-forward extension of Serre-Tate theory to the study
of deformations of 1-motives. The main result is (1.1.3.2). Then we introduce the notion
of a log 1-motif, following Kato, and show how to associate a log Dieudonné crystal to such
a gadget. We also prove a version of Grothendieck-Messing theory for log 1-motives. We
end with a few more results from Dieudonné theory that we require later. Most, if not all,
of this material is well-known to experts, but we have included it for lack of an adequate
reference. We would suggest that the reader skip this chapter on a first reading.

In Chapter 2, we study the p-adic Hodge theory of semi-stable abelian varieties over
p-adic fields. After some technical Tannakian preliminaries in § 2.1, we prove the version
of the Key Lemma stated above in § 2.2. Extending a result of Kisin in the good reduction
case, we give in § 2.3 an explicit description of the log F-crystal associated with a semi-
stable abelian variety (cf. 2.3.2.2). We end the chapter in § 2.4 by looking at the log
F-crystal associated with a family of degenerating abelian varieties. Here we study the
relationship between parallel transport between the fibers of the log crystal d la Coleman
and the Hyodo-Kato type isomorphism constructed by Coleman-lovita. The main result
here is (2.4.1.1).

Chapter 3 is the technical cornerstone of this thesis. It is here that we construct our
explicit local model R — R and devise conditions under which it has the right properties.
We direct the reader to the introductions to its various sections for a detailed description
of its contents.

In Chapter 4, we finally carry out the strategy sketched above for building our toroidal
compactifications. Once the definitions are all in place, this amounts to simply checking
that the conditions listed in Chapter 3 are valid for the completion at a point on the
boundary of the Zariski closure .# above. This turns out to be a reasonably pleasant task.
We end with a couple of immediate applications of our result, including Theorem 2 above.

Conventions
e p will always denote an odd prime.
e All schemes will be separated.

e All rings will be commutative and unital.

4. There are some slight complications, but this is more or less the idea.



e All duals will be denoted by the super-script V, including: the R-linear dual of a
module over a ring R; the dual of an abelian scheme; the Cartier dual of a p-divisible

group.

e For any finite extension of Q, denoted by an upper case letter (e.g. K'), we will denote
its residue field by the corresponding lower case letter (e.g. k), and its maximal
absolutely unramified sub-extension with the addition of the sub-script 0 (e.g. Ky).

e All monoids will be commutative and with identity.



CHAPTER 1
LOG 1I-MOTIFS AND LOG F-CRYSTALS

1.1 1-motives

1.1.1

Let Sy be a scheme in which p is nilpotent, and let Sy < S be a nilpotent thickening, by
which we mean that Sy is defined by an ideal .# C g such that .#" = 0, for some n > 1.
For any fppf sheaf of abelian groups H over S, let H and H » be the sub-functors

H:Tw— H(T);

Hgy:Tw—ker(H(T)— H(T xg5))),

for any fppf S-scheme T'. Here 77 denotes the reduced scheme underlying 7. Also set
HO =H x S S().

Let H}/(S, H) be the group of isomorphism classes of pairs (F,¢), where F is an fppf
H-torsor over S and ¢ : Hy — F xg Sy is a trivialization. Since H is commutative this
is the same as the group of isomorphism classes of fppf H-torsors over S reducing to the
trivial Hp-torsor over Sp. Assume that H is p-divisible; then, for any n € Z~, we have
the Kummer map 0y, : H #(5) — H}(S, H[p"]) arising from the short exact sequence of
fppf sheaves

V1
0— H[p"| - H L5 H— 0.

Lemma 1.1.1.1. Suppose also that H is representable by a formal group law over S. Then,
for n large enough, Oy is injective. If, in addition, H is itself representable by a smooth
group scheme over S, then Oy is an isomorphism.

Proof. We first observe that p"H #(S) = 0, for n large enough; this follows from [Kat81,
1.1.1]. Choose such an n; we can now easily show the injectivity of 0. Indeed, suppose
h € H 4#(S) is such that dp(h) = 0. Explicitly, this means that we can find hy, € H #(5)
such that p"hy, = h, which of course implies that h is 0.

Now suppose H is representable by a smooth group scheme over S; then H Llﬂ(S, H)=0
and surjectivity is immediate, since the cokernel of 0, embeds inside this group. To see
the asserted vanishing, we remark first that every fppf H-torsor is in fact locally trivial
in the étale topology; this follows from [Mil80, HI.3.9]1. Since the map Sy — S is purely

1. Milne only proves this when H is quasi-projective over .S, but as pointed out in the remark
following the proof in loc. cit., this is valid in the generality we have stated. In any case, we will
only require its validity when H is quasi-projective.

9



inseparable (or radiciel), it follows that an H-torsor over S is trivial if and only if its
reduction over Sy is so; cf. [FK88, 1.3.13]. O

1.1.2

Definition 1.1.2.1. A l-motif over a scheme S is a complex M = [Y % G] of fppf
sheaves of abelian groups over S:

e Y is a locally constant sheaf of free abelian groups, sitting in degree —1.

e (G is represented by a semi-abelian scheme over S of constant toric rank, and sits in
degree 0.

We will always assume that Y is in fact constant and that G is split; that is, it is an
extension
1-T—>G—>A—0,

of an abelian scheme A by a split torus 7.

Definition 1.1.2.2. For any n € Z~, the p*-torsion M [p"] of a 1-motif M is the derived
tensor product (of fppf sheaves) M & Z/p"Z[—1]. Tt follows from [Ray94] that M[p"] is
concentrated in degree 0 and sits in a short exact sequence:

0— Gp"] — M[p"] = Y/p"Y — 0.

The p-divisible group M|[p>] associated with a 1-motif M is the direct limit
lim,, M [p"]. It is an extension of the form

0— Gp™] = Mp>™] =Y ®Qy/Zy — 0.
Remark 1.1.2.3. More explicitly, we have, for each n,

{(9,) eGBY :p"g=u(y)}

M) = {(uly),py) :y €Y}

as an fppf quotient.

Using this description, the proof of the next lemma is straightforward.

/
Lemma 1.1.2.4. Let M = [Y % G] and M' = [Y 5 G] be two 1-motives over S and let

/
M'" =Y KRN |. Then the extension class of M[p™] in Ext}q (Y ®Qp/Zp,G[poo]) is
the sum of the classes associated with M[p™] and M'[p™].

O
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1.1.3

Let Sp < S be a nilpotent thickening of schemes defined by a nilpotent ideal .# C Oy,

and suppose that p is nilpotent in S. Let My = [V 20, G| be a 1-motif over Sy, and let
%y = Mp[p™] be its associated p-divisible group over Sp. Let Defyy, (S) be the category

of tuples (M, ), where M is a 1-motif over S and ¢ : M x g Sg — My is an isomorphism,
and let Defe (S) be the category of tuples (¢, ), where ¢ is a p-divisible group over S and

L9 xg Sy — ¥ is an isomorphism.
Suppose that G is an extension of the form

0—1Ty— Gy — Ay — 0,

where Ty is a split torus with character group X and Ag is an abelian scheme over Sp. Let
gosab = Go[p™] and let goab = Ag[p™]. We can define analogous deformation categories
DefGO(S), DefAO(S), Defgsab(S) and Defgab(S); this gives us the following diagram:

0 0

G M — Mp™)

Def 7, (S) Defy, (S)

sab . 00
@G0 G Glp lDef

DefGO(S) ggab (S)

@ab . A A[p™]

Def 4,(5) Defggb(S).

Some of the vertical arrows in this diagram require a little explanation. For any deformation
G of Gg over S, the embedding Ty — G lifts uniquely to an embedding 7" — G, where T
is the split torus over S with character group X, and the corresponding quotient A of G
will be a deformation of Ay over S. This follows from [FC90, §I1.1], and takes care of the
vertical arrows on the left. For the ones on the right, we only have to observe that maps
between p-divisible groups whose targets (resp. domains) are étale (resp. multiplicative)
lift uniquely over infinitesimal thickenings. So, for any deformation ¢ of ¢, over S, the
map %) — Y ® Qp/Zy lifts uniquely to a map 4 — Y ® Qp/Z;, and its kernel will be
a deformation @%b of %Osab. Similarly, the map Ty[p>°] — %Osab will lift uniquely to a
homomorphism 7' [p*>°] — @b whose quotient will be a deformation of g@b. So we see
that the vertical arrows on the right make sense as well.

Proposition 1.1.3.1. The functor ¢ : (M,¢) = (M[p>],¢[p™]) from Defpg,(S) to
Deng(S) is an equivalence of categories.

11



Proof. Let us show first that & is faithful. Suppose M = [Y = G] and M' = [V u—/> G
are two deformations of My over S and suppose that we have a map f : M — M’ reducing
to the identity on M. It is equivalent to giving a map f : G — G’ reducing to the
identity on G and satisfying fu = /. So it is enough to check that the functor @sab g
faithful. This follows from [Kat81, 1.1.3]. To show that ¢ is full, we begin with a map
h @ M[p>®] — M'[p™] lifting the identity on %). Any such map has to carry G[p>°] into
G'[p™] and induce the identity on Y ® Q,/Z,. We first claim that 52" is full and so
there exists a map f : G — G’ inducing h|G[poo]; indeed, this follows from the argument in

[Kat81, 1.2.1], since G is p-divisible and G’ is representable by a formal group law over S.

Now, it only remains to check that fu = u’. For fixed y € Y, g = (fu — u/)(y) is
an element of G/j(S); we want to show that it is 0. For each n € Z-(, we consider the
G'[p"]-torsor

Egn={g €G:p"g =g}.

The reduction of this over Sy is canonically isomorphic to Go[p"| as a G[p"]-torsor. The
fact that we have the map h : M[p>®] — M'[p™>] implies that we have a trivialization
G'[p"] = E4 n reducing to the identity on Gg[p"]. On the other hand, E;, is simply the
torsor corresponding to dy(g) in the notation of (1.1.1.1) above, and, since d,(g) = 0, for
all n, we conclude from loc. cit. that g must be 0.

We move on to showing essential surjectivity. For @2b this is a consequence of Serre-
Tate theory; cf. [Kat81, 1.2.1]. Fix a deformation A of Ay over S, and let CE)/ X = AE)/
be the classifying map for Gj. Then the isomorphism classes of lifts G of G over S whose
maximal abelian quotient is A correspond to maps ¢’ : X — AY whose reduction to
So is ¢ . The collection of such maps is naturally a torsor under Hom(X, A% (S5)). The
isomorphism classes of lifts

0— T[p>®] —» 9% = A[p™] = 0
over S of the extension
0 — Typ[p™] — Go[p™] — Ag[p™] — 0

are naturally a torsor under Extelj(A[poo],T[poo]), the group of extensions that induce
trivial extensions of Ag[p™°] by Tp[p™°]. Note that, by definition,

Extl (A[p™), T[p™]) = lim Extl, (A[p"], T[p").

n
By Cartier duality and (1.1.1.1), this extension group is identified with
Extl, (X ® Qp/Zy, A [p™]) = Hom (X, Extl, (Qp/Zy, AY[p™]))
= Hom (X, H; (S, AY[p™)))

~ Y,
TIRERTH Hom (X, A% (S)).

12



Now (1.1.2.4) tells us that, on isomorphism classes, @%b induces a map of torsors under
Hom (X , AVJ(S )), and so must be a bijection. The argument for essential surjectivity of
the full functor ¢ is similar: For a fixed deformation G of G, isomorphism classes of
deformation [Y % G] are a torsor under Hom(Y, G (S))%. Similarly, isomorphism classes
of deformations of ¢; which are extensions of the form

0= Gp™] =9 =Y ®Qy/Zy,—0
form a torsor under the group

Hom (Y, Hly (S, G[p™))) m Hom(Y, G #(S)).

On these isomorphism classes, again, by (1.1.2.4), ¢ gives rise to a map of torsors under
the group Hom (Y, G_#(S)), and is thus a bijection. O

We can extend the above results to the following situation: Suppose we have a ring
R and an ideal I C R such that R is (I, p)-adically complete. Let Ry = R/I and set
S = Spec R and Sy = Spec Ry. Suppose that we have a 1-motif My = [V 2o, G| such
that the abelian quotient Ay of Gg is equipped with a polarization )x%b. Then we have a
diagram of functors similar to the one above with the obvious meaning to the categories
involved:

G . M — MI[p™]

Def (3 aapy (5) Def ¢ xabppocp) (5)

@sab . s G[p™

l
Def<GO,)\8b)<S) Def(ggab’)\gb[poob(s)

@b . A A[p™

Def S) ] Def S).

(4920 (@b Azb o))

Corollary 1.1.3.2. All the horizontal arrows above are equivalences of categories.

Proof. That the functors are full and faithful is immediate from (1.1.3.1). Note that a
formal p-divisible group over R, that is, a p-divisible group over Spf R, corresponds to
a unique p-divisible group over S = Spec R by [dJ95, 2.4.4]. Therefore, by standard
arguments, and the essential surjectivity of the functors in loc. cit., objects on the right
hand side of the arrows can be realized as p-divisible groups corresponding to the formal
counterparts of objects on the left hand side. That is, over any quotient of R where p
and I are nilpotent, they arise as p-divisible groups of honest deformations of My (or Gy
or A, as the case may be). Any polarized formal abelian scheme (A, A) over S§ = Spf R

13



(here, we are using the (I, p)-adic topology on R) deforming (A, A\g) can be (uniquely)
algebraized into an honest abelian scheme (A, \) over R. This is because A gives us an
ample line bundle over 121, and so we can apply formal GAGA [EGAIII, 5.4.5]. We can
then bootstrap algebraicity upwards through the left hand side of the diagram using the
argument in [FC90, §II.1]: this says that any extension

0T —-G—=A-0
of formal group schemes over R deforming G can be uniquely algebraized to an extension
0—>T—-G—A—0,

once A has been algebraized to A. Moreover, suppose that we have a formal 1-motif M=

Y 4, G) over R, where G can be algebraized to GG. To show that M can be algebraized,
we only have to check that H0(S,G) = HY(S,G). This follows from [EGAIIL, 5.4.1]. [

1.2 Log l-motives

1.2.1

We recall some basic definitions from logarithmic geometry. References include [Kat89]
and [Niz08].

Definition 1.2.1.1. A log scheme is a tuple (5, Mg, a), where S is a scheme, Mg is an
étale sheaf of monoids over S, and o : Mg — Og is a map of monoids (with &g being a
monoid under multiplication) such that the induced map

a 1(0F) = 0%

is an isomorphism. We will often omit a and sometimes even Mg from this notation, if
this additional data is clear from context.

Maps between log schemes are defined in the obvious way. For a map f : (S,Mg) —
(T, Mr), we will denote the induced map of sheaves of monoids f -1 My — Mg by f ‘

Definition 1.2.1.2. A monoid P is:
1. cancellative if the map P < P8P into its group envelope is injective.
2. fine if it is cancellative and finitely generated.

3. fine saturated or fs if it is fine and if, for every x € P8P, 2" € P, for some n € Z~
if and only if z € P.

4. sharp if P* = {1}; here, P* is the sub-group of invertible elements in P.

A map of monoids f : P — @ is continuous if, for any p € P, f(p) is invertible in @
if and only if p is already invertible in P.

14



Remark 1.2.1.3. A monoid P is fine if the monoid ring Z[P] is finitely generated over Z
and a domain. It is fs if the monoid ring Z[P] is in addition normal.

Definition 1.2.1.4. For any adjective ’?’ that can be applied to monoids, we will say a
log scheme (S, Mg) is *?" if, for every geometric point § — S, the monoid Mg 5 /0 - is *7".

Definition 1.2.1.5. A log ring is a pair (R, Mp), where (Spec R, M) is a log scheme. If
R is an algebra over a ring A, then we will say that R is a log A-algebra.

Example 1.2.1.6. Any discrete valuation ring ¢ can canonically be endowed with the
structure of a log ring via the map &'\ {0} — &. Whenever we speak of such a ring as a
log ring, we will mean for it to be endowed with this canonical log structure.

Example 1.2.1.7. More generally, if S is any scheme and D C S is an effective Cartier
divisor with complement j : U = S\ D < S, then we can equip S with the log structure
Jx ﬁf} — Og. This is the log structure associated with the divisor D.

Example 1.2.1.8. To any sharp, fs monoid P and any ring R, we can associate the log
ring Rp. Its underlying ring is R; we have MRP = Gy X &P, and « : MRP — R is the
map taking P\ {1} to 0.

Let (S,Mg) be an fs log scheme. We have the functor Glr%g on fs log schemes over
(S,Mg) given by
GL8 . (T,Mp) — T(T,M5P).
For an appropriate topology (called the Kummer log flat topology; cf. [Niz08, 2.13]) on

the category of fs log schemes over (S, Mg) refining the fppf topology on S, Glr%g is a sheaf
of abelian groups [Niz08, 2.22].

1.2.2

We will now fix an fs log scheme (S,Mg) for the rest of the section, unless otherwise
notified. For any torus 7" over S with character group X we have the associated log torus

T8 — Hom(X, G}%g) as a sheaf in the Kummer log flat topology. We have a short exact
sequence
1 — T — T — Hom(X,Gl%/G,,) — 1.

Suppose that J is a semi-abelian scheme over S that is an extension
0—=+T—=J—=B-=0

of an abelian scheme B by a torus 7. Pushing this extension forward along the inclusion
T — T8 gives us an extension of Kummer log flat sheaves

0— T — Jl°8 s B0
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so that we have a short exact sequence
0 — J — J°8 — Hom(X,Gl%8/G,,) — 0.

For example, if our log scheme is just Spec & for a discrete valuation ring & with its
canonical log structure, then J1°8(&) = J(Fr(&)), where Fr(0) is the fraction field of &,
and the short exact sequence above, evaluated at &, gives us:

0— J(O)— J(Fr(0)) - Hom(X,Z) — 0,
where we fix a Z-valuation on € to identify Fr(€)* /0> with Z.

Definition 1.2.2.1. A log 1-motif over (S, Mg) is a complex [Y <% J1°8] in degrees —1,0
of Kummer log flat sheaves of abelian groups over (S, Mg), where:

1. J is a semi-abelian scheme that is an extension
0—-T—-J—>B—0

of an abelian scheme B by an iso-trivial torus 7', and J18 is the associated sheaf
described above.

2. Y is a sheaf of free abelian groups locally constant in the finite étale topology.
Recall that a torus T over S is iso-trivial if it is locally trivial in the finite étale topology.

Definition 1.2.2.2. To every log 1-motif Q = [V % J°8] we can associate the mon-
odromy map

Ng :Y — Hom(X,Gl8 /Gp),
induced from the surjection J°¢ — Hom(X, G}%g /Gm).

Let J be a semi-abelian scheme as above, viewed as an extension
0-T—-J5B—=0

of an abelian scheme B by an iso-trivial torus 7" with character group X. This is classified
by a homomorphism ¢¥ : X — BY. For every z € X, let J; be the extension of B by G,
obtained by pushing J forward along x : T" — G,;,. Suppose that we have a homomorphism
c¢:Y — B, where Y is a free abelian group, classifying another semi-abelian extension

v
0T = JY 15 BY 0,

where T is the torus with character group Y. Associated with 2 € X and y € Y, we have
the Gyp-torsor I ; = m; 1(c(y)), where 7y : J; — B is the quotient map.

We can package the Gy,-torsors Iy ; into a Gp-torsor I over Y x X: this is nothing
but the pull-back under the map ¢ x ¢¥ : Y x X — B x BY of the inverse Poincaré bundle
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7351 on B x BY. Then I has the structure of G;,-bi-extension over Y x X (cf. [Mum69]).
Concretely, this means that we have, for (y,z), (v/,2’) € Y x X, a canonical isomorphism:

Ny, ') Ly e 7 Aye @ Ly @ Ly o @ Ly,

of Gyy-torsors, and these canonical isomorphisms satisfy the requisite associativity and

commutativity constraints. The natural map G,, — G%g induces a G}%g—bi—extension log
over Y x X.
At the same time, we can also consider the pull-back IV of the inverse Poincaré bundle

77]5\1/ on BY x BYY = BY x B toY x X under the map

V
Y xX 35 XxYy £24 BY x B.

Here s : ¥ x X — X x Y is the ‘flip’ isomorphism (y,z) +— (z,y). This is again a

Gyp-bi-extension of Y x X. Concretely, for a section (y,z) € Y x X, I:X y 1s the Gpy-torsor

(wzy )~1(cY(x)), where T : JZY — BV is the natural surjection. Here, Jyv is the push-forward

of JV under the character y : TV — Gyy,.

Lemma 1.2.2.3. Let the notation be as above, and, for each section (y,x) € Y x X, let
jy,x be the (G;%g/Gm—torsor induced from I}ﬁ% under the surjection G;%g — Gi%g/Gm.

1. Gwing a liftu:Y — Jlog of ¢ 1s equivalent to giving a trivialization
7198 =, flog
Y xX

of Glr,%g—bi—extensions over Y x X. Concretely, this amounts to giving trivializations
T(y,x) € I%,?%(S) of G}%g—torsors such that
Ty +y, o +2') = 1(y,2)7(y, ")y, 2)r (Y, 2),

for all sections (y,z), (y',2') € Y x X. Here, we make sense of the identity using the

canonical isomorphism Ny,a),(y' )"

2. The Gp,-bi-extensions I and IY over Y x X are canonically isomorphic.

3. Fiz aliftu:Y — J of ¢ giving rise to a log 1-motif Q = v 5 Jlog]. Let

T(y,x) € Ié?%(S) be the associated compatible trivializations as in (2), and let 7(y, x)

be their images in [_yﬂ;. Then in T’ <S, G}%g/Gm> we have the equality

7(y,z) = No(y)(z),

where Ng is the monodromy pairing.
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Proof. (1) is a direct check from the definitions. As for (2): this follows from the fact that
the Poincaré bundles on BY x BYY and B x BY are identified under the isomorphisms

BYxBY = BYx B3 BxBY,

where s is the ‘flip” isomorphism.

Finally, for (3), observe that I, ;, being induced from I, ; via the trivial map Gy, 9,
Gi%g /Gy, is canonically trivialized, and so we can identify it with G}%g /Gpy. So it makes
sense to view 7(y, z) as an element of I' (S : G;%g / Gm>. Now the claimed equality is imme-

diate. O

Corollary 1.2.2.4. Consider the functor that associates with each log 1-motif QQ = [V LN
Jlog] over S the tuple (B,Y, X, c,c",T), where B is the mazimal abelian scheme quotient of
J, X is the character group of the maximal torusT of J, ¢ : Y — B is the map induced from

u, ¢V : X — BY is the classifying map for J, and T a trivialization of the G;%g-bi-extension
1
((c X cv)*P]_;l) % as in (1.2.2.3)(1) above. This functor is an equivalence of categories

between the category of log 1-motifs QQ over S and the category of tuples (B,Y, X, c,c", ),
where

e B is an abelian scheme over S.

e Y and X are sheaves of finite free abelian groups over S locally trivial in the finite
étale topology.

e ¢c:Y = Bandc' : X — BY are homomorphisms of sheaves of groups over S.

~ _1\log . . . .
o T: 11}9%0( = Jlog = ((c X cv)*PBl) ® s a trivialization of G}%g-bz—extenszons over
Y x X.
Proof. This is immediate. ]

Definition 1.2.2.5. Let Q = [Y & Jlog] be a log 1-motif corresponding to the tuple
(B,Y,X,c,¢V,7); then the dual log 1-motif QY = [X % (JY)198] is the log 1-motif
corresponding to the tuple (BY, X,Y,c", ¢, 7).

Remark 1.2.2.6. Suppose Q = [V LN Tlog], where T is the torus as above; this simply

corresponds to a map
u:Y — Hom(X,G98).

The dual Q" is the log 1-motif corresponding to the map
u" . X — Hom(Y, Gl%)
u’(2)(y) = u(y)(x).
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Definition 1.2.2.7. A polarization )\ : Q — Q" is a diagram
y % o jlog
)\ét )\S&b

4
X (),

where A" is injective with finite co-kernel, and A% is a map of extensions

0 T J B 0

)\mult /\sab /\ab

0 TV JV BY 0,

ét,x
with AP a polarization on B and A™ the isogeny Hom(X, G,y,) A Hom(Y, Gp).
The degree of a polarization A is the natural number deg(A2P)(# coker(A*))2. A po-
larization A is prime-to-NN, for some N € Zx, if the degree of A is prime to V.

Suppose now that we have a log 1-motif ) over S corresponding to a tuple
(B,Y,X,c,c’,7). As usual, let I = (c x cv)*Pgl be the associated Gjy,-bi-extension
over Y x X. Suppose also that we have an injective map of sheaves of groups MNPy 5 X
with finite co-kernel, and a polarization b B s BY guch that the diagram:

Y
)\étl
X

commutes. Let s : Bx B = Bx B be the flip isomorphism; then, since 22big q polarization,
it is in particular symmetric, and we have a canonical isomorphism s*(1 x )\ab)*PB =,
(1 x X\2P)*Pp. This means that (1 x )\ab)*Pgl is a symmetric Gy,-bi-extension over
B x B (ct. [Mum69]). In particular,

;B

A8b (1.2.2.7.1)
V

V B,
Cc

6t b -1
(IX AT = (e x )" (1 x A*)" Py

is a symmetric G,y,-bi-extension of Y x Y. Concretely, this means that, for all sections



(y,9') € Y x Y, we have canonical identifications
Iy7)\ét(y/) :_> Iy/7>\ét(y>. (1.2.2.7.2)
It is a direct check from the definitions that the datalof A2b and Aét can be extended to
a polarization X of @) if and only if the trivialization 7 : 1}9gx x — 1 1og of G, 8-bi-extensions
of Y x X induces a symmetric trivialization 11}(}5}/ = (1 x A¢)* 1198 of symmetric G;%g—

bi-extensions of Y x Y. Concretely, this means that, for all sections (y,%’) € Y x Y, the

YR T . &t/ /1 / At log log IOg
trivializations 7(y, A°**(y")) and 7(y', A°* (y)) of the two Gp,°-torsors [y,)\ét(y’) and Iy’,/\ét(y’)’
respectively, match up under the isomorphism between them induced from (1.2.2.7.2).

So we obtain:

Proposition 1.2.2.8. There is an equivalence of categories between polarized log 1-motifs
(Q, \) over S and tuples (B,Y, X, ¢c,c", aab, AU ), where (B,Y, X, c,cV,T) is a tuple as in
(1.2.2.4), and:

e N . B 5 BV is a polarization and MY X s an injective map with finite
co-kernel such that the diagram (1.2.2.7.1) commutes.

o (1 x X7 gives a trivialization

~ . 1
11}9‘%&/ = ((c X cv)\et)*Pél) o8

of symmetric G}%g—bi—extensions of Y XY over S.

1.2.3

We will now discuss level structures on log 1-motifs over S. We will hew closely, modulo
the appropriate translations, to [FC90, §IV.6]. Fix N € Z~(, and let (Q, \) be a polarized
log 1-motif over S corresponding to a tuple (B,Y, X, ¢, c", aab, )\ét,T) as above. We will
suppose that A is prime-to-N. We then have induced perfect pairings

6)\ab : B[N] X B[N] — U
€\ab (bv b/) = eB(b> /\ab<b/));

eyét 1 Y/NY X T[N| — py
eyé(y:t) = A (y) (1),
Here, ppy is the finite flat group scheme over S of N th_roots of unity, and

eg : BIN] x BY[N] — un
20



is the Weil pairing.
Suppose r = rankY = rank X, and let g € Z>( be such that g —r = dimg B is the
relative dimension of B over S.

Definition 1.2.3.1. Let Ay ,_, be a free Z/NZ-module of rank 2(g — ) equipped with
a symplectic pairing into Z/NZ. A principal symplectic level N structure of type
AN g—r on (B, A2bY i an isomorphism

PNt Ay g—r = BIN]

of sheaves of abelian groups over S, which carries the symplectic form on Ay 4, to a
(Z/NZ)*-multiple of €yab- By this, we mean that there is an isomorphism of sheaves of
groups

(W) py = Z/NZ

such that V(go'j‘\]/?) 0 €yap © go?\]}) is equal to the symplectic pairing on Ay 4.
We will usually suppress the adjectives ‘principal symplectic’ and refer to this simply
as a level N structure of type Ay ,_, on (B, )\ab).

Let Ay 4 be a free Z/NZ-module of rank 2g equipped with a symplectic pairing into
Z/NZ, and let Xy 4, C Ay 4 be a free isotropic sub-module of rank r such that the

quotient Ay o/¥N g, is again free over Z/NZ. Let Uy 4, = (EN,Q’T)J‘ C Ay, be the
radical of Xy ;.. We then have a perfect pairing

AN,g/\IIN,g,T X EN,g,T — Z/NZ (1.2.3.1.1)

induced by the symplectic pairing on Ay 4. The sub-quotient Ay 4, = U o /X 4 Will
inherit a symplectic pairing from Ay 4. Let us denote by € the pair (Ay 4, XN g )-

Definition 1.2.3.2. A principal symplectic level N structure of type € on the tuple
(B,Y, X, aab, A is a tuple (go?\]}), ga‘j\t[, ap%‘ﬂt) where:

1. gp?\]? is alevel N structure on (B, A2P) of type AN g—rasin (1.2.3.1), with an associated
isomorphism of sheaves of groups V(go?\l?) uy — Z/NZ.

Spr]r\}ult : XN gr = T[N]; and
SO% : AN7g/\I/N,g,r = Y/NY;
are isomorphisms of sheaves of groups such that
l/(cp?\?) O €y¢ét © (Spet X Somult) : AN,g/\IJN,g,T x ZN,g,r - Z/NZ
is equal to the pairing in (1.2.3.1.1).

Again, we will usually omit the adjectives ‘principal symplectic’.
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Definition 1.2.3.3. A principal symplectic level N structure of type € on (Q, \) is

mult

a tuple (g@‘j‘\]}),gp%,gpN LCN CYV,TN,(S), where:
1. (go?\]}), <p§3\t,, gpI]r\}u“) are a level N structure of type € on (B,Y, X, aab, )\ét).

2. ¢cn %Y — B and c}(, : %X — BY are maps such that the diagrams

1
Y ‘N _.pB
1 :
Y;
;{X 0% BY
C\/
X;

commute.

3. Let Iy be the G,-bi-extension (¢ X cv)*Pgl over %Y x X. Then, Ty is a trivial-
ization

~4log ~ .log

of G}%g-bi-extensions over %Y x X restricting to the trivialization 7 of [ log gver
Y x X.

5 : ENagaT @ ANvg_T @ (ANag/\IJNaQJ‘) i ANag

is a symplectic splitting of the filtration

0C2ENgr CUNgr CANg

1.2.4

Definition 1.2.4.1. Let E be a Gyy,-torsor over S, and let E°8 be the associated G%%g—
torsor. The induced G}%g /Gp-torsor E is canonically trivialized and can therefore be
identified with Glfﬁg /Gy, We say that an étale local section e of E'°8 ig positive, if, for
every geometric point § — S, the image of e in M%I?g /0§ 5 lies in (MS,E /ﬁ§7§> \ {1}.
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Let (Q, ) be a polarized log 1-motif corresponding to a tuple (B,Y, X, ¢, ¢”, aab zét T).
We will say that (Q,\) is positive if, for every geometric point s — S, and all sections

y € Ys, the section 7(y, At (y)) of Igl;oiét(y) is positive.

Suppose now that S = Spec R, where R is a complete local Noetherian normal ring, and
suppose that Mp is defined by a divisor D C R. Let U C Spec R be the complement of D.
Let DEGy be the category of positive polarized log 1-motifs (@, \) over S. Equivalently,
DEG,, is the category of tuples (B,Y, X, ¢, ¢V, \ab aét 7) as in (1.2.2.8)(2) satisfying the
positivity property in (1.2.4.1). Let DD} be the category of polarized abelian varieties
(A, A) over U that extend to semi-abelian schemes over Spec R.

Proposition 1.2.4.2. With the hypotheses as above, the categories DEGq and DDy are
naturally equivalent.

Proof. The proof can be found in [FC90, Ch. III]. O

1.3 Log F-crystals

1.3.1

Let S = Spec R be an affine scheme in which p is nilpotent. Following [BBM82|, we have
the exact contra-variant Dieudonné crystal functor

D: (p—divisible groups over S) — (Dieudonné crystals over S) .

We will not give a precise definition of a Dieudonné crystal, for which cf. [dJ95, 2.3.2].
However, we can give a very concrete description of a Dieudonné crystal over S in the
following situation: Suppose that we have:

e A formally smooth Zp-algebra R isomorphic to W{|z1, ..., x|, where W = W (k) is
the ring of Witt vectors with coefficients in a perfect extension & /Fy;

o A lift Cp: R — R of the p-power Frobenius map on Z?/p]%; and

e A surjection R — R with kernel I, so that p"R C I, for some n € L.

Let DR(I) be the divided power envelope of I in R, and let Dp be its p-adic completion;

for every a € I, let al?l e Dp be the n't divided power of a. Let Q}%/Z be the module
P

of continuous differentials of R over Zp; this is a finite free R-module. There is a natural

connection V : Dp — DR®Q}§/Z such that V(al") = a"U&da, for all a € I. Since pR
P

canonically admits divided powers, we have a canonical identification D (1) = Dz (I +pR).
In particular, the Frobenius lift ¢ 5 extends to a Frobenius lift ¢ p r over Dp. We will make
the following:

Assumption 1.3.1.1. Dp is flat over Zy.
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It will hold in all situations that we consider, which will take one of the following two
forms:

e R=R/p"R, for some n € Zg, so that Dp = R.

o R= 0k /p"0F, for some n € Z~( and some finite extension K/Q,. We can choose
R =W (k)[Ju|] and I C R to be the ideal generated by p” and an Eisenstein polyno-
mial F(u) in W (k)[u] corresponding to a uniformizer in K. One checks that, in this
case, D embeds into Ko[|u|] and is thus flat over Zj,.

Giving a Dieudonné crystal over S = Spec R is equivalent to giving (cf. [dJ95, §2.3]) a
Dieudonné module over Dp; that is, a tuple (M, s, V), where:

1. M is a finite free Dp-module.

2. s is a Dp-linear map
o ¢pM=M®p,,Dr—M
whose image contains pM.

3. Vs is an integrable topologically quasi-nilpotent connection

. 501
VM M — M@QR/ZP,

compatible with the natural connection on Dpg, for which ¢/ is a parallel map. The

topological quasi-nilpotence means that, for every derivation ¢ € Hom R<Q}% W R),
there exists n € Z~ such that V(&) (M) C pM.

Note that, since Dp is p-torsion free by hypothesis, we need not separately require, as in
[dJ95, 2.3.4], the existence of a map Vj; : M — ngRM such that ¢V = p; it will be

uniquely determined by ¢j;.

Theorem 1.3.1.2 (de Jong). Suppose I = pR, so that R = R/pR and D = R. Then the
functor

p-divisible groups Dieudonné crystals
D: —
over S over S

Dieudonné modules
over R

1 an equivalence of categories.

Proof. This follows from [dJ95, Main Theorem 1]. O
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1.3.2

Let R,R,I,D r be as above. There are a few p-divisible groups ¢ over S, for which we
can easily give an explicit description of D(¥) as a Dieudonné module over Dr. We have
(cf. [dJ95, 4.3.1)%)

D(@p/zp) = (DR7 1DR7 V)
]D)(Mpoo) = (DR,plDR,V).

We will denote these Dieudonné modules by Dpg, the trivial Dieudonné module and
Dp(1), the Tate twist, respectively.

Suppose now that L = [Y % T)] is a 1-motif over S, where T is a split torus with
character group X; let 4 = L[p®°]. In this case as well we can quite explicitly describe
D(L) = D(¥) as a Dieudonné module over Dp. We will go about it in a slightly roundabout
way so as to motivate an analogous definition for log 1-motives that we will make soon.
We begin with the short exact sequence:

1 — Hom(X,1+ 1) = T(R) & T(R) — 1.
Pulling this short exact sequence back along the map u : Y — T'(R) gives us an extension
1— Hom(X,1+1)— E, - Y —0.

Explicitly, .
E,={(f,y) eT(R)®Y :7(f) = u(y)}-
We have a map

PE, * Eu — Eu
(fyy) = (o(f),py).

Choose a lift @ : Y — T'(R) of wu; this gives us an isomorphism

ag :Hom(X, 1+ )@Y = E,
(fy) = (fuly), ).

It is easy to see that, under this isomorphism, the map ¢, pulls back to

og:Hom(X, 1+ 1) @Y — Hom(X,1+1)a®Y
(f,y) = (pla(y)u(y) Pe(f), py)-

2. note however that de Jong is using the covariant Dieudonné functor
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Consider the map of groups:

log:1+1— Dp

a3 (=1)"(n - 1)lal™,
n=1

Pushing E,, forward along log : Hom(X, 1+ I) — Hom(X, D), we obtain an extension
0 — Hom(X, D) — F, - Y — 0.
Finally, let M, be the push-forward of F}, ®7 Dp under the multiplication map
m : Hom(X, D) ®z Dr — Hom(X, Dp).
It is an extension

0 — Hom(X, D) - My, - Y ® Dp — 0.

The map ¢p,, gives rise to
oMy, @ERMU — My,

and, under the splitting
oy : Hom(X, Dp) @ (Y ® D) = M,,
v, pulls back to the map

vu (hy®1) = (p(h) + Pa(y), py @ 1).

Here ®; : Y — Hom(X, R) is given by y log((u(y))u(y)~P); this logarithm lies in
Hom(X, R), since p(u(y))a(y) P lies in Hom(X, 1+ pR).
From now on, identify (My, ¢pz,) with (Hom(X, Dg)® (Y ® DR), ¢g). For eachy € Y,

set wy(y) = dlog(i(y)) € Hom(X,QL ), and let Vy; : My, — M,®QkL be the
R/Z, u R/Z,
connection that restricts to the trivial connection on Hom(X, Dg) and takes y ® 1 to

wi(y). We see immediately that (My, ppy,, Vag,) is a Dieudonné crystal over Dp.

Definition 1.3.2.1. For any Dieudonné module (M, p,7, Vas) over Dp, its Cartier dual,
denoted (MY, ¢;,v,Vv) will again be a Dieudonné module over Dg. We have MY =
Homp , (M, DpR); ¢pv will be the dual of the unique map Vay : M — goERM satisfying
o Var = p; and Vv will just be the dual log connection:

Vv (m")(m) = —m" (Vpr(m)).
There is a natural identification of (M, ¢y, V) with its double Cartier dual.

Lemma 1.3.2.2. As a Dieudonné module over Dg, D(L) is isomorphic to the Cartier dual
(M’L\L/v SOMQ\L/a VM,L\L/) Of (MU7 @Mua VMU)
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Proof. This follows from [dJ95, §4.3]. As pointed out before, de Jong is using the co-variant
Dieudonné functor, while we are using the contra-variant version. The difference between
the two functors is Cartier duality. This explains why we need the Cartier dual in our
statement. [

1.3.3

Suppose now that R has an fs log structure Mp — R such that M /R* = P, so that P
is a constant, sharp, fs monoid. Following [KT03, §4.7], we will construct a functor

D log 1-motifs R log Dieudonné crystals
over R over R

extending the composition

1-motifs\ L—L[p*>] ([p-divisible groups) D (log Dieudonné crystals
—_— — :
over R over R over R

First, suppose that we have a l-motif L = [V % Tlog], where T is a split torus over R
with character group X. By construction, D(L) will be an extension

0 — Hom(Y,D(Qp/Zp)) — D(L) — D(T') — 0.
For any fs log algebra (Bo,Mp,) over (R,Mg), and any log PD-thickening (B,Mp) of

(Bo, Mp,) defined by a nilpotent PD-ideal J C B, we will define D(L)(B) in the following
way: Start with the short exact sequence

0 — Hom(X, 1+ .J) — T'8(B) — T'°%(By) — 0,

where T over B is again the split torus with character group X, and so TI°8(B) =
Hom(X, Glrng). We can pull it back along the map u: Y — Tlog(BO) to get an extension

0 — Hom(X,1+J) = Ey(B) =Y —0.
Since J has divided powers, we can define

log:14+J —= B

a— i (—1)"(n — Dlal,
n=1

Pushing £, (B) forward along log : Hom(X, 1+ J) — Hom(X, B) we obtain an extension

0 — Hom(X, B) — Fy(B) =Y — 0.
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If we now push forward the tensor product Fy(B) ®7 B along the multiplication map
Hom(X, B) ®7 B — Hom(X, B), we get an extension of finite free B-modules

0 — Hom(X,B) - My(B) - Y ® B — 0.

Define D(L)(B) = Hompg(M,, B).

Our construction so far gives us a log crystal D(L) over (R,Mp). It can be naturally
endowed with the structure of a log Dieudonné crystal over (R,Mpg). In the interest of
expediency, we exhibit this as follows: Suppose that R has an fs log structure M I3 such
that

e (R, Mp) is isomorphic to W{|t1, ... ¢y[] with the log structure determined by the
divisor cut out by tito---t,, with 0 < r < n. In particular, it is smooth and log
smooth over Zj.

e The Frobenius lift ¢ £ can be extended compatibly to M £ 80 that it induces the
p-power map on MR/pR’

e The map (R, Mp) — (R, Mg) is strict, so that the map Mp J/RX — Mp /R* is an
isomorphism.

Just as in the case of Dieudonné crystals above, it follows from the theory of [Kat89, §6]
that giving a log crystal over (R, Mp) is equivalent to giving a pair (M, V ;) where

1. M is a finite free Dp-module.

2. Vs is an integrable topologically quasi-nilpotent connection

. ~ Allog
Vy: M — M@QR/ZP,

compatible with the natural connection on Dp.

Moreover, giving a log Dieudonné crystal over (R, Mp) is equivalent to giving a tuple
(M, oprr, V), where (M, V) are as above, and ¢j is a Dp-linear, V j;-parallel map

or9pM=M®p, , D — M

whose image contains pM.

Let us briefly explain some of the notation. Here Q}:’:l/(?Zg is the module of continuous
i

logarithmic differentials on (R, Mp) (cf. [Kat89, §1.7]). Let q1,...,qn € Mp be elements

such that the elements dlog(qy), . . ., dlog(gn) form a basis for € %’l/ozg , and let 8i0g, e }Log
p

in Hom R(Q}é% , R) form the dual basis. Then topological quasi-nilpotence of V,; is
P
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equivalent to requiring that, for any any m € M, we can find r1,...,r;,s1,...,5; € N
such that (cf. [Kat89, 6.2(iii)])

I (v@og) _ rj)sj (m) € pM.

1<i<n,1<j<k

Since we already have the structure of a log crystal on ID(L), all that remains to do is to
endow M = lim, D(L)(Dg/p"Dg) with a parallel map ¢, as above. For this, we observe
that M is obtained in a very simple way. As always, we start with the short exact sequence

0 — Hom(X, 1+ I) — T'°8(R) — T'°8(R) — 0.

We pull it back along the map v : Y — Tlog(R), push the result forward along log :
Hom(X,1+ I) — Hom(X, Dp), tensor the result with Dp, and push forward what we get
along the multiplication Hom(X, D) ® Dgr — Dpg. Finally, we take Dp-linear duals, and
this gives us M. The map ¢j, is simply the one induced from the endomorphism

p: T%(R) = Hom(X, M)  Hom(X. M%) = T%(R)

arising from the Frobenius lift ¢ M%p — M%p.

Lemma 1.3.3.1. 1. The assignment L — D(L) defines a functor from the category of
log 1-motives over (R,Mp) of the form [Y % TIOg] with T' a split torus over R to the
category of log Dieudonné crystals over (R, Mp).

2. If we consider a 1-motif L = [Y % T] over R as a log 1-motif Llog — v 4 TIOg],
then D(L18) is naturally isomorphic to the Dieudonné crystal D(L[p™]) over R.
3. Suppose we have two log 1-motifs L1 = [Y A, Tlog] and Ly = [Y 12, Tlog], and set

L=[Y RN T98]; then the log Dieudonné crystal D(L) is the Baer sum of D(L;)
and D(Lg) in the category of extensions of D(T') by Hom(Y,D(Qp/Zp)).

Proof. The functoriality in (1) and the assertion in (3) both follow directly from the con-
struction. The second assertion follows from (1.3.2.2). O

Now we consider a general log 1-motif L = [V % G1°8] over (R,Mp), where G is an

extension
0=->T—-G—A—0,

where A is an abelian scheme over R and T is a split torus over R with character group
X. Associated to this we have the map

Np:Y — G8(R)/G(R) = T'5(R)/T(R) = Hom(X,M% /RX).

/
Choose some lift u/ : Y — TI°8(R) of Ny: this gives us a log 1-motif L' = [y £ T08],
/
which we will conflate with the log 1-motif [V - G°8] obtained from the inclusion 718 <
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1
G8. Let u” = u—u': this maps Y into G C G'°% and gives us a classical 1-motif [ = G
over R. We have already constructed D(L’) as an extension

0 — Hom(Y, D(Qp/Zy)) — D(L') — D(T[p™)) — 0.

We can pull this back along the surjection D(G[p™>°]) — D(T[p>°]) and think of D(L’) as
an extension
0 — Hom(Y,D(Qp/Zp)) — D(L") — D(G[p™]) — 0.

To L" we can associate the Dieudonné crystal D(L") = D(L"[p°]): this is also an extension
of D(G[p*°]) by Hom(Y,D(Qp/Zy)). We will take D(L) to be the Baer sum of D(L’) and
D(L") in the category of such extensions.

Note that we made a choice of lift /' of NJ to make our construction. If we fix a chart
a: Mp/R* — Mp, we can choose this lift compatibly for all log 1-motifs over (R, Mpg)
and so we see that D in fact gives us a functor. But in fact the isomorphism class of D(L)
does not depend on the lift /. We have:

Lemma 1.3.3.2. The extension class of D(L) does not depend on the choice of lift u'.

Proof. Suppose we have two lifts «} and ub giving us two decompositions
u:ull—i-u/l/:u'g—i-ug

Let L, L" LY. L’Q/ be the corresponding log 1-motives; L'{ and L’Q/ are classical 1-motives,
and, by (1.1.2.4), the Baer difference of D(L}) and D(Lf) corresponds to the Dieudonné

1/ /! / /
crystal associated to the 1-motif [V 7%, G]. But this last 1-motif is equal to [V L,
G], whose Dieudonné crystal is the Baer difference of D(L5) and D(L)) by (1.3.3.1). This
means precisely that the Baer sum of D(L)) and D(LY) equals the Baer sum of D(L4) and
D(LY), as was to be shown. O

Suppose that we have a map f : (R,Mp) — (R',Mp) of log algebras, and suppose
that (R, Mpy) satisfies the same hypotheses that (R, Mp) does. Then we have a diagram
of functors:

log 1-motifs f* log 1-motifs
over (R,MR) over (R', Mpr)

<log Dieudonné crystals) ¥ (log Dieudonné crystals)

over (R,Mpg) — over (R', Mpr)

Here, we have chosen charts Mp /R* — Mp and My /(R')* — Mpy in order to be able to
define the vertical functors. From our construction, and the compatibility under pull-back
of the classical Dieudonné functor, we have:
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Lemma 1.3.3.3. The diagram commutes.

1.34

Suppose that we have a polarized log 1-motif (L, \) over S, with L = [V % Jlog], such
that the associated sheaves of free abelian groups Y and X are both in fact constant.
We then have the associated Dieudonné module D(L)(Dpg) over Dp also equipped with
a polarization . Fix some chart o : Mp /R* — Mg, and suppose that we have a

Frobenius lift 5 such that pp(a(m)) = a(m)?, for all m € Mg /R*. Let T be the

torus with character group X. This gives us a lift ﬂ}fg .Y — T°8(R) of the monodromy
Ny Y — Hom(X,Mp /R*) and thus a lift W Yy TY98(R) as well, giving a log

1-motif Ly. Let v/ = u — ulo?g .Y — J: this gives us a 1-motif L' over R.

Given our choice of Frobenius lift ¢ and our construction of D(Lqy) using the lift

’&lo?g above (1.3.3.1), it is easy to check that the underlying ¢-module of D(Ly)(DpR) is
isomorphic to the direct sum Hom(Y, Dr) @ D(T")(Dpg), and thus is the trivial extension
of D(T)(Dg) by Hom(Y, Dg). By construction, the ¢-module underlying D(L)(Dp) is
the Baer sum of D(L')(Dpg) and the extension of D(J)(Dg) by Hom(Y, Dg) induced from
D(Lq)(DpR). Since the latter extension is trivial, we find that D(L)(Dg) and D(L')(Dg)
are isomorphic as ¢-modules over Dp. This identification gives rise to an identification
D(L)(R) = D(L')(R), and the Hodge filtration on D(L')(R) (cf. [Kis10, §1.4]) gives rise to
a direct summand Fill D(L)(R) € D(L)(R). Let I C Dp also denote the PD-ideal that is
the kernel of the map Dp — R, and for each n € Z~, let [ ] be the nth-divided power of
I. Let R
: n
Dp = l%n Dp/IM

be the PD-completion of Dp.

Lemma 1.3.4.1. Lifting (L,\) to a polarized log 1-motif over ﬁR is equivalent to lift-
ing the Hodge filtration Fill D(L)(R) to a direct summand Fil' D(L)(Dp) of D(L)(Dp) =
D(L)(DR) ®py Dg that is isotropic with respect to 1.

Proof. We will only prove one direction of the equivalence, since that is what we will need
in the future. The other implication, in any case, is easier. Suppose that we have a lift

of the filtration; since we already have the lift ﬂlo?g of ulc?g, it suffices to find a lift of the
1-motif L' to D R corresponding the lift of the filtration. By classical Grothendieck-Messing
theory (cf. [Mes72]), lifting the filtration on D(L')(R) to one on D(L')(Dp) corresponds
to a deformation ¢ of the p-divisible group L'[p™>] over D Rr- Saying that the lift of the
filtration is isotropic is equivalent to saying that the polarization X' [p>] on L'[p™] also lifts
to a polarization of . By (1.1.3.2), this gives us a deformation of (L, X') over Dp, and
thus a deformation of (L, \) over Dp. O
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1.4 Dieudonné theory over formally smooth rings

1.4.1

Let W be the ring of Witt vectors over some perfect extension k/Fy.
Definition 1.4.1.1. An augmented W-algebra is a pair (R, Jr), where
e R is isomorphic to W{|t1,. .., tp]].
e Jp is the kernel of an augmentation map tp : R — W.
Maps between augmented WW-algebras are defined in the obvious fashion.

Definition 1.4.1.2. A contracting Frobenius lift on an augmented W-algebra (R, Jg)
is a faithfully flat lift i of the p-power Frobenius on R/pR such that pp(Jg) C JJQ%
In this situation, we will sometimes say that g is Jr-contracting.

Remark 1.4.1.3. Note that (I, (0)) is an augmented W-algebra admitting a unique con-
tracting Frobenius lift. It is, by definition, the final object in the appropriate category, and
we will refer to it simply as W.

Lemma 1.4.1.4. Let (R, JR) be an augmented W -algebra, equipped with a contracting

Frobenius lift . Then the image of the induced endomorphism ¢p of Q}B/W lies inside

Proof. Q}%/W is generated by elements of the form da, for a € Jp. Since pp(a) € J]%, it
follows that X
*(da) = d(¢(a)) € TR -

The lemma is an immediate consequence. O

Definition 1.4.1.5. Fix an augmented W-algebra (R, Jp) equipped with a contracting
Frobenius lift pp. A filtered Dieudonné module over (R, ¢R) is a tuple

M = (M, pp, Fil' M,V )
where
e M is a finite free R-module.

® s is an R-linear, V j -parallel map
QOMZQOEM:M(@R’@R—)M

whose image contains pM.
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e Fill M c M is a direct summand satisfying
o (PR(Fil' M+ pM)) = pM.
e Vs is an integrable topologically quasi-nilpotent connection

) 5 G Llog

for which ¢,/ is a parallel map.

We will often say that M is a filtered Dieudonné module over R. The category of filtered
Dieudonné modules over R will be denoted MFg 1 (R).

Remark 1.4.1.6. An object in M}—[O,I}(W) is simply a 3-tuple (M, My Fill M) that sat-
isfies conditions (1) to (3) above. For every filtered Dieudonné module M over (R, Jr, ¢R),
we have the induced filtered Dieudonné module My over W obtained by reducing modulo

IR

Proposition 1.4.1.7. There is an equivalence of categories

-divisible groups\ ~

over R

Proof. This is an immediate consequence of [Fal89, Theorem 7.2]. As observed in [M0098,
§4.1], it also follows from (1.3.1.2) and Grothendieck-Messing theory [Mes72]. O

Definition 1.4.1.8. The trivial filtered Dieudonné module over (R, Jg, ¢r), denoted
R, is the tuple (R, 1p,(0),d). The Tate twist, denoted R(1), is the tuple (R,plg, R,d).

1.4.2

The functoriality of these Dieudonné modules is a little involved, since the Frobenius lift
@R is not canonical. But things are clear if we view them as crystals instead. Suppose
(R',J ) is another augmented W-algebra equipped with a contracting Frobenius lift ¢ /.
If we have a morphism f : (R, Jg) — (R, Jp), then we obtain a functor f* : MFp 1) (R) —
MFp 1] (R') in the following fashion:

Given an object (M, ¢y, Fill M, V) in MFp1)(R), f*(M, Fill M,V ;) will be ob-
tained by the usual base change from R to R’. Then we observe that there is a canonical
isomorphism

epa et TM = ffopM
induced by the connection V ;. This is essentially given by parallel transport, after one
notes that pps o f and f o pp agree modulo p. For more details, see [M0098, 4.3.3]. Now,
one can define ¢+ as the composition

€M *
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In particular, the filtered Dieudonné module categories associated to two different contract-
ing Frobenius lifts ¢ p and gp’R are canonically equivalent.

Definition 1.4.2.1. For any M in M‘F[O,].](R>7 the associated Kodaira-Spencer map
for M is a map

M
KS); : Deryy (R) — Hom (Fﬂl M, )
ar : Deryy (R) Fill M

where Derp (R) = Hom R(Q}% W R) is the module of continuous W-derivations of R. It is
obtained from the R-linear map

Fil' M — (M/Fil' M) @ QO

induced by the connection Vj;, which we will, abusing notation, also call KSy,.
We say that an object M in MFjq 1)(R) is versal if KSyy is a surjection.

Lemma 1.4.2.2. Let M be a filtered Dieudonné module over (R, Jg, vR). Let Ry = R/J%%,

let My be the induced filtered Dieudonné module over (Rq, JR/JJQ%, ©R), and let Mg be the
filtered Dieudonné module over W induced from M.

1. There is a canonical isomorphism of tuples
Apm
(MO QW Ry, Y M ®1,1® d) T> (Mla P My VM1)>

reducing to the identity modulo JR/J%%.

2. The composition

Afl

M M,
Fill My C My M, My@w R1 — 0 led, 70

—0 ow R 2%
Fill gy W

is naturally identified with the reduction of KSyr modulo Jg.

3. KSpy ®R/Jr can be identified with the negative of the map

O : T := Homyy (Jp/Jj, W) — Homyy (Fil' Mo, Mo/ Fil' Mp)
£ (m— £ (Apg(m)(mod Fil' My))).

Here, we are using the fact that the image of Ayr(m) in My Fill My lies in

Jr(My/Fil' My) = (Mp/ Fil' Mo) @y (Jr/JR)-
4. M is versal if and only iof © s is surjective.
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Proof. Let M =p~1Fill M + M ¢ p~1M; then s induces an isomorphism
M ap}‘%]\;f = M.
Also, since pp(JR) C JZQ%, the Frobenius lift o, : Ry — Ry factors as

Ry =W 2w < Ry,

and so 907%1 M = @%MO ®mw R1. Define Aj; so that the following diagram commutes:
Py Mo @y Ry == ¢, My
<)0]\40 ® QOMl

My @w Ry M

Using the fact that ¢y, is parallel for V., we can easily check that Ay satisfies the
conditions stated in the lemma.
Statement (2) follows from the commutativity of the following diagram:

M A
My ————— M ®p, Q}%l/W

Ay Ay @1
l®d 1 M Al
MO®WR1—>MO®WQR1/W M®R1QR1/W
My 1®d M . ; .
-7 Qw R R Q2 > 2w (Q Qn. W).
Fill ay ~ 7 Fill Mg =W RUW T BT, w (g, yw ©r W)

Assertion (3) now follows immediately from the fact that the natural map
2 d Al
JrR/TR = Qg yw Ory W

is an isomorphism when R is formally smooth over W.
(4) is just an application of Nakayama’s lemma. O

The next result is basically [Mo098, 4.4], which is itself an elaboration of the argument
in [Fal99, Theorem 10].
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Proposition 1.4.2.3. Suppose Mg = (Mo, g, Fill My) is an object in M}—[O,l](W): and
suppose that there exists a formally smooth augmented W -algebra (R, Jg) with a contracting
Frobenius lift or, and a versal object M in M]:[O,l](R) equipped with an identification

VpM = My. Suppose also that we have another augmented W -algebra (R, Jpr) equipped
with a contracting Frobenius lift o pr, and a tuple (M, Ot Fill M"Y over R’ such that:

1. (M, 0, Fil' M') satisfies conditions (1) to (3) of (1.4.1.5) with respect to R'.
2. We have an isomorphism

70 ¢ (Mo, @agy, Fil' Mo) = v (M', @ Fill M),

Then there exists a map f: (R, Jg) — (R, Jps) of augmented W -algebras and an isomor-
phism
71 fF(M,pp, Filt M) = (M o, Fil M)

lifting T9. In particular, there is a topologically quasi-nilpotent flat connection V y;r that
completes the tuple (M', @y, Fill M) to a filtered Dieudonné module over R’
Proof. Let Ry, = R/ [T, Jh = JpRy,, o) = ep(mod Jth), My, = M' @p Ry, and
o = @ 2 (mod Jgfl). We will build f and 7 by inductively constructing a coherent
sequence {(fn, ™) }n>0, where
fo: (R, JR) = (Bp, Jp),

and

T (M, oar, Filt M) =5 (My, o, Fil My,).

We have (fy,19) given to us by hypothesis. So our problem is to construct (fy41,Tn+1)

once we are given (fn, 7).

To do this, pick any lift f, : (R, Jg) — (R}, 1, J}41) of fn: this is possible since R is

formally smooth. The space of such lifts is naturally a torsor under

¢ 1 2 ¢ 1
T Qw Jn’}jl = Homy (Jg/Jg, W) @w J," 4

We can also choose a lift
Fo o [ (MLFY M) = (Mg, Filh My, )

of 7.
Since gngl((J;Hl)”“Ll) = 0, there is a unique map oy, : R;, = R}, such that ¢} 4
factors as
Ry — By =% Ry
The map ¢}, o f, factors as
fno proon o
R % R, - R, 1,
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and is thus independent of the choice of lift f,,. It is therefore harmless to write gp}b 119 1

for this map, and to write go;j‘ el I 11 M for the pull-back of M along it. Similarly, the map

fno ¢ R 1s independent of the choice of lift fn, and so we obtain meaning for the symbols
fnr1oeg and fi @M. We can easily check that the parallel transport isomorphism

f7
90n+1fn+1M “— o1 M

between these former ambiguities is also independent of the choice of lift; so we will
call it e M- In the same vein, we have a unique isomorphism ¢, ;(7,41) between

gonJrlfnJrlM and <pn+1M 41 lifting gon “(Tn)-
The Frobenius ¢ ; T induced on M/ il Vvia fn and 7, fits in the following diagram:
T

/ € fnt1.M
Ot a1 M == frr19rM
from
/ ~
907;(+1<7'n+1) f;sz

Tn

fn,Tn /
90n+1M 11— My,

For any other lift f;’L of f, for M as in the proof of (1.4.2.2), we have the map

f*@_l f %)
fam L oM M FeM

which reduces to the identity modulo J, Tf'll, and thus induces a map

L Fill My — (M) Fil' M) @y JH

fmfn n+1 >

when restricted to f;L" Fill M. The difference between f,, and f,’L is an element of Th @y

J;fll and A Pl is, up to sign, simply the image of this element in
nsJn

Homyy (Fil' My, Mo/ Fil' Mo) @y J, 4!

under the map O, of (1.4.2.2).
Let 6 : M;Hl = M1lz+1 be such that 90;1+1 =#fo T Then 0~ o 7, also induces a
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map
A Fil' My — (M) Fil' Mp) @y J," 4
Using the versality of M and (4) of (1.4.2.2), we can choose a lift f,, 1 such that Afn et =
W
A. For this choice, the unique map 7,41 for which the diagram below commutes respects

filtrations.

fos1oM Tadl
fas19rM ——— fr M ——= M,

I

£k /

The pair (fp+1,Th41) now does the job for us. O

Corollary 1.4.2.4. The category of tuples (M, s, Fill M) over (R, Jg) satisfying condi-
tions (1) to (3) of (1.4.1.5) is equivalent to MFg 1)(R).

Proof. There is a natural forgetful functor from M-F[O,l] (R) to the category of such tuples,
and the proposition above tells us that it is essentially surjective provided we allow the
following

Assumption 1.4.2.5. For every My in M]:[O,l](W)v there is an augmented W-algebra
(R, Jpr) and a versal object M’ in M]:[O,l](R/) such that LE,M/ = M.

Admitting this for the moment, it only remains to show that the forgetful functor is
fully faithful. So suppose that we have two objects M and M’ in MFigq] (R), and suppose

that we have a map f : M — M’ of R-modules such that f(Fil' M) c Fil'! M’ and
oyt eR(f) = fFy. We would like to show that f also respects the connections on both
sides. Consider

0= (f®1)oVy —VypofeHomp(M,M)®p 0y
Let Ad(¢)(6) be the image of § under the composition

. LR} A
Hom(M, M) ® Q%{/W YR7VR, Hom(opM, ppM') @ Q}Q/W

-1
: ®1 A
M Hom(M, M") [H ® Q}Q/W'

Then, by our hypotheses on f,

6 = Ad(y)(8) € Hom(M, M) [H ® Q}%/W,
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Since Q}%/W is without p-torsion, we can use (1.4.1.4) to conclude that we have

§ = Ad(p)(6) € Hom(M, M) @ JrQL W
Repeating this process, we find

6 € () Hom(M, M') @p JjQp yy = 0.
n>1

As for the still unproven assumption (1.4.2.5) above, it is best viewed as a result in the
deformation theory of p-divisible groups: the deformation functor for any p-divisible group
over a perfect field is representable and formally smooth. We refer to [Fal99] or [dJ95] for
further details. O

1.4.3

Let P be a sharp, fs monoid, and consider the log algebra Wp (cf. 1.2.1.8). If P # 1, we will
have many choices for a log Frobenius lift on Wp, but the set of such choices is naturally
a torsor under the group Hom(P®P 1+ pWW). Indeed, suppose that we have two Frobenius
lifts ¢ and ¢’ over Wp, and consider their difference f : m cp(m)(p’(m)_l € M%[I;P. We

have a short exact sequence:
0— W* = M — PP — 0.
P

f restricts to the identity on W induces the identity on P8P and gives rise to an element
of Hom (P8P 1 + pW).
Notice that we also have the diagram

1—>1+pW*>M%5 —>M%I])D—>1

]l ——=14+pW ——= W~ k> 1

The short exact sequence at the bottom of the diagram is canonically split by the Te-
ichmutiller lift. Sections of the short exact sequence on top inducing the Teichmiiller split-
ting on the sequence at the bottom also form a torsor under Hom(P®P 1 + pWW). We now
have:
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Lemma 1.4.3.1. There is a bijection of Hom(P®8P, 1+ pW)-torsors:

Splittings of the short exact sequence
1—>1+pW—>M%§P—>M%§—>1
lifting the Teichmiiller splitting of the sequence
1= 14+pW = W* k" =1

(Frobenius lifts on Wp) ~

Proof. Fix a Frobenius lift o on Wp, and consider the map
P - M%}[}P — 1+ pW
m— @(m)m™P.

Its restriction to W has kernel k™ and it is simple to check that its restriction to 1+ pW
is bijective. The kernel of ® will be the section of (1.4.3) corresponding to the Frobenius
lift , and we have a splitting

M%IBP — M%I; ®(1 + pW), (1.4.3.1.1)

where the projection onto the second summand is (@\1 —|—pW)_1 o .

Conversely, suppose that we have a splitting as above compatible with the Teichmiiller
splitting on W*. The corresponding Frobenius lift is now the direct sum of the natural
Frobenius maps on each of the summands. O

Even though Wp is not log smooth over Zj;,, we can make sense of a log Dieudonné
module over it.

Definition 1.4.3.2. Fix a Frobenius lift ¢y on Wp. A log Dieudonné module over
Wp is a tuple (M, opr, Npy), where

e M is a finite free W-module.
® o) oy M — M is an injective map whose image contains pM.

o Ny : P&V — End(M) is a map satisfying
Nar(Hear = penreiv (Naur(f)),

for all f € P&V the dual group for P&P.

Remark 1.4.3.3. If we were less pedantic, and identified ¢ M, with the pp-semi-linear map
induced by it, and if we set N = Nj;(f) and ¢ = @, then this condition would be the
more legible and familiar o

Ny = ppN.
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Remark 1.4.3.4. Why do we keep track of the Frobenius lift in this definition, even though
the required properties of the tuple (M, v, Nas) appear to have nothing to do with it?
To answer this, we need to observe that there is one (perhaps the only) important way
in which we obtain log Dieudonné modules over Wp: We begin with an augmented W-
algebra (R, Jg) equipped with an fs log structure Mp — R, and a log Frobenius lift ¢ p
such that ¢p(JR) C Jg. Suppose that Mp /R* = P and that the induced log structure
on W = R/Jp makes it a log W-algebra isomorphic to Wp. Then we have an induced
Frobenius lift ¢y on Wp. Now, any log Dieudonné module (M, vpr, V) over R will give
rise under reduction modulo Jp to a log Dieudonné module over Wp and with respect to
this particular Frobenius lift.

Remark 1.4.3.5. Functoriality between the categories of log Dieudonné modules over Wp
for different Frobenius lifts is determined by the requirement that it be compatible with the
functoriality for log Dieudonné modules (that is, log F-crystals) over log formally smooth
W-algebras), and the reduction functor described in (1.4.3.4). To describe this, suppose
that we have a Frobenius lift op on Wp. Let @) be any other sharp, fs monoid. Fix any
Frobenius lift g on Wy, and let f : Wp — Wy be any map of log WW-algebras that is

the identity on W. This amounts to giving a map fjj : My, — MWQ of monoids. Let

(M, ppr, Nay) be a log Dieudonné module over Wp. Then the pull-back f*(M, e, Nas)
over W is described as follows. We have f*M = M, and

i
Npopg: QY Ly pv oy gnd(a).
Describing ¢ 7 is only a little more involved. Consider the map
. \&P
Py MWP — 1+ pW
m = oo(fH(m) fpp(m) "

This factors through P8P, and applying the p-adic logarithm gives us the map log(®y) :
PP — . We can think of this as an element of P8PV ® W; evaluating Nj; on this
element gives us Ny (log ®¢) € End(M). We then have:

CgxNf = PM © (1 —I—NM(Iqu)f)) .
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CHAPTER 2
p-ADIC HODGE THEORY FOR DEGENERATING ABELIAN
VARIETIES

2.1 Splittings of filtrations

2.1.1
Let A be a commutative ring, and M a finite free A-module.

Definition 2.1.1.1. A decreasing exhaustive filtration F'*M on M is a collection
{F"M},;cy of finite free A-sub-modules of M such that:

1. Foralli ez, F'* 1M ¢ FiM.

2. For all i € Z, the A-module gr% M = % is again finite free.

3. There exists k € Z such that FFM = M.
We will usually suppress the adjectives and refer to such a gadget simply as a filtration.

Remark 2.1.1.2. One way to obtain filtrations on M is via a co-character y : Gy, — GL(M):
this defines a grading M = @,z M", where

M' = {me M : u(z)m = z'm for all z € Gp,}.
Given such a grading of M we have the associated decreasing filtration given by
F'M = @jZiMi.

In this situation, we will say that F?M is split by the co-character .

Let G C GL(M) a closed, connected, reductive sub-group. Suppose that M is equipped
with a decreasing filtration F*M. Let Pp C G be the sub-group that stabilizes this
filtration, and let Up C Pp be the sub-group that acts trivially on gry M. Then we have
the following:

Lemma 2.1.1.3. [Kis10, Lemma 1.1.1] The following are equivalent:
e F*M can be split by a co-character p : Gy, — G.

e Pp is a parabolic sub-group of G with unipotent radical Ur, and the grading on gry M
is induced by a co-character i : Gy, — Pp/Up.
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Definition 2.1.1.4. When the equivalent conditions of (2.1.1.3) hold, we will say that the
filtration F'*M is G-split.
More generally, for any flat, closed sub-group H C G, we will say that F'*M is H-split
if it is G-split and we can choose a splitting co-character y that factors through H.
Following [Kis10], for G not necessarily connected, we will say that F*M is G-split if
it is G°-split. Here G° is the connected component of G.

Let F'* M and W*®M be two G-split filtrations of M, let P and Py be the corresponding
parabolic sub-groups of G given to us by (2.1.1.3), and let Lp and Ly be their respective
maximal reductive quotients. We have closed embeddings L7 < GL(gr3 M) for 7 = F, .

Let F° be the filtration on gryy M induced by F'.
Lemma 2.1.1.5. Let the notation be as above.
1. Suppose that we have a short exact sequence
0N =N N =0

of A-modules. Let I C M be an A-sub-module, and suppose that we have a direct
sum decomposition N = N1 @ No of N inducing direct sum decompositions

I=(INN)@INN); N =(NnN) @ (N 0 No).
Then Ny C I if and only if NN Ny C N'N1I and «n(N1) C w(I)

2. Suppose that we have a co-character pi : G, — PpN Py and let F/:M be the associated
filtration split by . Suppose that the filtration F; on gryy M induced by FJM 15 equal
to F*. Then F'M = FZM, for alli € Z. In particular, u splits F*M.

Proof. Let us begin with (1): the only if part of it is immediate. So suppose N'NNy € N'NI
and 7(N’) C 7(I). Choose an element n € Nj. By hypothesis, there is an element
m =m1+mg € I, with m; € INN; (i = 1,2), such that 7(n) = m(m). To show that n

lies in [, it is now enough to show that m; —n € I. To see this, simply note that we have

n' =m—n=(my —n)+mg € N, where

my—neN NN c N nI.

We now prove (2). Let @;czM" be the grading on M induced by p. The assumption
that p factors through PN Py, C G implies that, for each 5 € Z, we have induced gradings:

WIM = @icg WM N M,

FIM = @;cp FIM N M.
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To show that FIM = FﬂM, for all j € Z, it is enough to show that M c FJM for all
i1,j € Z such that ¢ > j. In fact, since W*M is exhaustive, it is enough to show that, for
all integers ¢, 7, k € Z such that ¢ > j, we have

MinWkm c FInwkm.

For fixed 7 and 7, this can be shown by descending induction on k. Suppose that the
assertion is true for i,j,k as above. Then the assertion for i,j,k — 1 will follow from
applying (1), with

N =WrE M N = WrM N = g v g = W R

Ny = WM A MY Ny = WELM 0 (@M1 |

Let F*M, W*M, Pp, Py, Ly and F* be as above.

Lemma 2.1.1.6. Suppose that A = k is a perfect field, and that F° is Lyy-split. Then
F*M s Pyy-split.

Proof. Let Prp C Ly be the image of Pp N Pyy: this is the parabolic sub-group of Ly
corresponding to the Lyy-split filtration F°. First, assume that & is algebraically closed.
Then, by [Bor91, 1V.14.13], we can find a maximal torus T C Pr N Pyy. This T maps
isomorphically to a maximal torus T C Pp.

Let U be the unipotent radical of Pr. Then, the space of co-characters of Ly splitting
F* is a torsor under Up. Moreover, by [Bor91, II1.10.6], all maximal tori of Pp are
conjugate to each other under U p. Putting these two statements together, we see that we
can choose our co-character 71 splitting F© such that it factors through T. We can lift this
uniquely to a co-character u : Gy, — T — Pp N Py, and it follows from (2.1.1.5)(2) that
1 splits F* M.

Now let us consider the general case where k is any perfect field. Take the functor )
on k-algebras given by:

Q(R) = {Co—characters w: Gy @ R — Py ®p R splitting F*M ®y, R} ,

for any k-algebra R. In general, this functor is a pseudo-torsor under the unipotent group
Up N Pyr. The proof above for £ algebraically closed shows that it is in fact a Up N Pyy-
torsor. Since Up N Py is connected unipotent and & is perfect, any Up N Py-torsor over
k is trivial. In particular, Q(k) is non-empty, and we have our result. O

Remark 2.1.1.7. Since Up N Py is a sub-group of the unipotent radical Ug of a parabolic
sub-group Pp of a reductive group G, this result is valid without the assumption that & is
perfect, but we will not need this more general statement.
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2.1.2

Suppose that K is a field with char K = 0, and let C be a neutral K-linear Tannakian
category with fiber functor w : C — Vect . Suppose that we have a 1-dimensional object
T € Obj(C); fix an isomorphism X : K = w(T). For any object L of C, and any k € Z>,
denote by L(k) the tensor product L ® T®*. We will also denote the K-vector space
w(L(k)) by w(L)(k). The choice of X\ gives us an identification )\]}j c w(L) = w(L)(k), for
any object L of C.

Fix D € Obj(C); let Cp be the Tannakian sub-category of C generated by D, and let
Cp,r be the Tannakian sub-category of C generated by D and T'. Let wp (resp. wp )
be the restriction of w to Cp (resp. Cp ). Then H = Aut®(wD’T) is a closed sub-group
of GL(V @ w(T)), where V = w(D). If T is isomorphic to an object in Cp, then we can
view H as a closed sub-group of GL(V'). Let N : D — D(1) be a morphism such that the
composition

N At
NA:V—>w( ) V() v

is a nilpotent endomorphism of V. Note that N, € End(V') determines a map

fa: Gy — GL(V)
a — exp(alNy).

The associated differential
Lie(fy) : Lie(G4) — End(V)

is independent of the choice of A up to multiplication by an element of K*. So we have a
well-defined Lie sub-algebra 9 C End(V): this is the image of Lie(f)), for any choice of A.

In [Del80, 1.6.1] (cf. also [Del80, 1.6.4]), we find a construction of the unique ascending
filtration MoV on V such that:

° N(MZV) C Mi_QV(l);
e N* induces an isomorphism gréw M= gryk V (k).

This is the Jacobson-Morosov filtration on V' associated with the morphism N. It is
clear that for any a € K, MV will also satisfy the properties above with respect to the
morphism a/N. In particular, MeV only depends on the Lie sub-algebra 9t C End(M). We
can convert it into a descending filtration W*V by setting W'V = M_;V. In this case N k

will induce an isomorphism gr;Vk I gr% V(k).

Lemma 2.1.2.1. Maintain the notation as above. Let G C GL(V) be a closed, reductive
sub-group.

1. The Lie sub-algebra M C End(V) is stabilized by H. In particular, H stabilizes the
filtration WV,

2. Suppose that Nt C Lie(G); then the filtration WV is G-split.
45



3. Let Py C G be the parabolic sub-group stabilizing WV . Suppose that G contains
the image of H in GL(V'), and suppose also that we have an exact tensor filtration
F*® onwp (cf. [SR72,1V.2.1.1]); then F*V is Pyy-split.

Proof. Since H = Aut®(wD7T) and T is an object of Cp 7, for any K-algebra R and any
element h € H(R), we have an associated automorphism hp of w(T') ® g R. If we denote
by h(1) the automorphism h ® hp of V(1) ® R =V ® w(T) ® R, then the diagram

(N)®1

Veor RSV @k R

h h(1)

Ver RN vy ex R

commutes. Moreover, for any choice A : K = w(T), the automorphism )\Blh(l))\ p of
V ®k R is a scalar multiple of h. Since N = ABlw(N), we find that h(Ny ® 1)h ! is a
scalar multiple of Ny ® 1. In other words, I is stabilized by H, and we have shown the
first part of assertion (1). The second part is now immediate.

Assertion (2) follows from [SR72, IV.2.5.3].

For (3), let H C GL(V) be the image of H in GL(V). Then H is simply the group
Aut®(wp), and F*V is H-split by [SR72, Theorem IV.2.4]. The second part of (1) shows
that H C Py, and so the filtration F'*V must necessarily be Py -split. [

Note on Notation 2.1.2.2. Suppose R is a commutative ring and suppose that C is an
R-linear tensor category that is a faithful tensor sub-category of Modp, the category of R-
modules. Suppose in addition that C is closed under taking duals, symmetric and exterior
powers in Modp. Then, for any object D € Obj(C), we will denote by D® the direct sum
of the tensor, symmetric and exterior powers of D and its dual.

2.2 p-adic Hodge theory

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field k
of characteristic p > 0. Let W = W (k) be the ring of Witt vectors with coefficients in k
equipped with its Frobenius lift ¢y, and let Ko =W [%} C K be the maximal absolutely
unramified sub-field. A Galois representation will be a continuous finite dimensional
Qp-representation of Gal(K/K).

2.2.1

We refer the reader to Fontaine’s article [Fon94a] for the definition of the p-adic period
rings Beris, Bst and Bgqr. We will simply note:
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e Bygr is a filtered K-algebra equipped with a Gal(K/K)-action; B.s C Bt are
Ko-algebras equipped compatibly with a @yp-semi-linear endomorphism ¢ and a
Gal(K /K)-action; and Bg; is additionally endowed with a Bgs-linear derivation N
that is defined up to a Q-multiple, and depends on a choice of p-adic valuation on K.

Gal(K/K)

e We have BdR Gal(K/K) _

_ K, BS RGal(K/K)

— “cris

= K.

e There exists a natural Galois-equivariant embedding Beyjs ® i, £ < Bqg, inducing
a filtration on Beis @, K.

Remark 2.2.1.1. While there is no canonical embedding of Byt ® Ky K into Bgg, this lack
can be ameliorated in the following way: Fix a p-adic valuation v on K. Set

Kllo:oe KX
(lab’ —lo —lg, for o, B € K*;lq = log(a), for a € 1+7rﬁK.)'

Klog —

This is a K-algebra, and giving a section ¢ : K log _y K corresponds precisely to giving a
branch of the p-adic logarithm over K.
K198 can be equipped with the K-derivation N given by:

N :lg = —v(a)ly.
We can define a similar ring K8 for K, and it is easy to see that the natural map
K @5 K8 5 K18

is an isomorphism.
There is also the universal logarithm:

log : K~ — K8
a > lg.

We claim that there is a canonical embedding (Bt ® i, i log)N=0 , B n, where we are
taking the invariants of the diagonal operator N®141® N on the right hand side (note that
this operator is independent of the choice of valuation v). To construct this embedding,

in [Fon94a, 4.2.2], we simply have to replace the choice of logarithm log : K* = K over

K with the universal one into K.% = K R K log 1p particular, any branch of the p-adic
logarithm over K corresponds to a map ¢ : K log _ K of K -algebras and determines an
embedding ¢¢ : Bgt P K, K — BjR.

Following the remark, we give the following very slight modification of the definition of
a filtered (¢, N)-module:
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Definition 2.2.1.2. A filtered (¢, N)-module D over K is a vector space D over Kj,
equipped with a Frobenius semi-linear operator ¢, a linear operator NV and a filtration on

=0
the K-vector space (D K, KIOg) . This data satisfies: Ny = ppN.
Remark 2.2.1.3. For every choice of logarithm ¢ : K1°8 — K, we obtain a filtration on
D ®, K, and thus a filtered (p, N)-module in the usual sense. The notion of weak
admissibility is preserved and reflected under this operation, so we can speak of a weakly
admissible (¢, N)-module in our sense as well.

Fix the derivation N on Byt that corresponds to the choice of valuation v such that
v(m) = 1, for some (hence any) uniformizer 7 of K. We can now define Fontaine’s (co-
variant) functor Dg; from Galois representations to filtered (¢, N)-modules over K (see
[Fon94b]) by the formula

DSt<V) = HomGal(?/K) (@p, Byt ®Qp V)

If Dgr(V) = HomGal(F /K) (Qp, Bar ®Q, V') is the corresponding filtered K-vector space,
then we have a natural map

)N:O — Dar(V),

(Dst(v) ®K0 Klog

which respects filtrations on both sides.
One can also similarly define the corresponding crystalline functor D, to filtered ¢-
modules over K.

2.2.2

Let V be a semi-stable Galois representation with Hodge-Tate weights in {0, 1}1; let D=
D¢ (V') be the associated weakly admissible filtered (g, N)-module. Fix a uniformizer
m € K and fix the choice of logarithm taking 7 to 0. This endows D = D ®k,, K with
a filtration Fil® D, and so we can also think of D as a filtered p-module. Some of the
discussion below can also be found in [Pau04].

Let Qp(1) be the 1-dimensional Galois representation corresponding to the p-adic cy-
clotomic character x : Gal(K/K) — Zp, and set Qp(—1) = Hom(Qp(1),Qp). Let
Ko(1) = De¢is(Qp(—1)) be the associated 1-dimensional weakly admissible filtered ¢-
module over K. Choose a generator e for Q,(1): this amounts to choosing a generator
compatible system of p-power roots of unity in K. Associated with this is a cylotomic
period ¢t € Bgis (cf. [Fon94a, 2.3.4]); the element e = ¢ ® e ! is a canonical basis element
for Ko(1), and we have ¢(e) = pe. For any weakly admissible filtered (¢, N)-module £
and any integer r € Z, set E(r) = E® Ky(1)®", where for r < 0 Ky(1)®" is defined to be
Hom(Ky(1)®~", Kp).

1. we use the convention where the Tate twist Q,(1) has Hodge-Tate weight —1.
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The nilpotent endomorphism N : D — D satisfies the condition Ny = ppN, and the
choice of basis e for K(1) allows us to view N asamap N : D — D(1) of weakly admissible
modules.

Let K be the trivial filtered ¢p-module over K. Set:

V(D) = Homy, n il (Ko, Bst @, D).

Here the sub-script represents the structures that are supposed to be preserved. Since V
is semi-stable, Vi (D) is a finite dimensional Galois representation, and we have a natural
identification of Galois representations V' = V(D). Applying the functor V¢ to the map
N, we obtain a map Vi (N) : V. — Vi (D(1)) = V ® Vst (Ko(1)) = V(—1) of Galois
representations. We will denote this map again by /N; this should not be a source of
confusion.

We can now apply the theory of (2.1.2). First, in the notation of loc. cit., we take C to
be the base change over Ky of the Qp-linear (non-neutral) Tannakian category of weakly
admissible filtered (¢, N)-modules, equipped with the forgetful fiber functor w to Vect Ky
We pick D to be our object in C, we take T" to be K(1), and we take N to be the map
N : D — D(1). We then have the associated ascending Jacobson-Morosov filtration MeD
on D (here we are conflating D with the Ky-vector space underlying it). Up to shift, it
agrees with the three-step filtration

0=W_1DcCWyDCWDCWyD =D,

where WyD =1im N and W1 D = ker N.
Next, we can take C to be the Qp-linear Tannakian category of continuous Q-
representations of Gal(K /K) and w to be the forgetful functor to Vectg,- We will take D

to be V, T to be the inverse Tate twist Qp(—1), and N to be the map N : V' — V(—1). We
have the associated Jacobson-Morosov filtration MeV. We will use the shifted three-step
filtration WeV satisfying W;V = M;_1V, so that we again have a three-step filtration

0=W_ VWV cWwWVcWV=V.
Again, W1V =ker N and WV (—1) =im N.
Lemma 2.2.2.1. Let the notation be as above.

1. The filtration WeD of D is a filtration by weakly admissible filtered (¢, N)-sub-
modules.

2. The filtration WeV is a filtration by Gal(K /K )-sub-representations. The filtration
Dg(We(V)) on D = Dg(V') is identified with WeD.

3. WV is crystalline, as are all the associated graded terms ng-W V. Moreover, WyV
1s potentially unramified, and grgVV is potentially a Tate twist by Qu(—1) of an
unramified representation.
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4. Suppose that we have a closed, reductive sub-group GKO C GL(D) that is the pointwise

stabilizer of a collection of p-invariant tensors {sqa} C FilO(D®)N:O. Then the
filiration We D is G, -split.

5. With the hypotheses as in (1), let Py C GKO be the parabolic sub-group stabilizing
WeD; then the two-step filtration Fil® Dy is Py R, K-split.

6. Suppose that we have a closed, reductive sub-group GQp C GL(V) that is the point-

wise stabilizer of a collection of Gal(K /K)-invariant tensors {sq} C V®. Then the
filtration WeV is GQp-split.

Proof. Assertions (1) and (2) are seen from the explicit descriptions of WeD and WeV
given above.

The statements in (3) about W;V and grg/v V' are immediately translated into the fol-
lowing on the weakly admissible module side: N is trivial on W7D, and on all the associated
graded terms gry/ D. Moreover, g0|W0 p is an isomorphism. Both these assertions are easily
checked.

As for (4), the hypotheses on G, ensure that Auwt®(wp) C G- Since N(sq) = 0,
we also see that N lies in Lie(G, ). The conclusion follows from (2.1.2.1)(2).

(5) is more or less immediate from (2.1.2.1)(3): we only have to note that, to apply it
directly, we would need to take our Tannakian category C to be the base change over K of
the category of weakly admissible (¢, N)-modules, D to be the corresponding object of C,
now viewed as a K-linear category, w to be the forgetful fiber functor to Vecty, and F'® to
be the exact tensor filtration on wp induced by Fil® D

(6) follows from (2.1.2.1)(2) for reasons analogous to those found in the proof of (4). O

2.2.3

Maintain the notation as above. Set
Vcris<D) = Homgo,Fﬂ(KOa Beis ®K0 D)-

For a general weakly admissible filtered (¢, N)-module D, V,.is(D) need not even be finite
dimensional?, but in our special situation, it is finite dimensional with dimension equal

to dim D. In fact, we can say more: Fix a compatible system (my,),>0 = (anr\l/?)nZO of
p-power roots of m in K. Set Koo = Up>1 K(m,) C K, and let Gal(K /K«~) be the absolute

Galois group of K. Let I € Bgt be the element log % considered in [Bre02, §3.5]: it arises
from the choice of a coherent system of p-power roots of 7 made above, and transcendentally
generates Bgt over B ig. Sending [ to 0 gives us a projection Bgi — Birig, which then gives
us a map Ay : V — Vis(D). Identify V with Vi via Ay, Let p, pr : Gal(K/K) — GL(V)
be the continuous homomorphisms corresponding to V' and V., respectively.

2. cf. [CF00, Théoreme 4.3]
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Proposition 2.2.3.1. With the notation and definitions as above:

1. Let Dy be the filtered p-module obtained from D by ‘forgetting N’ and via our choice
of logarithm. Then Dy is again weakly admaissible, and the map

Ay 2V = Ve = Vcris<D) = Vcris(Dﬂ)

is a Gal(K /K )-equivariant isomorphism. If V is in fact crystalline, then \y is
simply the canonical identification V' = Vepis(Deris(V)).

2. We have
p= 1y +1tp®N)opr,

Here, tp : Gal(K/K) — Zp(1) is the 1-cocycle defined in [Bre02, 3.5.4], so that we
have gly = lx + tp(g)t, for all g € Gal(K/K); and t € Beys is Fontaine’s cyclotomic
period mentioned in the previous sub-section.

3. The following diagram commutes:

D®Bst$V®BSt
|+ 1N Ay ® By

D ® Bgt sVW@)Bst
Here, the horizontal maps are Fontaine’s canonical comparison isomorphisms.

Proof. For (1), see [Bre02, 3.5.1,3.5.3]. Note, however, that Breuil uses the contravariant
Fontaine functors, while we have employed their covariant counterparts. Assertion (2)
follows from [Bre(2, 3.5.4].

For (3), let Set c(g) = tp(g~!): this gives a Zy(—1) valued 1-cocycle. Let E be the
2-dimensional Galois representation given by

L clg) )
= — y
/ (0 x(9)~!
in a basis {e1,ea} for E.

This is semi-stable with Hodge-Tate weights in {0,1}. Using (2) and the functorial-
ity of Ay, to prove (3), it is enough to show that the diagram in (3) commutes for the
representation E. For this, we can do an explicit computation. We check:

e D¢ (F) is spanned by fi = 1® ey and fo =l ® e] + 1 ® eg, and N maps fo to fi.
o E; = Viis(Dst(E)) is spanned by 1® f1 and t 7! @ fo;
e \p maps e to 1 ® f1 and es to 1 fa.
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Putting all this together, it is easy to see that the map on the left hand side of the square
is indeed 1 + [, V. O
cris,o

o Gal(K/K)
Gal(K /K)-representations. RepoGal

We will denote by Rep the category of Galois-stable Zj-lattices in crystalline

(K /Koo) will denote the category of Gal(K /Kx)-stable
o
Zp-lattices in Gal(K /Ko )-representations.

cris,o

.y o .
Lemma 2.2.3.2. The restriction functor from RepGal(F/K) to RepGal(F/Koo) s fully
faithful

Proof. This is [Kis09, 2.1.4]. O

Suppose now that we have a Galois-stable lattice A C V. The filtration WeV on V
intersects with A to give rise to a filtration WeA on A. Via the isomorphism Ay : V — Vi
above, we obtain a Gal(K /K )-stable lattice Ax = Ay (A) C V.

Corollary 2.2.3.3. Maintain the notation as above.
1. The map N : V — V(—1) restricts to a map N : A — A(—1).

2. The Zp-lattice Ax C Vp is Galois-stable, and the map N gives rise to a Galois-
equivariant map N : A — Ar(—1) via the isomorphism Ay .

3. The filtration WeA is Galois-stable and is taken to a Galois-stable filtration WeAr of
A.7r.

Proof. Both (1) and (2) follow from [Bre02, 3.5.5]. For (3) the description in terms of of
WeA above in terms of the Galois-equivariant operator N shows that it is Galois-stable.
Since the isomorphism My is Gal(K /K )-equivariant, for each 7, the map

A
Wik = A 25 Ay (2.2.3.3.1)

is again Gal(K /K )-equivariant. For i < 2, by (2.2.2.1)(3), W;A is a Galois-stable Zj-
lattice in a crystalline representation. It now follows from (2.2.3.2) that, for ¢ < 2, the map
in (2.2.3.3.1) is in fact Gal(K/K)-equivariant. This means precisely that the filtration
WeA is Galois-stable as well. O

2.24

Let k be the residue field of K; for any extension [/k within k, set &(I) = W(I)[|u|]. Let
S = S(k), and let E(u) € & be the monic Eisenstein polynomial associated with the
uniformizer 7. We equip & with the lift ¢g of the p-power Frobenius on &/p& given by:

vslw = ow
e (u) =ub.
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Definition 2.2.4.1. A ¢y-module over G is a finite free G-module 9 endowed with an
G-linear isomorphism

Lo - gp*GSm [E(u)_l} = [E(u)_l]

The category of p-modules over & will be denoted Modfg. If the map gy actually arises

from a map @& — M whose co-kernel is killed by E(u)", for some natural number r, we
will say that 90 has E-height r.
A (¢, N)-module over & is a @p-module 9 equipped with an endomorphism N of

M /udn [Il?} satisfying No = pp N, where ¢ is the yyy-semi-linear endomorphism of 9t/u9
induced from pgy. The category of (¢, N)-modules over & will be denoted Mod(/péN.

A Barsotti-Tate module over & is a ¢-module of F-height 1. The category of
Barsotti-Tate modules over & will be denoted BT(/p6

o,
There is a fully faithful exact tensor functor 9 : RepGr I(R/K) — Mod 76 ®Q)p from
the category of semi-stable Galois representations to the isogeny category of Mod?, Je» 80

we have canonical isomorphisms:

Mm(V) ll] = Dy(V):

that, for any V € RepG (KK

udN (V)
pesMV)  [1] ~
E{u) o0 (V) l 1 = DarlV)

The first isomorphism is equivariant with respect to ¢ and N, and the second respects
filtrations, where the filtration on the left hand side is induced from:

Fil' o§M(V) = ppyy (E(w)' (V).

Moreover, for any natural number r, Galois representations with Hodge-Tate weights in
[0, r] are taken to p-modules of E-height 7.

All this follows from [Kis06, 1.3.15], which shows the above with the category of weakly
admissible filtered (¢, N)-modules over K replacing the category of semi-stable Galois
representations. But these two categories are equivalent via the functor Dyg;. 3

By [Kis10, 1.2.1], we also have a fully faithful exact tensor functor

o . cris,o %)
o= RepGal(F/K) — Mod/G,

3. In loc. cit., Kisin also restricts himself to the situation where the Hodge-Tate weights are
all non-negative, but this can be worked around using Tate twists. See proof of [Kis10, 1.2.1]
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for which the following diagram commutes:

o

Repcris’o —>§)ﬁ Mod?

Gal(K/K) /6
m
t o,N
Repg /i) — Modjg ©Qp.

Let A be a Galois-stable Zj-lattice in a semi-stable Gal(K /K )-representation V' with
Hodge-Tate weights in {0, 1}. Let D = Dg (V') be the associated weakly admissible filtered
(¢, N)-module over K. Let V; be as in (2.2.3.1), equipped with a Gal(K /K )-equivariant
isomorphism Ay : V' = Vy. Let A, be the image of A under this isomorphism, as in
(2.2.3.3). There is a unique isogeny representative of (V') that is isomorphic to 9°(Ar)
in Mod}pG: we denote this by 9(A). In particular, we have natural identifications

M) /a4 |1 ] = Deg(V7) = D

PeIM(A) [1

) o) pl = DarlV).

Moreover, the filtration WeAx (cf. (2.2.3.3)(3)) gives rise to a filtration WeMt(A) on M(A)
under the functor 91°.

Suppose that we have Galois-invariant tensors {sq} C A% (see (2.1.2.2)) such that their
pointwise stabilizer is a reductive sub-group GZp C GL(A). We can think of these tensors

as Gal(K/K)-equivariant maps 1 — A%, where 1 is the trivial representation Z,. By
abuse of notation, let 1 again denote the trivial filtered p-module over K. Then, by the
tensor-functoriality of Dgt, we obtain sections sq gt : 1 — D®.

Proposition 2.2.4.2. With the notation as above, we have p-invariant tensors {Sa,G} C
M(A)® such that:

1. The natural identification

I

v )

uM(A) | p

takes {so &} to {sast}-

2. There exists an isomorphism
Awg, &(k) = M(A) ®g (k)

under which the tensors {sq ® 1} are taken to {s, g ® 1}.
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3. There ezists a map Ng : M(A) — M(A) satisfying

E
Newvam) = pE((OI;) INALE

and reducing modulo u to the nilpotent operator N on D.

Proof. If we think of s, as a Galois-equivariant map s, : 1 — A®, we obtain, using
Ay, a Gal(K /Koo )-equivariant map s : 1 — A2. By (2.2.3.2), The restriction functor
cris,o
Gal(K/K) (K/Koo)
a Galois-invariant tensor in A2. Via the functor 9 we then obtain p-invariant tensors
Sa,6 € Qﬁ(A)@)

Let {Sq.rcrist € D® be the tensors obtained from the reduction of {54,¢} modulo
(u). To prove (1), it suffices to show that these tensors agree with {sqst}. We see from
(2.2.3.1)(3) that, in D® ® B,

from Rep to RepoGal is fully faithful. Therefore, sq r in fact determines

Sa,m,cris @ 1 =exp(IxN) (5a7st ®1).

But N(sqst) = 0, and so sq.st is indeed equal to s r cris, as required.
For (2), it suffices to prove the statement with A replaced by A;. But this is a conse-
quence of [Kis10, 1.3.4]. Note that this is the place where reductivity of Gy, is crucial.
Finally, in (3), Ng arises from the map N : Ay — Az(—1) in (2.2.3.3)(2) via the functor
2. We just have to observe that the underlying &-module for 9(Zy,(—1)) is simply &

with ¢ being multiplication by pg((ozg)' See the proof of [Kis10, 1.2.1]. O

Corollary 2.2.4.3. Let My = 9MM(A)/uIM(A), so that M Lﬂ = D. Then:

1. The tensors {sast} lie in M(()g)
2. The filtration WeA is Gz, -split.
3. There is an isomorphism
A @z, W(k) = Mo @y W(k)

which takes {sq ® 1} to {sa s ® 1}.

4. The pointwise stabilizer Gy C GL(My) of the tensors {sqst} s a pure inner form
of GZp ®@ W, and is in particular reductive.

Proof. (1) and (3) are immediate from the proposition above. For (2), by [Kis10, 1.1.4], it is
enough to show that WeV is GQp—split, where GQp is the generic fiber of GZp~ This follows

from (2.2.2.1)(5). For (4), we simply have to observe that Gy is a twist of GZp ® W by
the GZp ® W-torsor Q' ]
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2.2.5

For any finite extension L/K( with residue field [, denote by Ly = W (l) BJ the maximal
absolutely unramified sub-extension of L. Choose some uniformizer n; for L, and let
Er(u) € W(l)[|u]] be the monic Eisenstein corresponding to 7. Let Sp be the p-adic
completion of the divided power envelope of & in W (l)[u]. More explicitly:

{Z a7 € Lo[lul] : a; € W(1), lim a; = O} :
1— 00

Here ¢(i) = ng, where e is the ramification index of L. See [Bre00, 2.1.1]. S7, is equipped
with the log structure M St corresponding to the divisor defined by u and also a Frobenius
lift ¢ taking u to uP.

Let S = Sk be the W-algebra associated to K and 7. We will treat S as an G-algebra
via the map u — u: this is clearly compatible with the Frobenius lifts on S and &.

With the notation from before, let M(A) = pgIM(A) ®g S. Since pg(E(u)) = pa, for
a € S*, the induced map

(A - PSMA) = M(A)

has its cokernel killed by p.

Lemma 2.2.5.1. Let A € Repgiai’(%/K) be the crystalline lattice associated with A as in

the proof of (2.2.4.2), and suppose that Ay = Tp(%)v, for a p-divisible group &G over O .
Let D(¥) be the contra-variant Dieudonné F-crystal over Ok associated with 4.

1. There is a natural isomorphism of S-modules
D(4)(S) = M(A)

taking LD(@)(S) 10 LM(A) the former arising from the F-crystal structure on D(9).

2. There is a natural isomorphism
D(%0)(W) = iy Mo,

of Dieudonné modules over W, where 4 is the reduction of 4 to k.

3. There is a natural logarithmic connection
V) s MA) = M(A) @y Wu] dlog(u),

that is compatible with PM(A) and whose residue is the endomorphism N of
oMo
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4. There is a natural isomorphism

M(A)/E)M(A) m 2, Dar(A),

respecting the Hodge filtration on both sides. Here, M(A)/E(u)M is equipped with
the filtration Fil' (o*0M/E(u)@*M) @ S (cf. 2.2.4.2).

Proof. By construction, M(A) can be identified with the S-module M(9M(¥)) in [Kis10,
1.4.2]%. So the first assertion follows from loc. cit. The second assertion is an immediate
consequence of the first.

For the third, we first remark that there is a connection

Vg : D(F)(S) = D(F)(S) @y Wluldu,

arising from the fact that D(¥) is a crystal over 0. This gives rise via the isomorphism
in (1) to a connection

Vit M(A) = M(A) @y Wuldu.

Let Ng : M(A) — M(A) be the endomorphism associated with the map N : Az — Az(—1)
as in (2.2.4.2). Let N : S — S be the derivation taking u to —u, and set

NM(A) :—@%N6®1+1®N,
as a derivation of M(A) = pgM(A) ®g S. Then

VM(A) =V — NM(A) ® dlog(u)

is the connection we are looking for.
Finally, for (4), we can simply appeal to (2.2.4.2)(1) and the definition of M(A). O

Remark 2.2.5.2. o We can always find a p-divisible group & such that Ar = T,(94)".
This follows from the fact that every crystalline representation with Hodge-Tate
weights in {0, 1} arises from the Tate module of a p-divisible group over 0. See
[Kis06, 2.2.6]. Any two such p-divisible groups will be isomorphic by the full-
faithfulness of the functor 7}, (Tate’s theorem).

e For a different choice of the branch of the p-adic logarithm (see (2.2.1), the p-divisible
group attached to the corresponding crystalline representation will not in general be
isomorphic to ¢. However, for i < 1, the p-divisible group W;¥ associated with W;A,
and, for all 7, the p-divisible groups grgv ¢ associated with gryV A are unambiguously
determined, independently of the choice of logarithm.

4. The definition of M(¥) is a little off in loc. cit.: it should be 9M(Z) :== M(T,(Z)").
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e A arises from a log p-divisible group 48 over @y, and the S-module M(A) simply
corresponds to the log Dieudonné F-crystal associated with @108 via logarithmic
Dieudonné theory; cf. [Katb].

2.2.6

P
Let Re be the ring of functions on the rigid analytic open disk of radius p~ e, and let us
fix a co-ordinate u on this disk; then Re admits a log structure Mg, = RS @ uN. We can
embed S into R via u — u: this clearly respects log structures. Set

Re [la Ta € M%pe}
(laﬂ —lo =g, for a, B € M%;; lo = log(a), whenever |a — 1| < 1.)

R\8 —

Here, by | — 1| < 1, we mean that |a(x) — 1| < 1, for all z in the rigid analytic open disk
-1
of radius p_pT.

leog can be equipped with a natural logarithmic connection V : I, — —1 ® dlog(«),

and a semi-linear map ¢ lifting pg given by ¢(ly) = pla. Set

W(A) = (M(A) @5 BOE) Y,

where we endow M(A) ®g R with the tensor-product connection. This is naturally a

(¢, N)-module over K. By [Vol03, Theorem 9], the inclusion W(A) — M(A) ®g RY®
induces a (¢, V)-equivariant isomorphism

T(A) @, RS = M(A) @g RES. (2.2.6.0.1)

The natural surjection R, — K sending u to 7 can be extended to a surjection R}zog — K
by sending I, to 0, and reducing the isomorphism (2.2.6.0.1) along this surjection gives us
an isomorphism:

Bar : V(N @, K = M(A) ®g K = Dgg(A), (2.2.6.0.2)

where the last isomorphism follows from (2.2.5.1)(4).

We can similarly extend the natural surjection R, — K sending u to 0 to Rleog — K
sending [, to 0. Reducing (2.2.6.0.1) along this, gives us a (¢, N)-equivariant map

Bst 1 W(A) S M(A) ®5 Ko = @iy Dse(A) 25 Dt (A). (2.2.6.0.3)

Here, the second isomorphism follows from (2.2.4.2)(1).

o8



Lemma 2.2.6.1. The diagonal isomorphism in the diagram below is the one induced from
the embedding Bgt ®f, K — Bqr given by the choice of logarithm taking w to 0:

W(A) 0, K B D)
Pst @ 1|

Dst (A) ®KO K

Proof. This follows from the argument in [Kis06, 1.2.8]. O

2.3 The log F'-crystal associated with a semi-stable abelian
variety

2.3.1

Let K/Qp be a finite extension with residue field k. Let A be a polarizable semi-stable
abelian variety over K extending to a semi-abelian scheme G’ over 0. By (1.2.4.2), after
finite unramified base-change, if necessary, we can find a positive, log 1-motif [V EN Jlog]
over O, where Y is a J is an extension

0—T—-J—=B—0

of an abelian scheme B over O and T is a split torus over O with character group a
free abelian group X.
By the theory in [Ray71], we have an isomorphism

JA/(Y) = AR (2.3.1.0.1)

of rigid analytic varieties over K. We also have the monodromy map Ny = Ny : Y —
Hom(X,Z) for A (cf. 1.2.2.2). A choice of polarization A on A determines among other
things a map A°' : ¥ — X such that (y,3/) — N4(A\¥(y)) induces a positive definite
symmetric bilinear form on Y ® Q (cf. 1.2.4.1). In particular, rkim N4 = rk X.
Suppose that we fix an algebraic closure K /K, and that we set, for any algebraic group
H over K,
Ty(H) = lim H[p")(F):

HY(H.Z,) = H}(Hp, Zp).

Then, from the uniformation (2.3.1.0.1), we obtain a short exact sequence of Gal(K/K)-
representations:
0—=Tp(J) = TH(A) =Y ®Zy — 0.
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Dualizing it gives us

0 — Hom(Y, Z,) — HY(A, Zy) — HY(J, Zy) — 0.
Also, H 1(J, Zp) sits in a further short exact sequence

0 — HYB,Zp) — HY(J,Zp) = X @ Zp(—1) — 0.

Putting all this together gives us an ascending three-step weight filtration WeH1 (A, Zp)
on HY(A,Zp), with W_1HY (A, Z,) = 0; grl)’ HY(A,Zy) = Hom(Y, Zy); gr} HY(A,Z,) =
HY(B,Zp); and gt} HY(A,Z)y) = X @ Zp(—1).

Consider now the de Rham cohomology H, éR(A): this is a filtered K-vector space. For

any integer 7, let K (—i) be the filtered one dimensional K-vector space with Fil’ = K and
Fil't1 = 0. We will denote K (0) simply by K. Then, by the same considerations as above,
H le(A) also admits an ascending weight filtration WeH éR(A) with W_1H éR(A) = 0;
grl/ Hip(A) = Hom(Y, K); gr]V Hig(A) = Hlg(Bg); and gtV Hip(A) = HL(T) =
X ®@ K(—1) (cf. [CI99, §1.2]). Observe also that, after tensoring with K, the monodromy
N4 induces a nilpotent endomorphism of H ollR(A) with W1 H éR(A) as its kernel and with
its image equal to gry’ Hle(A): we will call this operator Ny gqr (cf. [C199, §1.2.1]).
Set

Dat(A) = (By 97, H'(4,2,)) ")

This is a weakly admissible filtered (¢, N)-module over K with Hodge-Tate weights in
{0,1}. Recall that, with our convention, this means that

N=0
Dar(A) = (Dst(A) @k, K'2)

is endowed with a filtration. The weight filtration on H1(A,Z,) gives rise to a fil-
tration WeDgt(A) by weakly admissible filtered (¢, N)-modules, with W_1Dg(A) = 0;
grgv Dst(A) = HOII](Y, KO)§ gr{/V Dst(A) = Dcris(B)§ and grg/ Dst(A) =X® KO(_1)~

Remark 2.3.1.1. As explained in [CI99, §I1.5], Dgt(A) admits a ¢-equivariant splitting
Dst(A) = Hom(Y, Ko) © Derig(B) © Deyis(T)

of the weight filtration. This is a consequence of the Riemann hypothesis for the reciprocal
eigenvalues of the crystalline Frobenius (cf. [KMT74]).

Proposition 2.3.1.2. There is a natural isomorphism

na: HiR(A) = Dar(A) = (Dsi(A) @, K'°8)

that:

1. respects both Hodge and weight filtrations;
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2. carries the nilpotent operator Ny qr on the left hand side to the nilpotent operator
Ngt on the right hand side induced by the one on Dgt(A);

3. induces the identity from Hom(Y, K) = grgv HcliR(A) to Hom(Y, K) = grgv Dyr(A4),
and fromY @ K = gr{l/ H&R(A) toY @ K = gr¥ Dar(A);

4. induces on the grll/v components the p-adic comparison isomorphism
1 ~
np : Hyg(B) = Dar(B)
constructed in [Fon82, §6].

In particular, the weight filtration on HéR(A) is up to shift the pre-image under ny of the
Jacobson-Morosov filtration associated with the nilpotent operator Ngt.

Proof. The existence of 14 satisfying the numbered properties is shown in [CI99, 11.6.2].
We remark that the operator Ngt on the right hand side of the isomorphism is given by

Nt (Zdz@xi) :ZN(di)®xi = —Zdi®N(xi)-

2.3.2

Let D(J), D(B) and D(T") be the contra-variant Dieudonné F-crystals over O associated
with the p-divisible groups J [p™°], B [p*°], and T [p°°], respectively. Fix a uniformizer
m € K and let E(u) € Wlu| be its monic Eisenstein polynomial. Let S be as in (2.2.5)
associated to the uniformizer 7. In the notation of that section, take A = H1(A,Zp): this
is a Galois-stable Zy-lattice in the semi-stable representation H 1(A, Qp), which has Hodge-
Tate weights {0,1}. By (2.2.5.1) and (2.2.4.2), we have a ¢-module M(A) = M(A) over
S equipped with natural (in A) isomorphisms of filtered K-vector spaces

M(A)/E()M(A) m 2, Dan(A).

Moreover, M(A) is equipped with a weight filtration We M (A) such that W_{M(A) = 0;
grlV M(A) = Hom(Y, S); gr]’ M(A) = D(A)(S); and gri M(A) = D(T)(S). The last
two isomorphisms follow from [Kis10, 1.4.2].

Recall that M(A) is equipped with a logarithmic connection and a map

Pr(a) - PgM(A) = M(A)

that is parallel for the connection. This gives rise to a logarithmic F-crystal over O (cf.
[Vol03, §3.9]), and the weight filtration on M(A) gives rise to a weight filtration on this
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log crystal. Observe that the map ¢ : Y — J(K) gives rise to a log 1-motif Q = [V % Jlog]
over Ok (cf. 1.3), and by the theory of loc. cit. we can associate with it a log F-crystal
D(A) = D(Q) over O . By its construction, ID(A) sits in a short exact sequence:

0 — Hom(Y,1) - D(A) — D(J) — 0,

where 1 is the trivial F-crystal over O, and this corresponds to a weight filtration WeD(A)
on D(A) such that W_1D(A) = 0; gl D(A) = Hom(Y,1); gr]¥ D(A) = D(B); and
gry’ D(A) = D(T).

Lemma 2.3.2.1. Let D be a finite free Ko[|u|]-module equipped with a map
op:9*D — D.
Let Do = D/uD. Suppose that we have two logarithmic connections
V1,Vay: D — Ddlog(u),

and suppose that their residues res(V1) and res(Va) are equal as endomorphisms of Dy. If
wp s parallel for both V1 and Vo, then V1 = V.

Proof. Consider § = V1 — Vy: since V1 and Vy have the same residue, 6 is an element of
Hom(D, D) ® Q}(OHUH/KO' Since pp is parallel with respect to both V1 and Vs, using the

same argument as in the proof of (1.4.2.4), it follows that

nA1 _

]

Proposition 2.3.2.2. D(A) is naturally isomorphic to the log F-crystal over O arising
from M(A). This isomorphism preserves the weight filtrations on both sides.

Proof. 1t suffices to construct an isomorphism
D(A)(S) = M(A),

respecting weight filtrations and equivariant with respect to ¢ and the logarithmic connec-
tions on both sides.

Consider the log 1-motif induced by the map Ny, : YV % Hom (X, Z) LN T(K)
(recall that X is the character group of the split torus T'); it corresponds to a semi-stable
abelian variety Ay over O with split multiplicative reduction, and D(Ay) sits in a short

exact sequence
0 — Hom(Y,1) - D(A;) — D(T) — 0,

of log F-crystals. Let D(Ar) s be the pull-back of this extension along the natural map
D(J) — D(T); then both D(Azx); and D(A) are extensions of D(J) by Hom(Y,1). By
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construction, their Baer difference is the Dieudonné crystal D(¥;) associated with A, as in
(2.2.5.1). Moreover, by loc. cit., M(A) is identified with D(%;) as a p-module. Since 7
lifts to u, which satisfies p(u) = uP, we can check from the construction of D(A) (cf. 1.3)
that the underlying p-module of D(A)(S) is naturally isomorphic to the one underlying
D(%)(S) = M(A). So D(A)(S) and M(A) are naturally identified as ¢-modules over S.

To see that this identification respects the logarithmic connections on both sides, it suffices
by (2.3.2.1) to check that the residues of the connections on either side match up. But this
is immediate, since both residues are canonically identified with NV 4. O

Proposition 2.3.2.3. Suppose that we have Gal(K/K)-invariant tensors {sq} C A®
defining a reductive sub-group GZp C GL(A), giving rise to p-invariant tensors {sqst} C

N=
(Dst(A)®) O Let My = D(A)(S) ®g W. On My ® k we have the Hodge filtration

Fﬂl(MO ® k), whose defining property is:
e (Fil' (Mo ® k)) = ker opgyep- (2.3.2.3.1)
1. We have a natural isomorphism

D(A)(0) m 2 Hln(A)

respecting weight filtrations.

2. There is a natural p-equivariant splitting of the weight filtration on D(A)(Ok) %
Klog

3. The tensors {sq} give rise to parallel p-invariant tensors {s, g} C D(A)(S)® defin-
ing a reductive sub-group Gg C GL(D(A)(S)) and reducing to {sast} under the
isomorphism Pst in (2.2.6.1).

4. Let Gg,. = Gg® Ok ; then the weight and Hodge filtrations on D(A)(Ok) are G g, -
split.

5. Let Py, C G, = Gg®Fk be the sub-group stabilizing the weight filtration on Mo ® k.
The Hodge filtration Fil'(My ® k) is Py 1;-split.

Proof. For (1), we have the isomorphisms:

1 ~ ~ o~ 1
D(A) (@) [p] (2.3.2.2) M s K (2.2.5.1)(4) Dar(4) (2.3.1.2) Ha(4). (2:3.2:32)

Let Re and Rleog be as in (2.2.6). Let U(A) = W(A) in the notation of loc. cit.: this is
a (p, N)-module over K, and we have natural (p, V)-equivariant isomorphisms

(W(4) @k, RB) = M(A) @5 Re = D(A)(S) @g Re,
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compatible with weight filtrations.  Again, by the crystalline Riemann hypothesis
(cf. 2.3.1.1), the weight filtration on W(A) is canonically and p-equivariantly split. We

thus obtain a canonical splitting of the weight filtration on D(A)(S) ®g R and thus a
canonical splitting of the weight filtration on D(A)(0k) ® g, K g yia specialization.

Let M(A) = M(A) be as in (2.2.4.2). By loc. cit., we obtain p-invariant tensors
{sas} C M(A)® defining a reductive sub-group Gg C GL(9M(A)) and reducing to
{sast} € Dst(A)® under the isomorphism in (2.2.4.2)(1). Since M(A) = ¢*M(4) ®g S
by construction, we simply take {s, g} = {¢"s, g ® 1}, where we also employ the identi-
fication of M(A) with D(A)(S). This finishes the proof of (3).

We now consider (4): by [Kis10, 1.1.4], since G g, is reductive, it suffices to show that

the weight filtration on H&R(A) is Gg = Gg, @ K-split. By (2.3.1.2), we know that the

weight filtration on H cliR(A) is the Jacobson-Morosov filtration associated with the operator
N on Dgr(A) = Dst(A) ®k, K. Further, since N(sqst) = 0, we have N € Lie Gf. Now it
follows from (2.1.2.1)(2) that the weight filtration is indeed G -split. A similar argument
applies to the Hodge filtration, but this time we need to appeal to (2.2.2.1)(4), which in
fact shows that the Hodge filtration on H, éR(A) is Pyt g-split.

Finally, for (5), to check that the Hodge filtration on M ® k is Py ;-split, it is enough,

by (2.1.1.6), to check that the induced filtration on grl (My® k) is Lyt g-split, where Ly g
is the Levi quotient of Py j. It is of course enough to show that the Hodge filtration on
garlV D(A)(O) is Lyt,0p~split, where Ly g, is the Levi quotient of Py g, the parabolic
sub-group of GﬁK preserving the weight filtration. Again, by [Kis10, 1.1.4], we can finish
by showing that the Hodge filtration on grl/v HéR(A) 18 Ly g-split. But, in fact, the Hodge
filtration on HéR(A) is Pyt fc-split, as we saw in the proof of (5) above. O

2.4 Families of degenerating abelian varieties

24.1

Suppose that we have a local log W-algebra (R, Mp) with residue field k, where R is for-
mally smooth and (R, Mp) is log formally smooth. In more concrete terms, R is isomorphic
to W|t1,...,tr|]] and Mp is induced by the divisor ¢,,41ty4+2 - -t = 0, for some n between
land r—1. Let P =Mp /R*, and let 2 : R — k be the natural surjection. This induces
a log structure My, = k™ @ P on k; let us call the associated log W-algebra kp (cf. 1.2.1.8).
Equip W with the log structure Myy = W> @ P and call the resulting log W-algebra
W p; this is now a formal divided power thickening of kp. We will also equip Wp with a
Frobenius lift pyy,, (cf. 1.4.3), so that any log F-crystal over kp, when evaluated at Wp,
will give rise to a ¢-module over W.

Let U C Spec R be the locus where the log structure is trivial: that is, it is the com-
plement of the divisor defining the log structure. Let A be a semi-abelian scheme over R
that restricts to a polarizable abelian scheme over U; then, by (1.2.4.2), we can find a log
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1-motif [V N Jlog] over R corresponding to A. Here Y is a free abelian group (after finite
étale base change, which we will assume), and J is a semi-abelian extension

0—-T—J—B—0,

where B is an abelian scheme over R and T is a split torus with character group X (again,
we might need a finite étale base change to ensure this).

Proposition 2.4.1.1. We can naturally associate with A a log F-crystal D(A) over R
equipped with an ascending three-step filtration WeD(A) such that:

1.

There are natural identifications W_1D(A) = 0; gr(I)/VID)(A) = Hom(Y,1);
g’ D(A) = D(B); W1D(A) = D(J); and gry) D(A) = D(T).

For any continuous map x : R — O, of log W-algebras, where L C K is a finite
extension of K, let Ay be the corresponding semi-stable abelian variety over L. Then
there is a natural isomorphism of log F-crystals over O :

D(Az) = 2*D(A),
preserving weight filtrations.

Set My = (x{D(A))(Wp); then we have natural isomorphisms
D(A:)(S) ®g, W(l) = My @ W(l); and

Dst(Ax) i MO O L07

where [ is the residue field of L and Ly = W () B)l) 1s the mazimal absolutely unram-
ified sub-extension of L. Here, Sy is the W-algebra associated with some choice of
uniformizer in L, as in (3.5.4).

For x as in (2), we have a natural isomorphism

D(A)(R) ®p . L = Hig(As).

For any pair of continuous maps v, 2’ : R — Of, of log W -algebras, we have a natural
‘parallel transport’ isomorphism

Npar  Hig(Az) ®p L8 = Hig(A,) @p L8
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such that the following diagram commutes:

Ny

Hip(Ay) @p L8

Dyt(Ax) @, L8 — My @y L8 <— Dgi(A,) @, L%,

Here L1°8 is as described in (2.2.1.1) and the vertical isomorphisms are the Coleman-
Tovita isomorphisms (cf. 2.3.1.2).

Proof. We have the log 1-motif [Y % J1°8] over R; D(A) will just be the log F-crystal
associated with this log 1-motif by the theory of (1.3). The compatibility in (2) under
pull-back follows from (1.3.3.3).

(3) follows immediately from the pull-back compatibility in (2) and the crystalline
nature of D(A): Note that, with the log structure induced from Sy, W(l) isomorphic to the
log W-algebra W () (cf. 1.2.1.8). This is a formal divided power thickening of Iy, viewed
as the residue field of S, endowed with its induced log structure. Let x6 : O, — IN be the
natural surjection of log W-algebras; then D(A,)(ST,) ®g,; W is canonically isomorphic to
((2()*D(Az))(W (I)n). This in turn is identified with ((z{ox)*D(A4))(W (I)y). Now the map
x6 ox : R — ly factors through z¢ : R — kp, so we can naturally identify this last W (l)-
module with ((zgoyg)*D(A))(W()y), for the map yg : kp — Iy such that z{ 0z = zoyp,
and such that the induced map of fields £ — [ is simply the natural inclusion. We can lift
yo to amap y : Wp — W(l)y inducing the canonical map W — W (I) lifting k < [. Then
((zg o yg)*D(A))(W(l)y) is canonically isomorphic to y*My = My @y W (l). The second
isomorphism in (3) follows via the isomorphism Sy in (2.2.6.1).

(4) follows from (2) and (2.3.2.3)(1).

For (5), let R* be the ring of functions of the rigid analytic open polydisk (Spf R)?":
this has a natural log structure M pan. Set

Ran {la o€ M%%n}

Ran,log _ _
(lag — lo = 1, for @, B € Mihins Lo = log(a), for a € (R™)* and |o — 1| < 1.)

By |a—1] < 1 we mean that, for every point y in the rigid analytic open polydisk (Spf R)?",
la(y) —1] < 1. We can equip R*™1°8 with a logarithmic connection V : Iy — —1® dlog(a).
Set
V=0
U(A) = (D(A)(R) @ R*™°8) "
By [Vol03, Lemma 8], ¥(A) has a canonical structure of a finite-dimensional ¢-module
over K, and by [Vol03, Theorem 9], the inclusion ¥(A) < D(A)(R) ® p R*™1°8 induces a
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V-equivariant isomorphism:
U(A) @, R™°8 = D(A)(R) @ g B8,

Any continuous map =z : R — O} of log W-algebras can naturally be lifted to a map
x: Renlog _y rlog and we get a natural isomorphism

ex t U(A) @, L% = D(A)(R) ®@p, L8 = Hig(Ay) ®p L8

If we now have z, 2’ : R — O, then we define Mg,z SO that the following diagram commutes:
€
V(A) @, L8 > Hip(Ar) @ L8

€. nz’xl
Hln(A) @y L%,
Let Ay = Hl(Ax Ry’ Zp) and let W(A;) = W(Az) be the Ly-module associated with Ay

in (2.2.6). Then W(Ay) is p-equivariantly identified with W(A)® g, Lo, and the isomorphism
€, is simply the composition

U(Ay) @, L8 ﬁ Dr(As) @ L% —— Hig(As) @ L%,
Tle

where 74, is the Coleman-Iovita isomorphism from (2.3.1.2). In order to show that the

diagram in (5) commutes, it suffices to show that the corresponding diagrams for the

associated graded pieces of the weight filtrations commute. For grgv, the diagram looks

like

Hom(Y, L'°8) = Hom(Y, L°%)

Hom(Y, L'°8) — Hom(Y, L!°%),
For grgv, it looks like

X ® LlOg:X ® LlOg

X oLl — x o Lls.
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For gr{/v, before tensoring with L!°8, and using [CI99, 11.7.12], it looks like

1 = 1
Hig(Bz) ——— Hqr(By)

1 1
Hcris(Bﬂc()) Qw L —= Hcris(on) Qw L,

where the vertical isomorphisms are the Berthelot-Ogus isomorphisms (cf. [BO83|). The
first two diagrams obviously commute, and the third commutes by [BO83, Remark 2.9];
see also the proof of [Kis10, 2.3.5]. O
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CHAPTER 3
LOCAL MODELS AT THE BOUNDARY

3.1 Deformations of log 1-motives

The aim of this section is to construct deformation rings for certain log 1-motives over
perfect fields. The construction closely follows that of the local models in [FC90, Ch. 1V],
and in fact allows us to view the complete local rings at closed points of these local models
as deformation rings of log 1-motives.

3.1.1

We will now study the deformation theory of log 1-motives. Let k£ be a perfect field of
characteristic p > 0 and let W = W (k) be its ring of Witt vectors. Let P be a sharp, fs
monoid (cf. 1.2.1.2), and let kp be the associated log ring as in (1.2.1.8). Suppose that we
have a polarized log 1-motif (Qg, A\g) over kp. Let (By, Y, X, ¢y, cg, aab p\ét 79) be the tuple

corresponding to (Qg, \g) via (1.2.2.8). Then Qo = [V 0, J(l)og], where .Jj is a semi-abelian
variety over k that is the extension

0—=Ty— Jyo— Bygp—0

of By by the torus Ty with character group X classified by cE)/. We will assume that Y and
X are constant, and we will also suppose that \g is a prime-to-p polarization (cf. 1.2.2.7)
of degree r.

Definition 3.1.1.1. Let C' be a complete local log W-algebra with maximal ideal m¢ and
residue field k(C'). A deformation over C of (By, A%b) is a tuple ((BC, A%b),io) where:

1. (Bg, A¢) is a polarized abelian scheme over C.

2. ic : (Bo, A\o)®ck(C) = By®jk(C) is an isomorphism of polarized abelian varieties
over k(C).

The category of deformations over C' of (By, )\%b) will be denoted Def (B (C).

OaAgb)

Definition 3.1.1.2. A deformation over C of (B, 3b,co,cg) is a tuple
(B, NP e, ¢V i) where:

1. (Be,i¢) is a deformation over C' of (By, A\g).
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2.¢c:Y =+ Boandc' : X — B\C/v are homomorphisms such that the diagram

Yy — % > B

commutes.

3. The diagrams

and

By ®j; k(C)
commute.

The category of deformations over C' of (BO,)\gb,co,c(\)/ ) will be denoted

Def(BOa)‘abvc()aCE)/)(C).

Definition 3.1.1.3. Let C' be a complete local log WW-algebra with maximal ideal m and
residue field £(C'). A deformation over C of Jj is a tuple (J¢, i) where:

1. Jo is a semi-abelian scheme over C.

2. ic : Jo ®c k(C) = Jy ® k(C) is an isomorphism of semi-abelian varieties over
k(C).

A deformation over C of (Jy, A%b) is a tuple ((Jc, )\%b),ic) where:

1. (Jo,ic) is a deformation over C of Jy.
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2. Let B¢ be the maximal abelian scheme quotient of Jo; then (B, )\acb) is a deforma-
tion over C of (B, )\%b).

3. The diagram

Bo ®c k(C) % By ©4 k(C)

A1 NP1

BY. ®¢ k(C) < BY &4 k(C)
(3
C

commutes.

The category of deformations over C' of (Jp, A%b) will be denoted Def ( ().

JOv)‘%b)

Remark 3.1.1.4. In the definition above, we are implicitly using the following fact already
used in (1.1.3): every deformation of Jy over C' is an extension

0—=Tc— Jo — Bo — 0,

where B is an abelian scheme over C reducing to By ®, k(C') along the isomorphism i,
and T is the split torus over C' with character group X.

Lemma 3.1.1.5. There is a canonical equivalence of categories

Def (C) = Def (©).

(Bov)%bﬂcovc(\)/) (J()v)\%b)

Proof. 1f (B, aclo,c, ¢V ,ic) is an object on the left hand side, then the classifying map
¢ : X — B gives us a semi-abelian scheme J over C' and thereby an object (J¢, )\acb, ic)
on the right. Suppose we have an object (J¢, )\acb, i) on the right. Then we can consider
its classifying map ¢ : X — B, and the composition ¢" o Mty BE;/«. The question
now is if this composition factors through )%b : Bo — Bg.

Since ker /\%}O is a prime-to-p torsion group, and in particular, étale, the map
ker )\acb(C’) — ker /\8b(k;(0)) is a bijection. Similarly, the map

HY(C ker X&) — H (k(C), ker A3P)

is also a bijection.
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Considering the following diagram:

)\ab
ker A2 (C)) & B (C) —Y— BY(C) —> HY(C, ker \2P)

ker N3P (k(C)) > By(k(C)) —> BY (k(C)) —> H' (k(C), ker AgP),

b
a
>‘O

we see that, for any y € By(k(C)), the fibers over y and A%b(y) of the vertical arrows are
isomorphic. This tells us that ¢¥ o A** must factor through )\%b. O

Definition 3.1.1.6. Let C be a complete local log W-algebra with an fs log structure and
with maximal ideal m. We will equip the residue field k(C) = C'/m¢ with its induced log
structure. A deformation over C of (Qq, \g) is a tuple ((Qc, A\¢), jo. ic) where:

1. (Qc, A¢) is a polarized log 1-motif over C, with Q¢ = [V <, chc')g].

2. jo: kp — k(C) is a map of log W-algebras.
3. ic: (Qo, A\o) ®c k(C) = J&(Qo, Ap) is an isomorphism of polarized log 1-motifs.
We will denote by Def (g, 3,)(C) the category of deformations over C' of (Qp, Ao).-

We have natural functors

Def(Q()’)\O)(C’) — Def C) — Def C)

(o) (Bo. )

Remark 3.1.1.7. All these deformation problems are rigid. More precisely, all the cate-

gories above are groupoids and the automorphism group of any of their objects is triv-

ial. Indeed, for an object in Def(B0 /\ab)(C), this is a consequence of [Kat81, 1.1.3]. The
0

statement immediately follows for objects in Def(JO’)%b)(C) and Def (g, 1)(C): For the

former, by (3.1.1.5), it is equivalent to the statement that deformations over C' of the tuple

(B, /\%b, o, c(\)/ ) have no non-trivial automorphisms, and this is clear. For the latter, we

are saying that deformations of ([Y 20, J(l)og], Ag) over C' do not admit automorphisms:

this is again clear, since neither Y nor any deformation (J¢, i) of Jy over C' admits any
non-trivial automorphisms reducing to the identity over k.
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Let Art%})/g be the category of Artin local log W-algebras; we obtain a tower of rigid

deformation functors from Art%f{,g into sets:

Def(Qo,/\o)

Def(JO’)‘gb)

Def
(BOv/\?)b)

It is the rigidity of the deformation problems that makes it permissible to view them as
functors into the category of sets. We can now expect (pro-)representability results for the
tower. This expectation will be realized in a precise manner under additional hypotheses
in the next sub-section.

3.1.2

Consider Def ) by classical results, this is pro-represented by a formally smooth ring

(BoAGP
R® equipped with a universal deformation (Buniv, )\ﬁgiv, i Rab) of (By, \g).

Next, consider Def ( this is represented over Rab by the Hom-scheme

Jo.A3P)’

Hom® (X, Byyiv) = {¢V : X — BY., : the reduction of ¢" is ¢ : X — By }.

univ univ

V
univ
R 1t is therefore relatively pro-representable over Rab by a formally smooth Rab—algebra
Rsab‘

Finally, we would like to consider Def (Qo,Ag) 35 @ deformation problem over R%P. For

This is evidently a torsor over the formal group of the abelian scheme Hom(X, B, . ) over

this we need some preparation. Over R%P we have the universal pair (Juniv Aigiv). By

(3.1.1.5), we have maps cypiy : Y — Buniy and ¢li, 0 X — Bl over R the latter of

which classifies Jypiy. Over Bupiy X psab Bl\l/mv we have the Poincaré bundle Pp . . The
map

\Y

. . Vv
Cuniv X Cipiy Y X X = Bypiy X Rsab B niv

allows us to pull Pél . back to the line bundle I = (cypiy x ¢ )*77§1 . over Y x X.
univ

univ univ
I has the structure of a Gy,-bi-extension over Y x X (cf. discussion above (1.2.2.3)), and

(1 x A®*)*J has the structure of a symmetric Gy,-bi-extension over Y x Y (cf. discussion
above (1.2.2.8)).
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Set
B¢ = {Pairings (, ) : YxX — Z: such that (y, A y)) = (y, A8 (), for all y, o € Y}I
Let S Nt = B;\/ét be its dual abelian group: this is a certain quotient of the tensor product
Y @ X. Let E ¢ be the split torus over R%3P with character group S 6t

Consider the functor E ¢ that assigns to each Rsab—algebra C, the set

Trivializations 7 : 1y x — I over C'
of Gy,-bi-extensions of Y x X
inducing a symmetric trivialization of
the symmetric Gyp,-bi-extension (1 x A*)*T of ¥ x Y.

EAét (C) =

One checks that this is a torsor over E)\ét, and is therefore representable by an Rsab_
scheme, which we will again denote by = \ét- In fact, it is the E \ét-torsor that assigns to
every element

Z[yz & xz] S S)\ét

7

the Gyy,-torsor
®i(c(y;) x ¢’ (z;))*Pg’

univ
By the very definition of = \ét, there is a canonical trivialization over = \ét of Gy,-bi-
extensions N
Tuniv © lyxx — 1
of Y x X.

Let No = Ng, : ¥ — Hom(X, P8P) be the monodromy map associated with Q)
(cf. 1.2.2.2). Viewing Ny as a pairing Y x X — P®P we see that it must satisfy the
identity ) )

No(y, X (y") = No(y', A™ (1)
for all y,3y/ € Y. This follows, for example, from the description of Ny in terms of the
trivializations 7(y, ) in (1.2.2.3)(4) and from the symmetry condition in (1.2.2.8) satisfied
by these trivializations. In particular, Ny determines an element of B \ét ® P8P and thus
amap S, — P8P,

To proceed further, we need to make an additional

Assumption 3.1.2.1. The polarized log 1-motif (Qg, \g) is positive; that is

No(y. A6 (y)) € P\ {1},

forally € Y (cf. 1.2.4.1).
For any map f: P — N of monoids, let (, >N07f be the pairing on Y x X given by

(Y, 2) Ny, f = T (No(y, 2)).
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Define a sub-monoid

B (,>€B)\ét®]R:suchthatforyGY,xGX
= (y,2) > 0 whenever (y,x)y,, s > 0 for all continuous maps f: P —N. [~

Set

[ {,)eBg ®R: such that (y,4) = (y,9)
Cut =1 . . g : (3.1.2.1.1)
A induces a positive definite pairing on ¥ ® R

This is an open convex cone inside B \ét ® R.

Lemma 3.1.2.2. We have o C C,¢. Moreover, o is a non-degenerate, rational polyhedral
cone: that is, it is finitely generated as a monoid by elements of B/\ét ® Q, and it does not
contain any lines; cf. [AMRT10, Ch. 1.

Proof. For any f: P — N and any y € Y, by assumption (3.1.2.1), we have

(W, X (W) g, p > 0.

So, if (', ) lies in o, then (y, Aét (y)) > 0, for all y € Y; this means that o consists of positive
definite pairings on Y ® R. It is finitely generated by elements of B¢ by Gordan’s lemma
(cf. [KKMSD73, p. 7]), and it is non-degenerate simply because it is never the case that
both a form and its negative are positive definite. O]

Let S \ét o be the monoid ¢¥ N'S \ét where

oV ={ne S\t @R (n,s) >0, forall s € o}
Explicitly, we have
S)\ét7o_ ={n €84 : f(No(n)) >0, for all continuous f: P — N}.

Lemma 3.1.2.3. The map Nq restricts to a continuous map of monoids Ny : S)\ét , P,

)

and in particular induces an embedding
Proof. This is clear. O

Let E Aty = Spec Rsab[S /\étyo_], so that we have a toric embedding E¢ — E MGt o Over

—_ . —_ E ; ..
R%b: and let B \ét , be the contraction product B, X MR \ét o it is a log scheme over

)

R8P in an evident way with the log structure induced by the divisor that is the complement
of B 4t.
et
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The Gyy-bi-extension I of Y x X over B, 4 extends to a G}%g-bi—extension 18 of Y x X

over =\ g and the trivialization 7., extends to a trivialization of I'°% over =.« _. Thus
)\et 07 univ )\et 0 )

by (1.2.2.4), Tuniv gives rise to a log 1-motif Qs = [V L, J}Eﬁv] over B4 . (o is naturally
equipped with a prime-to-p polarization Ay by (1.2.2.8), since 7y satisfies the symmetry

condition in (1.2.2.8). E,¢ . has a natural stratification arising from the stratification of
E At o by E,¢¢-orbits. There is a unique closed stratum corresponding to the unique closed
orbit in E \ét o

Lemma 3.1.2.4. Let (H,Mp) be an fs log scheme over B3 and let (Jg, A%}’) be the pair
ab

univ
15 equivalent to giving a polarized log 1-motif

over H obtained by pull-back from the universal pair (Jyniv, A20:.) over R%ab_ Then giving

amap H — Z¢ . of log schemes over Rsab

Q. M ip), with Qi = [V L 98 such that:
(Qu, \u H %
1S = e

2. Let Ng : Y x X — GEgH/Gm,H be the monodromy pairing, considered as a linear
map

lo
Ny :Syet — Gm%H/Gm,H§

then, for all geometric points T of H, the image of the induced map
Nuz: Sy = ME /05 &
restricts to a continuous map of monoids

. X
Niz:8Sys, = Mz /Ox 5

Proof. Indeed, giving a map H — =, . of log R%P_gchemes is equivalent to giving a

trivialization 7y of the G}%g—bi—extension ]Eg of Y x X over H, satisfying the symmetry

condition with respect to At and A\2P as in (1.2.2.8), and also satisfying the positivity
condition expressed in condition (2) of the statement of the lemma. By (1.2.2.8), this is
equivalent to giving a polarized log 1-motif (Qg, Agr) over H satisfying the conditions of
the lemma. O

In particular, the log 1-motif (Qq, Ag) over kp corresponds to a map z( , : Speckp —
Zyét .- Let Ry be the complete local ring of Z,4 . at the point corresponding to z¢ 5, and

equip it with the induced log structure. Over R;, we have the polarized log 1-motif obtained
via pull-back of (Qgs, A\y) from = jét o3 we will denote this pull-back also by (Qo,\s). Let

k(R1) be the residue field of Ry equipped with the induced log structure, and let (Q4.0, As,0)
be the reduction of (Qy, As) to k(R1). We have maps of log R%P-algebras

i
Ry — k(Ry) 2L kp,
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and an identification
ity ((Qe0,200)) = (Qo, No)-
Just as in (3.1.1.6), we can consider the deformation problem Def(Qo,m)\o,a) for the log
I-motif (Qq.q, Ao,») over k(Ry): For any log W-algebra C', Def(Q0707)\070)(C) is the category
of tuples ((Qc, A\o), jo, i) where:

1. (Qc,A¢) is a polarized log 1-motif over C, with Q¢ = [V HER chgg].

2. jo : k(R1) — k(C) is a map of log W-algebras.

3. ic: (Qo, A\a) ®c k(C) = J6(Qo,0, A0,o) is an isomorphism of polarized log 1-motifs.
We have the diagram:

Def(gg,ng) — Defgq ..\

0520 0,0)

Def = Spf R%P.

(Jo.2&P)

Corollary 3.1.2.5. Let the notation be as above. Then the triple (R1,Qo.q,M\o,s) pro-
represents the deformation problem Def(Qom)\o o)

Proof. This is immediate from (3.1.2.4). O

3.1.3

We have now reduced to showing relative representability of the map

Det(gg.n9) = Def(Qo,on,a) :

We will do this under certain restrictive hypotheses. First, for N € Z~g, let S MNEN =
%SAét, and let SAét’N,U =0V N S)\étvN.
Assumption 3.1.3.1. There exist

e N € Z~q with (N, pr) =1 (recall that r is the degree of \g);

o A free Z/NZ-module A N,g of rank 2g equipped with a symplectic pairing into Z /NZ;

e A free, isotropic Z/NZ-module ¥, C Ay 4 such that the quotient Ay ,/Xpy 4 is
again free over Z/NZ,;
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such that (Qg, A\g) is equipped with a level N structure (cf. 1.2.3.3)

b ot It vV
ay = (@%,NAOS,NAO]([)??V 7CO,N700,N77-0,N76)‘

of type (An g, XN g)-
Moreover, the map Np : S, — P8P induces an identification

X _
SAét,N,a/SAét,N,g =T
With the notation of this assumption, set
Sq = SAét,z\ﬁ SQ.0 = S)\ét,N,o'

The map Ny then induces an identification

SQ;U/SCB,J =P

Definition 3.1.3.2. For any complete log W-algebra C with residue field
k(C), Def (9o, 20.c0.570 N)(C’) will be the set of isomorphism classes of tuples

((Qes Acs o, N Jeyic), where ((Qc, Ac), jeyic) is a deformation over C' of (Qo, Ag), and
ac,n is alevel N structure on (Q¢, A¢) of type (A 4, Xy 4) reducing to the level structure

Joo, v on the reduction of (Q¢, A¢) to k(C).

Lemma 3.1.3.3. The natural ‘forgetting level N structure’ map

Def(gg.x0.00.3) 7 PeE(@p.00)

s an isomorphism of deformation problems.

Proof. We have to show that there is a unique lift of the level N structure ag y to any
deformation of (Qg, A\g). As always, the key is that N is prime to p. So let us sup-
pose that ((Qc, o), jc,ic) is a deformation over C' of (Qq, \g) corresponding to a tuple
(Bo, Y, X, cv el NP AN 700).

The tuple (@%PN,gong,gog’l}{}t) consists of isomorphisms between finite flat groups
schemes that are extensions of multiplicative groups by étale ones. In particular, it lifts
uniquely over C.

Let us now lift ¢y to a map co y : %Y — B restricting to ¢ on Y. This follows

from the following

Claim. If V/ € B (C) and by € By(k(C)) are such that [N]bg is equal to the image of ¥/
in By(k(C)), then there exists a unique b € Bo(C) such that [N]b=V'.

Indeed, the b such that [N]b = b form a torsor under the étale group scheme Bg[N] of
N-torsion points of Be. This torsor is trivial if and only if the associated By[N]| ® k(C)-
torsor is trivial, and any trivialization of this latter torsor lifts uniquely to a trivialization
of the Bo[N]-torsor.
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Similarly, one can also lift CE)/ N over C.
It remains to lift 7 x: Note that it makes sense, for y € %Y and z € X, to ask for a
lift of the trivialization 7 n(y, ) to a trivialization 7o n(y, x) of the G}%g—bundle ]}ﬁ% over

C. The argument for finding this lift is the same as that for the previous claim. The space
of trivializations 7¢ n(y, z) such that 7o n(y, 2)ON = 75(Ny, z) is a torsor under
N
ker(Gl¢ 5 Gl98) = iy,

the étale group scheme of N th_roots of unity. So a similar argument shows that there is a
unique such trivialization lifting 7 n (7, y). O

Let Eq be the torus with character group Sg, and let Eg , be the toric embedding of
E( associated with o. From the proof of (3.1.3.3), it follows that over R%P we have maps

1 1
. . \Y . \Y
Cuniv,N - NY — Buniv; Cuniv,N - NX - Buniv

lifting ¢p n and C(\)/N'
Let I be the Gyy,-bi-extension over %Y x X given by

vV *py—1
Iy = (Cuniv,N X Cuniv) PB

univ’
and let E¢) be the E, ¢;-scheme of trivializations 7y : 1 3 V<X =, Iy lifting the tautological
N

trivialization Typjy : 1y« x —> I over 2 \ét- It is a torsor under Eg. Set

—

— E
2.0 =B x "V EqQ-

Then there exists a polarized log 1-motif (Q, \) over EQ,s equipped with universal level
N-structure of type (Ay g, XN g,r) Quniv,N- There is a map zg : Speckp — Eq , of log
W-algebras and an identification

iR : 236 ((Q7 A, Ofuniv,N)) = (QOa A0, aO,N)'

Let R be the complete local ring of = , at x( equipped with the induced log structure
and the polarized log 1-motif (@, A) obtained via pull-back from Z¢ ;.

Proposition 3.1.3.4. The log R%®P_algebra R equipped with the tuple (Q,\),JR,iR) is
the universal deformation ring pro-representing Def(Qov)\o)'

Proof. The proof is immediate from the construction, assumption (3.1.3.1), and (3.1.3.3)
above. O
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3.2 Explicit deformation rings for log 1-motifs

We begin as in §3.1 with a positive prime-to-p polarized log 1-motif (Qq, Ag) over a perfect
field k of characteristic p > 0. In loc. cit., we constructed, under certain assumptions, a
deformation ring R for (Qg, \g). We will continue to maintain these assumptions and also
the notation used above, and we will make the additional assumption that k is finite.

Our goal in this section is to give an explicit description of R. We suggest that the
reader first look at the constructions of explicit deformation rings for p-divisible groups
due to Faltings as found in [Fal99, §7] or [M0o098, §4]. The main utility of an explicit
construction, which is essentially group-theoretic, is to give us a hands-on construction of
the Dieudonné log F-crystal associated with the universal deformation of (Qq, Ag). This in
turn will enable us to easily work with ‘Tate cycles’ (more precisely, @-invariant, parallel
tensors) over the Dieudonné log F-crystals associated with deformations of our log 1-motif.

The idea is to first give an explicit model Rt of R%2P: this essentially follows the
aforementioned construction of Faltings, and is done in (3.2.3.4). Then we exhibit R as an
explicit completed toric embedding over RT in (3.2.5) and give a concrete description of
the log F-crystal associated with the universal deformation over R in (3.2.6.1).

The construction depends on certain choices of co-characters. In the interest of stream-
lining our presentation, we have opted to work with tensors right from the beginning, and
to make our choices compatible with these tensors (cf. 3.2.3).

3.2.1

Let D(Qq) be the log F-crystal over kp associated with Qg by the theory of § 1.3. The
polarization A\ gives rise to a symplectic Frobenius-equivariant pairing

Yo : D(Qo) x D(Qp) — 1(1)

of log F-crystals over kp (cf. [KT03, §4.7]).

Let W = W (k) be the ring of Witt vectors over k, and let Wp be the associated log
ring as in (1.2.1.8). Choose any map of log rings Wp — kp inducing the identity on P and
with underlying map of rings the canonical surjection W — k. This will be a formal log
PD thickening, and we can evaluate any log F-crystal over £ on Wp along this surjection.
Set My = D(Qp)(Wp); to endow this with the structure of a p-module, we have to choose
a Frobenius lift ¢ on Wp. Recall from (1.4.3) that this amounts to fixing a splitting

B MR, = M @1+ pW).

Each choice of such lift gives us a map ¢y, 5 oy Mo — M.

Set M§* = WyMy = Hom(Y, W); Mg = My/WoMy = D(Jo)(W); MZP = gr]V My =
D(By)(W); and Mémﬂt = grgv My = X®@W(1). All these modules have canonical p-module
structures, and we have g-equivariant (for any choice of §) short exact sequences

0 — M§' — My — M — 0;
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0 — MEP> — M — Mgt — 0.

Note that the p-module structures on M, et Sab, Mé*b and Ménult do not depend on the
splitting f.

The polarization A on @), via the pairing ¢ on log F-crystals above, induces a perfect
p-equivariant (again, for any choice of ) pairing

Yo My @y Mo — W(1).

By functoriality, the weight filtration We M is GSp(My, ¥g)-split. This just means that
Mgt is 1p-isotropic and its annihilator in My is WM. In particular, vy induces -
equivariant perfect pairings

ot MG M W (1)
Y ME @ Wi My — W (1);

UE MEP @ ME> — W (1).

Let Pyt C GSp(MO,wog be the parabolic sub-group stabilizing WeMy; Uyt C Pyt its
unipotent radical; and U { C Uyt the sub-group of elements that act trivially on Mgab.
Since W1 Mg and Mgab are each identified with the dual of the other under ¢, we find
that Uv;t2 C Pyt is also the sub-group acting trivially on Mgab @ Wi M.

Let BQ be the Z-dual of SQ: it is naturally contained in B A6t and we have a canonical
identification

Bo ® Zp) = Bya @ Zp)-

Lemma 3.2.1.1. There is a canonical identification
B ©7 W = Lie Uy
Proof. By functoriality, the pairing wgt is given by the formula

Y& Hom(Y, W) @ (X @ W(1)) — W(1) (3.2.1.1.1)
U (0, AT @ D)y e 1)) = oly). (3.2.1.1.2)

Since '@ 1: Y oW - X ® W (1) is an isomorphism, this is a well-defined pairing. We
now claim that we have a natural identification

Lie Uv;tz _ { Pairings N : Y x X — W such that } .

Ny, X)) = Ny, A% (y)), for all y,y' € Y
In particular, we have an identification

Bo®W =B,s ® W = Lie Uy . (3.2.1.1.3)
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Let us prove our claim above about Lie Uv;tQ. By definition, it is the sub-space
{N € Lie(GSp(My, ¢g)) : Wi My C ker N;im N € M§'}.

More explicitly, Lie UV;E consists of those maps N : Ménult — Mgt such that the diagram
M(gnult N S M(E;)t
wgt ~ ~ wgt

MY (1) ey V™"V

commutes. Here the vertical isomorphisms are the ones induced by the perfect pairing wgt.
Using the identifications of Mgt with Hom(Y, W), and Mémﬂt with X ® W(1), and the
explicit formula (3.2.1.1.1) for wgt, we see that Lie Uv;tz is the space of maps N : X @ W —
Hom(Y, W) such that the diagram
N
X ®@ W —— Hom(Y, W)

At (AétyY (3.2.1.1.4)

Y ® W —= Hom(X, W)
N\/
commutes. If we now think of an element N of Lie U‘;E as a pairing X x Y — W via the

formula

N:Y xX =W
(y,2) = N(zel)yel),

then the commuting of the diagram (3.2.1.1.4) is equivalent to requiring that
N(y, X(y)) = Ny, X" (),

for all y,y/ € Y. O]

3.2.2

Now we introduce ‘Tate cycles’ into the picture. Since the polarized log 1-motif (Q, ) over
R is positive by construction, it corresponds to a polarized abelian scheme (A, A) over the
locus U C Spec R where the log structure is trivial by (1.2.4.2).
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Suppose that we have a continuous map z : R — O of log W-algebras, for K C K|
a finite extension of K( with residue field k. Let (A, Az) be the corresponding princi-

pally polarized semi-stable abelian variety over K. Let A, = H1! (Aw Ky Zp); then the

polarization A, induces a perfect Galois-equivariant Weil pairing

We will suppose also that we have Galois-invariant tensors {s, ; ¢t} C A® whose pointwise

stabilizer is a reductive sub-group Gz, C GSp(Agz,¥z). By (2.3.2.3) and (2.4.1.1)(3),
N=0

the corresponding ¢-invariant tensors {Sa,x,st} C (Dst(Ax)®> give rise to @-invariant

tensors {sq,0} C MéZQ defining a reductive group G C GSp(My, 1g).

Recall that we have identified Bg ® W with Lie UV;tZ in (3.2.1.1) above. Let Bg ¢ =
Bg NLieG, and let S ¢ be the quotient of S¢ that is dual to By . Let og be the
polyhedral cone o N (B@G ® R), and let So C S, be the corresponding sub-monoid.

Remark 3.2.2.1. Note that the monodromy at z, Ny = Ny_, lies in o by (2.3.1.2), which
says that N, agrees (up to a Q-multiple) with Fontaine’s monodromy operator on Dgt (A, ),
and so kills the tensors {sq 0}

Lemma 3.2.2.2. The following is true in our situation:
1. The weight filtration WeMy is G-split.

2. Let Pyt ¢y Uwt, s U;&G denote the intersections with G of the groups Pyt, Uwt and

U _t2: respectively. Then Py ¢ C G 1s a parabolic sub-group and Uy ¢ 1s its unipotent
radical. The Hodge filtration Fill(MO ® k) C My ® k is Pyy g @ k-split.

3. So is the saturation of the image of Sq 5 in Sq, and, moreover, the map S ; —
SUG 18 continuous.

4. We can choose a lift Lg,o :SQ.0 = Mk:p of the identification

8Q.0/S5s =Mp /R* =P

i f
such that the composition Sq ; — M, = MﬁK/mK factors through Se.

Proof. (1) follows from (2.2.4.3), and (2) from (2.3.2.3)(6). For (3), the first point follows
from [Har89, 3.1]. Recall that a map f : P — @ of monoids is continuous if f(p) is
invertible in ) only when p is already invertible in P. To check continuity of our given
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map, simply observe that we have a diagram

SQ,U Z SOG

N

N

where we are considering Ny € 0 N B ¢ as a map Ny : S, — N. It is enough to
show that N, is continuous, but this follows because the map of algebras x : R — O is
continuous (as a map of local rings).

As for (4), note that lifts Sg ; — My, of the identification

SQ,U/Sé,a = N[R/R>< =P

form a torsor ® under the group Hom(Sq, k). Lifts Sg , — MﬁK/mK of the map N,
also form a torsor ® under the same group. In particular, ® and ®' are in bijection with
one another; the bijection is given by post-composition with the map M; P MﬁK /e
induced by the map of log algebras R — O /mp. As we observed in the remark directly
above the statement of the lemma, the map N, factors through Sy. This means precisely
that the Hom(Sq, k*)-torsor ®' has a ‘reduction of structure group’ to Hom(S¢, k*) given

by the sub-space of lifts of N that factor through Ss. Pick any lift in this sub-space,
f

a,0

and let ¢* , € ® be the corresponding lift under the bijection between ® and ®. O

3.2.3

Here we will construct the explicit model RT for R%P_ Choose any co-character g :
Gm ® k — Py ® k that splits the Hodge filtration Fil'(My ® k) € My ® k. This is
possible by (3.2.2.2)(2). Let Ag C Py g ® k be any maximal k-split torus that contains
the image of 119, and choose a Levi sub-group L C Py ¢ such that Ag C L ® k. Then we

can lift pg to a co-character y : Gy, — L inducing a splitting My = Fil' My & My'. Let
Pp C GSp(Mjy, 1) and Pr ¢ C G be the parabolic sub-groups associated with the filtration
Fill My ¢ My, and let U;p C GSp(My, 1) and U;pG C G be the opposite unipotent sub-
groups associated with pu. Then, every N € Lie U;p satisfies N2 = 0 in End(Mj), and the

exponential N — 1+ N induces an isomorphism of groups Lie U](;p = U;p.
The choice of Levi L gives us a co-character w : Gy, — G splitting We My, and, by
construction, p commutes with w. This ensures the following:

3.2.3.1. M§' € My’ < Wy M.
3.2.3.2. Uy C U C Py
3.2.3.3. U;p is stable under conjugation by w(Gy,).
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Indeed, we first note that, by the choice of p, the filtration We M is (G, )-stable, and
so W; M = (W; MMy )& (W; MNFill M), for i = 0, —1. Since we have Fil' My+W; My =
My and Mgt NFil' My =0, (3.2.3.1) follows. Now (3.2.3.2) is an immediate consequence.
Finally, (3.2.3.3) follows simply because w and p commute.

Let U;;,L = U;p / UV;E; note that this group acts naturally on MSab. Our choice of co-

character w splitting the weight filtration preserves U;p and so gives us a section Uﬁf —

U;p. Let UT be the completion of UZ}L along the identity section. This is a formal affine
scheme. Call the associated formally smooth W-algebras R*. Let [ r+ C R™ be the
augmentation ideal corresponding to the identity section, and equip R™ with an I R+-
contracting Frobenius lift ¢ p+ (that is, we have ¢ R+ (I R+) - 112%+). We can then define
an object MT5ab in M}"[OJ](R+) (cf. 1.4.1.5) in the following way:

As an Rt-module M+58> = M5ab @ RT. We set Fil! MT = Fil' M§?® @y R. We
equip M T with the ¢ p+-semi-linear map ¢+ = g+(90Msab ®@p+), where g7 € UH(RT)

. 0

is the universal element of UT. By (1.4.2.4), it follows that there exists a unique ¢-
compatible, topologically quasi-nilpotent connection V, 4 sap : M +sab _, prtsab g R+
Q}#/W' By (3.2.3.2), the ¢-stable filtration W.Mgab of Mgab also extends naturally to an
p-stable filtration We M +sab o Mt giving us a short exact sequence

0— Mab,+ N MS&b;F N Mmult,Jr -0
in M}"[OJ](RJF). This gives a deformation
0 — T-i-[poo] _> gsab,—i— N LB"’[pOO]/ 0
over RT of the extension of p-divisible groups
0 = Tp[p™] — Jo[p™] — Bo[p™] — 0

over k. Here, T is the split torus over R with character group X. Using Serre-Tate
theory, we find a unique deformation B of the abelian variety By to R so that ‘B [p™>]’
is in fact the p-divisible group BT [p™] associated with B*. Moreover, B is equipped
with a lift A2 of the polarization A%b on By, since M3+ = W Msabt — Mgb Qw RT

carries the polarization w%b ® 1.

Lemma 3.2.3.4. There exists a semi-abelian scheme J© over RT sitting in a short exact

sequence:
07T —J" = Bt >0,
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equipped with an isomorphism

0 = T+[poo] s J+[poo] s B+[poo] =0

0—— > THp™] —> @b+ S BHp™ — 50

Moreover, let Artyy be the category of artinian local W -algebras (R, mp) equipped with
an identification R/mp = k. The triple (RT, J+,)\ab’+) pro-represents the deformation
functor (cf. 3.1)

Def(JOa)\Sb) s Artyy — Set
Def (A) = Pairs (J', Aab’/) where J' is a deformation of Jy over A
(JO’)\Sb) and )\ab’/ is a lift to B' of the polarization )\Sb on By. '

In particular, the classifying map R®® — Rt corresponding to the deformation (JT, A1)
over RY is an isomorphism of W -algebras.

Proof. To begin, we remark that, over any R € Artyy equipped with a deformation J’ of
Jo, the inclusion Ty < Jy deforms uniquely to an inclusion 77 < J’ (1" is the split torus
over A with character group X), and so the quotient B’ of J' by T’ is unambiguously
determined; cf. proof of (1.1.3.1). In particular, our deformation problem makes sense.
By (1.1.3.2), our deformation problem is equivalent to the one for the pair
Def (Jolp™l, Agb)' The corresponding deformation functor is pro-represented by a formally

smooth W-algebra T = W/[|t1, ..., t.|] and a universal deformation (452", \2P) over T'. The
universal deformation gives rise, via the Dieudonné functor, to a Dieudonné F-crystal M’ sab
P we can reinterpret M5 as a

over T'. If we fix the Frobenius lift o7 on T taking t; to ¢,
tuple (Msab, © 3 gsab Fill prsab, VMsab) in M}_[O,l] (T"), and we can choose the co-ordinates
t; so that reducing M52P modulo (t1,...,t) gives the Dieudonné module M; 8ab over W.
The versality of T gives us a map f : 7T — RT and an identification
f*Msab — MS&b,+

Let

e llt + oy psah | MTSP
KS,/+sab : LieUp @y BT — Hom | Fil" M

" Fill M+sab

be the Kodaira-Spencer map arising from the connection on M +53b - Then we see from
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(1.4.2.2)(3) that KS; 4 sab ® p+ W is simply the inclusion

Jsab
Lmt@?;+Hmn<Fﬂ1M@ﬂﬂ‘J)>.
Fill pgab

Now we note:

Mab Msab 1 b
o — 10 5 = ool 0 o5 is identified with the dual of Fil Mg under the polarization
FﬂbMO Fill Mg
(OH

. . . Msab
e LieU;t consists of those elements of Hom [ Fill Mgab, =10
F 07 pil pgeb

under the identification via @Z)gb of the

) that restrict to sym-

metric maps from Fill Mélb to (Filt Mgb)v

sab

latter space with FillOW'

It is easy to see that the latter is also a description of the image of the tangent space of
T under the Kodaira-Spencer map KS, ;sap ®W. This implies that the map f: T — RT
has to be an isomorphism. O]

From now on we will identify the triple (RSP, Jy iy, A2P. ) with (R, JT, xabt),

univ

3.2.4
Let Lgo : 5Q,0 — Mgy, be the lift chosen in (3.2.2.2)(4). It gives us a map S — MgII)D;

restricting this to S \ét glves us an element of B \ét ® M%I;), which amounts to a pairing
. P
(Vg t X XY = MY

such that ()\ét(y),y/ﬁao = (A6 ("), Y)1, - for all y,y' € Y. This in turn provides us with

a log 1-motif [V o0, T(I)Og = Hom(X, G}%g)] over kp, where
LU,O(Q) (x) = <xvy>LJ’0-

The difference uy = 19 — 14,0 gives us a classical 1-motif le =Y -0, Jo] over k that is
naturally equipped with a polarization )\81. Let

Dy = lim ([Y M0, o] L Z/an[_u)

n

be its associated p-divisible group over k. It is polarized, and we know from the construction
in § 1.3 that D(%y,)(W) is naturally isomorphic to (Mo, ppz,, %0) as a polarized Dieudonné
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module over W. Here @), is associated with some choice of section 5 : My, — My, (cf.
3.2.1). We will fix this ¢-module structure on My, from now on.
We now consider the space U d, the completion of U;p along the identity section. Let

R be its ring of global sections, and let [ pa C R be its augmentation ideal at the
identity. Equip R°! with an I pel-contracting Frobenius lift ¢ ¢ that lifts pp+. Set M cl —
My @w RY, Fill Ml = Fil! My @y R, P = 9(Pagy @ Ppa)- Here g € UY(RY) is the
universal element. Just as it was the case for M above, we can use (1.4.2.3) to extend this

to an object (M ) in M.F[I())Oh(Rd). This corresponds to a deformation of ¢, along

with its polarization, and thus of the polarized 1-motif (le, >\81), over R by (1.1.3.2).

Lemma 3.2.4.1. Let us denote by (Qd, )\Cl) the deformation over RT of (le, )\81) found
above.

(Qd )\Cl) is a universal deformation of the polarized 1-motif (Q81 )\Cl)

2. The choice of weight co-character w : Gy — Pyy g made in (3.2.3) gives us a
deformation (QT,\T) over RT of the 1-motif (Q(C)l, )\81).

Proof. The argument for (1) is similar to the one in (3.2.3.4) and will be omitted: it uses
the fact from (1.1.3.1) that deforming a 1-motif is equivalent to deforming its associated
p-divisible group.

For (2), we note that w gives us a section Lie Uljf — LieUp”, and hence a section
Ut < Ul This is because both U1 and U;p are vector groups isomorphic to their Lie

algebras (cf. 3.2.3). By assertion (1), the section U < U will determine a deformation
(LT, A\T) over R of the polarized 1-motif (Q%)l’ >‘81)- -

3.2.5

Let R, be the complete local W-algebra obtained by completing the toric scheme
Spec W[Sq ] along the point corresponding to the map of monoids Lgo 1800 — My
chosen in (3.2.2.2)(4). Ry has a natural log structure and we get a map to : Re — kp of

log W-algebras. Just as above, over R, we have the log 1-motif [Y —4 T log] induced by
the natural maps S,¢ — S — Mgp
Let us summarize what we have So far:

e There is a formally smooth W-algebra RT equipped with a pair (J*, A2P:) deforming
(Jo, Ag)- Tt is identified with the deformation ring R%2P for the pair (Jp, Ag).

e Thereis a formally smooth and log formally smooth log W-algebra R, equipped with

L
a log 1-motif [Y —% T'98] reducing to the log 1-motif [V N Téog] over kp. ug
is induced by the natural map of monoids Syét , = Ro and ¢4 is induced by the
ﬁ )

map ¢, . The difference between this last log 1-motif and the polarized log 1-motif
(Qo, A\o) over kp is a classical polarized 1-motif (le, )\81) over k.
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e The choice of weight co-character w : Gy — Py g gives us a polarized 1-motif
(QT,A\T) over RT deforming the 1-motif (le, )\81).

Let R' = RT®R,: this is a local log W-algebra with the log structure induced from
the one on R,. Let z(, : R — kp be the natural surjection. Over R’ we have the polarized

Jr
L-motif (QT,AT), where QT = [V “— Jp] arising from the one over R, and the log

l-motif [Y —% to, TIOg], arising from the one over Ry. The map ¢/ = u™ 4+ u gives us a

polarized log 1-motif (@', \') over R’ (with Q" = [V’ L> Jllg,g]) reducing to the polarized log
1-motif (Qg, \o) along .

R with the deformation (Q’, \) of (Qg, \g) will be our explicit model for the deforma-
tion ring R. We codify this in the next:

Proposition 3.2.5.1. Giving a continuous map f : R — C of local log W -algebras is
equivalent to giving a deformation over C of (Qg, o) (c¢f- 8.1.1.6). In particular, the
triples (R',(Q', \)) and (R, (Q,\)) are naturally isomorphic.

Proof. If we have such a map f, then clearly the pull-back f*(Q’, ') gives rise to a deforma-
tion over C of (Lg, Ag). Conversely, suppose we have a deformation ((Qc, A\o), jo,ic) over
C of (Lg, Ag). In particular, we have a deformation (J¢, )\ab) over C' of the pair (Jp, )\ab);
by (3.2.3.4), this corresponds to a map f* : RT — C such that f+(JT, aab, ) = (Jo, )\%})).
Moreover, from the construction in (3.2.4), we have the polarized 1-motif (LT, A1) over
R™ and this gives us a classical 1-motif (QC1 /\Cl) over C' when pulled back along f.
cl

Note that Q¢ is of the form [V ey log] and QCI is of the form [V ‘c, Jc|. Moreover,
the difference 1o — g | factors through T8 ¢~ and gives us a map from Y to T log (). This last
map can also be Vlewed as a pairing Y x X — M% and the presence of the polarization
Ar ensures that this pairing factors through a linear map S \ét M%p . We claim that we
can extend this to a map S — M%p. To do this, consider the following diagram:

S S
Hom ( @ ,M%p> C> Hom(SQ,M%p) —> Hom(S ¢t M%p) > BExt! (S @ ,M%P)
A6t 26t

Hom <S e Mgg> s> Hom(SQ,Mgp) — Hom(S/\et,Ml ) > Ext! ( @ Mgp>

)\et S )\et C

All the rows of the diagram are exact, and the middle square is Cartesian, since the vertical
arrows at the ends are isomorphisms. To see this last fact, first observe that the quotient

S . . .

group K = g C?t is finite of prime-to-p order. So any map from K to M%p or Mzgg must
)\e

land in £*; this shows that the vertical arrow on the extreme left is an isomorphism. For

the other isomorphism, the argument is similar: Since 1+ m¢ (me is the maximal ideal of
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C) is a pro-p group, the groups Ext’(K, 1+ m¢) vanish for all 7 > 0. This implies that the
arrow on the extreme right is also an isomorphism, since we have the short exact sequence

gp gp
l=14+mg— Mg _>Mlc_>1'

Now we return to our map Llcog : S \ét M%p: The induced map S \ét Mfg agrees

with the restriction to S4 of the map jrﬁp 1S — Mzgg induced from j7 : kp — ky, and the

surjection x6 : Ry — kp. Since the middle square above is Cartesian, we obtain a unique

map fﬁ 1S9 — M%? inducing Llcog and jﬁT.

We claim that the restriction of f ! to S@,» lands in M; indeed, we only have to check
that the induced map jgﬂ lands in My, o and this is true by hypothesis. By definition, fﬁ
then amounts to giving a continuous map f, : Ry — C' of log W-algebras.

Now, the map f = fT®f, : R — C is the one inducing the deformation
(Qc, Ac)sdcsic)- O

From now on we will identify R with R’ along with the polarized log 1-motifs (and
hence the degenerating family of polarized abelian varieties) over them.

3.2.6
There is a natural element O, € B ® QELO/‘CT’W = Lie Uv;tQ Qw QELO/gW induced by the map
Al,log
s — dlog(s).

Set M = My ®y R and equip it with the constant filtrations Fil' M = Fil' My @y R,
WeM = WeMy @y R, and the constant polarization ¥ = ¢y ® 1.

Let ©F € Lie U;f ® Q}%Jr W be the connection matrix associated with the connection
on M%ab+  The choice of co-character w : G, — Pyt splitting We My made in (3.2.3)
gives us a section Lie U;E — Lie U;p, and we can use this to view ©7 as an element of

Lie U%p®fl}% N This also gives us a section U}' — U;p, which we can use to view elements

of UI}" as automorphisms of M. Let ©, € Lie va_th b7 Q}z’l/oﬁ/ be the element arising from

the natural inclusion Ry < R. Let Vs be the connection on M with connection matrix
© = ©T 4+ O,. Fix the Frobenius lift ¢, on R, that restricts to the p-power map on
S0 C Ro, let pg = 30R+®g00, and let s be the map

* * <‘OMO®1 g+
QORM:SOWM0®WR4>M0®WR—>MQ®WR:M,

where g € Ut (R) is the image of the universal element in U} (R™). By construction, ¢y
is parallel for the connection V.
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Lemma 3.2.6.1. The tuple M = (M, s, Fill M,V s, 1) corresponds to the polarized
Dieudonné log F-crystal D(A) attached to the degenerating polarized abelian scheme (A, X)
over R.

Proof. This is immediate from the construction. O

3.3 (G-admissibility

Let R be the explicit log deformation ring constructed in § 3.2. In this section, we construct
an explicit map R — R¢ (it will be the normalization of a surjection) that will be the
local model for maps between complete local rings at the boundary of integral models of
appropriate Shimura varieties. Given the theory of the previous section, the construction
is quite simple; however, showing that it has the correct properties, and in particular that
Rq has the right dimension, is more involved and requires certain additional assumptions
that will be verified in applications.

There are two main results here. One is (3.3.3.6), which is a formal analogue of the
rationality result for Hodge cycles found in Lemma 1 of the introduction; the second is
(3.3.4.10), which gives a criterion for the normalization of a quotient & of R to be identified
with Rg. Both these results involve the notion of (strong) G-admissibility of points in
(Spf R)?" away from the boundary divisor. One should think of this condition as follows:
the points which are (strongly) G-admissible correspond to semi-stable abelian varieties
appearing near the (p-adic) boundary of an appropriate Shimura variety associated with

G.

3.3.1

Let Ulj“—,G = UJ%?G/Uv;tQ,@ and let U&L be the completion of U;?—,G along the identity section.
Call the associated formally smooth W-algebra RE: this is a quotient of RT. Let Rg(, be
the complete local log W-algebra obtained from the toric scheme associated to the monoid

So completed along the map xg :Sgp = k.

Lemma 3.3.1.1. The natural map Ry — Ro . of log W-algebras is continuous, and is the
normalization of a surjection. Moreover, we have dim Ry = dim U\;EG =r1kyz Bg + 1, and
dim RO‘,G = rkZ BQ,G + 1.

Proof. The continuity follows from that of the map of monoids Sy , — Sg, (3.2.2.2)(3).
That the map is then the normalization of a surjection follows from [Har89, 3.1]. The last
assertion about dimensions is immediate from the definitions. O

Let Rg = RE®R0G: by the lemma above, this is the normalization of a continuous
quotient of R. R¢ with its inherited (from R) family of degenerating abelian varieties will
be our ‘local model with Tate cycles’. The first difficulty is to show that it has the right
dimension. To deal with this issue, we will need a little detour.
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3.3.2

The notation used in this sub-section will be strictly local to it. We fix a sharp, fs monoid
P (cf. 1.2.1.2). Let L/K{ be a finite extension, and let A be the logarithmic & -algebra
01 [P] with the log structure given by the monoid P, and let A be its completion along
the ideal generated by P\ {1}. Let M(A) be the set of continuous maps of log W-algebras
A— ﬁfo' For any quotient ring T of A, let M(T) = M(A) N T(07). Consider the map

T—Vy

vy M(T) ——= Hom(P®P Q).

Definition 3.3.2.1. The v-dimension of a quotient 1" of A is the dimension of the vector
sub-space of Hom(P#P Q) generated by the image of vp.

Lemma 3.3.2.2. Suppose T = A/q, for some prime ideal ¢ C A, and that m ¢ q, for all
m € P. If T is moreover W-flat (that is, if p ¢ q), then we have v-dim(7T") > dim(7T") — 1.

) Before we give a proof, here are two examples with P = N2 and L = Ko, so that
A = W](|t1,ta]]. Let eq,eq be the standard basis elements of Z2, and, for any € M(A),
set v1(z) = vz(er) and vo(z) = vz(ea).

Example 3.3.2.3. First, take q = ({1 — t2); then, for any =z € M(T), we must have
v1(x) = vo(x). This is the only constraint, and the image of v generates the sub-space of
maps f : Z? — Q such that f(e1) = f(e2). So v-dim(T) = 1 = dim(7’) — 1 in this case.

For the second example, take q = (t; — pt2); then, for any x € M(T'), we have v (z) =
vo(z) + 1. If (a1, a9) € Z?, then we have

vg(ay,az) = (a1 + ag)vo(x) + ay.

Since there is no constraint on vo(z) (other than that it be positive) for varying « € M (T),
this means that the common kernel of all the v, for x € M(T) is 0, and so the sub-space
of Hom(Z?, Q) generated by im v must be everything. In particular, v-dim(7T) =2 > 1 =
dim(T") — 1.

Remark 3.3.2.4. The examples show that the following is a reasonable interpretation of
v-dim(7T): it is the dimension of the smallest ‘toric’ sub-scheme of Spf A that contains
SpfT. In particular, they show that the v-dimension of 1" conveys non-trivial information
about the special fiber of T over k. Indeed, the generic fibers of the sub-schemes of Spf A
corresponding to the two quotients above are conjugate in (Spf fl)an under the action of
the torus with character group P8P.

Remark 3.3.2.5. The lemma should be a consequence of the following theorem in non-
archimedean tropical geometry: The closure of the image of vp in Hom (P8P R) is a locally
finite union of Q-rational d-dimensional polytopes, where d = dimT — 1. See [EKLO06] or
[Gub07]. Nonetheless, the specific result we need admits an elementary proof, which we
present below.
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Proof. We will prove this by induction on n = rk P8P. For the purposes of the induction,
we will allow P to be merely fine, and do not demand that it be saturated as well.

If n = 1, then the normalization of A is &7 [|t|], and there exists some prime q’ C O [|¢[]
such that q’NA = q and such that 77 = & [|t|]/q satisfies the same conditions as T'. Since
dim7’ = dim T and im vpr is contained in imvp, it is enough to prove the lemma with
T replaced by T’ and A replaced by & [|t]]. In this case, either g = (0) or q is principal,
generated by ¢(t) for some irreducible polynomial ¢(¢) not equal to t or p. In both cases,
the lemma is easily checked by hand.

So suppose n > 1, and define ¥ = {N C P®P arank 1 summand : N NP = {1}}.
For every N € X, the image Py of P in Pz%p = P®P/N is again a fine monoid without

non-trivial invertible elements, and, if An = O1[|Py|], we get a surjection A — Ay of
local log W-algebras. Let py C A be the kernel of this surjection: this is a height 1 prime
in A.

Fix x € M(T) (this exists, by our hypotheses on T'). Let ¥, = {N € ¥ : N ¢ kerv,};
then we have the following:

Claim.
N p=q.
minimal primes p/3q+pN
Ne¥,

To prove this claim, it is enough to show that the collection A of ideals {q + py : N €
Y., } is infinite. That will imply that the collection of primes minimal over ideals in A is
infinite. If a is the intersection on the left hand side and is not equal to g, then all the
primes minimal over ideals in A will be minimal over a, because p has height 1 for every
N. But this is impossible, since there can only be finitely many primes minimal over any
ideal of the Noetherian ring A.

To show the infinitude of A, choose mj, mg € P that generate two distinct lines in P8P
and are such that v;(mq1) = vz(meo). Then ym(mlmQ_l) # 0, for all | > 2. Let N; C P8P be

the line generated by m1m2_l; then N; € ¥, and m1 — mZQ €PN, = b1 If A were finite,
we can find [ > k£ > 2 such that q + p;, = q + p;. In particular, we will have

l—k) k k

mb(1—mh) = mb —mb = (my —mb) — (my —m§) e q.

Since 1 — mb ¥ is a unit in /1, this implies that mlzf € q, which contradicts our hypothesis
that q contains no element of P.

Now, choose finitely many generators my,...,m; for P, and let a = p[[;m;. By
hypothesis, a ¢ g, so by the claim above it follows that there exists N € ¥, and a minimal
prime q’ D q+py such that a ¢ ¢'. Let T/ = A/q’; then 7" is a quotient of A, and, since
a ¢ q', it satisfies all the conditions that 7" did. So by induction (since rk PyY = n — 1) it
follows that v-dim(7”) > dim(7”) — 1, and we have

v-dim(T) > v-dim(7’) + 1 > dim(7”") = 1+ 1 > dim(7T) — 1.
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Here, the first inequality follows since N is contained in the common kernel of the image of
vyr, but not in that of the image of vp (it is not killed by v;). The last inequality follows

because A is catenary and pp has height 1.
And we have the conclusion of the lemma. O

3.3.3

We return now to the notation and setting of §3.2.

Definition 3.3.3.1. A continuous map y : Ry — ﬁfo of log W-algebras is G-admissible

if the induced map Ny : S — Ko % Q, viewed as an element of Bp®Q, liesin Bg ¢ ®Q.
Here v is the p-adic valuation on K taking p to 1.

Remark 3.3.3.2. exp(Ny) can be viewed as the monodromy of M around y. Having y be
G-admissible is therefore equivalent to asking that the the tensors {s} be invariant under
monodromy around y.

Definition 3.3.3.3. A continuous map y : R — ﬁ?() of W-algebras is G-admissible if
e The induced map yo = y|p, is G-admissible.

e The induced map y* = y| p+ factors through Rg.

As above, let M(R) be the set of continuous maps of log W-algebras R — ﬁfo' For
any quotient ring & of R, we set M(0) = M(R) N ﬁ(ﬁfo)'

Definition 3.3.3.4. We say that a quotient & = R/q of R is adapted to G if the following
conditions hold:

1. q is prime (so that & is a domain).

2. 0 is flat over W.

3. dim & = rkyy Lie Ut + 1.

4. Every element of M(0) is G-admissible.

5. The original lift x : R — O chosen in (3.2.2) factors through &.

We will consider the following restriction on our setup.
Assumption 3.3.3.5. (Rationality) Bg ¢ generates Lie Uv;t2G as a IW-module; in other
words, tky B ¢ = rkyy Lie Uv;tQG'
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Lemma 3.3.3.6. Suppose that there exists a quotient O of R adapted to G, and suppose
o C Bg ®R has mazimal dimension. Let xt : RT — Oy be the restriction of our original

lift * to RT. Suppose also that we can find a prime p C € minimal over ker(x )0 such
that 0' = O /p satisfies the following:

1. 0" is flat over W.

2. For all s € Sq 5, the image of s in O does not lie in p.
3. dim &' > rkyy Ug 2, + 1.
Then assumption (3.3.3.5) holds.

Proof. In order to show that B ¢ generates Lie UV;EG, it suffices to show

dimg(Bg.¢ ® Q) > s := rkyy Lie Uy, 2.

The condition that ¢ has maximal dimension ensures that R, is simply the completed
monoid ring W[|Sq ,|]. Let 27 : RY — O and p C ker(z™)& be as in our hypotheses.
Then R ®p+ .+ Ok Is isomorphic to Okl1Sgll, and ¢ = O/p is a quotient domain of
this ring.

The hypotheses of (3.3.2.2) are now valid with P = Sg,, L = K, and T' = 0', and
so is therefore its conclusion. By condition (4) of (3.3.3.4), every element of M (&) is
G-admissible: this means that, for every y € M(0"), the associated element Ny € Bo®@Q
lies in B ¢ ® Q. On the other hand, by (3.3.2.2) and hypothesis (3) above, the sub-space
of Bo®Q generated by Ny fory € M (& ') has dimension at least s. So we have the desired
inference. O

In fact, under some mild conditions, we can get the numbered hypotheses of the lemma
above for free.

Lemma 3.3.3.7. Suppose O is a quotient of R adapted to G. Suppose also that we have
o A flat map f: X =Y of flat, finite type, integral W -schemes;
o A closed sub-scheme Z C X; and
e apoint z € Z(k);
such that the completion of the diagram
L ——X
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at z 1s isomorphic over W to the diagram

Spf & ——— Spf R
Spf ¢t

Spf R™.
Then the numbered hypotheses of (3.3.3.6) are valid.

Proof. First, we claim that M (&) is Zariski dense in the rigid analytic space (Spf €)*"
associated with &. Since z factors through & and is a map of log W-algebras, no s € Sq)
maps to 0 in @. Indeed, if some s did map to 0 in &, then it would have to map to 0 under
x as well, which is impossible, since = is a map of log WW-algebras.

Now, we find, using conditions (1),(2) and (4) of (3.3.3.4), that the restriction
Spf L+|Spfﬁ factors through Spf Ré’;. This is because the restriction of every element of
M(0) to Spf R factors through Spf RE (implied by G-admissibility), and because M (0)
is dense in (Spf &)?".

Let Y/ C Y be the closure of the image of Z in Y'; then, it follows that, for any small
enough affine neighborhood V of s = f(z) in Y/, we have dimV < dim RZS. Replacing
Y’ by V, and Z by any affine neighborhood of z in the pre-image of V, we can assume
that Z — Y’ is induced by a map B < A of finitely generated domains over W, with
dim B = dim ¢ and dim A < dim RE.

Let m, C B be the maximal ideal corresponding to z, and let mg C A be the one
corresponding to s. The map z1 : RJCS — Ok induces a map j : A — K, such that

I, = kerj C mg, and the fiber B/I4B [%} of B {%} over j has dimension at least
. . _2
dim & — dim RE = rkyy U%?G — rkyy Ué;— =tk Uy o

by the upper semi-continuity of dimensions of fibers. Let pg D I4 B be any minimal prime
such that (B/ppg)[1/p] has dimension at least rkyy U*2G, and such that pp C m,.

wt,

Then the closure of pp in & under the identification Emz = O will give us the prime
p C O needed in the hypotheses of (3.3.3.6). Indeed, the closure of I4 in & is ker(z)0,
and so p will be minimal over ker(z™)&. By construction, &' = € /p is flat over W and
its dimension satisfies the lower bound in hypothesis (3) of (3.3.3.6). Moreover, we have
the map = : R — O, which factors through & by condition (5) of (3.3.3.4), and so in
fact factors through &/(kerz®)0. In particular, for any s € Sg,, the image of s in
O /(ker x1)0 is non-zero, since its image in O under x is non-zero as already observed at
the beginning of this proof. This implies hypothesis (2) of (3.3.3.6), since, if some s € Sg)

belonged to p, then some high enough power s would lie in ker 2t and thus would map
to 0in 0/(kerz™)0. O
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3.3.4

Let Lg/Kp be an unramified extension. We endow the power series ring Lg[|u|] with a
¢r,-semi-linear endomorphism ¢ taking u to uP. We also endow it with the log structure

Mz oquf] = Lollul] \ {0} = Lo[[ul],

thus making Lo[|u[] a log Ly-algebra. The endomorphism ¢ can be viewed as a ¢, -semi-
linear endomorphism of Lg[|u|] as a log Lg-algebra.

Suppose that D is a ¢-module over Lg: that is, Dg is a finite dimensional Lg-vector
space equipped with an isomorphism

¥Dy : $LyPo — Do.

Let D = Dy ®r, Lo||u|], and suppose that D is equipped with a logarithmic connection
Vp:D — D® Ly[|u|]] dlog(u) and an isomorphism

ng:go*DE%D

such that:

¢ ¢p reduces modulo u to the endomorphism ¢p,.

e ¢p is Vp-parallel.

Then the residue N : Dy — Dg at u = 0 of Vp is an operator satisfying Nep, =pepy N,
and so Dy has the structure of a (¢, N)-module over Ly.

Let Lo[|ul]'®® = Lg[|u|][lu] be the polynomial ring in the variable I, over Lglu|].
Lo[|u/]'°¢ can be equipped with a natural logarithmic connection V : Iy — —1 ® dlog(u),
and a ¢-semi-linear map ¢ given by ¢(l,,) = ply. The logarithmic connection corresponds
to a Lo||u/]-derivation N : I, — —I,, of Lo[|u[]'°8, and we have

Lo[lul] = (Lo[|ul]'*8)N=0.

Set .
W(D) = (D @y Lollull®®) ",

where D ®L0[|u|

This is naturally a (¢, N)-module over Lg: the endomorphism N of U(D) is given by
(Vp®1)|g(p)- Moreover, by [Vol03, Theorem 9], the inclusion ¥(D) — D®p, ]LO[\quog
induces a (¢, V)-equivariant isomorphism

] L0[|u]]1°g is equipped with the tensor product logarithmic connection.

|ul
1 ~ 1

(D) @, Lollul]*® = D @r, (14 Lollul]®.

The map Lo||u|]'°8 — Lg sending u and I, to 0 gives rise to an isomorphism

U (D) = Dy
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of (¢, N)-modules over Lg, and so we obtain a (¢, V)-equivariant isomorphism
&: Do @ry Lollul]'®® = D@, (1)) Lollul]E.

In particular, if d € Dy is such that N(d) = 0, then £(d) will be a parallel section of
N=0
D = (D @y Lollull®) ™

Lemma 3.3.4.1. Let G C GL(Dg) be a reductive sub-group, which is the pointwise
stabilizer of a collection of @-invariant tensors {sq,0} C (D?)NZO. For each o, let
S5a = &(5a,0) € D® be the unique V p-parallel, -invariant element lifting Sa,0- Let
0 € GL(D) be the composition

orle1
D=D Do * _ *pn ¥D .
= Do @ Lol[ul]] —— ¢,Do @ Lol[ul]] = ¢"D —= D;

Suppose that Dy is equipped with a filtration Fil® Dg such that:
1. The tuple (Dy, ©Dy> Fil®* Dg) gives a weakly admissible o-module over Lg;

2. Fil®* Dqy is split by a co-character p : Gy, — G;
3. 0 lies in U°P(Lg[|ul|]), where U°P is the opposite unipotent associated with y;

4. The tensors 3o lie in Fil'(D®), where we equip D with the constant filtration Fil® D =
Fil®* Dy ® Lol[|u].
Then 0 lies in (U°P N G)(Lo[|ul]), and, for all o, 30 = 54,0 ® 1 (we are using the trivial
identification of D with Dy ® Lg||ul] ).

Proof. This is just a slight generalization of [Kis10, 1.5.6], and the proof of that result goes
through for us verbatim. O

Let L/Ky be a finite extension with residue field [, and let Ly = W(I) [ } be its
maximal absolutely unramified sub-extension. Fix some un1f0rm1zer mr, € L and fet St, be
the associated log W-algebra equipped with the Frobenius lift ¢ : u — u? (cf. 2.2.5). Let
J = ker(S;, — Of): this is a PD-ideal, and we have the PD-filtration J [] given by the
divided powers of J. Let S 1 = lim Sp/J [l be the PD-completion of Sj, along J: this
inherits a log structure from S, and also admits an embedding in Lg||ul].

Proposition 3.3.4.2. Let y : R — Op, be a continuous map of log W-algebras. Let Ay
be the semi-stable abelian variety induced over L. Set My = D(Ay)(SL), and suppose that
there exist p-invariant, V-parallel tensors {50} C M? lifting {sq ® 1} C My @y W(I)
such that:

1. The pointwise stabilizer of {34} is a reductive sub-group Gg C GL(My);

2. The tensors {50} reduce to tensors {sq g, } C D(Ay)(OL)® defining a reductive sub-
group G, C GL (D(Ay)(ﬁL)>, and the Hodge filtration on D(Ay)(Op) is G g, -split.
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Then:
1. The induced map y : R — O, is G-admissible.

2. Suppose, in addition, that (3.3.3.5) holds; then the induced map of monoids S0 —
(MﬁL /ZX) factors through Sy, .

3. In particular, if (3.3.8.5) holds, and if the induced map y, 0 : Re — O /mp, of log
W -algebras factors through Rs ., then y factors through Re.

Proof. Set My o = My ®g, W(l). Note that M, ¢ is identified with My @y W(l) by
(2.4.1.1)(3); so it makes sense to ask for lifts to M? of tensors in (My @y W(1))®. In
hypothesis (2), we are using notation and results from (2.3.2.3).

Let My = My ®g, Sp; by the argument in [Kis10, 1.5.8], we can find a Gg-split
filtration Fil' M, on M, lifting both the Gy (g)-split filtration Fill My @y W (1) and the
G, -split Hodge filtration Fill D(Ay)(O). Applying (1.3.4.1), this gives us a deformation

Y v, J%Og] over Sz, of the log 1-motif [V v, Jéog] corresponding to Ay,. So we have a
map 7 : R — S'LAinducing this deformation (cf. 3.2.5.1).
Let My ®w Sp = D(A) @k Sp, = My be the identification induced by .

Claim 3.3.4.3. Under this identification, the tensors {s, 0®1} C M{)g) ®yy Sy, are identified
with {34} C ./\/lf? In particular, they are (p-invariant and V-parallel.
Let Dy = Mo ®@w Lo, and let D = My ®g, Lo[|ul]. Dy is equipped with the filtration

Fill Dy = Fil' My ® Ly, and the lift § gives us an identification D = D ®r Lollul]. We
note:

The filtered p-module Dy is weakly admissible.

The filtration Fill Dy is G,-split.

For every «, 54 lies in FilV D®,

The composition
-1
('ODO .

14
Dy 0*D 25 D = Dy @1, Lo[ul]
is an element of U;p(L()HuH).

Only the last assertion is not immediate. To see it, first observe that QOB(l) = QDJT/}O gy, for

some gy € U“_,t%G(LO); this was observed above. Also above, we saw that ¢*D had the
factorization

* € « (PM0®1 G g+
o Mo @w Lol|ul] = ¢y Mo @w Lo[|u|]] ——— Mo @y Lo[|u|]] —— My @y Lol|ul].
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So it suffices to show that (¢p, ® 1) o€o SDJT}O lies in U%p(LoﬂuH). This follows from the

argument in [Kis10, 1.5.3]: one just has to replace the derivations dt; with their logarithmic
analogues. Now, the hypotheses of (3.3.4.1) are valid and we see that 5, must equal s, ® 1:
our claim is proven.

To prove assertion (1), it will be enough to show two things:

e The induced map § : Rt — S 1, factors through RE.
e The monodromy Ny, for Ay lies in B ¢ ® Q.

Let us tackle the first statement. The map ¢ Iy is given by the composition
y

~ ~ g*gpM ~
1, P Mo ©w St = iy Mo ®w S —— Mo @ S

Here, the isomorphism € is given by parallel transport (cf. 1.4.2). Since the tensors

{07y 8a,0 ® 1} are parallel for the connection on ¢*My, they must be preserved by e,

and, since they are taken to {s, o® 1} by ¢y, they must be taken to {8a.0®1} by 7 ¢pr
) y )

as well. But, by construction, §*¢p, is given as the following composition:

" N S@M0®1 N g*g+ .
o Mo ® Sp, ——— My ® Sp, —— My ® Sp,,

where g7 € U;(R) is the image of the universal element in U;(RJF). In particular, we see
that §*g™ lies in UJ:L_G” which means precisely that | p+ factors through RE.
For the second statement, note that the residue at u = 0

I‘eSS,L VMy : My,O — My70 X (MS’L /Sf) = My,()

of the logarithmic connection on My, is identified with a rational multiple of the mon-
odromy Ny. Since the tensors {Sq} are parallel for V ;- it follows that Ny(sq,0) = 0, for

y
all o, and so Ny € Bg ¢ ® Q. Together with what we proved in the previous paragraph,
this shows (1).
Suppose that (3.3.3.5) is valid. To show, as in assertion (2), that the map Sg, —

Mg, /I of monoids factors through S, it is enough to show that the map S — M:%p JU*
L

of their group envelopes factors through S . We observe that the following square is
cartesian:

Mg /1 —> Mg /W ()"

MWU)N /I ——> N
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With this observation in hand, we can now finish the proof of (2) with the following two
claims:

Claim 3.3.4.4. The induced map Sy — M%p /W (l)™ factors through S¢) .
L

Let ©, € Lie U;p ® Sy, dlog(u) be the connection matrix for My; then, since the tensors
{54,0 ® 1} are parallel, © actually has values in Lie U;pG. Recall that our choice of weight
co-character w gave us a splitting

LieUghy = Lie U @ Lie Uy 2.

By construction, the projection of ©, onto Lie Uv;tQG ®S 1, dlog(u) is the matrix correspond-
ing to the map
~4

Yo gp gp X 3
SQ MSL MgL /W(l) Cd@ SL dlog(u).

It follows that the composition of the first two maps factors through S¢) . Note that we are
using the rationality assumption (3.3.3.5) here. This finishes the proof of claim (3.3.4.4).

. . gp
Claim 3.3.4.5. The induced map S — MW(Z)N /1* factors through Sg g.

Let us call this map . Let ¢n be the Frobenius lift on Wy induced from that on S L
by (1.4.3.1), this Frobenius lift gives us a splitting

M%E(Z)N = M;ﬁg ®(1+ pW(l))

compatible with the Teichmiiller splitting W (I)* = {* & (1 4+ pW(l)). This splitting is
defined as follows: We define a map

- MEP
D MW(Z)N — 14+ pW(I)
m — on(m)m™PL.

The section M%[I/)(Z)N — 1+ pW(l) associated with ¢ is now ((I)‘lerW(l))_l o ®. Dividing
by the sub-group [, we obtain a splitting

MYy /1= Oy /) @ (14 pW (1)), (3.3.4.5.1)
By (1), Ny lies in B ¢ ® Q; moreover, a rational multiple of it corresponds to the map
Sg — Mlg§ =7

induced from y. This implies that S — Mlg§ /1" must factor through Sg . So, to show
that y factors through Sg , it is enough to show that its projection onto 1 + pW (l) via
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the splitting (3.3.4.5.1) above also factors through S . Explicitly, we have to show that
the map

fy: Sg———=1+pW()
(3.3.4.5.2)
m —— on(7(m))y(m)~?

factors through Sg . Let us now consider the map log(fy) : Sg — W (I): this corresponds
to an element Uy € Lie UV;tz ®@ W (I) via the identification (cf. 3.2.1.1)

Hom(Sg, W) =Bg ® W = Lie Uy,

Since our rationality assumption (3.3.3.5) is in force, to show that f, factors through Sg) ¢,
it is enough to show that Uy lies in Lie U;EG @ W(l).
Now we observe that we have two different -semi-linear maps on M, o = M, ®s; W(l).

There is the map ¢z, @ 1 obtained from the identification Mo @y W (l) = M, o induced
by 7, and there is also the map ¢ My induced from the reduction of ¢ x4 Y Let us see how

these two maps are related.

Let ¢ be as above, and let ¢ p be the Frobenius lift on Wp induced from that on R,.
Note that, by the choice of Frobenius lift on Ry (cf. 3.2.6), op(m) = mP, for all m in the
image of the map S — M%II;P. The map y : R — S 7, induces a map of log W-algebras

9o : Wp — W(l)y. Let gg : My, = My (g, Pe the induced map of monoids, and set

P, M%gp — 1+ pW ()

m = on(Fh(m)) (e p(m)) .

Note that the induced composition
S MEP Yy W (1
o — My, — 1+ pW(l)

is simply the map f; considered in (3.3.4.5.2). This follows because ¢ p(m) = m?, for all
m in the image of Sg. Therefore, by (1.4.3.5), we have:

Q‘DMy,O = (QPMO ® 1) © (]‘ + Uy)
Note that the tensors {s,,0® 1}, being the reductions of {5, }, are ¢-invariant in M;?O, and
so Uy must lie in Lie UV;EG ®w W(l). This finishes the proof of claim (3.3.4.5) and hence
also the proof of assertion (2).
Finally, for assertion (3), to show that y factors through R, we need to show that

yT =1 p+ factors through RZ@ and that y, = y|g, factors through Rs,. The first of these
conditions holds because of assertion (1), and, for the second, we only have to check that
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the map yg 1500 — MﬁL of monoids factors through Sy.. By (2), we already know that

the induced map Sq , = Mg, /I factors through S;,. Observe that the following square
1s carteslan:

Mg

L Mg, fm;

MﬁL /lx %MﬁL /ﬁf

So to show that yg— factors through Sy, it is now enough to show that the induced map
SQ0 — MﬁL/mL factors through Sy,,. But this is precisely the hypothesis of (3), and so
we are done. n

Definition 3.3.4.6. A continuous map y : R — O} of log W-algebras is strongly G-
admissible if there exists a diagram of log W -algebras

oy,

such that g satisfies the hypotheses of (3.3.4.2). In particular, a strongly G-admissible map
is G-admissible.
A continuous map of log W-algebras y : R — ﬁFO is strongly G-admissible if there

is a finite extension L/Kj inside K(), and a strongly G-admissible map ¢’ : R — &, such
/
that y factors as R LN o, — ﬁfo'

Proposition 3.3.4.7 (Criterion for strong G-admissibility). Let L C K be a finite exten-
sion of K; lety : R — O, be a continuous map of log W -algebras, let Ay be the associated

polarized semi-stable abelian variety over L, and let Ay = H1 (Ay F’ZP)' Suppose that

we have Galois-invariant tensors {sq ¢y} C Aff’, and let {sq qR,y} C HéR(Ay)@’ be the
corresponding tensors obtained via the p-adic de Rham comparison isomorphism. Suppose
i addition that the parallel transport isomorphism

Hig(Ay) @ 08 229 gl (A, @ L) ©f, L8 = Hig (Ar) @ L1

carries {Sq qR,y @1} t0 {Sq.dr,z ®1}. Then y is strongly G-admissible, and is in particular
G-admissible.
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Proof. Let {sqst,y} C (Dst(Ay)®)N:0 be the tensors obtained from {s 4, } via the func-
tor Dgt. By (2.3.2.3)(4), we obtain g-invariant V-parallel tensors {s, g} C D(Ay)(Sp)®
reducing modulo u to {sqsty} and defining a reductive group Gg C GL(ID(Ay)(SL)).
Write M for D(Ay)(S): it is equipped with a polarization 1.

With the given hypotheses, and the commutativity of the diagram in (2.4.1.1)(6), the
tensors {s, qr,y ® 1} map to the tensors {sq 0 ® 1} in (Mo @pw Lo)®. Moreover, under
the isomorphism in (2.4.1.1)(3), the tensors {sq sty } map to {s4,0® 1}. In particular, the
tensors {sq g, } reduce to {sq0 ® 1} in (Mo @y W(1))®. The hypotheses of (3.3.4.2) are
now satisfied and so y is strongly G-admissible. m

Definition 3.3.4.8. A quotient & of R is strongly adapted to G if it is is adapted to
G (3.3.3.4) and satisfies in addition:

(4’) Every element in M(0) is strongly G-admissible.
(6) There exists a finite extension [/k such that the set
{y € M(0) : y factors through L C K with residue field {}
is Zariski dense in (Spf €)2".

Remark 3.3.4.9. If & is the completion at a point of a flat, integral, finite-type scheme
over W, then Condition (6) above is automatic. This is clear if & is formally smooth (in
this case, even the W valued points in M (&) will be dense in &). In general, [dJ96, 2.13]
shows that ¢ admits a finite, injective map f : @ — &', where ¢’ is formally smooth over
a (possibly ramified) extension &, of W. Since, for some unramified extension L'/L, the
O'1/-valued points are dense in 0’ the result follows.

Proposition 3.3.4.10. Suppose that there exists a quotient O of R strongly adapted to
G, and suppose (3.3.3.5) holds. Let O™™ be the normalization of €. Then the map
R — O0™°™ factors through Rg = RE@R(;G and identifies O"™ with Rg. In particular,

O™ s (the completion of) a toric embedding over Ré corresponding to the torus with

co-character group B ¢ and the rational polyhedral cone o C B ¢ ® R.

Proof. Let [/k be a finite extension for which condition (6) of (3.3.4.8) is valid for & let
r = #1*. Consider the r-power map r : SQ.c = S@,0; this restricts to the r-power map on
Sog- It induces a map fr : RT[S¢ ;] = R1[Sq ), and localizing the target of this map at
the point xg, and the domain at the point xq o f;, we obtain a finite flat map f, : R — R
of RT-algebras. This induces a finite flat map fr|p o Bar — Rg of Rg—algebras

Choose an element y : R — O, in M(0), for some finite extension L/K with residue
field I. By hypothesis, such points are dense in (Spf &)®". Since & is strongly adapted
to G, y admits a lift gy : R — S’L satisfying the equivalent conditions of (3.3.4.2). Then
y is G-admissible, and so y|p+ factors through Rg. By density of such points, it follows
that the map RT™ — O™ given by pre-composition of R — O™°™ with the inclusion
T RT — R, factors through RE.
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By (3.3.4.2)(2), it follows that the induced map Sq , — Mg, /I factors through Sy,
In particular, the composition y o fr : Ry — 07, of log W-algebras factors through R ..

By density of such points, we conclude that the composition R f—r> R — O™°™ factors
through Rg .. In particular, both Spf &"°™ and Spf R, being of the same dimension
(cf. 3.3.1.1), are normalizations of irreducible components of Spec(Rg, ®pg, R). This
already tells us that &™°™ is the complete local ring of a toric embedding over RE.

By condition (5) of (3.3.3.4), the point = factors through &™°™. We claim that z
factors through Ry as well. Indeed, by the choice we made in (3.2.2.2)(4), the map of
monoids 93?7,0 1800 — MﬁK/mK factors through Ss,. The hypotheses of (3.3.4.7) are
tautologically true for x, and so x is strongly G-admissible. By (3.3.4.2)(3), it then follows
that x factors through Rg.

It now follows that Spec R and Spec 0™°™ must map onto the same irreducible com-
ponent of Spec(Rqg , ®p, R) and must therefore be identified. O
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CHAPTER 4
COMPACTIFICATIONS OF INTEGRAL MODELS OF
SHIMURA VARIETIES

4.1 Shimura varieties and absolute Hodge cycles

This is essentially a resumé of the first part of [Kis10, §2].

4.1.1

Definition 4.1.1.1. A Shimura datum is a pair (G, X), where G is a connected reductive
group over Q and X is a G(R)-conjugacy class of homomorphisms

h:S = Resc/g Gm — Gr
satisfying:
1. The composite
s ap AL GL(Lie(@))
defines a Hodge structure of type (—1,1),(0,0), (1, —1) on Lie(G);
2. h(i) is a Cartan involution of G;
3. G* has no Q-simple factors whose R-points form a compact group.

A map ¢ : (G1,X1) — (G2, X3) of Shimura data consists of a map ¢ : G; — Gg of
Q-groups inducing a map X; — X9 over R. It is an embedding if the underlying map of
groups is a closed embedding.

Let A be the ring of finite adéles, let K C G(A f) be a compact open sub-group of the
adélic points of G. We will write K = KPKj,, where K, C G(Qp) and KP C G(A];f), where
Az} C Ay denotes the sub-ring of adéles with trivial p-component.

By results of Baily-Borel, Shimura, Deligne, Milne, Borovoi and others (see [Mil90,

§4.5]), the double coset space
Shi (G, X)c =G(Q)\ X x G(Ay)/K

has the natural structure of an algebraic variety over C with a canonical model Shx (G, X)
over a number field F(G, X) (the reflex field), which depends only on the Shimura datum
(G, X).
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Lemma 4.1.1.2. Let ¢ : (G1,X1) — (G9,X2) be an embedding of Shimura data, let
Ky C G1(Qp) be a compact open sub-group, and let K1, = Ko, N Go(Qp). For any
compact open sub-group Kf C Gl(AZ}), we can find a compact open sub-group Kg C GQ(AZ})

containing Kf such that v induces an embedding

Sh (G, X) < Sh (G, X)

defined over E(G1, X1).
Proof. This is [Kis10, 2.1.2]. O

Definition 4.1.1.3. Let V be a Q-vector-space equipped with a symplectic form . The
Siegel Shimura datum associated to (V1)) is the pair (GSp(V,v), ST), where S* is the
GSp(V, ¥)(R)-conjugacy class of maps h : S — GSp(V,¥)r such that:

1. hinduces a Hodge structure of type (1,0), (0,1) on V, so that we have a corresponding
decomposition

o=V el
2. The symmetric form (x,y) — ¥ (z, h(i)y) is (positive or negative) definite on Vg.

The reflex field of a Siegel Shimura datum is Q.

4.1.2

Let (GSp, ST) be a Siegel Shimura datum associated to (V,1)), and let K = KPK, C
GSp(Af) be a compact open sub-group. For K? sufficiently small, Shy (GSp, ST) can
be interpreted as the fine moduli space of polarized abelian varieties with level structure.
To be more precise, we fix some Z-lattice V; C V such that v restricts to a bilinear
form on Vi and such that Vi ® Z is stable under K. For any abelian variety A over an
algebraically closed field k, let H1(A,Z) = [, prime H élt(A, Z;). Then, for any algebraically
closed extension k/Q, Shy (GSp, ST)(k) parametrizes tuples (A, X, ), where

e A is an abelian variety;
e )\ is a polarization of A;
e 7 is a K-orbit of isomorphisms
(V2@ Ly @1) = (HY(A,Z),0))

that respect polarizations up to a Zx—multiple. Here, the right hand side is equipped
with the alternating form ) induced by the Weil pairing and the polarization A.
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For more details, see [Del71, §4] or [RZ96, §6]. We see therefore that, for K7 sufficiently
small, there exists a universal abelian scheme A over Shy (GSp, ST).

Definition 4.1.2.1. A Shimura datum (G, X) is of Hodge type if it admits an embedding
(G, X) = (GSp, 5%)

into a Siegel Shimura datum.

4.1.3
Let (G, X) be a Shimura datum of Hodge type equipped with an embedding

(G, X) < (GSp(V, %), S*).

Let K = KPK), C G(Af) be a compact open subgroup. By (4.1.1.2), we can find K’ C
GSp(A ) containing K such that the map Shy (G, X) — Shy/(GSp, S*) is an embedding
defined over E = E(G, X). Moreover, we can ensure that K? and K'? are sufficiently small,
and fix a Z-lattice V7 C V as above, so that Shz(GSp, Si) admits an interpretation as a
fine moduli space of polarized abelian schemes with level structure. Let h : A — Shg (G, X)
be the pull-back of the universal family of abelian varieties over Shz/(GSp, S jE).

Suppose that we have a finite collection of tensors {sa’ B} C V® whose pointwise
stabilizer in GSp is G. Let V = Hc11R<A/ Shi (G, X)) be the first relative de Rham coho-
mology of A over Shy (G, X): this is a vector bundle with flat connection over Shy (G, X).
From [Kis10, §2.2], we see that the tensors {s, g}, via the de Rham isomorphism, give
rise to parallel tensors {s, qr} C V. Moreover, for any field extension x of E, any
point x € Shi (G, X)(k), and any choice of algebraic closure % of k, we get a Gal(R/k)-
invariant tensor s, ¢ . € H, ét (Azz, Q@p)®. Given any choice of embeddings o : & — C and
t: Qp <= C, under the isomorphisms

HéR(.Ax) Ok,o C E_> Hl (AJ?,U(C)v C) i ]—Iélt("étl‘a’%vg7 @p) ®Qp7b C,

Sa,dR,z 18 carried to s, ¢ ;- This is a consequence of the main result of [DMOS82]: ‘Hodge
implies absolutely Hodge for abelian varieties over C’.

We also have one additional piece of compatibility between s, qr , and s, 4 .. For
this, consider the case where k is a finite extension of E,, the completion at v for some
place v|p of E. Then we also have the p-adic comparison isomorphism

HéR(Ax) ®r Bar = Hét(A:c,Fc: Qp) ®Q, Bir-

Proposition 4.1.3.1. Under the p-adic comparison isomorphism above, ¢ 4R 4 5 carried

to Sq bt
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Proof. This is essentially the main result of [Bla94], which applies directly when A, is in fact
defined over a number field. For the generality we need, as pointed out in [Mo098, 5.6.3],
we can either appeal to a trick of Lieberman as in [Vas99, 5.2.16], or we can directly use
the fact that A, arises from the family A defined over the number field E. m

4.2 Toroidal compactifications of integral canonical models

4.2.1

Let (GSp,ST) be a Siegel Shimura datum associated with a symplectic space (V).
Suppose that K, C GSp(Qp) is a hyperspecial sub-group. For us, this means that
Ky = GSp(VZp,w), where VZp = VZ(p) ® Zp, for a Z(p)—lattice VZ(p) C V such that v

induces a Z<p)—valued symplectic form on Vy )" Let KP C GSp(A‘?) be compact open

sub-group such that K = KPK), C GSp(Af) is neat!. For example, suppose that we fix
an Z-lattice V; C Vg ) stable under the pairing ¢ and such that the pairing is perfect on

V7, {H, for some r € Z~g. Choose N such that (NN, pr) = 1; then it makes sense to con-
sider the compact open sub-group HlJﬂ" GSp(VZl) of GSp(A ), and within it the congruence
sub-group K (N) given by

K(N) = ker | [[GSp(Vz,) — GSp(V ® Z/NZ)
Ur

By Serre’s lemma, it follows that K (V) is a neat sub-group for N > 3, and we clearly have
K(N)p = Kp. In particular, any compact open sub-group K = K?K), contained in K(N)
for some N will be neat.

Fix a choice of V;; C Vy ) and a neat sub-group K = K (V) as above. Then, the moduli

problem represented by Shy (GSp, S*) over Q (cf. 4.1.2) extends naturally to a moduli
problem over Z(p) that is representable by a smooth Z(p)—scheme S = yK(GSp,Si)
(cf. [Kis10, 2.3.3]).

The moduli scheme . is not compact, and there arises the problem of finding a good
compactification for it. This problem was solved by Faltings and Chai in [FC90], but
[Lan08] will be a better source of precise statements for us. To explain these results, we
will need a fresh panoply of definitions. It might be helpful at this point to skim over their
relatives in (1.2.3).

Set VZ/NZ = VZ & (Z/NZ)

Definition 4.2.1.1. A cusp label ® for (Vz,7) at level K (cf. [Lan08, 5.4.1]) is a tuple
(Y, X, ACt, SN gof]’\t[, gp%ult, J), where:

1. cf [Lan08, 1.4.1.8].

109



1. Y and X are free Z-modules of rank r and A : Y — X is an injective map of groups.

2. Uy, C VZ/NZ is a free isotropic Z/NZ-sub-module such that the quotient
VZ/NZ/‘I’N,r is again free over Z/NZ.

N Vonz/UN, = Y/NY;
PR Wy = Hom(X, Z/NZ)

are isomorphisms of groups such that the pairing

L P gt (AC(),)
(Vaynz/ k) x U, XN y/NY x Hom(X, Z/NZ) -7, 2/N7,

is equal to the perfect pairing induced from .

4. 0 is a symplectic splitting of the filtration

1
O C \IIN,T C \IJN,’I“ C VZ/NZ
There is a large collection of objects associated with a cusp label ®:

e Choose any isotropic free and co-free Z-sub-module ¥, C V; whose reduction modulo
N is Uy .. Then the induced alternating form on VZ@ = \Ilf: /¥, is non-degenerate

after extending scalars to Q. Let us take K& c GSp(Vg) to be

K® =ker [ [[GSp(V7) — GSp(Vy @ Z/NZ)
Ur

Then we can consider the Shimura variety Sh . (GSp(V'®), %) and its model .7 =
S e (GSp(V®), 5%) over Z(p): the latter is a fine moduli space over Z, for polarized

abelian schemes (B, \2P) with level N structure of type \IJJJ{, YNy (cf 1.2.3.1). Tt

is shown in [Lan08, 5.2.7.5] that the space %3 and the moduli problem it represents
are independent of the choice of W,..

e Let (B,\®) be the universal polarized abelian scheme over .%g. Consider the .%-
scheme:

. 1 1
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This is the fiber product of the diagram:

Hom ( Y, B)

N

Hom (;{X, Bv> — Hom(Y, BY),

where the vertical arrow is restriction followed by post-composition with )\ab, and

et ..
the horizontal arrow is pull-back along the map Y i—> X — %X . Py is a smooth,
proper group scheme over .%g. It is shown in [Lan08, 6.2.3.4] that there is a natural
map

d: Py — Hom (;fy/y, B[N])

of group schemes whose fibers are abelian schemes over .. The cusp label ® gives
us a distinguished element bg in the image of 0 (cf. [Lan08, 6.2.3.1]). Let Pg be the
fiber of O over bg: this is an abelian scheme over .#g.

Over P4, we have the tautological maps

1
CN.® : NY — B;

1
N X BY.

Let Cp = CN,<I>|Y and let C% = C.\l/V,CI)’X' Set

1
INg = (cyo X ch) Pg

Iq) = (Cq) X C%)*Pgl
Then Iy ¢ is a Gyy-bi-extension of %Y x X over Pg (cf. discussion before (1.2.2.3)),

and Ig is a Gy,-bi-extension of ¥ x X over Pg such that (1 x X")*Ig is a symmetric
G -bi-extension of Y x Y (cf. discussion before (1.2.2.8)).

We have the groups
1 1

By = NBAét; S¢ = NSAém
as defined in (3.1.2). We also have the open convex cone
Cq; = C/\ét C B(I)®R
as defined in (3.1.2.1.1).
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e Let Eg be the torus over #¢ with character group Sg. We then have the Eg-torsor
Eg over g, whose points over any Pg-scheme C' are given by:

Trivializations 7y : 1y sy — I N,® over C
of Gy,-bi-extensions of Y x X
inducing a symmetric trivialization of
the symmetric Gp,-bi-extension (1 x A")*Ig of ¥ x Y.

e We have the group

Fp = {(Wﬁx) € GL(Y)(N) x GL(X)(N) : A* = VX/\étW},

where GL(Y)(NN) (resp. GL(X)(N)) is the group of automorphisms of Y (resp. X)
that act trivially on Y/NY (resp. X/NX).

Definition 4.2.1.2. A smooth, admissible, rational, polyhedral cone decomposi-
tion Xg (cf. [Lan08, 6.1.1.14]) associated with a cusp label ® is a collection {04 }qerr sSuch
that

1. For each a € 11, 0, is a non-degenerate rational polyhedral cone in Cg, smooth with
respect to the lattice Bg.

2. Cg is the disjoint union of the o,. For each o € II, the closure of o, in Cg is a
disjoint union of certain og with § € IL

3. For any g € I'g and any « € I, goq = og, for some [ € II, and the action of I'g on
{oa} has only finitely many orbits.

Given such a decomposition Xg associated with ¢ and a cone o, within it, we can
consider the monoid
Sq)’a =o’'N Sa,

where
o) ={neSe@R:(n,s) >0, for all s € o}.

Let Eg , = SpecO4,[Sg o]: this gives us a torus embedding
Eq) — Eq)’g

over Zg. We set
p— — E .
Epo =80 X ®Eg,:

This is a log scheme over %4 in the evident way with the log structure induced by the
divisor that is the complement of Eg . Moreover, the tautological trivialization 7 of the
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Gy -bi-extension Ig of Y x X over Eg extends to a trivialization 7 of the induced (G;%g_
bi-extension I}I? & over B¢, (cf. discussion above (1.2.2.3). This means that we have a
tautological tuple

(B,Y, X, P X ¢, ¥, 7)

over g, , satisfying the conditions of (1.2.2.8), and so we have a tautological polarized log
L-motif (Q¢ o, A\p ) Over Eg . It is also evident from the construction that this polarized
log 1-motif has a tautological level N structure ag , of type (VZ/NZa Wy, (cf. 1.2.3.3).
The stratification of Eg , by orbits of Eg gives rise to a stratification on Eg , as well.
There is a unique closed stratum; let Xg , be the formal scheme obtained by completing
Eg o, along this closed stratum.

We now direct the reader to [Lan08, 6.3.3.4] for the notion of a compatible choice
of smooth admissible rational polyhedral cone decomposition data 3 associated with
(Vz, 1, K): this involves choosing enough cusp labels ® for (V, v, K), and choosing com-
patibly for each cusp label ® a smooth admissible rational polyhedral cone decomposition
Y associated with ®.

Theorem 4.2.1.3 (Faltings-Chai,Lan). For a compatible choice of admissible smooth ratio-
nal polyhedral cone decomposition data ¥ (cf [Lan08, 6.3.3.4] ), there exists a proper smooth

Z(p)-scheme Ss into which . embeds as an open dense sub-scheme. It satisfies:

1. The complement Dy, = ./ \ .7, viewed as a closed reduced sub-scheme of Ly, is a
Cartier divisor with normal crossings. More precisely:

o /s admits a decomposition

Iv= | Zjoe
[(®,0)]

into locally closed strata indexed by equivalence classes of pairs (®,0) (under
a certain equivalence relation; cf. [Lan08, 6.2.6.1]: in particular, for fized ®,
(®,0) and (®,0’) can be equivalent if and only if there exists g € I'g such that
go = d'), where ® is a cusp label belonging to the compatible choice and o is a
cone in Xg.

e There is an incidence relation between equivalence classes of pairs (®,0), and
Z[(®,0)] 18 in the closure of Zygy 51y if and only if [(@’, a')} is a face of [(®,0)].

e The formal completion of s, along the [(®,0)]-stratum is isomorphic to Xg 4,
which was constructed just above; this does not depend on the choice of (®,0)
representing the equivalence class.

2. The universal polarized abelian scheme w : (A, \) — & extends to a polarized semi-
abelian scheme 7y, : (Ax, \) — x. For any equivalence class [(®,0)] indezing a
stratum Z[(<I>,a)] of S, the pull-back of (A, \) over the complement of the boundary
in X, corresponds to the tautological polarized log 1-motif (Qa g, Ae ») over Xg »
via the equivalence in (1.2.4.2).
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3. Let sg € Sy be a closed point, and let Z[(@,a)] be the minimal stratum in which it lies.
Let Oy = ﬁ?&sg be the complete local ring of .+ at s equipped with the log struc-
ture induced from the boundary divisor. Let (Qsy, \sy) be the reduction to k(sq) of the
natural polarized positive log 1-motif over Oy, induced from that on %(@70). Here,

we equip k(sg) with the log structure induced from Os,. Then O is the universal
deformation ring for the log 1-motif (Qsy, Asy) over k(sg) (cf. (8.1.1.6),(3.1.3)).

4. Let Of, be a complete discrete valuation Z(p)—algebm with residue field | and fraction

field L. Let (A,\) be a polarized abelian variety over L arising from a point in
T7:.7(L). Let v € S5 (0y) be the point obtained from T via properness of .S~ and
let zg € (1) be its reduction. The minimal stratum Z[(q,,g)] of Sy containing x
is determined as follows: By (1.2.4.2), (A, \) corresponds to a tuple

(B,Y, X, ¢, cv,/\ab,)\ét,T).
This tuple, along with the level N structure on A, determines a cusp label
B = (Y, X\, Uy, 05, O™, )

that is isomorphic to a cusp label in the compatible choice of admissible cone decom-
position data. Once ® is determined, the cone o is determined to be the minimal cone
in the decomposition Xg such that the monodromy N4 (cf. 2.3) of (A, \) lies in o.

5. 7 can be extended to a compactification 7 : A — P~ such that the complement of A
in A is a relative normal crossings divisor over .Ly..

Proof. (1), (2) and (4) follow from [Lan08, 6.4.1.1], and (5) follows from [Lanl0a, 2.15]; cf.
also [FC90, VI.1.1]. As for (3), it can be directly deduced by comparing the construction of
X (3 ) With that of the deformation space for (Qs, Asq) in §3.1: cf. especially (3.1.3.4). [

4.2.2

Let us start with a Shimura datum (G, X). Suppose that G is unramified at p: this means
that GQp is quasi-split and splits over an unramified extension. This is also equivalent to

(p)

Definition 4.2.2.1. An embedding i : (G, X) < (G’, X') of Shimura data is said to be

p-integral if there exists a reductive model G/Z( ) of G’ over Z(p), and if the embedding of
P

groups G — G’ underlying i is induced by an embedding G,

saying that G has a reductive model G, = over Z(p). Fix such a model.

/
® GZ(p)

Lemma 4.2.2.2. Suppose (G, X) is a Shimura datum of Hodge type such that G is un-
ramified at p with reductive model GZ(p)'
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1. There eists a p-integral embedding of Shimura data i : (G, X) < (GSp, ST) into a
Siegel Shimura datum.

2. Suppose that the embedding G — GSp arises from an embedding GZ(p) — GSpZ(p) =
GSp(VZ(p),w), for a symplectic Z(p)—lattice (VZ(p),w). Then there exist tensors
{sa} C Vg( \ such that Gy,

p

C GSpy, . is the pointwise stabilizer of Vg

(p) (p) (»)’

Proof. For (1), choose any embedding i’ : (G, X) < (GSp(V, %), ST) of Shimura data. By
[Kis10, 2.3.1], there exist a Z,-lattice VZ(p) C V and an embedding GZ(p) — GL(VZ(p))

that induces i’ over Q. The problem is that 1) might not induce a perfect Z(p)—pairing

on Vz o) To take care of this, we apply Zarhin’s trick, which tells us that there exists a
perfect pairing ¢’ on Vé( - (VZ(p) X VZ\/( ))4 and an embedding GSp(V,¢) < GSp(V', )
p P

induced by the natural diagonal embedding V < (V x V¥)* (here we use the polarization
1 to identify V with V). This also induces an embedding of the corresponding Shimura
data. We can then check that the induced embedding (G, X) < (GSp(V’, /), S*) arises
from an embedding Gy, » " GSp(VZ’(p) ,1') and is thus p-integral.

(2) follows from [Kis10, 1.3.2]. O

Let K C G(Ay) be a neat compact open sub-group such that Kj = GZ(p) (Zp). Choose

some p-integral embedding
(G, X) C (GSp, 5%),

so that K = K, N G(Qp), where K}, = GSpZ(p) (Zyp). By (4.1.1.2), we can find a compact
open K' = KIPK;) C GSp(Ay) such that K C K’, and the map

Shy (G, X) < Shy(CGSp, SF)

is a closed embedding defined over E(G, X). By replacing K ' with a finite index sub-group
containing K?, if necessary, we can assume that K’ is also neat.

Choose a place v|p of E = E(G,X), let 0, be the completion of O at v, and let
S = YK/(GSp,Si)@J be the base change of YK/(GSp,Si) from Zp) to Oy. Choose
also a compatible choice of admissible smooth rational polyhedral cone decomposition data
¥ and let ?IZ be the compactification of .7’ from (4.2.1.3). Let %5, be the complement
RZ5 \ ./ equipped with its reduced closed sub-scheme structure. Let .7 be the Zariski
closure of Shy (G, X) in ?/EQ let sg € (1) be a closed point valued in a finite field {/Fp;
and let &’ (resp. ©) be the complete local ring of ?’E (resp. ) at k. Over Spec 0’ \ Px,
we have the pull-back A of the universal abelian scheme over .. By (4.2.1.3)(3), we can
identify ¢’ with a log deformation ring R of polarized log 1-motives as described in § 3.1.

It is known by the functoriality of analytic toroidal compactifications [Har89], and
the compatibility between analytic and arithmetic compactifications [Lan], that Zs []ﬂ

intersects . [%} transversally. In particular, .7 \ %s: is open and dense in .. Since .7 is
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flat over O, blconstruction, we can find a finite extension L/, with residue field [ and
some lift s € .#(07]) of sy such that we have a factoring:

Spec 07, Ny <

S|SpecL
it i

Spec L Shy (G, X)E,

So s is associated with a polarized semi-stable abelian variety (Ag, As) over L. Fix
some algebraic closure E, of E, and an embedding L C FE,. Since s arises from
a point of Shx (G, X)(L), we find from the theory of (4.1.3) Galois-invariant tensors
{5a,5.6t) C Hét(AS EU’ZP) associated with the Hodge tensors {sq} defining the embed-
ding Gy, ) C GSpZ ) The theory of § 3.2 now allows us to construct an explicit model

for R (cf. (3.2.2) to see how the tensors {s, ¢ ¢t} are used); and the theory of § 3.3 gives
us a continuous map R — R of log W-algebras that is the normalization of a surjection.

Proposition 4.2.2.3. Let O(s) be the quotient domain of R corresponding to the irre-
ducible component of Spec R through which s factors. Then O(s) is strongly adapted to G

(cf. 3.3.4.8).

Proof. We have to check that conditions (1)-(3) and (5) from (3.3.3.4), and conditions (4’),
and (6) from (3.3.4.8), hold for the quotient &'(s). Conditions (1) and (2) are clear from
construction, and condition (3) is true, since dim Shg (G, X) = rkyy Lie U;FG, as can be
seen from the analytic uniformization of Shi (G, X). Since the original lift s : R — 07,
factors through &(s) by construction, condition (5) holds. The validity of condition (6)
follows from algebraicity of €(s) via (3.3.4.9).

The only thing that remains to be checked is condition (4’). So choose a lift
§: 0(s) — O of s, for some finite extension L/L within E,, and suppose § corre-
sponds to a polarized semi-stable abelian variety Az over L. We have Galois-invariant

tensors {s, 54t} C H é}t<A§,EJ7ZP) arising from the Hodge tensors {sq}, and correspond-

ing de Rham tensors {s, 5 qr} C Hle(Ag). By (4.1.3.1) and (3.3.4.7), to check that s is
strongly G-admissible, it is enough to show that the parallel transport isomorphism

carries S, g qr ® 1 10 54 5 4R ® 1, for all a.

Let Z(s) be the irreducible component of .% through which s factors, and let Z =
(Z(s)\ Zx) [%} Then Z is a smooth, connected FEy-scheme, and there is a polarized
abelian scheme A over Z specializing to Ag and Az. Moreover, the tensors {sy} give rise
to parallel tensors over the relative de Rham cohomology H éR(A/Z ) specializing to the
tensors {s, s qr} at s and {s,, 5 qr} at 5. By (1.2.4.2)(2), HcllR(.A/Z) is naturally identified

116



with D(A)(R)|z as a vector bundle with flat connection. Since the tensors {s,} are rational
over a number field, p-adic parallel transport of these tensors must agree with archimedean
parallel transport. This means precisely that g5 must carry s, g qr t0 o 54R, for all
o. [

Let L/E, be a finite extension and let s € Shg (G, X)(L) C Shy/(GSp, ST)(L) be a
point giving rise to a semi-stable polarized abelian variety (A, A) over L.

Lemma 4.2.2.4. Let (A, \) and s € Sh(GSp, ST)(L) be as above. Then we can find a
compatible choice of smooth admissible rational polyhedral cone decomposition data 3 such
that the minimal stratum Zj(g o)) ofylz containing the specialization of s (cf. (4.2.1.3)(4))
satisfies the following property: The cone o has maximal dimension in Cg; that is, we have
dim o = rank Bg.

Proof. First of all, it is simple to check that this property does not depend on the choice of
representative (®, o) of the equivalence class of [(®, o). Next, since the level structure and
degeneration data associated with (A, \) determine the equivalence class of ® entirely, the
issue of finding a good compatible choice comes down to an entirely combinatorial question:

Given N in the interior of Cg (in our specific situation, this N will be the monodromy
N4 of A), can we find a smooth admissible rational polyhedral cone decomposition for Cg
such that the minimal cone in the decomposition containing N has the maximal possible
dimension in Cg?

The case where Cg has dimension 1 is trivial. In the other cases, the dimension of Cg
is at least 3, and we find from [KKMSD73, Ch. III] that the answer to our question is
indeed ‘yes’.2 O

Let (A, ) and s € Shi (G, X)(L) still be as above. Let (Q,\) be the polarized log
1-motif over &7, associated with (A, \) via (1.2.4.2). Suppose that (@, A) corresponds to
the tuple (B,Y, X, ¢, c\/,/\ab,/\ét,T) over Op, (cf. 1.2.2.8). Let A = Hélt(Af, Zyp) and let
WeA be the weight filtration so that we have

WoA = Hom(Y,Zy); gr¥ A =X ® Zy(-1).

Let Uvs_th,Zp C GSp(A) be the sub-group preserving WeA and acting trivially on W7 A. Let
B,ét be as in (3.1.2). By the argument in (3.2.1.1), we have

rr—2
B)\ét X Zp = Lie Uthzp'
Corollary 4.2.2.5. With the notation above, B)\ét N Lie GZp generates
. =2 T =2 .
Lie th,G,Zp = Lie th,Zp N Lie GZp

as a Zp-module.

2. The answer is not always ‘yes’ for cone decompositions of 2-dimensional spaces.
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Proof. To begin, we make a compatible choice  of admissible decomposition data as in
(4.2.2.4), and let ?,E be the corresponding compactification of .. Let sy € ?/z be the
specialization of s. The completion of yé along the minimal stratum Z (®,0)] containing
so will be of the form Xg ,: this is the completion along the closed stratum of a torus
embedding of a torus torsor over Pg (cf. 4.2.1.3)(1). By our choice of ¥, o has the maximal
possible dimension in Cg; in other words, {sg} is the unique closed stratum of X0

If we further complete along s, then we get the deformation ring Oy, for the polarized
log 1-motif over k(sg) (where k(sg) has the induced log structure; cf. (4.2.1.3)(4)). We can
again use the point s and the theory of §3.2 to build an explicit model R for O, along
with the polarized log 1-motif over it. Let €(s) be the irreducible quotient of R associated
with s and Sk (G, X) as in (4.2.2.3).

Let Mo = DMM(A)/uIM(A) be as in (2.2.4.3); then, by loc. cit., we have a reductive
sub-group Gy C GSp(Mp) (here W = W (1)), a Gy-split weight filtration We M, and an
isomorphism

A &g, W(l) = Mo @w W(I)

identifying Gz, @ W with Gy ® W(l). Let U“_,E C GSp(Mp) be the unipotent sub-group
preserving WeMj and acting trivially on WM. Then by (3.2.1.1) we have a natural
identification

B,s @ W = Lie Uy

By (4.2.2.3), O(s) is a strongly adapted to G. So it follows from (3.3.3.6) that B ¢ NLie Gy
generates
LieU, 2, = Lie Uy NLie Gy .

This is where we need our assumption on ¥, since we need o to be of maximal dimension
to apply loc. cit.
Now, consider Fontaine’s comparison isomorphism

A ®z, Bar = Mo @w Byr :
by functoriality, it preserves weight filtrations and therefore carries Lie U\;,?Zp ® Bgr onto

Lie Uv;tz ® Bgr- Again, by functoriality, it carries GZp ® Bgr onto Gy ® Bgr, and B zét C
Lie Uv;t%Zp onto B¢ C Lie UV;tZ In particular, it takes

B)\ét N Lie GZP = B)\ét N (Lie Gzp X BdR)

onto
B/\ét N Lie Gy = B)\ét N (Lie Gw ® BdR)'

This shows that the rank of B \ét M Lie Gy, must equal the rank of LieU —2 , and so
D wt,G, Zp
finishes the proof of the corollary. O]
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4.2.3

Theorem 4.2.3.1. With the notation as above, the integral canonical model IK(G,X)
over Oy for Shg (G, X) constructed in [Kisl0] admits a compactification ./ (G, X) such
that:

1. The boundary 9 = .7 (G, X) \ Sk (G, X) is an effective Cartier divisor relative to
Oy.

2. Sk (G, X) is normal with at most toroidal singularities along the boundary. In par-
ticular, it is log smooth with respect to the log structure induced from the boundary
divisor.

3. The vector bundle with flat connection V° over Sk (G, X) obtained from the relative
de Rham cohomology of the family of abelian varieties (cf. [Kis10, 2.3.9]) extends
to a vector bundle V° over L (G, X) with regular singularities along the boundary
divisor 9. Moreover, the parallel sections {s, ar} of V@ over Shi (G, X) extend to

parallel sections of V° .

Proof. Choose a p-integral embedding (G, X) < (GSp, ST), K’ C GSp(A ¢) neat such that
K, = GSpg, ®) (Zyp) and such that we have a closed embedding

Shy (G, X) < Shy+(GSp, 5F).

Choose some smooth toroidal compactification ?/Z for . = F41(GSp, S+) 0, Let

. be the Zariski closure of Shi (G, X) in ?/E, and let (G, X) be the normalization
of . We will show that this has the desired properties. Fix some point sy € .#(1) valued
in some finite extension [/Fy; let &' (resp. &) be the completion of ?/E (resp. %) at sq.
We fix some lift s € .7(0) of sg corresponding to a semi-stable abelian variety Ag over
a finite extension L/Ey, and we use the tensors {s, g4t} C Hét(ASE, Zp)® to build our

explicit model R for ¢’. We see from (4.2.2.3) that the quotient &(s) of R (the irreducible
component of & through which s factors) is strongly adapted to G. Moreover, by (4.2.2.5)
above, the rationality assumption (3.3.3.5) is valid. Let &/(s)"°™ be the normalization of
O(s). It follows from (3.3.4.10) that the map R — O(s)"*'™ can be identified with the
explicit map R — R¢. This immediately implies assertions (1) and (2).

Assertion (3) follows from the argument used in [Kis10, 2.3.9]. Over R we have the log
crystal D(A) associated with the family of degenerating abelian varieties over R, and over
?IE, we have the vector bundle with regular singularities given by

Vo = Rlﬂ*(Q:z/?,E(log)),
the first de Rham cohomology of A, the relative compactification of the family A of abelian
varieties over .#’, with logarithmic singularities along the complement of A. The re-
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striction of V° to Spec R is D(A)(R)(cf (1.2.4.2)(2)). In particular, over Spec Rg [%} =

Spec oM™ []13}, we have parallel tensors {s, qr} in V°.

By construction of Re, we also have parallel sections {sq.0 ® 1} C D(A)%|sps g o The
argument in (4.2.2.3) shows that the specializations of these sections at a dense set of points
of (Spf R)?"™ = (Spf O(s)"°™ )21 agrees with the specialization of the de Rham tensors
{5a,ar}. In other words, the tensors {s, 0 ® 1} give us an arithmetic parallel extension
(even over the boundary) of the tensors {s, 4R }- O

4.2.4

We end by listing some immediate corollaries of our construction.

Corollary 4.2.4.1. The geometric special fiber of the integral canonical model S (G, X)
over O, has the same number of connected components as Shi (G, X)c.

Proof. This follows from Zariski’s Main Theorem, since we have a normal compactification

Sk (G, X) of Zi (G, X). See [FC90, 5.10]. O
Corollary 4.2.4.2. Suppose G/Z(G) is anisotropic; then i (G, X) is proper over 0.

Proof. The hypothesis implies that Shy (G, X) is proper over E; cf. [BB66]. Consider the
compactification .7 i (G, X): the complement of .7, (G, X) in it is the boundary divisor
2, which is a Cartier divisor and is in particular flat over &,. Since Shy (G, X) is proper
over F, it follows that the generic fiber of & is trivial; by flatness, this implies that & is
itself trivial. The corollary follows. O

Theorem 4.2.4.3. Suppose A is an abelian variety defined over a number field F, and
suppose its Mumford-Tate group G is anisotropic modulo its center. Then, for every p > 2
such that G has a reductive model over Zy and for every finite place vlp of F, A has
potentially good reduction over Fj.

Proof. Fix some embedding F < C, and let V = H(A(C),Q) be the rational Hodge
structure of weights (0,1),(1,0) associated with A. If necessary, we can replace A by
A% x (/1\/)47 and assume via Zarhin’s trick that A is principally polarized; this will not
affect the truth of the statement of the theorem. Now, G is the Mumford-Tate group
associated with the rational Hodge structure V. Let X be the G(R)-conjugacy class of the
map h : S — Gp classifying the Hodge structure on V. For each p where G is unramified,
we can find some neat compact open sub-group K C G(A f) such that K is hyperspecial
and such that A corresponds to a point s € Shy (G, X)(F’), for some finite extension
F'/FE(G,X). For each such p > 2 and each place v|p of E = E(G, X), we know from
(4.2.4.2) above that Shy (G, X) extends to a smooth proper scheme ., (G, X) over O ,,.
In particular, the point s extends to a point § € Sk (G, X)(Or ), for some place w|v of

F’. This tells us that A must have good reduction over FJ,. ]
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