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INTRODUCTION

The Grothendieck-Lefschetz trace formula tells us that, to understand the Galois module
structure on the l-adic cohomology of a variety defined over a number field, it is important
to have a good grasp of its reductions at the finite places of that field. Moreover, in the
situation where the variety is not proper, we would like to have good compactifications of
these reductions that can facilitate the computation of the cohomology. A class of varieties
that plays a very important role in the realization of the Langlands program, and whose
cohomology we would like to understand well, are Shimura varieties. In [Kis10], Kisin
constructed good integral models for a large class of Shimura varieties; these can then be
used to study their reductions. The goal of this thesis is to construct good compactifications
for these integral models.

Integral models of Shimura varieties

A Shimura variety ShK(G,X) (see [Del79]) arises from three pieces of data:

• A reductive group G over Q.

• A G(R)-conjugacy class X of homomorphisms

S := ResC/RGm → GR

satisfying certain properties.

• A compact open sub-group K ⊂ G(Af ) of the finite adélic points of G.

It is a quasi-projective variety defined over a number field E(G,X) ⊂ C associated with
the pair (G,X), and its C-points are given by

ShK(G,X)(C) = G(Q) \X ×G(Af )/K.

The existence of canonical integral models1 for Shimura varieties at places where G is
unramified was conjectured by Langlands in [Lan76]. For certain Shimura varieties, those of
PEL type, which parametrize abelian varieties equipped with Polarization, Endomorphisms
and Level structure, it is possible to construct integral models using the moduli of abelian
schemes; see, for instance, [Kot84].

Since, for arbitrary Shimura data, we no longer have moduli interpretations of the as-
sociated Shimura varieties, there is no global moduli-theoretic method that will work in

1. where ‘canonical’ was later made precise by Milne. See [Moo98]: the original version had
to be corrected slightly.
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general. Even when the Shimura variety parametrizes polarized abelian varieties with cer-
tain additional Hodge cycles, since the Hodge conjectures are still beyond current expertise,
this moduli interpretation cannot be extended in any natural way to finite characteristic.
Nonetheless, consider the following conditions:

• v|p is a place of E = E(G,X), with p > 2;

• The p-primary component Kp ⊂ G(Qp) is of the form G (Zp), for a reductive model G
over Zp for G. Such a maximal compact is called hyperspecial and exists whenever
G is quasi-split at p and split over an unramified extension Zp.

• The prime-to-p level Kp is small enough;

• (G,X) is of Hodge type: that is, we have an embedding (G,X) ↪→ (GSp, S±) into
the symplectic Shimura datum.

Under these hypotheses, Kisin, employing an idea of Faltings, has constructed a canonical
model for ShK(G,X) over OE,v in [Kis10].2 3 Let us denote this model by SK(G,X)v.

Integral compactifications

The work in this article arose from thinking about the following natural question:

• Suppose ShK(G,X) is projective (this happens precisely when G/Z(G) is anisotropic
over Q, and is equivalent to saying that there are no non-trivial unipotent elements
in G(Q); see [BB66]); then is the canonical model SK(G,X)v proper over OE,v?

We show that the answer is in the affirmative.
More generally, we have the following result:

Theorem 1. The integral canonical model S = SK(G,X)v admits a good toroidal com-
pactification S = SK(G,X)v over OE,v. In particular, étale locally around any point, the

embedding S ⊂ S is isomorphic to a torus embedding T ⊂ T (see [AMRT10]), and the
boundary S \S is an effective Cartier divisor over OE,v. Moreover, the boundary admits
a stratification parametrized by a conical complex that can be described explicitly in terms
of the Shimura datum (G,X,K).

2. A proof along these lines of the existence of these models has also been claimed by Vasiu in
[Vas99].

3. In fact, Kisin has extended this construction to Shimura varieties of the more general abelian
type as well. We will consider the problem of their compactification in a future paper. He can
also work with p = 2 under some further restrictions, but we will not have anything to say about
the even prime in this article.
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In particular, the boundary divisor is flat over OE,v, and is therefore empty if and only
if it is already empty over E; that is, SK(G,X)v is proper if and only if ShK(G,X) is.

Remark 1. The compactification we construct is log smooth, but not necessarily smooth,
and the boundary divisor is not necessarily one with normal crossings. This is an artifact
of our method of construction. But the singularities of the compactification can be system-
atically resolved by the general theory of torus embeddings from [KKMSD73]. Once this
is done, we will have an affirmative answer to Conjecture 2.18 in [Mil92] on the existence
of smooth toroidal compactifications of S .

Such good compactifications were originally constructed in complete generality over
C by Mumford and his collaborators in [AMRT10]. Later on, Faltings-Chai constructed
integral compactifications for the Siegel modular variety in [FC90], and their methods were
amplified and extended to the case of Shimura varieties of PEL type by Kai-Wen Lan in
[Lan08]. We note that our construction is the first (that we are aware of) that works for
spin groups associated with odd-dimensional quadratic forms (type Bn, n > 2). Indeed,
by the Kottwitz classification in [Kot92], such groups can never appear in Shimura data of
PEL type.

Morita’s conjecture

Theorem 1 has the following pleasant consequence:

Theorem 2. Suppose A is an abelian variety defined over a number field F , and suppose
its Mumford-Tate group G is anisotropic modulo its center. Then, for every p > 2 such
that G has a reductive model over Zp and for every finite place v|p of F , A has potentially
good reduction over Fv.

The hypothesis on the Mumford-Tate group ensures that A does not ‘degenerate in
characteristic 0’. The theorem says that this is enough to keep it from degenerating in
finite characteristic as well. This result proves a good part of Yasuo Morita’s conjecture
(see [Mor75]), in whose statement there is no restriction on p. Other such partial results
can be found in [Pau04],[Vas08] and [Lan10b]. The first two papers, as part of their
hypotheses, impose certain local conditions on G, but prove the full conjecture of Morita,
without restriction on p, for G that satisfy these constraints. In the last cited paper, Lan
also proves the full conjecture as long as A appears in the family of abelian varieties over
a compact Shimura variety of PEL type. This is a consequence of a more general group-
theoretic bound on the toric rank of semi-stable abelian varieties appearing at the boundary
of Shimura varieties of PEL type.

On the other hand, in the statement of Theorem 2 above, there is no restriction what-
soever on the Mumford-Tate group G; but we have nothing to say about the reduction of
A at primes where G is ramified.
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Method of construction

Let us now give a short description of the method used in the proof of Theorem 1. It is
more or less a direct generalization of that used in [Kis10] to construct the canonical model
S . Since (G,X) is of Hodge type, we can embed the Shimura variety ShK(G,X) inside
ShK′(GSp, S±), for some compact open K ′ ⊂ GSp(Af ) containing K. The latter Shimura

variety has a natural integral model S ′ over OEv , representing a certain moduli problem
for principally polarized abelian varieties equipped with level structures. By the theory
of [FC90] and [Lan08], S ′ admits a smooth toroidal compactification S ′ with boundary
divisor D′ = S ′ \S ′. Let S be the normalization of the Zariski closure of ShK(G,X) in
S ′: this is our candidate for a good compactification of S .

Take a closed point s0 ∈ S \S at the boundary with residue field k, and consider the

completions ÔS ,s0
and Ô ′ = Ô

S
′
,s0

of S and S
′

at s0. Choose some lift s̃0 ∈ S (OK),

for some finite extension K/Qp with residue field k, and let Ô be the co-ordinate ring of

the normalization of the irreducible component of Spf ÔS ,s0
containing s̃0. We show that

Spf Ô intersects the boundary divisor transversally and that it is log smooth with respect
to the log structure induced from the boundary divisor.

To do this, just as in the construction in [Kis10], we build an explicit model R→ RG for

the map Ô ′ → Ô that, by its very definition, has the properties that we need. In loc. cit.,
this is accomplished, using an idea of Faltings, through the deformation theory of p-divisible
groups and its relation via Dieudonné theory to certain linear algebraic objects. For us, it
would have been natural to push the analogous story through for their degenerate cousins,
the log p-divisible groups, defined and studied by Kato (cf. [Kata],[Katb]). Unfortunately,
this theory and its Dieudonné theoretic counterpart are yet to be fully published (though,
see [BCC04]). For our purposes, however, we are able to get by with the use of log 1-motifs
(cf. [KKN08b]), which are essentially a generalization to the logarithmic situation of the
data used to construct degenerating abelian varieties in [FC90]. We show that the local
models at the boundary of the toroidal compactifications of Faltings-Chai are essentially
deformation rings (in an appropriate sense) for log 1-motifs. We can associate logarithmic
F -crystals with log 1-motifs and study their deformations using log crystalline theory. In
this way, we obtain an explicit description of the Faltings-Chai local models.

The first step towards our construction is an extension of the ‘Key Lemma’ of Kisin
[Kis10, 1.3.4], which allows us to perform integral transfer of absolute Hodge cycles from
étale cohomology to log crystalline cohomology. More precisely, let A be the semi-stable
abelian variety over K attached to the lift s̃0, and set Λ = H1(AK ,Zp): since A is semi-
stable, Λ is equipped with a natural weight-monodromy filtration W•Λ. The Hodge tensors
over ShK(G,X) give rise to Galois-invariant tensors {sα} ⊂ Λ⊗ (see (2.1.2.2) for an expla-
nation of this notation) defining a reductive sub-group GZp ⊂ GL(Λ) (the p-adic realization

of G). Let k be the residue field of K, let W = W (k) be the ring of Witt vectors over k, and

let K0 = W
[

1
p

]
. By Fontaine’s theory, we have a canonical p-adic comparison isomorphism

Λ⊗Zp Bst
'−→ D ⊗K0

Bst,
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where D := Dst(Λ) is the weakly admissible filtered (ϕ,N)-module covariantly associated
with Λ. Under the isomorphism, the tensors {sα} go over to tensors {sα,st} ⊂ D⊗. Our
result is then the following:

Proposition 1. There is a natural W -lattice M0 ⊂ D such that {sα,st} ⊂M⊗0 . Moreover,
let k̄ be an algebraic closure of k; then there exists an isomorphism

Λ⊗Zp W (k̄)
'−→M0 ⊗W W (k̄)

that takes sα⊗1 to sα,st⊗1, and preserves the weight filtrations on both sides. In particular,
the point-wise stabilizer GW ⊂ GL(M0) of {sα,st} is a pure inner form of GZp ⊗W , and

is therefore itself reductive.

In fact, the lattice M0 (after a Frobenius twist) arises from the logarithmic F -crystal
attached to A.

Once we have this in hand, with some more input from p-adic Hodge theory, we can
build our model using the ‘log crystalline’ realizations sα,st and additional information from
the degeneration data associated with A. Essentially, our local model will be the sub-space
of O ′ where the tensors {sα,st} propagate to parallel, ϕ-invariant tensors in Fil0 of the
filtered log F -crystal associated with the family of degenerating abelian varieties over O ′.
This is in perfect analogy with the global situation over C, where variations of log Hodge
structures (cf. [KU09,KKN08a]) replace filtered log F -crystals.

For simplicity, let us explain this in the case where A is principally polarized and has
multiplicative reduction to a split torus T with character group Y . Let V = Λ ⊗ Qp; the
weight-monodromy filtration arises from a short exact sequence:

0→ Hom(Y,Qp)→ V → Y ⊗Qp → 0,

attached to an analytic uniformization T an/Y
'−→ Aan of rigid analytic K-varieties. Let

U ⊂ GL(V ) be the unipotent sub-group associated with the weight-monodromy filtration.
Then B(Y )Q, the vector space of rational symmetric bilinear forms on Y , embeds naturally

inside the Lie algebra LieU . The local model for Ô ′ is the completion at a closed point of
a normal, affine torus embedding Eσ of a torus E over W ; the co-character group X∗(E)

is naturally a Z-lattice within B(Y )Q. We would then like our local model RG for Ô to
be the completion of a torus embedding for a quotient torus EG of E. The only natural
possibility for the co-character group of EG is X∗(EG) = Lie(GZp) ∩X∗(E) ⊂ B(Y )Q. A

priori, this could even be empty! But we have the important:

Lemma 1. X∗(EG) generates the Zp-module Lie(GZp) ∩ Lie(U).

We note that a closely related statement has been considered by André; cf. [And90,
V.1.6].

To explain the subtlety and interest of this lemma, suppose that A is actually defined
over a field embedded in C. Then we are relating two different rational structures on
Λ: one coming from the complex analytic uniformization of AC via Artin’s comparison
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isomorphism, embodied by the Hodge tensors {sα} and the group GZp ; and another arising

from the p-adic analytic uniformization of A over K, embodied in the weight filtration on Λ.
These a priori have little to do with each other. If all Hodge tensors on A were generated by
endomorphisms and polarizations, then everything would follow trivially from functoriality.

However, in the generality we need, we end up having to again appeal to the global
theory of toroidal compactifications. We situate A within a family of degenerating abelian
varieties appearing at the boundary of a toroidal compactification of S ′ (perhaps different

from the family over Ô ′), and then show that, for all semi-stable abelian varieties A′ in
this family arising from points of ShK(G,X), the monodromy NA′ , naturally an element
of B(Y ) ⊗ Q, kills the tensors sα, and thus gives us an element of X∗(EG) ⊗ Q. Then, a
simple lemma (cf. 3.3.2.2) shows that this gives us sufficiently many linearly independent
elements of this vector space to fill up Lie(GQp) ∩ Lie(U).

To show the claim about NA′ , we use results of Coleman-Iovita (cf. [CI99]). They
construct an explicit Hyodo-Kato type isomorphism (cf. [HK94])

Dst(Λ)⊗K0
K
'−→ H1

dR(A)

under which Fontaine’s monodromy operator on the left hand side is taken to the map
induced by NA on the right hand side. Moreover, if Λ′ = H1(A′

K
,Zp), then there is a

canonical ϕ-equivariant isomorphism Dst(Λ
′) '−→ Dst(Λ). To now show that NA′ kills sα,

it is enough to see that, under the isomorphisms:

Λ′ ⊗BdR
'−→ Dst(Λ

′)⊗BdR
'−→ Dst(Λ)⊗BdR,

the étale realizations {sα,A′} in Λ′ of the Hodge tensors over ShK(G,X) are carried over to

{sα,st}; for the crystalline realizations {sα,st,A′} in Dst(Λ
′) are killed by NA′ . By the main

result of [Bla94], we only have to check that the isomorphism marked ? in the diagram
below takes the de Rham realizations {sα,A,dR} to {sα,A′,dR}.

H1
dR(A)

?

'
> H1

dR(A′)

Dst(Λ)⊗K

'

∨

'
> Dst(Λ

′)⊗K.

'

∨

This is accomplished by showing that ? is given by parallel transport along the Gauss-
Manin connection on the de Rham cohomology with log poles of the degenerating family
of abelian varieties.

When the reduction of A has a non-trivial abelian factor, our local models R and RG
will be completed torus embeddings over certain explicit deformation spaces for p-divisible
groups similar to the ones employed in [Kis10]. To finish the proof, we identify Ô ′ with the
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explicit model R, and show4 that every point of the analytic space (Spf Ô)an corresponding
to a semi-stable abelian variety factors through (Spf RG)an. We can now conclude that

Ô and RG are isomorphic via Zariski-density of such points and dimension counting. The
ingredients that go into this last step are very similar and closely related to the ones
sketched above

Tour of contents

In Chapter 1, we begin with a straight-forward extension of Serre-Tate theory to the study
of deformations of 1-motives. The main result is (1.1.3.2). Then we introduce the notion
of a log 1-motif, following Kato, and show how to associate a log Dieudonné crystal to such
a gadget. We also prove a version of Grothendieck-Messing theory for log 1-motives. We
end with a few more results from Dieudonné theory that we require later. Most, if not all,
of this material is well-known to experts, but we have included it for lack of an adequate
reference. We would suggest that the reader skip this chapter on a first reading.

In Chapter 2, we study the p-adic Hodge theory of semi-stable abelian varieties over
p-adic fields. After some technical Tannakian preliminaries in § 2.1, we prove the version
of the Key Lemma stated above in § 2.2. Extending a result of Kisin in the good reduction
case, we give in § 2.3 an explicit description of the log F -crystal associated with a semi-
stable abelian variety (cf. 2.3.2.2). We end the chapter in § 2.4 by looking at the log
F -crystal associated with a family of degenerating abelian varieties. Here we study the
relationship between parallel transport between the fibers of the log crystal á la Coleman
and the Hyodo-Kato type isomorphism constructed by Coleman-Iovita. The main result
here is (2.4.1.1).

Chapter 3 is the technical cornerstone of this thesis. It is here that we construct our
explicit local model R→ RG and devise conditions under which it has the right properties.
We direct the reader to the introductions to its various sections for a detailed description
of its contents.

In Chapter 4, we finally carry out the strategy sketched above for building our toroidal
compactifications. Once the definitions are all in place, this amounts to simply checking
that the conditions listed in Chapter 3 are valid for the completion at a point on the
boundary of the Zariski closure S above. This turns out to be a reasonably pleasant task.
We end with a couple of immediate applications of our result, including Theorem 2 above.

Conventions

• p will always denote an odd prime.

• All schemes will be separated.

• All rings will be commutative and unital.

4. There are some slight complications, but this is more or less the idea.
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• All duals will be denoted by the super-script ∨, including: the R-linear dual of a
module over a ring R; the dual of an abelian scheme; the Cartier dual of a p-divisible
group.

• For any finite extension of Qp denoted by an upper case letter (e.g. K), we will denote
its residue field by the corresponding lower case letter (e.g. k), and its maximal
absolutely unramified sub-extension with the addition of the sub-script 0 (e.g. K0).

• All monoids will be commutative and with identity.
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CHAPTER 1
LOG 1-MOTIFS AND LOG F -CRYSTALS

1.1 1-motives

1.1.1

Let S0 be a scheme in which p is nilpotent, and let S0 ↪→ S be a nilpotent thickening, by
which we mean that S0 is defined by an ideal I ⊂ OS such that I n = 0, for some n ≥ 1.
For any fppf sheaf of abelian groups H over S, let Ĥ and HI be the sub-functors

Ĥ : T 7→ H(T red);

HI : T 7→ ker (H(T )→ H(T ×S S0)) ,

for any fppf S-scheme T . Here T red denotes the reduced scheme underlying T . Also set
H0 = H ×S S0.

Let H1
I (S,H) be the group of isomorphism classes of pairs (E, ι), where E is an fppf

H-torsor over S and ι : H0
'−→ E ×S S0 is a trivialization. Since H is commutative this

is the same as the group of isomorphism classes of fppf H-torsors over S reducing to the
trivial H0-torsor over S0. Assume that H is p-divisible; then, for any n ∈ Z>0, we have
the Kummer map ∂n : HI (S) → H1

I (S,H[pn]) arising from the short exact sequence of
fppf sheaves

0→ H[pn]→ H
pn−−→ H → 0.

Lemma 1.1.1.1. Suppose also that Ĥ is representable by a formal group law over S. Then,
for n large enough, ∂n is injective. If, in addition, H is itself representable by a smooth
group scheme over S, then ∂n is an isomorphism.

Proof. We first observe that pnHI (S) = 0, for n large enough; this follows from [Kat81,
1.1.1]. Choose such an n; we can now easily show the injectivity of ∂n. Indeed, suppose
h ∈ HI (S) is such that ∂n(h) = 0. Explicitly, this means that we can find hn ∈ HI (S)
such that pnhn = h, which of course implies that h is 0.

Now suppose H is representable by a smooth group scheme over S; then H1
I (S,H) = 0

and surjectivity is immediate, since the cokernel of ∂n embeds inside this group. To see
the asserted vanishing, we remark first that every fppf H-torsor is in fact locally trivial
in the étale topology; this follows from [Mil80, III.3.9]1. Since the map S0 ↪→ S is purely

1. Milne only proves this when H is quasi-projective over S, but as pointed out in the remark
following the proof in loc. cit., this is valid in the generality we have stated. In any case, we will
only require its validity when H is quasi-projective.

9



inseparable (or radiciel), it follows that an H-torsor over S is trivial if and only if its
reduction over S0 is so; cf. [FK88, I.3.13].

1.1.2

Definition 1.1.2.1. A 1-motif over a scheme S is a complex M = [Y
u−→ G] of fppf

sheaves of abelian groups over S:

• Y is a locally constant sheaf of free abelian groups, sitting in degree −1.

• G is represented by a semi-abelian scheme over S of constant toric rank, and sits in
degree 0.

We will always assume that Y is in fact constant and that G is split; that is, it is an
extension

1→ T → G→ A→ 0,

of an abelian scheme A by a split torus T .

Definition 1.1.2.2. For any n ∈ Z>0, the pn-torsion M [pn] of a 1-motif M is the derived
tensor product (of fppf sheaves) M ⊗L Z/pnZ[−1]. It follows from [Ray94] that M [pn] is
concentrated in degree 0 and sits in a short exact sequence:

0→ G[pn]→M [pn]→ Y/pnY → 0.

The p-divisible group M [p∞] associated with a 1-motif M is the direct limit
limnM [pn]. It is an extension of the form

0→ G[p∞]→M [p∞]→ Y ⊗Qp/Zp → 0.

Remark 1.1.2.3. More explicitly, we have, for each n,

M [pn] =
{(g, y) ∈ G⊕ Y : png = u(y)}
{(u(y), pny) : y ∈ Y }

,

as an fppf quotient.

Using this description, the proof of the next lemma is straightforward.

Lemma 1.1.2.4. Let M = [Y
u−→ G] and M ′ = [Y

u′−→ G] be two 1-motives over S and let

M ′′ = [Y
u+u′−−−→ G]. Then the extension class of M [p∞] in Ext1

S

(
Y ⊗Qp/Zp, G[p∞]

)
is

the sum of the classes associated with M [p∞] and M ′[p∞].
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1.1.3

Let S0 ↪→ S be a nilpotent thickening of schemes defined by a nilpotent ideal I ⊂ OS ,

and suppose that p is nilpotent in S. Let M0 = [Y
u0−→ G0] be a 1-motif over S0, and let

G0 = M0[p∞] be its associated p-divisible group over S0. Let DefM0
(S) be the category

of tuples (M, ι), where M is a 1-motif over S and ι : M ×S S0
'−→ M0 is an isomorphism,

and let DefG0
(S) be the category of tuples (G , ι), where G is a p-divisible group over S and

ι : G ×S S0
'−→ G0 is an isomorphism.

Suppose that G0 is an extension of the form

0→ T0 → G0 → A0 → 0,

where T0 is a split torus with character group X and A0 is an abelian scheme over S0. Let
G sab

0 = G0[p∞] and let G ab
0 = A0[p∞]. We can define analogous deformation categories

DefG0
(S), DefA0

(S), Def
G sab

0
(S) and Def

G ab
0

(S); this gives us the following diagram:

DefM0
(S)

G : M 7→M [p∞]
> DefG0

(S)

DefG0
(S)

∨ G sab : G 7→ G[p∞]
> Def

G sab
0

(S)
∨

DefA0
(S)

∨ G ab : A 7→ A[p∞]
> Def

G ab
0

(S).
∨

Some of the vertical arrows in this diagram require a little explanation. For any deformation
G of G0 over S, the embedding T0 → G0 lifts uniquely to an embedding T → G, where T
is the split torus over S with character group X, and the corresponding quotient A of G
will be a deformation of A0 over S. This follows from [FC90, §II.1], and takes care of the
vertical arrows on the left. For the ones on the right, we only have to observe that maps
between p-divisible groups whose targets (resp. domains) are étale (resp. multiplicative)
lift uniquely over infinitesimal thickenings. So, for any deformation G of G0 over S, the
map G0 → Y ⊗ Qp/Zp lifts uniquely to a map G → Y ⊗ Qp/Zp, and its kernel will be

a deformation G sab of G sab
0 . Similarly, the map T0[p∞] → G sab

0 will lift uniquely to a

homomorphism T [p∞] → G sab, whose quotient will be a deformation of G ab
0 . So we see

that the vertical arrows on the right make sense as well.

Proposition 1.1.3.1. The functor G : (M, ι) 7→ (M [p∞], ι[p∞]) from DefM0
(S) to

DefG0
(S) is an equivalence of categories.

11



Proof. Let us show first that G is faithful. Suppose M = [Y
u−→ G] and M ′ = [Y

u′−→ G′]
are two deformations of M0 over S and suppose that we have a map f : M →M ′ reducing
to the identity on M0. It is equivalent to giving a map f : G → G′ reducing to the
identity on G0 and satisfying fu = u′. So it is enough to check that the functor G sab is
faithful. This follows from [Kat81, 1.1.3]. To show that G is full, we begin with a map
h : M [p∞] → M ′[p∞] lifting the identity on G0. Any such map has to carry G[p∞] into
G′[p∞] and induce the identity on Y ⊗ Qp/Zp. We first claim that G sab is full and so
there exists a map f : G→ G′ inducing h|G[p∞]; indeed, this follows from the argument in

[Kat81, 1.2.1], since G is p-divisible and Ĝ′ is representable by a formal group law over S.
Now, it only remains to check that fu = u′. For fixed y ∈ Y , g = (fu − u′)(y) is

an element of G′I (S); we want to show that it is 0. For each n ∈ Z>0, we consider the
G′[pn]-torsor

Eg,n = {g′ ∈ G : png′ = g}.

The reduction of this over S0 is canonically isomorphic to G0[pn] as a G0[pn]-torsor. The
fact that we have the map h : M [p∞] → M ′[p∞] implies that we have a trivialization

G′[pn]
'−→ Eg,n reducing to the identity on G0[pn]. On the other hand, Eg,n is simply the

torsor corresponding to ∂n(g) in the notation of (1.1.1.1) above, and, since ∂n(g) = 0, for
all n, we conclude from loc. cit. that g must be 0.

We move on to showing essential surjectivity. For G ab, this is a consequence of Serre-
Tate theory; cf. [Kat81, 1.2.1]. Fix a deformation A of A0 over S, and let c∨0 : X → A∨0
be the classifying map for G0. Then the isomorphism classes of lifts G of G0 over S whose
maximal abelian quotient is A correspond to maps c∨ : X → A∨ whose reduction to
S0 is c∨0 . The collection of such maps is naturally a torsor under Hom(X,A∨I (S)). The
isomorphism classes of lifts

0→ T [p∞]→ G sab → A[p∞]→ 0

over S of the extension

0→ T0[p∞]→ G0[p∞]→ A0[p∞]→ 0

are naturally a torsor under Ext1
I (A[p∞], T [p∞]), the group of extensions that induce

trivial extensions of A0[p∞] by T0[p∞]. Note that, by definition,

Ext1
I (A[p∞], T [p∞]) = lim←

n
Ext1

I (A[pn], T [pn]).

By Cartier duality and (1.1.1.1), this extension group is identified with

Ext1
I

(
X ⊗Qp/Zp, A∨[p∞]

)
= Hom

(
X,Ext1

I

(
Qp/Zp, A∨[p∞]

))
= Hom

(
X,H1

I (S,A∨[p∞])
)

'−−−−−→
(1.1.1.1)

Hom(X,A∨I (S)).
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Now (1.1.2.4) tells us that, on isomorphism classes, G sab induces a map of torsors under

Hom
(
X,A∨I (S)

)
, and so must be a bijection. The argument for essential surjectivity of

the full functor G is similar: For a fixed deformation G of G0, isomorphism classes of
deformation [Y

u−→ G] are a torsor under Hom(Y,GI (S))G . Similarly, isomorphism classes
of deformations of G0 which are extensions of the form

0→ G[p∞]→ G → Y ⊗Qp/Zp → 0

form a torsor under the group

Hom
(
Y,H1

I (S,G[p∞])
) '−−−−−→

(1.1.1.1)
Hom(Y,GI (S)).

On these isomorphism classes, again, by (1.1.2.4), G gives rise to a map of torsors under
the group Hom (Y,GI (S)), and is thus a bijection.

We can extend the above results to the following situation: Suppose we have a ring
R and an ideal I ⊂ R such that R is (I, p)-adically complete. Let R0 = R/I and set

S = SpecR and S0 = SpecR0. Suppose that we have a 1-motif M0 = [Y
u0−→ G0] such

that the abelian quotient A0 of G0 is equipped with a polarization λab
0 . Then we have a

diagram of functors similar to the one above with the obvious meaning to the categories
involved:

Def
(M0,λ

ab
0 )

(S)
G : M 7→M [p∞]

> Def
(G0,λ

ab
0 [p∞])

(S)

Def
(G0,λ

ab
0 )

(S)
∨ G sab : G 7→ G[p∞]

> Def
(G sab

0 ,λab
0 [p∞])

(S)
∨

Def
(A0,λ

ab
0 )

(S)
∨ G ab : A 7→ A[p∞]

> Def
(G ab

0 ,λab
0 [p∞])

(S).
∨

Corollary 1.1.3.2. All the horizontal arrows above are equivalences of categories.

Proof. That the functors are full and faithful is immediate from (1.1.3.1). Note that a
formal p-divisible group over R, that is, a p-divisible group over Spf R, corresponds to
a unique p-divisible group over S = SpecR by [dJ95, 2.4.4]. Therefore, by standard
arguments, and the essential surjectivity of the functors in loc. cit., objects on the right
hand side of the arrows can be realized as p-divisible groups corresponding to the formal
counterparts of objects on the left hand side. That is, over any quotient of R where p
and I are nilpotent, they arise as p-divisible groups of honest deformations of M0 (or G0
or A0, as the case may be). Any polarized formal abelian scheme (Â, λ̂) over Ŝ = Spf R
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(here, we are using the (I, p)-adic topology on R) deforming (A0, λ0) can be (uniquely)
algebraized into an honest abelian scheme (A, λ) over R. This is because λ̂ gives us an
ample line bundle over Â, and so we can apply formal GAGA [EGAIII, 5.4.5]. We can
then bootstrap algebraicity upwards through the left hand side of the diagram using the
argument in [FC90, §II.1]: this says that any extension

0→ T̂ → Ĝ→ Â→ 0

of formal group schemes over R deforming G0 can be uniquely algebraized to an extension

0→ T → G→ A→ 0,

once Â has been algebraized to A. Moreover, suppose that we have a formal 1-motif M̂ =

[Y
û−→ Ĝ] over R, where Ĝ can be algebraized to G. To show that M̂ can be algebraized,

we only have to check that H0(Ŝ, Ĝ) = H0(S,G). This follows from [EGAIII, 5.4.1].

1.2 Log 1-motives

1.2.1

We recall some basic definitions from logarithmic geometry. References include [Kat89]
and [Niz08].

Definition 1.2.1.1. A log scheme is a tuple (S,MS , α), where S is a scheme, MS is an
étale sheaf of monoids over S, and α : MS → OS is a map of monoids (with OS being a
monoid under multiplication) such that the induced map

α−1(O×S )→ O×S

is an isomorphism. We will often omit α and sometimes even MS from this notation, if
this additional data is clear from context.

Maps between log schemes are defined in the obvious way. For a map f : (S,MS) →
(T,MT ), we will denote the induced map of sheaves of monoids f−1 MT → MS by f ].

Definition 1.2.1.2. A monoid P is:

1. cancellative if the map P ↪→ P gp into its group envelope is injective.

2. fine if it is cancellative and finitely generated.

3. fine saturated or fs if it is fine and if, for every x ∈ P gp, xn ∈ P , for some n ∈ Z>0
if and only if x ∈ P .

4. sharp if P× = {1}; here, P× is the sub-group of invertible elements in P .

A map of monoids f : P → Q is continuous if, for any p ∈ P , f(p) is invertible in Q
if and only if p is already invertible in P .
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Remark 1.2.1.3. A monoid P is fine if the monoid ring Z[P ] is finitely generated over Z
and a domain. It is fs if the monoid ring Z[P ] is in addition normal.

Definition 1.2.1.4. For any adjective ’?’ that can be applied to monoids, we will say a
log scheme (S,MS) is ’?’ if, for every geometric point s̄→ S, the monoid MS,s̄ /O

×
S,s̄ is ’?’.

Definition 1.2.1.5. A log ring is a pair (R,MR), where (SpecR,MR) is a log scheme. If
R is an algebra over a ring A, then we will say that R is a log A-algebra.

Example 1.2.1.6. Any discrete valuation ring O can canonically be endowed with the
structure of a log ring via the map O \ {0} → O. Whenever we speak of such a ring as a
log ring, we will mean for it to be endowed with this canonical log structure.

Example 1.2.1.7. More generally, if S is any scheme and D ⊂ S is an effective Cartier
divisor with complement j : U = S \D ↪→ S, then we can equip S with the log structure
j∗O×U → OS . This is the log structure associated with the divisor D.

Example 1.2.1.8. To any sharp, fs monoid P and any ring R, we can associate the log
ring RP . Its underlying ring is R; we have MRP

= Gm × ⊕P , and α : MRP
→ R is the

map taking P \ {1} to 0.

Let (S,MS) be an fs log scheme. We have the functor Glog
m on fs log schemes over

(S,MS) given by

Glog
m : (T,MT )→ Γ(T,M

gp
T ).

For an appropriate topology (called the Kummer log flat topology; cf. [Niz08, 2.13]) on

the category of fs log schemes over (S,MS) refining the fppf topology on S, Glog
m is a sheaf

of abelian groups [Niz08, 2.22].

1.2.2

We will now fix an fs log scheme (S,MS) for the rest of the section, unless otherwise
notified. For any torus T over S with character group X we have the associated log torus

T log = Hom(X,Glog
m ) as a sheaf in the Kummer log flat topology. We have a short exact

sequence
1→ T → T log → Hom(X,Glog

m /Gm)→ 1.

Suppose that J is a semi-abelian scheme over S that is an extension

0→ T → J → B → 0

of an abelian scheme B by a torus T . Pushing this extension forward along the inclusion
T ↪→ T log gives us an extension of Kummer log flat sheaves

0→ T log → J log → B → 0
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so that we have a short exact sequence

0→ J → J log → Hom(X,Glog
m /Gm)→ 0.

For example, if our log scheme is just Spec O for a discrete valuation ring O with its
canonical log structure, then J log(O) = J(Fr(O)), where Fr(O) is the fraction field of O,
and the short exact sequence above, evaluated at O, gives us:

0→ J(O)→ J(Fr(O))→ Hom(X,Z)→ 0,

where we fix a Z-valuation on O to identify Fr(O)×/O× with Z.

Definition 1.2.2.1. A log 1-motif over (S,MS) is a complex [Y
u−→ J log] in degrees −1, 0

of Kummer log flat sheaves of abelian groups over (S,MS), where:

1. J is a semi-abelian scheme that is an extension

0→ T → J → B → 0

of an abelian scheme B by an iso-trivial torus T , and J log is the associated sheaf
described above.

2. Y is a sheaf of free abelian groups locally constant in the finite étale topology.

Recall that a torus T over S is iso-trivial if it is locally trivial in the finite étale topology.

Definition 1.2.2.2. To every log 1-motif Q = [Y
u−→ J log] we can associate the mon-

odromy map
NQ : Y → Hom(X,Glog

m /Gm),

induced from the surjection J log → Hom(X,Glog
m /Gm).

Let J be a semi-abelian scheme as above, viewed as an extension

0→ T → J
π−→ B → 0

of an abelian scheme B by an iso-trivial torus T with character group X. This is classified
by a homomorphism c∨ : X → B∨. For every x ∈ X, let Jx be the extension of B by Gm
obtained by pushing J forward along x : T → Gm. Suppose that we have a homomorphism
c : Y → B, where Y is a free abelian group, classifying another semi-abelian extension

0→ T∨ → J∨ π∨−−→ B∨ → 0,

where T∨ is the torus with character group Y . Associated with x ∈ X and y ∈ Y , we have
the Gm-torsor Iy,x = π−1

x (c(y)), where πx : Jx → B is the quotient map.
We can package the Gm-torsors Iy,x into a Gm-torsor I over Y × X: this is nothing

but the pull-back under the map c× c∨ : Y ×X → B ×B∨ of the inverse Poincaré bundle
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P−1
B on B×B∨. Then I has the structure of Gm-bi-extension over Y ×X (cf. [Mum69]).

Concretely, this means that we have, for (y, x), (y′, x′) ∈ Y ×X, a canonical isomorphism:

η(y,x),(y′,x′) : Iy+y′,x+x′
'−→ Iy,x ⊗ Iy,x′ ⊗ Iy′,x ⊗ Iy′,x′ ,

of Gm-torsors, and these canonical isomorphisms satisfy the requisite associativity and

commutativity constraints. The natural map Gm → Glog
m induces a Glog

m -bi-extension I log

over Y ×X.
At the same time, we can also consider the pull-back I∨ of the inverse Poincaré bundle

P−1
B∨ on B∨ ×B∨∨ = B∨ ×B to Y ×X under the map

Y ×X s−→ X × Y c∨×c−−−→ B∨ ×B.

Here s : Y × X → X × Y is the ‘flip’ isomorphism (y, x) 7→ (x, y). This is again a
Gm-bi-extension of Y ×X. Concretely, for a section (y, x) ∈ Y ×X, I∨x,y is the Gm-torsor

(π∨y )−1(c∨(x)), where πy : J∨y → B∨ is the natural surjection. Here, J∨y is the push-forward

of J∨ under the character y : T∨ → Gm.

Lemma 1.2.2.3. Let the notation be as above, and, for each section (y, x) ∈ Y × X, let

Īy,x be the Glog
m /Gm-torsor induced from I

log
y,x under the surjection Glog

m → Glog
m /Gm.

1. Giving a lift u : Y → J log of c is equivalent to giving a trivialization

τ : 1
log
Y×X

'−→ I log

of Glog
m -bi-extensions over Y ×X. Concretely, this amounts to giving trivializations

τ(y, x) ∈ I log
y,x(S) of Glog

m -torsors such that

τ(y + y′, x+ x′) = τ(y, x)τ(y, x′)τ(y′, x)τ(y′, x′),

for all sections (y, x), (y′, x′) ∈ Y ×X. Here, we make sense of the identity using the
canonical isomorphism η(y,x),(y′,x′).

2. The Gm-bi-extensions I and I∨ over Y ×X are canonically isomorphic.

3. Fix a lift u : Y → J log of c giving rise to a log 1-motif Q = [Y
u−→ J log]. Let

τ(y, x) ∈ I log
y,x(S) be the associated compatible trivializations as in (2), and let τ̄(y, x)

be their images in Īy,x. Then in Γ
(
S,Glog

m /Gm
)

we have the equality

τ̄(y, x) = NQ(y)(x),

where NQ is the monodromy pairing.

17



Proof. (1) is a direct check from the definitions. As for (2): this follows from the fact that
the Poincaré bundles on B∨ ×B∨∨ and B ×B∨ are identified under the isomorphisms

B∨ ×B∨∨ '−→ B∨ ×B s−→ B ×B∨,

where s is the ‘flip’ isomorphism.

Finally, for (3), observe that Īy,x, being induced from Iy,x via the trivial map Gm
0−→

Glog
m /Gm is canonically trivialized, and so we can identify it with Glog

m /Gm. So it makes

sense to view τ̄(y, x) as an element of Γ
(
S,Glog

m /Gm
)

. Now the claimed equality is imme-

diate.

Corollary 1.2.2.4. Consider the functor that associates with each log 1-motif Q = [Y
u−→

J log] over S the tuple (B, Y,X, c, c∨, τ), where B is the maximal abelian scheme quotient of
J , X is the character group of the maximal torus T of J , c : Y → B is the map induced from

u, c∨ : X → B∨ is the classifying map for J , and τ a trivialization of the Glog
m -bi-extension(

(c× c∨)∗P−1
B

)log
as in (1.2.2.3)(1) above. This functor is an equivalence of categories

between the category of log 1-motifs Q over S and the category of tuples (B, Y,X, c, c∨, τ),
where

• B is an abelian scheme over S.

• Y and X are sheaves of finite free abelian groups over S locally trivial in the finite
étale topology.

• c : Y → B and c∨ : X → B∨ are homomorphisms of sheaves of groups over S.

• τ : 1
log
Y×X

'−→ I log =
(
(c× c∨)∗P−1

B

)log
is a trivialization of Glog

m -bi-extensions over
Y ×X.

Proof. This is immediate.

Definition 1.2.2.5. Let Q = [Y
u−→ J log] be a log 1-motif corresponding to the tuple

(B, Y,X, c, c∨, τ); then the dual log 1-motif Q∨ = [X
u−→ (J∨)log] is the log 1-motif

corresponding to the tuple (B∨, X, Y, c∨, c, τ).

Remark 1.2.2.6. Suppose Q = [Y
u−→ T log], where T is the torus as above; this simply

corresponds to a map
u : Y → Hom(X,Glog

m ).

The dual Q∨ is the log 1-motif corresponding to the map

u∨ : X → Hom(Y,Glogm )

u∨(x)(y) = u(y)(x).
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Definition 1.2.2.7. A polarization λ : Q→ Q∨ is a diagram

Y
u

> J log

X

λét

∨ u∨
> (J∨)log,

λsab

∨

where λét is injective with finite co-kernel, and λsab is a map of extensions

0 > T > J > B > 0

0 > T∨

λmult

∨
> J∨

λsab

∨
> B∨

λab

∨
> 0,

with λab a polarization on B and λmult the isogeny Hom(X,Gm)
λét,∗
−−−→ Hom(Y,Gm).

The degree of a polarization λ is the natural number deg(λab)(] coker(λét))2. A po-
larization λ is prime-to-N , for some N ∈ Z≥0, if the degree of λ is prime to N .

Suppose now that we have a log 1-motif Q over S corresponding to a tuple
(B, Y,X, c, c∨, τ). As usual, let I = (c × c∨)∗P−1

B be the associated Gm-bi-extension

over Y ×X. Suppose also that we have an injective map of sheaves of groups λét : Y → X
with finite co-kernel, and a polarization λab : B → B∨ such that the diagram:

Y
c

> B

X

λét

∨

c∨
> B∨,

λab

∨

(1.2.2.7.1)

commutes. Let s : B×B '−→ B×B be the flip isomorphism; then, since λab is a polarization,
it is in particular symmetric, and we have a canonical isomorphism s∗(1 × λab)∗PB

'−→
(1 × λab)∗PB . This means that (1 × λab)∗P−1

B is a symmetric Gm-bi-extension over
B ×B (cf. [Mum69]). In particular,

(1× λét)∗I = (c× c)∗(1× λab)∗P−1
B

is a symmetric Gm-bi-extension of Y × Y . Concretely, this means that, for all sections
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(y, y′) ∈ Y × Y , we have canonical identifications

I
y,λét(y′)

'−→ I
y′,λét(y)

. (1.2.2.7.2)

It is a direct check from the definitions that the data of λab and λét can be extended to
a polarization λ of Q if and only if the trivialization τ : 1

log
Y×X

'−→ I log of Glog
m -bi-extensions

of Y × X induces a symmetric trivialization 1
log
Y×Y

'−→ (1 × λét)∗I log of symmetric Glog
m -

bi-extensions of Y × Y . Concretely, this means that, for all sections (y, y′) ∈ Y × Y , the

trivializations τ(y, λét(y′)) and τ(y′, λét(y)) of the two Glog
m -torsors I

log

y,λét(y′)
and I

log

y′,λét(y′)
,

respectively, match up under the isomorphism between them induced from (1.2.2.7.2).
So we obtain:

Proposition 1.2.2.8. There is an equivalence of categories between polarized log 1-motifs
(Q, λ) over S and tuples (B, Y,X, c, c∨, λab, λét, τ), where (B, Y,X, c, c∨, τ) is a tuple as in
(1.2.2.4), and:

• λab : B → B∨ is a polarization and λét : Y → X is an injective map with finite
co-kernel such that the diagram (1.2.2.7.1) commutes.

• (1× λét)∗τ gives a trivialization

1
log
Y×Y

'−→
(
(c× c∨λét)∗P−1

B

)log

of symmetric Glog
m -bi-extensions of Y × Y over S.

1.2.3

We will now discuss level structures on log 1-motifs over S. We will hew closely, modulo
the appropriate translations, to [FC90, §IV.6]. Fix N ∈ Z>0, and let (Q, λ) be a polarized
log 1-motif over S corresponding to a tuple (B, Y,X, c, c∨, λab, λét, τ) as above. We will
suppose that λ is prime-to-N . We then have induced perfect pairings

e
λab : B[N ]×B[N ]→ µN

e
λab(b, b′) = eB(b, λab(b′));

e
λét : Y/NY × T [N ]→ µN

e
λét(y, t) = λét(y)(t).

Here, µN is the finite flat group scheme over S of N th-roots of unity, and

eB : B[N ]×B∨[N ]→ µN
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is the Weil pairing.
Suppose r = rankY = rankX, and let g ∈ Z≥0 be such that g − r = dimS B is the

relative dimension of B over S.

Definition 1.2.3.1. Let ΛN,g−r be a free Z/NZ-module of rank 2(g − r) equipped with
a symplectic pairing into Z/NZ. A principal symplectic level N structure of type
ΛN,g−r on (B, λab) is an isomorphism

ϕab
N : ΛN,g−r

'−→ B[N ]

of sheaves of abelian groups over S, which carries the symplectic form on ΛN,g−r to a

(Z/NZ)×-multiple of e
λab . By this, we mean that there is an isomorphism of sheaves of

groups
ν(ϕab

N ) : µN
'−→ Z/NZ

such that ν(ϕab
N ) ◦ e

λab ◦ ϕab
N is equal to the symplectic pairing on ΛN,g−r.

We will usually suppress the adjectives ‘principal symplectic’ and refer to this simply
as a level N structure of type ΛN,g−r on (B, λab).

Let ΛN,g be a free Z/NZ-module of rank 2g equipped with a symplectic pairing into
Z/NZ, and let ΣN,g,r ⊂ ΛN,g be a free isotropic sub-module of rank r such that the

quotient ΛN,g/ΣN,g,r is again free over Z/NZ. Let ΨN,g,r = (ΣN,g,r)
⊥ ⊂ ΛN,g be the

radical of ΣN,g,r. We then have a perfect pairing

ΛN,g/ΨN,g,r × ΣN,g,r → Z/NZ (1.2.3.1.1)

induced by the symplectic pairing on ΛN,g. The sub-quotient ΛN,g−r = ΨN,g,r/ΣN,g,r will
inherit a symplectic pairing from ΛN,g. Let us denote by C the pair (ΛN,g,ΣN,g,r).

Definition 1.2.3.2. A principal symplectic level N structure of type C on the tuple
(B, Y,X, λab, λét) is a tuple (ϕab

N , ϕ
ét
N , ϕ

mult
N ) where:

1. ϕab
N is a levelN structure on (B, λab) of type ΛN,g−r as in (1.2.3.1), with an associated

isomorphism of sheaves of groups ν(ϕab
N ) : µN

'−→ Z/NZ.

2.
ϕmult
N : ΣN,g,r

'−→ T [N ]; and

ϕét
N : ΛN,g/ΨN,g,r

'−→ Y/NY ;

are isomorphisms of sheaves of groups such that

ν(ϕab
N ) ◦ e

λét ◦ (ϕét × ϕmult) : ΛN,g/ΨN,g,r × ΣN,g,r → Z/NZ

is equal to the pairing in (1.2.3.1.1).

Again, we will usually omit the adjectives ‘principal symplectic’.

21



Definition 1.2.3.3. A principal symplectic level N structure of type C on (Q, λ) is
a tuple (ϕab

N , ϕ
ét
N , ϕ

mult
N , cN , c

∨
N , τN , δ), where:

1. (ϕab
N , ϕ

ét
N , ϕ

mult
N ) are a level N structure of type C on (B, Y,X, λab, λét).

2. cN : 1
N Y → B and c∨N : 1

NX → B∨ are maps such that the diagrams

1

N
Y

cN
> B

Y ;
∪

∧

c

>

1

N
X

c∨N > B∨

X;
∪

∧

c∨

>

commute.

3. Let IN be the Gm-bi-extension (cN × c∨)∗P−1
B over 1

N Y ×X. Then, τN is a trivial-
ization

τN : 1
log
1
N Y×X

'−→ I
log
N

of Glog
m -bi-extensions over 1

N Y × X restricting to the trivialization τ of I log over
Y ×X.

4.
δ : ΣN,g,r ⊕ ΛN,g−r ⊕ (ΛN,g/ΨN,g,r)

'−→ ΛN,g

is a symplectic splitting of the filtration

0 ⊂ ΣN,g,r ⊂ ΨN,g,r ⊂ ΛN,g.

1.2.4

Definition 1.2.4.1. Let E be a Gm-torsor over S, and let Elog be the associated Glog
m -

torsor. The induced Glog
m /Gm-torsor E is canonically trivialized and can therefore be

identified with Glog
m /Gm. We say that an étale local section e of Elog is positive, if, for

every geometric point s̄→ S, the image of e in M
gp
S,s̄ /O

×
S,s̄ lies in

(
MS,s̄ /O

×
S,s̄

)
\ {1}.
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Let (Q, λ) be a polarized log 1-motif corresponding to a tuple (B, Y,X, c, c∨, λab, λét, τ).
We will say that (Q, λ) is positive if, for every geometric point s̄ → S, and all sections

y ∈ Ys, the section τ(y, λét(y)) of I
log

y,λét(y)
is positive.

Suppose now that S = SpecR, where R is a complete local Noetherian normal ring, and
suppose that MR is defined by a divisor D ⊂ R. Let U ⊂ SpecR be the complement of D.
Let DEGpol be the category of positive polarized log 1-motifs (Q, λ) over S. Equivalently,

DEGpol is the category of tuples (B, Y,X, c, c∨, λab, λét, τ) as in (1.2.2.8)(2) satisfying the
positivity property in (1.2.4.1). Let DDpol be the category of polarized abelian varieties
(A, λ) over U that extend to semi-abelian schemes over SpecR.

Proposition 1.2.4.2. With the hypotheses as above, the categories DEGpol and DDpol are
naturally equivalent.

Proof. The proof can be found in [FC90, Ch. III].

1.3 Log F -crystals

1.3.1

Let S = SpecR be an affine scheme in which p is nilpotent. Following [BBM82], we have
the exact contra-variant Dieudonné crystal functor

D :
(
p-divisible groups over S

)
−→

(
Dieudonné crystals over S

)
.

We will not give a precise definition of a Dieudonné crystal, for which cf. [dJ95, 2.3.2].
However, we can give a very concrete description of a Dieudonné crystal over S in the
following situation: Suppose that we have:

• A formally smooth Zp-algebra R̃ isomorphic to W [|x1, . . . , xn|], where W = W (k) is
the ring of Witt vectors with coefficients in a perfect extension k/Fp;

• A lift ϕ
R̃

: R̃→ R̃ of the p-power Frobenius map on R̃/pR̃; and

• A surjection R̃→ R with kernel I, so that pnR̃ ⊂ I, for some n ∈ Z>0.

Let D
R̃

(I) be the divided power envelope of I in R, and let DR be its p-adic completion;

for every a ∈ I, let a[n] ∈ DR be the nth divided power of a. Let Ω̂1
R̃/Zp

be the module

of continuous differentials of R̃ over Zp; this is a finite free R̃-module. There is a natural

connection ∇ : DR → DR⊗̂Ω̂1
R̃/Zp

such that ∇(a[n]) = a[n−1]⊗̂da, for all a ∈ I. Since pR̃

canonically admits divided powers, we have a canonical identification D
R̃

(I) = D
R̃

(I+pR).
In particular, the Frobenius lift ϕ

R̃
extends to a Frobenius lift ϕDR over DR. We will make

the following:

Assumption 1.3.1.1. DR is flat over Zp.
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It will hold in all situations that we consider, which will take one of the following two
forms:

• R = R̃/pnR̃, for some n ∈ Z>0, so that DR = R̃.

• R = OK/p
nOK , for some n ∈ Z>0 and some finite extension K/Qp. We can choose

R̃ = W (k)[|u|] and I ⊂ R̃ to be the ideal generated by pn and an Eisenstein polyno-
mial E(u) in W (k)[u] corresponding to a uniformizer in K. One checks that, in this
case, DR embeds into K0[|u|] and is thus flat over Zp.

Giving a Dieudonné crystal over S = SpecR is equivalent to giving (cf. [dJ95, §2.3]) a
Dieudonné module over DR; that is, a tuple (M,ϕM ,∇M ), where:

1. M is a finite free DR-module.

2. ϕM is a DR-linear map

ϕM : ϕ∗DRM = M ⊗DR,ϕ DR →M

whose image contains pM .

3. ∇M is an integrable topologically quasi-nilpotent connection

∇M : M →M⊗̂Ω̂1
R̃/Zp

,

compatible with the natural connection on DR, for which ϕM is a parallel map. The
topological quasi-nilpotence means that, for every derivation ξ ∈ Hom

R̃
(Ω̂1

R̃/W
, R̃),

there exists n ∈ Z>0 such that ∇(ξ)n(M) ⊂ pM .

Note that, since DR is p-torsion free by hypothesis, we need not separately require, as in
[dJ95, 2.3.4], the existence of a map VM : M → ϕ∗DRM such that ϕMVM = p; it will be

uniquely determined by ϕM .

Theorem 1.3.1.2 (de Jong). Suppose I = pR, so that R = R̃/pR̃ and DR = R̃. Then the
functor

D :

(
p-divisible groups

over S

)
→
(

Dieudonné crystals
over S

)
=

(
Dieudonné modules

over R̃

)

is an equivalence of categories.

Proof. This follows from [dJ95, Main Theorem 1].
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1.3.2

Let R, R̃, I,DR be as above. There are a few p-divisible groups G over S, for which we
can easily give an explicit description of D(G ) as a Dieudonné module over DR. We have
(cf. [dJ95, 4.3.1]2)

D(Qp/Zp) = (DR,1DR ,∇)

D(µp∞) = (DR, p1DR ,∇).

We will denote these Dieudonné modules by DR, the trivial Dieudonné module and
DR(1), the Tate twist, respectively.

Suppose now that L = [Y
u−→ T ] is a 1-motif over S, where T is a split torus with

character group X; let G = L[p∞]. In this case as well we can quite explicitly describe
D(L) = D(G ) as a Dieudonné module over DR. We will go about it in a slightly roundabout
way so as to motivate an analogous definition for log 1-motives that we will make soon.
We begin with the short exact sequence:

1→ Hom(X, 1 + I)→ T (R̃)
π−→ T (R)→ 1.

Pulling this short exact sequence back along the map u : Y → T (R) gives us an extension

1→ Hom(X, 1 + I)→ Eu → Y → 0.

Explicitly,
Eu = {(f, y) ∈ T (R̃)⊕ Y : π(f) = u(y)}.

We have a map

ϕEu : Eu → Eu

(f, y) 7→ (ϕ(f), py).

Choose a lift ũ : Y → T (R̃) of u; this gives us an isomorphism

αũ : Hom(X, 1 + I)⊕ Y '−→ Eu

(f, y) 7→ (fũ(y), y).

It is easy to see that, under this isomorphism, the map ϕEu pulls back to

ϕũ : Hom(X, 1 + I)⊕ Y → Hom(X, 1 + I)⊕ Y
(f, y) 7→ (ϕ(ũ(y))ũ(y)−pϕ(f), py).

2. note however that de Jong is using the covariant Dieudonné functor
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Consider the map of groups:

log : 1 + I → DR

a 7→
∞∑
n=1

(−1)n−1(n− 1)!a[n].

Pushing Eu forward along log : Hom(X, 1 + I)→ Hom(X,DR), we obtain an extension

0→ Hom(X,DR)→ Fu → Y → 0.

Finally, let Mu be the push-forward of Fu ⊗Z DR under the multiplication map

m : Hom(X,DR)⊗Z DR → Hom(X,DR).

It is an extension
0→ Hom(X,DR)→Mu → Y ⊗DR → 0.

The map ϕEu gives rise to
ϕMu : ϕ∗DRMu →Mu,

and, under the splitting

αũ : Hom(X,DR)⊕ (Y ⊗DR)
'−→Mu,

ϕMu pulls back to the map

ϕũ : (h, y ⊗ 1) 7→ (ϕ(h) + Φũ(y), py ⊗ 1).

Here Φũ : Y → Hom(X, R̃) is given by y 7→ log(ϕ(ũ(y))ũ(y)−p); this logarithm lies in
Hom(X, R̃), since ϕ(ũ(y))ũ(y)−p lies in Hom(X, 1 + pR̃).

From now on, identify (Mu, ϕMu) with (Hom(X,DR)⊕ (Y ⊗DR), ϕũ). For each y ∈ Y ,

set ωũ(y) = dlog(ũ(y)) ∈ Hom(X, Ω̂1
R̃/Zp

), and let ∇Mu : Mu → Mu⊗̂Ω̂1
R̃/Zp

be the

connection that restricts to the trivial connection on Hom(X,DR) and takes y ⊗ 1 to
ωũ(y). We see immediately that (Mu, ϕMu ,∇Mu) is a Dieudonné crystal over DR.

Definition 1.3.2.1. For any Dieudonné module (M,ϕM ,∇M ) over DR, its Cartier dual,
denoted (M∨, ϕM∨ ,∇M∨) will again be a Dieudonné module over DR. We have M∨ =
HomDR

(M,DR); ϕM∨ will be the dual of the unique map VM : M → ϕ∗DRM satisfying

ϕMVM = p; and ∇M∨ will just be the dual log connection:

∇M∨(m∨)(m) = −m∨(∇M (m)).

There is a natural identification of (M,ϕM ,∇M ) with its double Cartier dual.

Lemma 1.3.2.2. As a Dieudonné module over DR, D(L) is isomorphic to the Cartier dual
(M∨u , ϕM∨u ,∇M∨u ) of (Mu, ϕMu ,∇Mu).
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Proof. This follows from [dJ95, §4.3]. As pointed out before, de Jong is using the co-variant
Dieudonné functor, while we are using the contra-variant version. The difference between
the two functors is Cartier duality. This explains why we need the Cartier dual in our
statement.

1.3.3

Suppose now that R has an fs log structure MR → R such that MR /R
× = P , so that P

is a constant, sharp, fs monoid. Following [KT03, §4.7], we will construct a functor

D :

(
log 1-motifs

over R

)
−→

(
log Dieudonné crystals

over R

)

extending the composition(
1-motifs
over R

)
L7→L[p∞]−−−−−−→

(
p-divisible groups

over R

)
D−→
(

log Dieudonné crystals
over R

)
.

First, suppose that we have a 1-motif L = [Y
u−→ T log], where T is a split torus over R

with character group X. By construction, D(L) will be an extension

0→ Hom(Y,D(Qp/Zp))→ D(L)→ D(T )→ 0.

For any fs log algebra (B0,MB0
) over (R,MR), and any log PD-thickening (B,MB) of

(B0,MB0
) defined by a nilpotent PD-ideal J ⊂ B, we will define D(L)(B) in the following

way: Start with the short exact sequence

0→ Hom(X, 1 + J)→ T log(B)→ T log(B0)→ 0,

where T over B is again the split torus with character group X, and so T log(B) =

Hom(X,Glog
m,B). We can pull it back along the map u : Y → T log(B0) to get an extension

0→ Hom(X, 1 + J)→ Eu(B)→ Y → 0.

Since J has divided powers, we can define

log : 1 + J → B

a 7→
∞∑
n=1

(−1)n(n− 1)!a[n].

Pushing Eu(B) forward along log : Hom(X, 1 + J)→ Hom(X,B) we obtain an extension

0→ Hom(X,B)→ Fu(B)→ Y → 0.
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If we now push forward the tensor product Fu(B) ⊗Z B along the multiplication map
Hom(X,B)⊗Z B → Hom(X,B), we get an extension of finite free B-modules

0→ Hom(X,B)→Mu(B)→ Y ⊗B → 0.

Define D(L)(B) = HomB(Mu, B).
Our construction so far gives us a log crystal D(L) over (R,MR). It can be naturally

endowed with the structure of a log Dieudonné crystal over (R,MR). In the interest of
expediency, we exhibit this as follows: Suppose that R̃ has an fs log structure M

R̃
such

that

• (R̃,M
R̃

) is isomorphic to W [|t1, . . . , tn|] with the log structure determined by the
divisor cut out by t1t2 · · · tr, with 0 ≤ r ≤ n. In particular, it is smooth and log
smooth over Zp.

• The Frobenius lift ϕ
R̃

can be extended compatibly to M
R̃

so that it induces the
p-power map on M

R̃/pR̃
.

• The map (R̃,M
R̃

) → (R,MR) is strict, so that the map M
R̃
/R̃× → MR /R

× is an
isomorphism.

Just as in the case of Dieudonné crystals above, it follows from the theory of [Kat89, §6]
that giving a log crystal over (R,MR) is equivalent to giving a pair (M,∇M ) where

1. M is a finite free DR-module.

2. ∇M is an integrable topologically quasi-nilpotent connection

∇M : M →M⊗̂Ω̂
1,log

R̃/Zp
,

compatible with the natural connection on DR.

Moreover, giving a log Dieudonné crystal over (R,MR) is equivalent to giving a tuple
(M,ϕM ,∇M ), where (M,∇M ) are as above, and ϕM is a DR-linear, ∇M -parallel map

ϕM : ϕ∗DRM = M ⊗DR,ϕ DR →M

whose image contains pM .

Let us briefly explain some of the notation. Here Ω̂
1,log

R̃/Zp
is the module of continuous

logarithmic differentials on (R̃,M
R̃

) (cf. [Kat89, §1.7]). Let q1, . . . , qn ∈ M
R̃

be elements

such that the elements dlog(q1), . . . , dlog(qn) form a basis for Ω̂
1,log

R̃/Zp
, and let ∂

log
1 , . . . , ∂

log
n

in Hom
R̃

(Ω̂
1,log

R̃/Zp
, R) form the dual basis. Then topological quasi-nilpotence of ∇M is
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equivalent to requiring that, for any any m ∈ M , we can find r1, . . . , rk, s1, . . . , sk ∈ N
such that (cf. [Kat89, 6.2(iii)])

∏
1≤i≤n,1≤j≤k

(
∇(∂

log
i )− rj

)sj
(m) ∈ pM.

Since we already have the structure of a log crystal on D(L), all that remains to do is to
endow M = limnD(L)(DR/p

nDR) with a parallel map ϕM as above. For this, we observe
that M is obtained in a very simple way. As always, we start with the short exact sequence

0→ Hom(X, 1 + I)→ T log(R̃)→ T log(R)→ 0.

We pull it back along the map u : Y → T log(R), push the result forward along log :
Hom(X, 1 + I)→ Hom(X,DR), tensor the result with DR, and push forward what we get
along the multiplication Hom(X,DR)⊗DR → DR. Finally, we take DR-linear duals, and
this gives us M . The map ϕM is simply the one induced from the endomorphism

ϕ : T log(R̃) = Hom(X,M
gp

R̃
)→ Hom(X,M

gp

R̃
) = T log(R̃)

arising from the Frobenius lift ϕ
R̃

: M
gp
R → M

gp
R .

Lemma 1.3.3.1. 1. The assignment L 7→ D(L) defines a functor from the category of

log 1-motives over (R,MR) of the form [Y
u−→ T log] with T a split torus over R to the

category of log Dieudonné crystals over (R,MR).

2. If we consider a 1-motif L = [Y
u−→ T ] over R as a log 1-motif Llog = [Y

u−→ T log],
then D(Llog) is naturally isomorphic to the Dieudonné crystal D(L[p∞]) over R.

3. Suppose we have two log 1-motifs L1 = [Y
u1−→ T log] and L2 = [Y

u2−→ T log], and set

L = [Y
u1+u2−−−−→ T log]; then the log Dieudonné crystal D(L) is the Baer sum of D(L1)

and D(L2) in the category of extensions of D(T ) by Hom(Y,D(Qp/Zp)).

Proof. The functoriality in (1) and the assertion in (3) both follow directly from the con-
struction. The second assertion follows from (1.3.2.2).

Now we consider a general log 1-motif L = [Y
u−→ Glog] over (R,MR), where G is an

extension
0→ T → G→ A→ 0,

where A is an abelian scheme over R and T is a split torus over R with character group
X. Associated to this we have the map

NL : Y → Glog(R)/G(R) = T log(R)/T (R)
'−→ Hom(X,M

gp
R /R×).

Choose some lift u′ : Y → T log(R) of NL: this gives us a log 1-motif L′ = [Y
u′−→ T log],

which we will conflate with the log 1-motif [Y
u′−→ Glog] obtained from the inclusion T log ↪→

29



Glog. Let u′′ = u−u′: this maps Y into G ⊂ Glog and gives us a classical 1-motif [Y
u′′−−→ G]

over R. We have already constructed D(L′) as an extension

0→ Hom(Y,D(Qp/Zp))→ D(L′)→ D(T [p∞])→ 0.

We can pull this back along the surjection D(G[p∞]) → D(T [p∞]) and think of D(L′) as
an extension

0→ Hom(Y,D(Qp/Zp))→ D(L′)→ D(G[p∞])→ 0.

To L′′ we can associate the Dieudonné crystal D(L′′) = D(L′′[p∞]): this is also an extension
of D(G[p∞]) by Hom(Y,D(Qp/Zp)). We will take D(L) to be the Baer sum of D(L′) and
D(L′′) in the category of such extensions.

Note that we made a choice of lift u′ of NL to make our construction. If we fix a chart
α : MR /R

× → MR, we can choose this lift compatibly for all log 1-motifs over (R,MR)
and so we see that D in fact gives us a functor. But in fact the isomorphism class of D(L)
does not depend on the lift u′. We have:

Lemma 1.3.3.2. The extension class of D(L) does not depend on the choice of lift u′.

Proof. Suppose we have two lifts u′1 and u′2 giving us two decompositions

u = u′1 + u′′1 = u′2 + u′′2

Let L′1, L
′′
1 , L
′
2, L
′′
2 be the corresponding log 1-motives; L′′1 and L′′2 are classical 1-motives,

and, by (1.1.2.4), the Baer difference of D(L′′1) and D(L′′2) corresponds to the Dieudonné

crystal associated to the 1-motif [Y
u′′1−u

′′
2−−−−→ G]. But this last 1-motif is equal to [Y

u′2−u
′
1−−−−→

G], whose Dieudonné crystal is the Baer difference of D(L′2) and D(L′1) by (1.3.3.1). This
means precisely that the Baer sum of D(L′1) and D(L′′1) equals the Baer sum of D(L′2) and
D(L′′2), as was to be shown.

Suppose that we have a map f : (R,MR) → (R′,MR′) of log algebras, and suppose
that (R′,MR′) satisfies the same hypotheses that (R,MR) does. Then we have a diagram
of functors: (

log 1-motifs
over (R,MR)

)
f∗

>

(
log 1-motifs

over (R′,MR′)

)

(
log Dieudonné crystals

over (R,MR)

)D
∨

f∗
>

(
log Dieudonné crystals

over (R′,MR′)

)D
∨

Here, we have chosen charts MR /R
× → MR and MR′ /(R

′)× → MR′ in order to be able to
define the vertical functors. From our construction, and the compatibility under pull-back
of the classical Dieudonné functor, we have:
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Lemma 1.3.3.3. The diagram commutes.

1.3.4

Suppose that we have a polarized log 1-motif (L, λ) over S, with L = [Y
u−→ J log], such

that the associated sheaves of free abelian groups Y and X are both in fact constant.
We then have the associated Dieudonné module D(L)(DR) over DR also equipped with
a polarization ψ. Fix some chart α : MR /R

× → M
R̃

, and suppose that we have a

Frobenius lift ϕ
R̃

such that ϕ
R̃

(α(m)) = α(m)p, for all m ∈ MR /R
×. Let T be the

torus with character group X. This gives us a lift ũ
log
α : Y → T log(R̃) of the monodromy

NL : Y → Hom(X,MR /R
×) and thus a lift u

log
α : Y → T log(R) as well, giving a log

1-motif Lα. Let u′ = u− ulog
α : Y → J : this gives us a 1-motif L′ over R.

Given our choice of Frobenius lift ϕ
R̃

and our construction of D(Lα) using the lift

ũ
log
α above (1.3.3.1), it is easy to check that the underlying ϕ-module of D(Lα)(DR) is

isomorphic to the direct sum Hom(Y,DR) ⊕ D(T )(DR), and thus is the trivial extension
of D(T )(DR) by Hom(Y,DR). By construction, the ϕ-module underlying D(L)(DR) is
the Baer sum of D(L′)(DR) and the extension of D(J)(DR) by Hom(Y,DR) induced from
D(Lα)(DR). Since the latter extension is trivial, we find that D(L)(DR) and D(L′)(DR)
are isomorphic as ϕ-modules over DR. This identification gives rise to an identification
D(L)(R) = D(L′)(R), and the Hodge filtration on D(L′)(R) (cf. [Kis10, §1.4]) gives rise to
a direct summand Fil1 D(L)(R) ⊂ D(L)(R). Let I ⊂ DR also denote the PD-ideal that is

the kernel of the map DR → R, and for each n ∈ Z>0, let I [n] be the nth-divided power of
I. Let

D̂R = lim←
n
DR/I

[n]

be the PD-completion of DR.

Lemma 1.3.4.1. Lifting (L, λ) to a polarized log 1-motif over D̂R is equivalent to lift-
ing the Hodge filtration Fil1 D(L)(R) to a direct summand Fil1 D(L)(D̂R) of D(L)(D̂R) =
D(L)(DR)⊗DR D̂R that is isotropic with respect to ψ.

Proof. We will only prove one direction of the equivalence, since that is what we will need
in the future. The other implication, in any case, is easier. Suppose that we have a lift

of the filtration; since we already have the lift ũ
log
α of u

log
α , it suffices to find a lift of the

1-motif L′ to D̂R corresponding the lift of the filtration. By classical Grothendieck-Messing
theory (cf. [Mes72]), lifting the filtration on D(L′)(R) to one on D(L′)(D̂R) corresponds
to a deformation G of the p-divisible group L′[p∞] over D̂R. Saying that the lift of the
filtration is isotropic is equivalent to saying that the polarization λ′[p∞] on L′[p∞] also lifts
to a polarization of G . By (1.1.3.2), this gives us a deformation of (L′, λ′) over D̂R, and
thus a deformation of (L, λ) over D̂R.
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1.4 Dieudonné theory over formally smooth rings

1.4.1

Let W be the ring of Witt vectors over some perfect extension k/Fp.

Definition 1.4.1.1. An augmented W -algebra is a pair (R, JR), where

• R is isomorphic to W [|t1, . . . , tn|].

• JR is the kernel of an augmentation map ιR : R→ W .

Maps between augmented W -algebras are defined in the obvious fashion.

Definition 1.4.1.2. A contracting Frobenius lift on an augmented W -algebra (R, JR)
is a faithfully flat lift ϕR of the p-power Frobenius on R/pR such that ϕR(JR) ⊂ J2

R
In this situation, we will sometimes say that ϕR is JR-contracting.

Remark 1.4.1.3. Note that (W, (0)) is an augmented W -algebra admitting a unique con-
tracting Frobenius lift. It is, by definition, the final object in the appropriate category, and
we will refer to it simply as W .

Lemma 1.4.1.4. Let (R, JR) be an augmented W -algebra, equipped with a contracting
Frobenius lift ϕR. Then the image of the induced endomorphism ϕ∗R of Ω̂1

R/W lies inside

JRΩ̂1
R/W .

Proof. Ω̂1
R/W is generated by elements of the form da, for a ∈ JR. Since ϕR(a) ∈ J2

R, it

follows that
ϕ∗(da) = d(ϕ(a)) ∈ JRΩ̂1

R/W .

The lemma is an immediate consequence.

Definition 1.4.1.5. Fix an augmented W -algebra (R, JR) equipped with a contracting
Frobenius lift ϕR. A filtered Dieudonné module over (R,ϕR) is a tuple

M = (M,ϕM ,Fil1M,∇M )

where

• M is a finite free R-module.

• ϕM is an R-linear, ∇M -parallel map

ϕM : ϕ∗RM = M ⊗R,ϕ R→M

whose image contains pM .
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• Fil1M ⊂M is a direct summand satisfying

ϕM
(
ϕ∗R(Fil1M + pM)

)
= pM.

• ∇M is an integrable topologically quasi-nilpotent connection

∇M : M →M⊗̂Ω̂
1,log
R/W ,

for which ϕM is a parallel map.

We will often say that M is a filtered Dieudonné module over R. The category of filtered
Dieudonné modules over R will be denoted MF[0,1](R).

Remark 1.4.1.6. An object inMF[0,1](W ) is simply a 3-tuple (M0, ϕM0
,Fil1M0) that sat-

isfies conditions (1) to (3) above. For every filtered Dieudonné module M over (R, JR, ϕR),
we have the induced filtered Dieudonné module M0 over W obtained by reducing modulo
JR.

Proposition 1.4.1.7. There is an equivalence of categories(
p-divisible groups

over R

)
'−→MF[0,1](R).

Proof. This is an immediate consequence of [Fal89, Theorem 7.2]. As observed in [Moo98,
§4.1], it also follows from (1.3.1.2) and Grothendieck-Messing theory [Mes72].

Definition 1.4.1.8. The trivial filtered Dieudonné module over (R, JR, ϕR), denoted
R, is the tuple (R,1R, (0), d). The Tate twist, denoted R(1), is the tuple (R, p1R, R, d).

1.4.2

The functoriality of these Dieudonné modules is a little involved, since the Frobenius lift
ϕR is not canonical. But things are clear if we view them as crystals instead. Suppose
(R′, JR′) is another augmented W -algebra equipped with a contracting Frobenius lift ϕR′ .
If we have a morphism f : (R, JR)→ (R′, JR′), then we obtain a functor f∗ :MF[0,1](R)→
MF[0,1](R

′) in the following fashion:

Given an object (M,ϕM ,Fil1M,∇M ) in MF[0,1](R), f∗(M,Fil1M,∇M ) will be ob-

tained by the usual base change from R to R′. Then we observe that there is a canonical
isomorphism

εf,M : ϕ∗R′f
∗M ∼−→ f∗ϕ∗RM

induced by the connection ∇M . This is essentially given by parallel transport, after one
notes that ϕR′ ◦ f and f ◦ ϕR agree modulo p. For more details, see [Moo98, 4.3.3]. Now,
one can define ϕf∗M as the composition

ϕ∗R′f
∗M

εf,M−−−→ f∗ϕ∗RM
f∗ϕM−−−−→ f∗M.
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In particular, the filtered Dieudonné module categories associated to two different contract-
ing Frobenius lifts ϕR and ϕ′R are canonically equivalent.

Definition 1.4.2.1. For any M in MF[0,1](R), the associated Kodaira-Spencer map
for M is a map

KSM : DerW (R)→ Hom
(

Fil1M,
M

Fil1M

)

where DerW (R) = HomR(Ω̂1
R/W , R) is the module of continuous W -derivations of R. It is

obtained from the R-linear map

Fil1M →
(
M/Fil1M

)
⊗R Ω̂1

R/W

induced by the connection ∇M , which we will, abusing notation, also call KSM .
We say that an object M in MF[0,1](R) is versal if KSM is a surjection.

Lemma 1.4.2.2. Let M be a filtered Dieudonné module over (R, JR, ϕR). Let R1 = R/J2
R,

let M1 be the induced filtered Dieudonné module over (R1, JR/J
2
R, ϕR), and let M0 be the

filtered Dieudonné module over W induced from M .

1. There is a canonical isomorphism of tuples

(M0 ⊗W R1, ϕM0
⊗ 1, 1⊗ d)

AM−−−→' (M1, ϕM1
,∇M1

),

reducing to the identity modulo JR/J
2
R.

2. The composition

Fil1M1 ⊂M1
A−1
M−−−→M0⊗W R1 →

M0

Fil1M0
⊗W R1

1⊗d−−−→ M0

Fil1M0
⊗W (Ω̂1

R/W ⊗RW ).

is naturally identified with the reduction of KSM modulo JR.

3. KSM ⊗R/JR can be identified with the negative of the map

ΘM : TR := HomW (JR/J
2
R,W )→ HomW

(
Fil1M0,M0/Fil1M0

)
f 7→

(
m 7→ f

(
AM (m)(mod Fil1M1)

))
.

Here, we are using the fact that the image of AM (m) in M1/Fil1M1 lies in

JR(M1/Fil1M1) = (M0/Fil1M0)⊗W (JR/J
2
R).

4. M is versal if and only if ΘM is surjective.
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Proof. Let M̃ = p−1 Fil1M +M ⊂ p−1M ; then ϕM induces an isomorphism

ϕM : ϕ∗RM̃
'−→M.

Also, since ϕR(JR) ⊂ J2
R, the Frobenius lift ϕR1

: R1 → R1 factors as

R1 → W
ϕW−−→ W ↪→ R1,

and so ϕ∗R1
M̃1 = ϕ∗W M̃0 ⊗W R1. Define AM so that the following diagram commutes:

ϕ∗W M̃0 ⊗W R1 ==== ϕ∗R1
M̃1

M0 ⊗W R1

ϕ−1
M0
⊗ 1

∧

AM
> M1

ϕM1

∨

Using the fact that ϕM1
is parallel for ∇M1

, we can easily check that AM satisfies the
conditions stated in the lemma.

Statement (2) follows from the commutativity of the following diagram:

M1

∇M1 > M1 ⊗R1
Ω̂1
R1/W

M0 ⊗W R1

A−1
M

∨ 1⊗ d
> M0 ⊗W Ω̂1

R1/W

A−1
M ⊗ 1

∨
M1

Fil1M1
⊗R1

Ω̂1
R1/W

>

M0

Fil1M0
⊗W R1

∨
1⊗ d

>
M0

Fil1M0
⊗W Ω̂1

R1/W

∨

>
M0

Fil1M0
⊗W (Ω̂1

R1/W
⊗R1

W ).

∨

Assertion (3) now follows immediately from the fact that the natural map

JR/J
2
R

d−→ Ω̂1
R1/W

⊗R1
W

is an isomorphism when R is formally smooth over W .
(4) is just an application of Nakayama’s lemma.

The next result is basically [Moo98, 4.4], which is itself an elaboration of the argument
in [Fal99, Theorem 10].
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Proposition 1.4.2.3. Suppose M0 = (M0, ϕM0
,Fil1M0) is an object inMF[0,1](W ), and

suppose that there exists a formally smooth augmented W -algebra (R, JR) with a contracting
Frobenius lift ϕR, and a versal object M in MF[0,1](R) equipped with an identification

ι∗RM = M0. Suppose also that we have another augmented W -algebra (R′, JR′) equipped

with a contracting Frobenius lift ϕR′, and a tuple (M ′, ϕM ′ ,Fil1M ′) over R′ such that:

1. (M ′, ϕM ′ ,Fil1M ′) satisfies conditions (1) to (3) of (1.4.1.5) with respect to R′.

2. We have an isomorphism

τ0 : (M0, ϕM0
,Fil1M0)

'−→ ι∗R′(M
′, ϕM ′ ,Fil1M ′).

Then there exists a map f : (R, JR)→ (R′, JR′) of augmented W -algebras and an isomor-
phism

τ : f∗(M,ϕM ,Fil1M)
'−→ (M ′, ϕM ′ ,Fil1M ′)

lifting τ0. In particular, there is a topologically quasi-nilpotent flat connection ∇M ′ that

completes the tuple (M ′, ϕM ′ ,Fil1M ′) to a filtered Dieudonné module over R′.

Proof. Let R′n = R′/Jn+1
R′ , J ′n = JR′R

′
n, ϕ′n = ϕR′(mod Jn+1

R′ ), M ′n = M ′ ⊗R′ R′n, and

ϕ′n = ϕM ′(mod Jn+1
R′ ). We will build f and τ by inductively constructing a coherent

sequence {(fn, τn)}n≥0, where

fn : (R, JR)→ (R′n, J
′
n),

and
τn : f∗n(M,ϕM ,Fil1M)

'−→ (M ′n, ϕ
′
n,Fil1M ′n).

We have (f0, τ0) given to us by hypothesis. So our problem is to construct (fn+1, τn+1)
once we are given (fn, τn).

To do this, pick any lift f̃n : (R, JR) → (R′n+1, J
′
n+1) of fn: this is possible since R is

formally smooth. The space of such lifts is naturally a torsor under

TR ⊗W J ‘n+1
n+1 := HomW (JR/J

2
R,W )⊗W J ‘n+1

n+1 .

We can also choose a lift

τ̃n : f̃∗n(M,Fil1M)
'−→ (M ′n+1,Fil1M ′n+1)

of τn.
Since ϕ′n+1((J ′n+1)n+1) = 0, there is a unique map σn : R′n → R′n+1 such that ϕ′n+1

factors as
R′n+1 → R′n

σn−−→ R′n+1.

The map ϕ′n+1 ◦ f̃n factors as

R
fn−−→ R′n

σn−−→ R′n+1,
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and is thus independent of the choice of lift f̃n. It is therefore harmless to write ϕ′n+1◦fn+1

for this map, and to write ϕ
′∗
n+1f

∗
n+1M for the pull-back of M along it. Similarly, the map

f̃n ◦ ϕR is independent of the choice of lift f̃n, and so we obtain meaning for the symbols
fn+1 ◦ ϕR and f∗n+1ϕ

∗
RM . We can easily check that the parallel transport isomorphism

ϕ
′∗
n+1f

∗
n+1M

ε
f̃n,M−−−−→ f∗n+1ϕ

∗
RM

between these former ambiguities is also independent of the choice of lift; so we will
call it εfn+1,M

. In the same vein, we have a unique isomorphism ϕ‘∗
n+1(τn+1) between

ϕ
′∗
n+1f

∗
n+1M and ϕ

′∗
n+1M

′
n+1 lifting ϕ

′∗
n (τn).

The Frobenius ϕ
f̃n,τ̃n

induced on M ′n+1 via f̃n and τ̃n fits in the following diagram:

ϕ
′∗
n+1f

∗
n+1M

εfn+1,M
> f∗n+1ϕ

∗
RM

f̃∗nM

f̃∗nϕM

∨

ϕ
′∗
n+1M

′
n+1

ϕ
′∗
n+1(τn+1)

∨ ϕ
f̃n,τ̃n

> M ′n+1

τ̃n

∨

For any other lift f̃ ′n of fn, for M̃ as in the proof of (1.4.2.2), we have the map

f̃∗nM
f̃∗nϕ
−1
M−−−−→ f∗n+1ϕ

∗
RM̃

f̃ ‘∗
n ϕM−−−−→ f̃ ‘∗

n M,

which reduces to the identity modulo J ‘n+1
n+1 , and thus induces a map

A
f̃n,f̃ ′n

: Fil1M0 → (M0/Fil1M0)⊗W J ‘n+1
n+1 ,

when restricted to f̃∗n Fil1M . The difference between f̃n and f̃ ′n is an element of TR ⊗W
J ‘n+1
n+1 and A

f̃n,f̃ ′n
is, up to sign, simply the image of this element in

HomW

(
Fil1M0,M0/Fil1M0

)
⊗W J ‘n+1

n+1

under the map ΘM of (1.4.2.2).

Let θ : M ′n+1
'−→ M ′n+1 be such that ϕ′n+1 = θ ◦ ϕ

f̃n,τ̃n
. Then θ−1 ◦ τ̃n also induces a
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map
A : Fil1M0 → (M0/Fil1M0)⊗W J ‘n+1

n+1 .

Using the versality of M and (4) of (1.4.2.2), we can choose a lift fn+1 such that A
f̃n,fn+1

=

A. For this choice, the unique map τn+1 for which the diagram below commutes respects
filtrations.

f∗n+1ϕ
∗
RM

f∗n+1ϕM
> f∗n+1M

τn+1
> M ′n+1

f̃∗nM τ̃n
>

f̃∗nϕM
>

M ′n+1.

θ

∨

The pair (fn+1, τn+1) now does the job for us.

Corollary 1.4.2.4. The category of tuples (M,ϕM ,Fil1M) over (R, JR) satisfying condi-
tions (1) to (3) of (1.4.1.5) is equivalent to MF[0,1](R).

Proof. There is a natural forgetful functor fromMF[0,1](R) to the category of such tuples,
and the proposition above tells us that it is essentially surjective provided we allow the
following

Assumption 1.4.2.5. For every M0 in MF[0,1](W ), there is an augmented W -algebra

(R′, JR′) and a versal object M ′ in MF[0,1](R
′) such that ι∗

R′M
′ = M0.

Admitting this for the moment, it only remains to show that the forgetful functor is
fully faithful. So suppose that we have two objects M and M ′ inMF[0,1](R), and suppose

that we have a map f : M → M ′ of R-modules such that f(Fil1M) ⊂ Fil1M ′ and
ϕM ′ϕ

∗
R(f) = fFM . We would like to show that f also respects the connections on both

sides. Consider

δ = (f ⊗ 1) ◦ ∇M −∇M ′ ◦ f ∈ HomR(M,M ′)⊗R Ω̂1
R/W :

Let Ad(ϕ)(δ) be the image of δ under the composition

Hom(M,M ′)⊗ Ω̂1
R/W

ϕ∗R⊗ϕ
∗
R−−−−−→ Hom(ϕ∗RM,ϕ∗RM

′)⊗ Ω̂1
R/W

ϕM ′(·)ϕ
−1
M ⊗1

−−−−−−−−−→ Hom(M,M ′)

[
1

p

]
⊗ Ω̂1

R/W .

Then, by our hypotheses on f ,

δ = Ad(ϕ)(δ) ∈ Hom(M,M ′)

[
1

p

]
⊗ Ω̂1

R/W ,
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Since Ω̂1
R/W is without p-torsion, we can use (1.4.1.4) to conclude that we have

δ = Ad(ϕ)(δ) ∈ Hom(M,M ′)⊗R JRΩ̂1
R/W .

Repeating this process, we find

δ ∈
⋂
n≥1

Hom(M,M ′)⊗R JnRΩ̂1
R/W = 0.

As for the still unproven assumption (1.4.2.5) above, it is best viewed as a result in the
deformation theory of p-divisible groups: the deformation functor for any p-divisible group
over a perfect field is representable and formally smooth. We refer to [Fal99] or [dJ95] for
further details.

1.4.3

Let P be a sharp, fs monoid, and consider the log algebra WP (cf. 1.2.1.8). If P 6= 1, we will
have many choices for a log Frobenius lift on WP , but the set of such choices is naturally
a torsor under the group Hom(P gp, 1 + pW ). Indeed, suppose that we have two Frobenius
lifts ϕ and ϕ′ over WP , and consider their difference f : m 7→ ϕ(m)ϕ′(m)−1 ∈ M

gp
WP

. We

have a short exact sequence:

0→ W× → M
gp
WP
→ P gp → 0.

f restricts to the identity on W×, induces the identity on P gp and gives rise to an element
of Hom(P gp, 1 + pW ).

Notice that we also have the diagram

1 > 1 + pW > M
gp
WP

> M
gp
kP

> 1

1 > 1 + pW

wwwwwwwwwwwww
> W×

∧

> k×

∧

> 1

The short exact sequence at the bottom of the diagram is canonically split by the Te-
ichmuüller lift. Sections of the short exact sequence on top inducing the Teichmüller split-
ting on the sequence at the bottom also form a torsor under Hom(P gp, 1 + pW ). We now
have:
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Lemma 1.4.3.1. There is a bijection of Hom(P gp, 1 + pW )-torsors:

(
Frobenius lifts on WP

)
↔


Splittings of the short exact sequence

1→ 1 + pW → M
gp
WP
→ M

gp
kP
→ 1

lifting the Teichmüller splitting of the sequence
1→ 1 + pW → W× → k× → 1


Proof. Fix a Frobenius lift ϕ on WP , and consider the map

Φ : M
gp
WP
→ 1 + pW

m 7→ ϕ(m)m−p.

Its restriction to W× has kernel k× and it is simple to check that its restriction to 1 + pW
is bijective. The kernel of Φ will be the section of (1.4.3) corresponding to the Frobenius
lift ϕ, and we have a splitting

M
gp
WP
→ M

gp
kP
⊕(1 + pW ), (1.4.3.1.1)

where the projection onto the second summand is
(
Φ|1+pW

)−1 ◦ Φ.
Conversely, suppose that we have a splitting as above compatible with the Teichmüller

splitting on W×. The corresponding Frobenius lift is now the direct sum of the natural
Frobenius maps on each of the summands.

Even though WP is not log smooth over Zp, we can make sense of a log Dieudonné
module over it.

Definition 1.4.3.2. Fix a Frobenius lift ϕW on WP . A log Dieudonné module over
WP is a tuple (M,ϕM , NM ), where

• M is a finite free W -module.

• ϕM : ϕ∗WM →M is an injective map whose image contains pM .

• NM : P gp,∨ → End(M) is a map satisfying

NM (f)ϕM = pϕMϕ∗W
(
NM (f)

)
,

for all f ∈ P gp,∨, the dual group for P gp.

Remark 1.4.3.3. If we were less pedantic, and identified ϕM0
with the ϕW -semi-linear map

induced by it, and if we set N = NM (f) and ϕ = ϕM , then this condition would be the
more legible and familiar

Nϕ = pϕN.
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Remark 1.4.3.4. Why do we keep track of the Frobenius lift in this definition, even though
the required properties of the tuple (M,ϕM , NM ) appear to have nothing to do with it?
To answer this, we need to observe that there is one (perhaps the only) important way
in which we obtain log Dieudonné modules over WP : We begin with an augmented W -
algebra (R, JR) equipped with an fs log structure MR → R, and a log Frobenius lift ϕR
such that ϕR(JR) ⊂ JR. Suppose that MR /R

× = P and that the induced log structure
on W = R/JR makes it a log W -algebra isomorphic to WP . Then we have an induced
Frobenius lift ϕW on WP . Now, any log Dieudonné module (M,ϕM ,∇M ) over R will give
rise under reduction modulo JR to a log Dieudonné module over WP and with respect to
this particular Frobenius lift.

Remark 1.4.3.5. Functoriality between the categories of log Dieudonné modules over WP
for different Frobenius lifts is determined by the requirement that it be compatible with the
functoriality for log Dieudonné modules (that is, log F -crystals) over log formally smooth
W -algebras), and the reduction functor described in (1.4.3.4). To describe this, suppose
that we have a Frobenius lift ϕP on WP . Let Q be any other sharp, fs monoid. Fix any
Frobenius lift ϕQ on WQ, and let f : WP → WQ be any map of log W -algebras that is

the identity on W . This amounts to giving a map f ] : MWP
→ MWQ

of monoids. Let

(M,ϕM , NM ) be a log Dieudonné module over WP . Then the pull-back f∗(M,ϕM , NM )
over WQ is described as follows. We have f∗M = M , and

Nf∗M : Qgp,∨ f]−→ P gp,∨ → End(M).

Describing ϕf∗M is only a little more involved. Consider the map

Φf : M
gp
WP
→ 1 + pW

m 7→ ϕQ(f ](m))f ](ϕP (m))−1.

This factors through P gp, and applying the p-adic logarithm gives us the map log(Φf ) :

P gp → W . We can think of this as an element of P gp,∨ ⊗ W ; evaluating NM on this
element gives us NM (log Φf ) ∈ End(M). We then have:

ϕf∗M = ϕM ◦
(
1 +NM (log Φf )

)
.
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CHAPTER 2
p-ADIC HODGE THEORY FOR DEGENERATING ABELIAN

VARIETIES

2.1 Splittings of filtrations

2.1.1

Let A be a commutative ring, and M a finite free A-module.

Definition 2.1.1.1. A decreasing exhaustive filtration F •M on M is a collection
{F iM}i∈Z of finite free A-sub-modules of M such that:

1. For all i ∈ Z, F i+1M ⊂ F iM .

2. For all i ∈ Z, the A-module griF M = F iM
F i+1M

is again finite free.

3. There exists k ∈ Z such that F kM = M .

We will usually suppress the adjectives and refer to such a gadget simply as a filtration.

Remark 2.1.1.2. One way to obtain filtrations on M is via a co-character µ : Gm → GL(M):
this defines a grading M = ⊕i∈ZM i, where

M i = {m ∈M : µ(z)m = zim for all z ∈ Gm}.

Given such a grading of M we have the associated decreasing filtration given by

F iM = ⊕j≥iM i.

In this situation, we will say that F iM is split by the co-character µ.

Let G ⊂ GL(M) a closed, connected, reductive sub-group. Suppose that M is equipped
with a decreasing filtration F •M . Let PF ⊂ G be the sub-group that stabilizes this
filtration, and let UF ⊂ PF be the sub-group that acts trivially on gr•F M . Then we have
the following:

Lemma 2.1.1.3. [Kis10, Lemma 1.1.1] The following are equivalent:

• F •M can be split by a co-character µ : Gm → G.

• PF is a parabolic sub-group of G with unipotent radical UF , and the grading on gr•F M
is induced by a co-character µ : Gm → PF /UF .
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Definition 2.1.1.4. When the equivalent conditions of (2.1.1.3) hold, we will say that the
filtration F •M is G-split.

More generally, for any flat, closed sub-group H ⊂ G, we will say that F •M is H-split
if it is G-split and we can choose a splitting co-character µ that factors through H.

Following [Kis10], for G not necessarily connected, we will say that F •M is G-split if
it is G◦-split. Here G◦ is the connected component of G.

Let F •M andW •M be twoG-split filtrations ofM , let PF and PW be the corresponding
parabolic sub-groups of G given to us by (2.1.1.3), and let LF and LW be their respective
maximal reductive quotients. We have closed embeddings L? ↪→ GL(gr•? M) for ? = F,W .

Let F
•

be the filtration on gr•W M induced by F •.

Lemma 2.1.1.5. Let the notation be as above.

1. Suppose that we have a short exact sequence

0→ N ′ → N
π−→ N ′′ → 0

of A-modules. Let I ⊂ M be an A-sub-module, and suppose that we have a direct
sum decomposition N = N1 ⊕N2 of N inducing direct sum decompositions

I = (I ∩N1)⊕ (I ∩N2);N ′ = (N ′ ∩N1)⊕ (N ′ ∩N2).

Then N1 ⊂ I if and only if N ′ ∩N1 ⊂ N ′ ∩ I and π(N1) ⊂ π(I)

2. Suppose that we have a co-character µ : Gm → PF∩PW and let F •µM be the associated

filtration split by µ. Suppose that the filtration F
•
µ on gr•W M induced by F •µM is equal

to F
•
. Then F iM = F iµM , for all i ∈ Z. In particular, µ splits F •M .

Proof. Let us begin with (1): the only if part of it is immediate. So suppose N ′∩N1 ⊂ N ′∩I
and π(N ′) ⊂ π(I). Choose an element n ∈ N1. By hypothesis, there is an element
m = m1 + m2 ∈ I, with mi ∈ I ∩ Ni (i = 1, 2), such that π(n) = π(m). To show that n
lies in I, it is now enough to show that m1 − n ∈ I. To see this, simply note that we have
n′ = m− n = (m1 − n) +m2 ∈ N ′, where

m1 − n ∈ N ′ ∩N1 ⊂ N ′ ∩ I.

We now prove (2). Let ⊕i∈ZM i be the grading on M induced by µ. The assumption
that µ factors through PF ∩PW ⊂ G implies that, for each j ∈ Z, we have induced gradings:

W jM = ⊕i∈ZW jM ∩M i;

F jM = ⊕i∈ZF jM ∩M i.
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To show that F jM = F
j
µM , for all j ∈ Z, it is enough to show that M i ⊂ F jM for all

i, j ∈ Z such that i ≥ j. In fact, since W •M is exhaustive, it is enough to show that, for
all integers i, j, k ∈ Z such that i ≥ j, we have

M i ∩W kM ⊂ F j ∩W kM.

For fixed i and j, this can be shown by descending induction on k. Suppose that the
assertion is true for i, j, k as above. Then the assertion for i, j, k − 1 will follow from
applying (1), with

N = W k−1M ;N ′ = W kM ;N ′′ = grk−1
W M ; J = W k−1M ∩ F jM ;

N1 = W k−1M ∩M i;N2 = W k−1M ∩
(
⊕l 6=iM l

)
.

Let F •M , W •M , PF , PW , LW and F
•

be as above.

Lemma 2.1.1.6. Suppose that A = k is a perfect field, and that F
•

is LW -split. Then
F •M is PW -split.

Proof. Let PF ⊂ LW be the image of PF ∩ PW : this is the parabolic sub-group of LW
corresponding to the LW -split filtration F

•
. First, assume that k is algebraically closed.

Then, by [Bor91, IV.14.13], we can find a maximal torus T ⊂ PF ∩ PW . This T maps
isomorphically to a maximal torus T ⊂ PF .

Let UF be the unipotent radical of PF . Then, the space of co-characters of LW splitting
F
•

is a torsor under UF . Moreover, by [Bor91, III.10.6], all maximal tori of PF are
conjugate to each other under UF . Putting these two statements together, we see that we
can choose our co-character µ splitting F

•
such that it factors through T . We can lift this

uniquely to a co-character µ : Gm → T ↪→ PF ∩ PW , and it follows from (2.1.1.5)(2) that
µ splits F •M .

Now let us consider the general case where k is any perfect field. Take the functor Q
on k-algebras given by:

Q(R) =
{

Co-characters µ : Gm ⊗k R→ PW ⊗k R splitting F •M ⊗k R
}

,

for any k-algebra R. In general, this functor is a pseudo-torsor under the unipotent group
UF ∩ PW . The proof above for k algebraically closed shows that it is in fact a UF ∩ PW -
torsor. Since UF ∩ PW is connected unipotent and k is perfect, any UF ∩ PW -torsor over
k is trivial. In particular, Q(k) is non-empty, and we have our result.

Remark 2.1.1.7. Since UF ∩ PW is a sub-group of the unipotent radical UF of a parabolic
sub-group PF of a reductive group G, this result is valid without the assumption that k is
perfect, but we will not need this more general statement.
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2.1.2

Suppose that K is a field with charK = 0, and let C be a neutral K-linear Tannakian
category with fiber functor ω : C→ VectK . Suppose that we have a 1-dimensional object

T ∈ Obj(C); fix an isomorphism λ : K
'−→ ω(T ). For any object L of C, and any k ∈ Z≥0,

denote by L(k) the tensor product L ⊗ T⊗k. We will also denote the K-vector space

ω(L(k)) by ω(L)(k). The choice of λ gives us an identification λkL : ω(L)
'−→ ω(L)(k), for

any object L of C.
Fix D ∈ Obj(C); let CD be the Tannakian sub-category of C generated by D, and let

CD,T be the Tannakian sub-category of C generated by D and T . Let ωD (resp. ωD,T )

be the restriction of ω to CD (resp. CD,T ). Then H = Aut⊗(ωD,T ) is a closed sub-group
of GL(V ⊕ ω(T )), where V = ω(D). If T is isomorphic to an object in CD, then we can
view H as a closed sub-group of GL(V ). Let N : D → D(1) be a morphism such that the
composition

Nλ : V
ω(N)−−−→ V (1)

λ−1
D−−−→ V

is a nilpotent endomorphism of V . Note that Nλ ∈ End(V ) determines a map

fλ : Ga → GL(V )

a 7→ exp(aNλ).

The associated differential
Lie(fλ) : Lie(Ga)→ End(V )

is independent of the choice of λ up to multiplication by an element of K×. So we have a
well-defined Lie sub-algebra N ⊂ End(V ): this is the image of Lie(fλ), for any choice of λ.

In [Del80, 1.6.1] (cf. also [Del80, 1.6.4]), we find a construction of the unique ascending
filtration M•V on V such that:

• N(MiV ) ⊂Mi−2V (1);

• Nk induces an isomorphism grMk M
'−→ grM−k V (k).

This is the Jacobson-Morosov filtration on V associated with the morphism N . It is
clear that for any a ∈ K×, M•V will also satisfy the properties above with respect to the
morphism aN . In particular, M•V only depends on the Lie sub-algebra N ⊂ End(M). We
can convert it into a descending filtration W •V by setting W iV = M−iV . In this case Nk

will induce an isomorphism gr−kW V
'−→ grkW V (k).

Lemma 2.1.2.1. Maintain the notation as above. Let G ⊂ GL(V ) be a closed, reductive
sub-group.

1. The Lie sub-algebra N ⊂ End(V ) is stabilized by H. In particular, H stabilizes the
filtration W •V .

2. Suppose that N ⊂ Lie(G); then the filtration W •V is G-split.
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3. Let PW ⊂ G be the parabolic sub-group stabilizing W •V . Suppose that G contains
the image of H in GL(V ), and suppose also that we have an exact tensor filtration
F • on ωD (cf. [SR72, IV.2.1.1]); then F •V is PW -split.

Proof. Since H = Aut⊗(ωD,T ) and T is an object of CD,T , for any K-algebra R and any
element h ∈ H(R), we have an associated automorphism hT of ω(T ) ⊗K R. If we denote
by h(1) the automorphism h⊗ hT of V (1)⊗R = V ⊗ ω(T )⊗R, then the diagram

V ⊗K R
ω(N)⊗1−−−−−→V (1)⊗K R

V ⊗K R

h

∨
ωN⊗1−−−−→ V (1)⊗K R

h(1)

∨

commutes. Moreover, for any choice λ : K
'−→ ω(T ), the automorphism λ−1

D h(1)λD of

V ⊗K R is a scalar multiple of h. Since Nλ = λ−1
D ω(N), we find that h(Nλ ⊗ 1)h−1 is a

scalar multiple of Nλ ⊗ 1. In other words, N is stabilized by H, and we have shown the
first part of assertion (1). The second part is now immediate.

Assertion (2) follows from [SR72, IV.2.5.3].
For (3), let H ⊂ GL(V ) be the image of H in GL(V ). Then H is simply the group

Aut⊗(ωD), and F •V is H-split by [SR72, Theorem IV.2.4]. The second part of (1) shows
that H ⊂ PW , and so the filtration F •V must necessarily be PW -split.

Note on Notation 2.1.2.2. Suppose R is a commutative ring and suppose that C is an
R-linear tensor category that is a faithful tensor sub-category of ModR, the category of R-
modules. Suppose in addition that C is closed under taking duals, symmetric and exterior
powers in ModR. Then, for any object D ∈ Obj(C), we will denote by D⊗ the direct sum
of the tensor, symmetric and exterior powers of D and its dual.

2.2 p-adic Hodge theory

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field k
of characteristic p > 0. Let W = W (k) be the ring of Witt vectors with coefficients in k

equipped with its Frobenius lift ϕW , and let K0 = W
[

1
p

]
⊂ K be the maximal absolutely

unramified sub-field. A Galois representation will be a continuous finite dimensional
Qp-representation of Gal(K/K).

2.2.1

We refer the reader to Fontaine’s article [Fon94a] for the definition of the p-adic period
rings Bcris, Bst and BdR. We will simply note:
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• BdR is a filtered K-algebra equipped with a Gal(K/K)-action; Bcris ⊂ Bst are
K0-algebras equipped compatibly with a ϕW -semi-linear endomorphism ϕ and a
Gal(K/K)-action; and Bst is additionally endowed with a Bcris-linear derivation N
that is defined up to a Q-multiple, and depends on a choice of p-adic valuation on K.

• We have B
Gal(K/K)
dR = K, B

Gal(K/K)
st = B

Gal(K/K)
cris = K0.

• There exists a natural Galois-equivariant embedding Bcris ⊗K0
K ↪→ BdR, inducing

a filtration on Bcris ⊗K0
K.

Remark 2.2.1.1. While there is no canonical embedding of Bst ⊗K0
K into BdR, this lack

can be ameliorated in the following way: Fix a p-adic valuation ν on K. Set

K log =
K
[
lα : α ∈ K×

]
(
lαβ − lα − lβ , for α, β ∈ K×; lα = log(α), for α ∈ 1 + πOK .

) .
This is a K-algebra, and giving a section c : K log → K corresponds precisely to giving a
branch of the p-adic logarithm over K.

K log can be equipped with the K-derivation N given by:

N : lα → −ν(α)lα.

We can define a similar ring K
log

for K, and it is easy to see that the natural map

K ⊗K K log → K
log

is an isomorphism.
There is also the universal logarithm:

log : K
× → K

log

α 7→ lα.

We claim that there is a canonical embedding (Bst⊗K0
K log)N=0 ↪→ BdR, where we are

taking the invariants of the diagonal operator N⊗1+1⊗N on the right hand side (note that
this operator is independent of the choice of valuation ν). To construct this embedding,

in [Fon94a, 4.2.2], we simply have to replace the choice of logarithm log : K
× → K over

K with the universal one into K
log

= K ⊗K K log. In particular, any branch of the p-adic
logarithm over K corresponds to a map c : K log → K of K-algebras and determines an
embedding ιc : Bst ⊗K0

K ↪→ BdR.

Following the remark, we give the following very slight modification of the definition of
a filtered (ϕ,N)-module:
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Definition 2.2.1.2. A filtered (ϕ,N)-module D over K is a vector space D over K0,
equipped with a Frobenius semi-linear operator ϕ, a linear operator N and a filtration on

the K-vector space
(
D ⊗K0

K log
)N=0

. This data satisfies: Nϕ = pϕN .

Remark 2.2.1.3. For every choice of logarithm c : K log → K, we obtain a filtration on
D ⊗K0

K, and thus a filtered (ϕ,N)-module in the usual sense. The notion of weak
admissibility is preserved and reflected under this operation, so we can speak of a weakly
admissible (ϕ,N)-module in our sense as well.

Fix the derivation N on Bst that corresponds to the choice of valuation ν such that
ν(π) = 1, for some (hence any) uniformizer π of K. We can now define Fontaine’s (co-
variant) functor Dst from Galois representations to filtered (ϕ,N)-modules over K (see
[Fon94b]) by the formula

Dst(V ) = HomGal(K/K)(Qp, Bst ⊗Qp V ).

If DdR(V ) = HomGal(K/K)(Qp, BdR ⊗Qp V ) is the corresponding filtered K-vector space,

then we have a natural map

(
Dst(V )⊗K0

K log
)N=0

↪→ DdR(V ),

which respects filtrations on both sides.
One can also similarly define the corresponding crystalline functor Dcris to filtered ϕ-

modules over K.

2.2.2

Let V be a semi-stable Galois representation with Hodge-Tate weights in {0, 1}1; let D =
Dst(V ) be the associated weakly admissible filtered (ϕ,N)-module. Fix a uniformizer
π ∈ K and fix the choice of logarithm taking π to 0. This endows DK = D ⊗K0

K with
a filtration Fil•DK , and so we can also think of D as a filtered ϕ-module. Some of the
discussion below can also be found in [Pau04].

Let Qp(1) be the 1-dimensional Galois representation corresponding to the p-adic cy-
clotomic character χ : Gal(K/K) → Z×p , and set Qp(−1) = Hom(Qp(1),Qp). Let
K0(1) = Dcris(Qp(−1)) be the associated 1-dimensional weakly admissible filtered ϕ-
module over K. Choose a generator ε for Qp(1): this amounts to choosing a generator
compatible system of p-power roots of unity in K. Associated with this is a cylotomic
period t ∈ Bcris (cf. [Fon94a, 2.3.4]); the element e = t ⊗ ε−1 is a canonical basis element
for K0(1), and we have ϕ(e) = pe. For any weakly admissible filtered (ϕ,N)-module E
and any integer r ∈ Z, set E(r) = E ⊗K0(1)⊗r, where for r < 0 K0(1)⊗r is defined to be
Hom(K0(1)⊗−r, K0).

1. we use the convention where the Tate twist Qp(1) has Hodge-Tate weight −1.
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The nilpotent endomorphism N : D → D satisfies the condition Nϕ = pϕN , and the
choice of basis e for K0(1) allows us to view N as a map N : D → D(1) of weakly admissible
modules.

Let K0 be the trivial filtered ϕ-module over K. Set:

Vst(D) = Homϕ,N,Fil(K0, Bst ⊗K0
D).

Here the sub-script represents the structures that are supposed to be preserved. Since V
is semi-stable, Vst(D) is a finite dimensional Galois representation, and we have a natural
identification of Galois representations V = Vst(D). Applying the functor Vst to the map
N , we obtain a map Vst(N) : V → Vst(D(1)) = V ⊗ Vst(K0(1)) = V (−1) of Galois
representations. We will denote this map again by N ; this should not be a source of
confusion.

We can now apply the theory of (2.1.2). First, in the notation of loc. cit., we take C to
be the base change over K0 of the Qp-linear (non-neutral) Tannakian category of weakly
admissible filtered (ϕ,N)-modules, equipped with the forgetful fiber functor ω to VectK0

.
We pick D to be our object in C, we take T to be K0(1), and we take N to be the map
N : D → D(1). We then have the associated ascending Jacobson-Morosov filtration M•D
on D (here we are conflating D with the K0-vector space underlying it). Up to shift, it
agrees with the three-step filtration

0 = W−1D ⊂ W0D ⊂ W1D ⊂ W2D = D,

where W0D = imN and W1D = kerN .
Next, we can take C to be the Qp-linear Tannakian category of continuous Qp-

representations of Gal(K/K) and ω to be the forgetful functor to VectQp . We will take D

to be V , T to be the inverse Tate twist Qp(−1), and N to be the map N : V → V (−1). We
have the associated Jacobson-Morosov filtration M•V . We will use the shifted three-step
filtration W•V satisfying WiV = Mi−1V , so that we again have a three-step filtration

0 = W−1V ⊂ W0V ⊂ W1V ⊂ W2V = V.

Again, W1V = kerN and W0V (−1) = imN .

Lemma 2.2.2.1. Let the notation be as above.

1. The filtration W•D of D is a filtration by weakly admissible filtered (ϕ,N)-sub-
modules.

2. The filtration W•V is a filtration by Gal(K/K)-sub-representations. The filtration
Dst(W•(V )) on D = Dst(V ) is identified with W•D.

3. W1V is crystalline, as are all the associated graded terms grWi V . Moreover, W0V

is potentially unramified, and grW2 V is potentially a Tate twist by Qp(−1) of an
unramified representation.
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4. Suppose that we have a closed, reductive sub-group GK0
⊂ GL(D) that is the pointwise

stabilizer of a collection of ϕ-invariant tensors {sα} ⊂ Fil0(D⊗)N=0. Then the
filtration W•D is GK0

-split.

5. With the hypotheses as in (1), let PW ⊂ GK0
be the parabolic sub-group stabilizing

W•D; then the two-step filtration Fil•DK is PW ⊗K0
K-split.

6. Suppose that we have a closed, reductive sub-group GQp ⊂ GL(V ) that is the point-

wise stabilizer of a collection of Gal(K/K)-invariant tensors {sα} ⊂ V ⊗. Then the
filtration W•V is GQp-split.

Proof. Assertions (1) and (2) are seen from the explicit descriptions of W•D and W•V
given above.

The statements in (3) about WiV and grWi V are immediately translated into the fol-
lowing on the weakly admissible module side: N is trivial on W1D, and on all the associated
graded terms grWi D. Moreover, ϕ|W0D

is an isomorphism. Both these assertions are easily
checked.

As for (4), the hypotheses on GK0
ensure that Aut⊗(ωD) ⊂ GK0

. Since N(sα) = 0,
we also see that N lies in Lie(GK0

). The conclusion follows from (2.1.2.1)(2).
(5) is more or less immediate from (2.1.2.1)(3): we only have to note that, to apply it

directly, we would need to take our Tannakian category C to be the base change over K of
the category of weakly admissible (ϕ,N)-modules, D to be the corresponding object of C,
now viewed as a K-linear category, ω to be the forgetful fiber functor to VectK , and F • to
be the exact tensor filtration on ωD induced by Fil•DK .

(6) follows from (2.1.2.1)(2) for reasons analogous to those found in the proof of (4).

2.2.3

Maintain the notation as above. Set

Vcris(D) = Homϕ,Fil(K0, Bcris ⊗K0
D).

For a general weakly admissible filtered (ϕ,N)-module D, Vcris(D) need not even be finite
dimensional2, but in our special situation, it is finite dimensional with dimension equal

to dimD. In fact, we can say more: Fix a compatible system (πn)n≥0 = ( p
n+1√

π)n≥0 of
p-power roots of π in K. Set K∞ =

⋃
n≥1K(πn) ⊂ K, and let Gal(K/K∞) be the absolute

Galois group of K∞. Let lπ ∈ Bst be the element log
[π]
π considered in [Bre02, §3.5]: it arises

from the choice of a coherent system of p-power roots of π made above, and transcendentally
generates Bst over Bcris. Sending lπ to 0 gives us a projection Bst → Bcris, which then gives
us a map λV : V → Vcris(D). Identify V with Vπ via λV . Let ρ, ρπ : Gal(K/K)→ GL(V )
be the continuous homomorphisms corresponding to V and Vπ, respectively.

2. cf. [CF00, Théorème 4.3]
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Proposition 2.2.3.1. With the notation and definitions as above:

1. Let Dπ be the filtered ϕ-module obtained from D by ‘forgetting N ’ and via our choice
of logarithm. Then Dπ is again weakly admissible, and the map

λV : V → Vπ := Vcris(D) = Vcris(Dπ)

is a Gal(K/K∞)-equivariant isomorphism. If V is in fact crystalline, then λV is
simply the canonical identification V = Vcris(Dcris(V )).

2. We have
ρ = (1V + tp ⊗N) ◦ ρπ,

Here, tp : Gal(K/K) → Zp(1) is the 1-cocycle defined in [Bre02, 3.5.4], so that we
have glu = lπ + tp(g)t, for all g ∈ Gal(K/K); and t ∈ Bcris is Fontaine’s cyclotomic
period mentioned in the previous sub-section.

3. The following diagram commutes:

D ⊗Bst
'
> V ⊗Bst

D ⊗Bst

1 + lπN

∨ '
> Vπ ⊗Bst

λV ⊗Bst

∨

Here, the horizontal maps are Fontaine’s canonical comparison isomorphisms.

Proof. For (1), see [Bre02, 3.5.1,3.5.3]. Note, however, that Breuil uses the contravariant
Fontaine functors, while we have employed their covariant counterparts. Assertion (2)
follows from [Bre02, 3.5.4].

For (3), let Set c(g) = tp(g
−1): this gives a Zp(−1) valued 1-cocycle. Let E be the

2-dimensional Galois representation given by

g 7→
(

1 c(g)

0 χ(g)−1

)
,

in a basis {e1, e2} for E.
This is semi-stable with Hodge-Tate weights in {0, 1}. Using (2) and the functorial-

ity of λV , to prove (3), it is enough to show that the diagram in (3) commutes for the
representation E. For this, we can do an explicit computation. We check:

• Dst(E) is spanned by f1 = 1⊗ e1 and f2 = lπ ⊗ e1 + t⊗ e2, and N maps f2 to f1.

• Eπ = Vcris(Dst(E)) is spanned by 1⊗ f1 and t−1 ⊗ f2;

• λE maps e1 to 1⊗ f1 and e2 to t−1 ⊗ f2.
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Putting all this together, it is easy to see that the map on the left hand side of the square
is indeed 1 + luN .

We will denote by Rep
cris,◦
Gal(K/K)

the category of Galois-stable Zp-lattices in crystalline

Gal(K/K)-representations. Rep◦
Gal(K/K∞)

will denote the category of Gal(K/K∞)-stable

Zp-lattices in Gal(K/K∞)-representations.

Lemma 2.2.3.2. The restriction functor from Rep
cris,◦
Gal(K/K)

to Rep◦
Gal(K/K∞)

is fully

faithful

Proof. This is [Kis09, 2.1.4].

Suppose now that we have a Galois-stable lattice Λ ⊂ V . The filtration W•V on V
intersects with Λ to give rise to a filtration W•Λ on Λ. Via the isomorphism λV : V → Vπ
above, we obtain a Gal(K/K∞)-stable lattice Λπ = λV (Λ) ⊂ Vπ.

Corollary 2.2.3.3. Maintain the notation as above.

1. The map N : V → V (−1) restricts to a map N : Λ→ Λ(−1).

2. The Zp-lattice Λπ ⊂ Vπ is Galois-stable, and the map N gives rise to a Galois-
equivariant map N : Λπ → Λπ(−1) via the isomorphism λV .

3. The filtration W•Λ is Galois-stable and is taken to a Galois-stable filtration W•Λπ of
Λπ.

Proof. Both (1) and (2) follow from [Bre02, 3.5.5]. For (3) the description in terms of of
W•Λ above in terms of the Galois-equivariant operator N shows that it is Galois-stable.
Since the isomorphism λV is Gal(K/K∞)-equivariant, for each i, the map

WiΛ ↪→ Λ
λV−−→' Λπ (2.2.3.3.1)

is again Gal(K/K∞)-equivariant. For i < 2, by (2.2.2.1)(3), WiΛ is a Galois-stable Zp-
lattice in a crystalline representation. It now follows from (2.2.3.2) that, for i < 2, the map
in (2.2.3.3.1) is in fact Gal(K/K)-equivariant. This means precisely that the filtration
W•Λπ is Galois-stable as well.

2.2.4

Let k̄ be the residue field of K; for any extension l/k within k̄, set S(l) = W (l)[|u|]. Let
S = S(k), and let E(u) ∈ S be the monic Eisenstein polynomial associated with the
uniformizer π. We equip S with the lift ϕS of the p-power Frobenius on S/pS given by:

ϕS|W = ϕW
ϕS(u) = up.
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Definition 2.2.4.1. A ϕ-module over S is a finite free S-module M endowed with an
S-linear isomorphism

ϕM : ϕ∗SM
[
E(u)−1

] '−→M
[
E(u)−1

]
The category of ϕ-modules over S will be denoted Mod

ϕ
/S. If the map ϕM actually arises

from a map ϕ∗SM→M whose co-kernel is killed by E(u)r, for some natural number r, we
will say that M has E-height r.

A (ϕ,N)-module over S is a ϕ-module M equipped with an endomorphism N of

M/uM
[

1
p

]
satisfying Nϕ = pϕN , where ϕ is the ϕW -semi-linear endomorphism of M/uM

induced from ϕM. The category of (ϕ,N)-modules over S will be denoted Mod
ϕ,N
/S .

A Barsotti-Tate module over S is a ϕ-module of E-height 1. The category of
Barsotti-Tate modules over S will be denoted BT

ϕ
/S.

There is a fully faithful exact tensor functor M : Repst
Gal(K/K)

→ Mod
ϕ,N
/S ⊗Qp from

the category of semi-stable Galois representations to the isogeny category of Mod
ϕ
/S, so

that, for any V ∈ Repst
Gal(K/K)

, we have canonical isomorphisms:

M(V )

uM(V )

[
1

p

]
'−→ Dst(V );

ϕ∗SM(V )

E(u)ϕ∗SM(V )

[
1

p

]
'−→ DdR(V ).

The first isomorphism is equivariant with respect to ϕ and N , and the second respects
filtrations, where the filtration on the left hand side is induced from:

Fili ϕ∗SM(V ) = ϕ−1
M(V )

(
E(u)iM(V )

)
.

Moreover, for any natural number r, Galois representations with Hodge-Tate weights in
[0, r] are taken to ϕ-modules of E-height r.

All this follows from [Kis06, 1.3.15], which shows the above with the category of weakly
admissible filtered (ϕ,N)-modules over K replacing the category of semi-stable Galois
representations. But these two categories are equivalent via the functor Dst.

3

By [Kis10, 1.2.1], we also have a fully faithful exact tensor functor

M◦ : Rep
cris,◦
Gal(K/K)

→ Mod
ϕ
/S,

3. In loc. cit., Kisin also restricts himself to the situation where the Hodge-Tate weights are
all non-negative, but this can be worked around using Tate twists. See proof of [Kis10, 1.2.1]
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for which the following diagram commutes:

Rep
cris,◦
Gal(K/K)

M◦
> Mod

ϕ
/S

Repst
Gal(K/K)

∨

∩

M
> Mod

ϕ,N
/S ⊗Qp.

∨

∩

Let Λ be a Galois-stable Zp-lattice in a semi-stable Gal(K/K)-representation V with
Hodge-Tate weights in {0, 1}. Let D = Dst(V ) be the associated weakly admissible filtered
(ϕ,N)-module over K. Let Vπ be as in (2.2.3.1), equipped with a Gal(K/K∞)-equivariant

isomorphism λV : V
'−→ Vπ. Let Λπ be the image of Λ under this isomorphism, as in

(2.2.3.3). There is a unique isogeny representative of M(V ) that is isomorphic to M◦(Λπ)
in Mod

ϕ
/S: we denote this by M(Λ). In particular, we have natural identifications

M(Λ)/uM(Λ)

[
1

p

]
= Dcris(Vπ) = D;

ϕ∗SM(Λ)

E(u)ϕ∗SM(Λ)

[
1

p

]
= DdR(V ).

Moreover, the filtration W•Λπ (cf. (2.2.3.3)(3)) gives rise to a filtration W•M(Λ) on M(Λ)
under the functor M◦.

Suppose that we have Galois-invariant tensors {sα} ⊂ Λ⊗ (see (2.1.2.2)) such that their
pointwise stabilizer is a reductive sub-group GZp ⊂ GL(Λ). We can think of these tensors

as Gal(K/K)-equivariant maps 1 → Λ⊗, where 1 is the trivial representation Zp. By
abuse of notation, let 1 again denote the trivial filtered ϕ-module over K. Then, by the
tensor-functoriality of Dst, we obtain sections sα,st : 1→ D⊗.

Proposition 2.2.4.2. With the notation as above, we have ϕ-invariant tensors {sα,S} ⊂
M(Λ)⊗ such that:

1. The natural identification
M(Λ)

uM(Λ)

[
1

p

]
= D;

takes {sα,S} to {sα,st}.

2. There exists an isomorphism

Λ⊗Zp S(k̄)
'−→M(Λ)⊗S S(k̄)

under which the tensors {sα ⊗ 1} are taken to {sα,S ⊗ 1}.
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3. There exists a map NS : M(Λ)→M(Λ) satisfying

NSϕM(Λ) =
pE(u)

E(0)
ϕM(Λ)NS,

and reducing modulo u to the nilpotent operator N on D.

Proof. If we think of sα as a Galois-equivariant map sα : 1 → Λ⊗, we obtain, using
λV , a Gal(K/K∞)-equivariant map sα,π : 1 → Λ⊗π . By (2.2.3.2), The restriction functor

from Rep
cris,◦
Gal(K/K)

to Rep◦
Gal(K/K∞)

is fully faithful. Therefore, sα,π in fact determines

a Galois-invariant tensor in Λ⊗π . Via the functor M we then obtain ϕ-invariant tensors
sα,S ∈M(Λ)⊗.

Let {sα,π,cris} ⊂ D⊗ be the tensors obtained from the reduction of {sα,S} modulo
(u). To prove (1), it suffices to show that these tensors agree with {sα,st}. We see from
(2.2.3.1)(3) that, in D⊗ ⊗Bcris,

sα,π,cris ⊗ 1 = exp(lπN)(sα,st ⊗ 1).

But N(sα,st) = 0, and so sα,st is indeed equal to sα,π,cris, as required.
For (2), it suffices to prove the statement with Λ replaced by Λπ. But this is a conse-

quence of [Kis10, 1.3.4]. Note that this is the place where reductivity of GZp is crucial.

Finally, in (3), NS arises from the map N : Λπ → Λπ(−1) in (2.2.3.3)(2) via the functor
M. We just have to observe that the underlying S-module for M(Zp(−1)) is simply S

with ϕ being multiplication by
pE(u)
E(0)

. See the proof of [Kis10, 1.2.1].

Corollary 2.2.4.3. Let M0 = M(Λ)/uM(Λ), so that M0

[
1
p

]
= D. Then:

1. The tensors {sα,st} lie in M⊗0 .

2. The filtration W•Λ is GZp-split.

3. There is an isomorphism

Λ⊗Zp W (k̄)
'−→M0 ⊗W W (k̄)

which takes {sα ⊗ 1} to {sα,st ⊗ 1}.

4. The pointwise stabilizer GW ⊂ GL(M0) of the tensors {sα,st} is a pure inner form
of GZp ⊗W , and is in particular reductive.

Proof. (1) and (3) are immediate from the proposition above. For (2), by [Kis10, 1.1.4], it is
enough to show that W•V is GQp-split, where GQp is the generic fiber of GZp . This follows

from (2.2.2.1)(5). For (4), we simply have to observe that GW is a twist of GZp ⊗W by

the GZp ⊗W -torsor Q′.
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2.2.5

For any finite extension L/K0 with residue field l, denote by L0 = W (l)
[

1
p

]
the maximal

absolutely unramified sub-extension of L. Choose some uniformizer πL for L, and let
EL(u) ∈ W (l)[|u|] be the monic Eisenstein corresponding to πL. Let SL be the p-adic
completion of the divided power envelope of OL in W (l)[u]. More explicitly:

SL =

∑
i

ai
ui

q(i)!
∈ L0[|u|] : ai ∈ W (l), lim

i→∞
ai = 0

 .
Here q(i) = b iec, where e is the ramification index of L. See [Bre00, 2.1.1]. SL is equipped
with the log structure MSL

corresponding to the divisor defined by u and also a Frobenius
lift ϕ taking u to up.

Let S = SK be the W -algebra associated to K and π. We will treat S as an S-algebra
via the map u 7→ u: this is clearly compatible with the Frobenius lifts on S and S.

With the notation from before, let M(Λ) = ϕ∗SM(Λ)⊗S S. Since ϕS(E(u)) = pa, for

a ∈ S×, the induced map
ϕM(Λ) : ϕ∗SM(Λ)→M(Λ)

has its cokernel killed by p.

Lemma 2.2.5.1. Let Λπ ∈ Rep
cris,◦
Gal(K/K)

be the crystalline lattice associated with Λ as in

the proof of (2.2.4.2), and suppose that Λπ = Tp(G )∨, for a p-divisible group G over OK .
Let D(G ) be the contra-variant Dieudonné F -crystal over OK associated with G .

1. There is a natural isomorphism of S-modules

D(G )(S)
'−→M(Λ)

taking ϕD(G )(S) to ϕM(Λ), the former arising from the F -crystal structure on D(G ).

2. There is a natural isomorphism

D(G0)(W )
'−→ ϕ∗WM0,

of Dieudonné modules over W , where G0 is the reduction of G to k.

3. There is a natural logarithmic connection

∇M(Λ) :M(Λ)→M(Λ)⊗W [u] W [u] dlog(u),

that is compatible with ϕM(Λ), and whose residue is the endomorphism ϕ∗WN of

ϕ∗WM0
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4. There is a natural isomorphism

M(Λ)/E(u)M(Λ)

[
1

p

]
'−→ DdR(Λ),

respecting the Hodge filtration on both sides. Here, M(Λ)/E(u)M is equipped with
the filtration Fil1 (ϕ∗M/E(u)ϕ∗M)⊗S S (cf. 2.2.4.2).

Proof. By construction, M(Λ) can be identified with the S-module M(M(G )) in [Kis10,
1.4.2]4. So the first assertion follows from loc. cit. The second assertion is an immediate
consequence of the first.

For the third, we first remark that there is a connection

∇G : D(G )(S)→ D(G )(S)⊗W [u] W [u]du,

arising from the fact that D(G ) is a crystal over OK . This gives rise via the isomorphism
in (1) to a connection

∇π :M(Λ)→M(Λ)⊗W [u] W [u]du.

Let NS : M(Λ)→M(Λ) be the endomorphism associated with the map N : Λπ → Λπ(−1)
as in (2.2.4.2). Let N : S → S be the derivation taking u to −u, and set

NM(Λ) = −ϕ∗SNS ⊗ 1 + 1⊗N,

as a derivation of M(Λ) = ϕ∗SM(Λ)⊗S S. Then

∇M(Λ) = ∇π −NM(Λ) ⊗ dlog(u)

is the connection we are looking for.
Finally, for (4), we can simply appeal to (2.2.4.2)(1) and the definition of M(Λ).

Remark 2.2.5.2. • We can always find a p-divisible group G such that Λπ = Tp(G )∨.
This follows from the fact that every crystalline representation with Hodge-Tate
weights in {0, 1} arises from the Tate module of a p-divisible group over OK . See
[Kis06, 2.2.6]. Any two such p-divisible groups will be isomorphic by the full-
faithfulness of the functor Tp (Tate’s theorem).

• For a different choice of the branch of the p-adic logarithm (see (2.2.1), the p-divisible
group attached to the corresponding crystalline representation will not in general be
isomorphic to G . However, for i ≤ 1, the p-divisible group WiG associated with WiΛ,
and, for all i, the p-divisible groups grWi G associated with grWi Λ are unambiguously
determined, independently of the choice of logarithm.

4. The definition of M(G ) is a little off in loc. cit.: it should be M(G ) := M(Tp(G )∨).
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• Λ arises from a log p-divisible group G log over OK , and the S-module M(Λ) simply
corresponds to the log Dieudonné F -crystal associated with G log via logarithmic
Dieudonné theory; cf. [Katb].

2.2.6

Let Re be the ring of functions on the rigid analytic open disk of radius p−
p−1
e , and let us

fix a co-ordinate u on this disk; then Re admits a log structure MRe = R×e ⊕ uN. We can
embed S into Re via u 7→ u: this clearly respects log structures. Set

Rlog
e =

Re
[
lα : α ∈ M

gp
Re

]
(
lαβ − lα − lβ , for α, β ∈ M

gp
Re

; lα = log(α), whenever |α− 1| < 1.
) .

Here, by |α− 1| < 1, we mean that |α(x)− 1| < 1, for all x in the rigid analytic open disk

of radius p−
p−1
e .

R
log
e can be equipped with a natural logarithmic connection ∇ : lα 7→ −1 ⊗ dlog(α),

and a semi-linear map ϕ lifting ϕS given by ϕ(lα) = plα. Set

Ψ(Λ) =
(
M(Λ)⊗S Rlog

e

)∇=0
,

where we endow M(Λ) ⊗S R
log
e with the tensor-product connection. This is naturally a

(ϕ,N)-module over K0. By [Vol03, Theorem 9], the inclusion Ψ(Λ) ↪→ M(Λ) ⊗S R
log
e

induces a (ϕ,∇)-equivariant isomorphism

Ψ(Λ)⊗K0
Rlog
e
'−→M(Λ)⊗S Rlog

e . (2.2.6.0.1)

The natural surjectionRe → K sending u to π can be extended to a surjectionR
log
e → K

by sending lu to 0, and reducing the isomorphism (2.2.6.0.1) along this surjection gives us
an isomorphism:

βdR : Ψ(Λ)⊗K0
K
'−→M(Λ)⊗S K

'−→ DdR(Λ), (2.2.6.0.2)

where the last isomorphism follows from (2.2.5.1)(4).

We can similarly extend the natural surjection Re → K0 sending u to 0 to R
log
e → K0

sending lu to 0. Reducing (2.2.6.0.1) along this, gives us a (ϕ,N)-equivariant map

βst : Ψ(Λ)
'−→M(Λ)⊗S K0

'−→ ϕ∗WDst(Λ)
ϕD−−→' Dst(Λ). (2.2.6.0.3)

Here, the second isomorphism follows from (2.2.4.2)(1).
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Lemma 2.2.6.1. The diagonal isomorphism in the diagram below is the one induced from
the embedding Bst ⊗K0

K ↪→ BdR given by the choice of logarithm taking π to 0:

Ψ(Λ)⊗K0
K

βdR

'
> DdR(Λ)

Dst(Λ)⊗K0
K

βst ⊗ 1 '

∨
'

>

Proof. This follows from the argument in [Kis06, 1.2.8].

2.3 The log F -crystal associated with a semi-stable abelian
variety

2.3.1

Let K/Qp be a finite extension with residue field k. Let A be a polarizable semi-stable
abelian variety over K extending to a semi-abelian scheme G′ over OK . By (1.2.4.2), after

finite unramified base-change, if necessary, we can find a positive, log 1-motif [Y
ι−→ J log]

over OK , where Y is a J is an extension

0→ T → J → B → 0

of an abelian scheme B over OK and T is a split torus over OK with character group a
free abelian group X.

By the theory in [Ray71], we have an isomorphism

Jan/ι(Y )
'−→ Aan, (2.3.1.0.1)

of rigid analytic varieties over K. We also have the monodromy map NA = NL : Y →
Hom(X,Z) for A (cf. 1.2.2.2). A choice of polarization λ on A determines among other
things a map λét : Y → X such that (y, y′) 7→ NA(λét(y)) induces a positive definite
symmetric bilinear form on Y ⊗Q (cf. 1.2.4.1). In particular, rk imNA = rkX.

Suppose that we fix an algebraic closure K/K, and that we set, for any algebraic group
H over K,

Tp(H) = lim← H[pn](K);

H1(H,Zp) = H1
ét(HK ,Zp).

Then, from the uniformation (2.3.1.0.1), we obtain a short exact sequence of Gal(K/K)-
representations:

0→ Tp(J)→ Tp(A)→ Y ⊗ Zp → 0.
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Dualizing it gives us

0→ Hom(Y,Zp)→ H1(A,Zp)→ H1(J,Zp)→ 0.

Also, H1(J,Zp) sits in a further short exact sequence

0→ H1(B,Zp)→ H1(J,Zp)→ X ⊗ Zp(−1)→ 0.

Putting all this together gives us an ascending three-step weight filtration W•H1(A,Zp)
on H1(A,Zp), with W−1H

1(A,Zp) = 0; grW0 H1(A,Zp) = Hom(Y,Zp); grW1 H1(A,Zp) =

H1(B,Zp); and grW2 H1(A,Zp) = X ⊗ Zp(−1).

Consider now the de Rham cohomology H1
dR(A): this is a filtered K-vector space. For

any integer i, let K(−i) be the filtered one dimensional K-vector space with Fili = K and
Fili+1 = 0. We will denote K(0) simply by K. Then, by the same considerations as above,
H1

dR(A) also admits an ascending weight filtration W•H1
dR(A) with W−1H

1
dR(A) = 0;

grW0 H1
dR(A) = Hom(Y,K); grW1 H1

dR(A) = H1
dR(BK); and grW2 H1

dR(A) = H1
dR(T ) =

X ⊗K(−1) (cf. [CI99, §I.2]). Observe also that, after tensoring with K, the monodromy
NA induces a nilpotent endomorphism of H1

dR(A) with W1H
1
dR(A) as its kernel and with

its image equal to grW2 H1
dR(A): we will call this operator NA,dR (cf. [CI99, §I.2.1]).

Set

Dst(A) :=
(
Bst ⊗Zp H

1(A,Zp)
)Gal(K/K)

.

This is a weakly admissible filtered (ϕ,N)-module over K with Hodge-Tate weights in
{0, 1}. Recall that, with our convention, this means that

DdR(A) =
(
Dst(A)⊗K0

K log
)N=0

is endowed with a filtration. The weight filtration on H1(A,Zp) gives rise to a fil-
tration W•Dst(A) by weakly admissible filtered (ϕ,N)-modules, with W−1Dst(A) = 0;
grW0 Dst(A) = Hom(Y,K0); grW1 Dst(A) = Dcris(B); and grW2 Dst(A) = X ⊗K0(−1).

Remark 2.3.1.1. As explained in [CI99, §II.5], Dst(A) admits a ϕ-equivariant splitting

Dst(A) = Hom(Y,K0)⊕Dcris(B)⊕Dcris(T )

of the weight filtration. This is a consequence of the Riemann hypothesis for the reciprocal
eigenvalues of the crystalline Frobenius (cf. [KM74]).

Proposition 2.3.1.2. There is a natural isomorphism

ηA : H1
dR(A)

'−→ DdR(A) =
(
Dst(A)⊗K0

K log
)N=0

that:

1. respects both Hodge and weight filtrations;
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2. carries the nilpotent operator NA,dR on the left hand side to the nilpotent operator
Nst on the right hand side induced by the one on Dst(A);

3. induces the identity from Hom(Y,K) = grW0 H1
dR(A) to Hom(Y,K) = grW0 DdR(A),

and from Y ⊗K = grW2 H1
dR(A) to Y ⊗K = grW2 DdR(A);

4. induces on the grW1 components the p-adic comparison isomorphism

ηB : H1
dR(B)

'−→ DdR(B)

constructed in [Fon82, §6].

In particular, the weight filtration on H1
dR(A) is up to shift the pre-image under ηA of the

Jacobson-Morosov filtration associated with the nilpotent operator Nst.

Proof. The existence of ηA satisfying the numbered properties is shown in [CI99, II.6.2].
We remark that the operator Nst on the right hand side of the isomorphism is given by

Nst

∑
i

di ⊗ xi

 =
∑
i

N(di)⊗ xi = −
∑
i

di ⊗N(xi).

2.3.2

Let D(J), D(B) and D(T ) be the contra-variant Dieudonné F -crystals over OK associated
with the p-divisible groups J [p∞], B [p∞], and T [p∞], respectively. Fix a uniformizer
π ∈ K and let E(u) ∈ W [u] be its monic Eisenstein polynomial. Let S be as in (2.2.5)
associated to the uniformizer π. In the notation of that section, take Λ = H1(A,Zp): this

is a Galois-stable Zp-lattice in the semi-stable representation H1(A,Qp), which has Hodge-
Tate weights {0, 1}. By (2.2.5.1) and (2.2.4.2), we have a ϕ-module M(A) :=M(Λ) over
S equipped with natural (in A) isomorphisms of filtered K-vector spaces

M(A)/E(u)M(A)

[
1

p

]
'−→ DdR(Λ).

Moreover, M(A) is equipped with a weight filtration W•M(A) such that W−1M(A) = 0;

grW0 M(A) = Hom(Y, S); grW1 M(A)
'−→ D(A)(S); and grW2 M(A)

'−→ D(T )(S). The last
two isomorphisms follow from [Kis10, 1.4.2].

Recall that M(A) is equipped with a logarithmic connection and a map

ϕM(A) : ϕ∗SM(A)→M(A)

that is parallel for the connection. This gives rise to a logarithmic F -crystal over OK (cf.
[Vol03, §3.9]), and the weight filtration on M(A) gives rise to a weight filtration on this
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log crystal. Observe that the map ι : Y → J(K) gives rise to a log 1-motif Q = [Y
ι−→ J log]

over OK (cf. 1.3), and by the theory of loc. cit. we can associate with it a log F -crystal
D(A) = D(Q) over OK . By its construction, D(A) sits in a short exact sequence:

0→ Hom(Y,1)→ D(A)→ D(J)→ 0,

where 1 is the trivial F -crystal over OK , and this corresponds to a weight filtration W•D(A)
on D(A) such that W−1D(A) = 0; grW0 D(A) = Hom(Y,1); grW1 D(A) = D(B); and

grW2 D(A) = D(T ).

Lemma 2.3.2.1. Let D be a finite free K0[|u|]-module equipped with a map

ϕD : ϕ∗D → D.

Let D0 = D/uD. Suppose that we have two logarithmic connections

∇1,∇2 : D → D dlog(u),

and suppose that their residues res(∇1) and res(∇2) are equal as endomorphisms of D0. If
ϕD is parallel for both ∇1 and ∇2, then ∇1 = ∇2.

Proof. Consider θ = ∇1 −∇2: since ∇1 and ∇2 have the same residue, θ is an element of
Hom(D,D)⊗ Ω̂1

K0[|u|]/K0
. Since ϕD is parallel with respect to both ∇1 and ∇2, using the

same argument as in the proof of (1.4.2.4), it follows that

θ ∈
⋂
n≥1

Hom(D,D)⊗ unΩ̂1
K0[|u|]/K0

= 0.

Proposition 2.3.2.2. D(A) is naturally isomorphic to the log F -crystal over OK arising
from M(A). This isomorphism preserves the weight filtrations on both sides.

Proof. It suffices to construct an isomorphism

D(A)(S)
'−→M(A),

respecting weight filtrations and equivariant with respect to ϕ and the logarithmic connec-
tions on both sides.

Consider the log 1-motif induced by the map NA,π : Y
NA−−→ Hom (X,Z)

17→π−−−→ T (K)
(recall that X is the character group of the split torus T ); it corresponds to a semi-stable
abelian variety Aπ over OK with split multiplicative reduction, and D(Aπ) sits in a short
exact sequence

0→ Hom(Y,1)→ D(Aπ)→ D(T )→ 0,

of log F -crystals. Let D(Aπ)J be the pull-back of this extension along the natural map
D(J) → D(T ); then both D(Aπ)J and D(A) are extensions of D(J) by Hom(Y,1). By
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construction, their Baer difference is the Dieudonné crystal D(Gπ) associated with Λ, as in
(2.2.5.1). Moreover, by loc. cit., M(A) is identified with D(Gπ) as a ϕ-module. Since π
lifts to u, which satisfies ϕ(u) = up, we can check from the construction of D(A) (cf. 1.3)
that the underlying ϕ-module of D(A)(S) is naturally isomorphic to the one underlying
D(Gπ)(S) =M(A). So D(A)(S) and M(A) are naturally identified as ϕ-modules over S.
To see that this identification respects the logarithmic connections on both sides, it suffices
by (2.3.2.1) to check that the residues of the connections on either side match up. But this
is immediate, since both residues are canonically identified with NA.

Proposition 2.3.2.3. Suppose that we have Gal(K/K)-invariant tensors {sα} ⊂ Λ⊗

defining a reductive sub-group GZp ⊂ GL(Λ), giving rise to ϕ-invariant tensors {sα,st} ⊂(
Dst(A)⊗

)N=0
. Let M0 = D(A)(S) ⊗S W . On M0 ⊗ k we have the Hodge filtration

Fil1(M0 ⊗ k), whose defining property is:

ϕ∗W
(
Fil1(M0 ⊗ k)

)
= kerϕM0⊗k. (2.3.2.3.1)

1. We have a natural isomorphism

D(A)(OK)

[
1

p

]
'−→ H1

dR(A),

respecting weight filtrations.

2. There is a natural ϕ-equivariant splitting of the weight filtration on D(A)(OK)⊗OK
K log.

3. The tensors {sα} give rise to parallel ϕ-invariant tensors {sα,S} ⊂ D(A)(S)⊗ defin-
ing a reductive sub-group GS ⊂ GL(D(A)(S)) and reducing to {sα,st} under the
isomorphism βst in (2.2.6.1).

4. Let GOK
= GS ⊗OK ; then the weight and Hodge filtrations on D(A)(OK) are GOK

-
split.

5. Let Pwt,k ⊂ Gk = GS ⊗k be the sub-group stabilizing the weight filtration on M0⊗k.

The Hodge filtration Fil1(M0 ⊗ k) is Pwt,k-split.

Proof. For (1), we have the isomorphisms:

D(A)(OK)

[
1

p

]
'−−−−−→

(2.3.2.2)
M(A)⊗S K

'−−−−−−−→
(2.2.5.1)(4)

DdR(A)
'−−−−−→

(2.3.1.2)
H1

dR(A). (2.3.2.3.2)

Let Re and R
log
e be as in (2.2.6). Let Ψ(A) = Ψ(Λ) in the notation of loc. cit.: this is

a (ϕ,N)-module over K0, and we have natural (ϕ,∇)-equivariant isomorphisms(
Ψ(A)⊗K0

Rlog
e

) '−→M(A)⊗S Re
'−→ D(A)(S)⊗S Re,
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compatible with weight filtrations. Again, by the crystalline Riemann hypothesis
(cf. 2.3.1.1), the weight filtration on Ψ(A) is canonically and ϕ-equivariantly split. We

thus obtain a canonical splitting of the weight filtration on D(A)(S) ⊗S R
log
e , and thus a

canonical splitting of the weight filtration on D(A)(OK)⊗OK
K log via specialization.

Let M(A) = M(Λ) be as in (2.2.4.2). By loc. cit., we obtain ϕ-invariant tensors
{sα,S} ⊂ M(A)⊗ defining a reductive sub-group GS ⊂ GL(M(A)) and reducing to

{sα,st} ∈ Dst(A)⊗ under the isomorphism in (2.2.4.2)(1). Since M(A) = ϕ∗M(A) ⊗S S
by construction, we simply take {sα,S} = {ϕ∗sα,S ⊗ 1}, where we also employ the identi-
fication of M(A) with D(A)(S). This finishes the proof of (3).

We now consider (4): by [Kis10, 1.1.4], since GOK
is reductive, it suffices to show that

the weight filtration on H1
dR(A) is GK = GOK

⊗K-split. By (2.3.1.2), we know that the

weight filtration on H1
dR(A) is the Jacobson-Morosov filtration associated with the operator

N on DdR(A) = Dst(A)⊗K0
K. Further, since N(sα,st) = 0, we have N ∈ LieGK . Now it

follows from (2.1.2.1)(2) that the weight filtration is indeed GK -split. A similar argument
applies to the Hodge filtration, but this time we need to appeal to (2.2.2.1)(4), which in
fact shows that the Hodge filtration on H1

dR(A) is Pwt,K -split.
Finally, for (5), to check that the Hodge filtration on M0⊗k is Pwt,k-split, it is enough,

by (2.1.1.6), to check that the induced filtration on grW• (M0⊗k) is Lwt,k-split, where Lwt,k
is the Levi quotient of Pwt,k. It is of course enough to show that the Hodge filtration on

grW• D(A)(OK) is Lwt,OK
-split, where Lwt,OK

is the Levi quotient of Pwt,OK
, the parabolic

sub-group of GOK
preserving the weight filtration. Again, by [Kis10, 1.1.4], we can finish

by showing that the Hodge filtration on grW• H1
dR(A) is Lwt,K -split. But, in fact, the Hodge

filtration on H1
dR(A) is Pwt,K -split, as we saw in the proof of (5) above.

2.4 Families of degenerating abelian varieties

2.4.1

Suppose that we have a local log W -algebra (R,MR) with residue field k, where R is for-
mally smooth and (R,MR) is log formally smooth. In more concrete terms, R is isomorphic
to W [|t1, . . . , tr|] and MR is induced by the divisor tn+1tn+2 · · · tr = 0, for some n between
1 and r− 1. Let P = MR /R

×, and let x0 : R→ k be the natural surjection. This induces
a log structure Mk = k×⊕P on k; let us call the associated log W -algebra kP (cf. 1.2.1.8).
Equip W with the log structure MW = W× ⊕ P and call the resulting log W -algebra
WP ; this is now a formal divided power thickening of kP . We will also equip WP with a
Frobenius lift ϕWP

(cf. 1.4.3), so that any log F -crystal over kP , when evaluated at WP ,
will give rise to a ϕ-module over W .

Let U ⊂ SpecR be the locus where the log structure is trivial: that is, it is the com-
plement of the divisor defining the log structure. Let A be a semi-abelian scheme over R
that restricts to a polarizable abelian scheme over U ; then, by (1.2.4.2), we can find a log
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1-motif [Y
ι−→ J log] over R corresponding to A. Here Y is a free abelian group (after finite

étale base change, which we will assume), and J is a semi-abelian extension

0→ T → J → B → 0,

where B is an abelian scheme over R and T is a split torus with character group X (again,
we might need a finite étale base change to ensure this).

Proposition 2.4.1.1. We can naturally associate with A a log F -crystal D(A) over R
equipped with an ascending three-step filtration W•D(A) such that:

1. There are natural identifications W−1D(A) = 0; grW0 D(A) = Hom(Y,1);

grW1 D(A) = D(B); W1D(A) = D(J); and grW2 D(A) = D(T ).

2. For any continuous map x : R → OL of log W -algebras, where L ⊂ K0 is a finite
extension of K0, let Ax be the corresponding semi-stable abelian variety over L. Then
there is a natural isomorphism of log F -crystals over OK :

D(Ax)
'−→ x∗D(A),

preserving weight filtrations.

3. Set M0 = (x∗0D(A))(WP ); then we have natural isomorphisms

D(Ax)(SL)⊗SL W (l)
'−→M0 ⊗W (l); and

Dst(Ax)
'−→M0 ⊗W L0,

where l is the residue field of L and L0 = W (l)
[

1
p

]
is the maximal absolutely unram-

ified sub-extension of L. Here, SL is the W -algebra associated with some choice of
uniformizer in L, as in (3.3.4).

4. For x as in (2), we have a natural isomorphism

D(A)(R)⊗R,x L
'−→ H1

dR(Ax).

5. For any pair of continuous maps x, x′ : R→ OL of log W -algebras, we have a natural
‘parallel transport’ isomorphism

ηx,x′ : H1
dR(Ax)⊗L Llog '−→ H1

dR(Ax′)⊗L L
log
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such that the following diagram commutes:

H1
dR(Ax)⊗L Llog

ηx,x′

'
> H1

dR(Ax′)⊗L L
log

Dst(Ax)⊗L0
Llog

' ηAx

∨

'
>M0 ⊗W Llog <

'
Dst(Ax′)⊗L0

Llog.

ηAx′
'
∨

Here Llog is as described in (2.2.1.1) and the vertical isomorphisms are the Coleman-
Iovita isomorphisms (cf. 2.3.1.2).

Proof. We have the log 1-motif [Y
ι−→ J log] over R; D(A) will just be the log F -crystal

associated with this log 1-motif by the theory of (1.3). The compatibility in (2) under
pull-back follows from (1.3.3.3).

(3) follows immediately from the pull-back compatibility in (2) and the crystalline
nature of D(A): Note that, with the log structure induced from SL, W (l) isomorphic to the
log W -algebra W (l)N (cf. 1.2.1.8). This is a formal divided power thickening of lN, viewed
as the residue field of SL endowed with its induced log structure. Let x′0 : OL → lN be the
natural surjection of log W -algebras; then D(Ax)(SL)⊗SL W is canonically isomorphic to

((x′0)∗D(Ax))(W (l)N). This in turn is identified with ((x′0◦x)∗D(A))(W (l)N). Now the map
x′0 ◦ x : R → lN factors through x0 : R → kP , so we can naturally identify this last W (l)-
module with ((x0 ◦y0)∗D(A))(W (l)N), for the map y0 : kP → lN such that x′0 ◦x = x0 ◦y0,
and such that the induced map of fields k → l is simply the natural inclusion. We can lift
y0 to a map y : WP → W (l)N inducing the canonical map W ↪→ W (l) lifting k ↪→ l. Then
((x0 ◦ y0)∗D(A))(W (l)N) is canonically isomorphic to y∗M0 = M0 ⊗W W (l). The second
isomorphism in (3) follows via the isomorphism βst in (2.2.6.1).

(4) follows from (2) and (2.3.2.3)(1).
For (5), let Ran be the ring of functions of the rigid analytic open polydisk (Spf R)an:

this has a natural log structure MRan . Set

Ran,log =
Ran

[
lα : α ∈ M

gp
Ran

]
(
lαβ − lα − lβ , for α, β ∈ M

gp
Ran ; lα = log(α), for α ∈ (Ran)× and |α− 1| < 1.

) .
By |α−1| < 1 we mean that, for every point y in the rigid analytic open polydisk (Spf R)an,
|α(y)−1| < 1. We can equip Ran,log with a logarithmic connection ∇ : lα 7→ −1⊗dlog(α).
Set

Ψ(A) =
(
D(A)(R)⊗R Ran,log

)∇=0
.

By [Vol03, Lemma 8], Ψ(A) has a canonical structure of a finite-dimensional ϕ-module
over K0, and by [Vol03, Theorem 9], the inclusion Ψ(A) ↪→ D(A)(R)⊗R Ran,log induces a
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∇-equivariant isomorphism:

Ψ(A)⊗K0
Ran,log '−→ D(A)(R)⊗R Ran,log.

Any continuous map x : R → OL of log W -algebras can naturally be lifted to a map
x : Ran,log → Llog, and we get a natural isomorphism

εx : Ψ(A)⊗K0
Llog '−→ D(A)(R)⊗R,x Llog '−→ H1

dR(Ax)⊗L Llog.

If we now have x, x′ : R→ OL, then we define ηx,x′ so that the following diagram commutes:

Ψ(A)⊗K0
Llog εx

> H1
dR(Ax)⊗L Llog

H1
dR(Ax′)⊗L L

log.

ηx,x′

∨
εx′

>

Let Λx = H1(Ax,K0
,Zp) and let Ψ(Ax) = Ψ(Λx) be the L0-module associated with Λx

in (2.2.6). Then Ψ(Ax) is ϕ-equivariantly identified with Ψ(A)⊗K0
L0, and the isomorphism

εx is simply the composition

Ψ(Ax)⊗L0
Llog '−−−→

βdR

DdR(Ax)⊗L Llog '−−−→
η−1
Ax

H1
dR(Ax)⊗L Llog,

where ηAx is the Coleman-Iovita isomorphism from (2.3.1.2). In order to show that the
diagram in (5) commutes, it suffices to show that the corresponding diagrams for the
associated graded pieces of the weight filtrations commute. For grW0 , the diagram looks
like

Hom(Y, Llog) === Hom(Y, Llog)

Hom(Y, Llog)

wwwwwwwwwwww
== Hom(Y, Llog).

wwwwwwwwwwww

For grW2 , it looks like

X ⊗ Llog ===X ⊗ Llog

X ⊗ Llog

wwwwwwwwwwww
== X ⊗ Llog.

wwwwwwwwwwww
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For grW1 , before tensoring with Llog, and using [CI99, II.7.12], it looks like

H1
dR(Bx)

'
> H1

dR(Bx′)

H1
cris(Bx0)⊗W L

'
∨

== H1
cris(Bx0)⊗W L,

'
∨

where the vertical isomorphisms are the Berthelot-Ogus isomorphisms (cf. [BO83]). The
first two diagrams obviously commute, and the third commutes by [BO83, Remark 2.9];
see also the proof of [Kis10, 2.3.5].
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CHAPTER 3
LOCAL MODELS AT THE BOUNDARY

3.1 Deformations of log 1-motives

The aim of this section is to construct deformation rings for certain log 1-motives over
perfect fields. The construction closely follows that of the local models in [FC90, Ch. IV],
and in fact allows us to view the complete local rings at closed points of these local models
as deformation rings of log 1-motives.

3.1.1

We will now study the deformation theory of log 1-motives. Let k be a perfect field of
characteristic p > 0 and let W = W (k) be its ring of Witt vectors. Let P be a sharp, fs
monoid (cf. 1.2.1.2), and let kP be the associated log ring as in (1.2.1.8). Suppose that we
have a polarized log 1-motif (Q0, λ0) over kP . Let (B0, Y,X, c0, c

∨
0 , λ

ab, λét, τ0) be the tuple

corresponding to (Q0, λ0) via (1.2.2.8). Then Q0 = [Y
ι0−→ J

log
0 ], where J0 is a semi-abelian

variety over k that is the extension

0→ T0 → J0 → B0 → 0

of B0 by the torus T0 with character group X classified by c∨0 . We will assume that Y and
X are constant, and we will also suppose that λ0 is a prime-to-p polarization (cf. 1.2.2.7)
of degree r.

Definition 3.1.1.1. Let C be a complete local log W -algebra with maximal ideal mC and

residue field k(C). A deformation over C of (B0, λ
ab
0 ) is a tuple

(
(BC , λ

ab
C ), iC

)
where:

1. (BC , λC) is a polarized abelian scheme over C.

2. iC : (BC , λC)⊗C k(C)
'−→ B0⊗kk(C) is an isomorphism of polarized abelian varieties

over k(C).

The category of deformations over C of (B0, λ
ab
0 ) will be denoted Def

(B0,λ
ab
0 )

(C).

Definition 3.1.1.2. A deformation over C of (B0, λ
ab
0 , c0, c

∨
0 ) is a tuple

(BC , λ
ab
C , c, c

∨, iC) where:

1. (BC , iC) is a deformation over C of (B0, λ0).
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2. c : Y → BC and c∨ : X → B∨C are homomorphisms such that the diagram

Y
c

> BC

X

λét

∨

c∨
> B∨C

λab
C

∨

commutes.

3. The diagrams

Y
c
> BC ⊗C k(C)

B0 ⊗k k(C)

iC

∨

c0
>

and

X
c∨

> B∨C ⊗C k(C)

B∨0 ⊗k k(C)

i∨C

∧

c∨0
>

commute.

The category of deformations over C of (B0, λ
ab
0 , c0, c

∨
0 ) will be denoted

Def
(B0,λ

ab
0 ,c0,c

∨
0 )

(C).

Definition 3.1.1.3. Let C be a complete local log W -algebra with maximal ideal mC and
residue field k(C). A deformation over C of J0 is a tuple (JC , iC) where:

1. JC is a semi-abelian scheme over C.

2. iC : JC ⊗C k(C)
'−→ J0 ⊗k k(C) is an isomorphism of semi-abelian varieties over

k(C).

A deformation over C of (J0, λ
ab
0 ) is a tuple

(
(JC , λ

ab
C ), iC

)
where:

1. (JC , iC) is a deformation over C of J0.
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2. Let BC be the maximal abelian scheme quotient of JC ; then (BC , λ
ab
C ) is a deforma-

tion over C of (B0, λ
ab
0 ).

3. The diagram

BC ⊗C k(C)
iC
'
> B0 ⊗k k(C)

B∨C ⊗C k(C)

λab
C ⊗ 1

∨
<
'
i∨C

B∨0 ⊗k k(C)

λab
0 ⊗ 1

∨

commutes.

The category of deformations over C of (J0, λ
ab
0 ) will be denoted Def

(J0,λ
ab
0 )

(C).

Remark 3.1.1.4. In the definition above, we are implicitly using the following fact already
used in (1.1.3): every deformation of J0 over C is an extension

0→ TC → JC → BC → 0,

where BC is an abelian scheme over C reducing to B0 ⊗k k(C) along the isomorphism iC ,
and TC is the split torus over C with character group X.

Lemma 3.1.1.5. There is a canonical equivalence of categories

Def
(B0,λ

ab
0 ,c0,c

∨
0 )

(C)
'−→ Def

(J0,λ
ab
0 )

(C).

Proof. If (BC , λ
ab
C , c, c

∨, iC) is an object on the left hand side, then the classifying map

c∨ : X → B∨C gives us a semi-abelian scheme JC over C and thereby an object (JC , λ
ab
C , iC)

on the right. Suppose we have an object (JC , λ
ab
C , iC) on the right. Then we can consider

its classifying map c∨ : X → B∨C , and the composition c∨ ◦ λét : Y → B∨C . The question

now is if this composition factors through λab
C : BC → B∨C .

Since kerλab
C is a prime-to-p torsion group, and in particular, étale, the map

kerλab
C (C)→ kerλab

0 (k(C)) is a bijection. Similarly, the map

H1(C, kerλab
C )→ H1(k(C), kerλab

0 )

is also a bijection.

71



Considering the following diagram:

kerλab
C (C) ⊂ > BC(C)

λab
C > B∨C(C) >> H1(C, kerλab

C )

kerλab
0 (k(C))

wwwwwwwwwww
⊂ > B0(k(C))

∨

λab
0

> B∨0 (k(C))
∨

>> H1(k(C), kerλab
0 ),

wwwwwwwwwww

we see that, for any y ∈ B0(k(C)), the fibers over y and λab
0 (y) of the vertical arrows are

isomorphic. This tells us that c∨ ◦ λét must factor through λab
C .

Definition 3.1.1.6. Let C be a complete local log W -algebra with an fs log structure and
with maximal ideal mC . We will equip the residue field k(C) = C/mC with its induced log
structure. A deformation over C of (Q0, λ0) is a tuple ((QC , λC), jC , iC) where:

1. (QC , λC) is a polarized log 1-motif over C, with QC = [Y
ιC−−→ J

log
C ].

2. jC : kP → k(C) is a map of log W -algebras.

3. iC : (QC , λC)⊗C k(C)
'−→ j∗C(Q0, λ0) is an isomorphism of polarized log 1-motifs.

We will denote by Def(Q0,λ0)(C) the category of deformations over C of (Q0, λ0).

We have natural functors

Def(Q0,λ0)(C)→ Def
(J0,λ

ab
0 )

(C)→ Def
(B0,λ

ab
0 )

(C)

Remark 3.1.1.7. All these deformation problems are rigid. More precisely, all the cate-
gories above are groupoids and the automorphism group of any of their objects is triv-
ial. Indeed, for an object in Def

(B0,λ
ab
0 )

(C), this is a consequence of [Kat81, 1.1.3]. The

statement immediately follows for objects in Def
(J0,λ

ab
0 )

(C) and Def(Q0,λ0)(C): For the

former, by (3.1.1.5), it is equivalent to the statement that deformations over C of the tuple
(B0, λ

ab
0 , c0, c

∨
0 ) have no non-trivial automorphisms, and this is clear. For the latter, we

are saying that deformations of ([Y
ι0−→ J

log
0 ], λ0) over C do not admit automorphisms:

this is again clear, since neither Y nor any deformation (JC , iC) of J0 over C admits any
non-trivial automorphisms reducing to the identity over k.
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Let Art
log
W be the category of Artin local log W -algebras; we obtain a tower of rigid

deformation functors from Art
log
W into sets:

Def(Q0,λ0)

Def
(J0,λ

ab
0 )

∨

Def
(B0,λ

ab
0 )

∨

It is the rigidity of the deformation problems that makes it permissible to view them as
functors into the category of sets. We can now expect (pro-)representability results for the
tower. This expectation will be realized in a precise manner under additional hypotheses
in the next sub-section.

3.1.2

Consider Def
(B0,λ

ab
0 )

: by classical results, this is pro-represented by a formally smooth ring

Rab equipped with a universal deformation (Buniv, λ
ab
univ, iRab) of (B0, λ0).

Next, consider Def
(J0,λ

ab
0 )

: this is represented over Rab by the Hom-scheme

Homc∨0 (X,B∨univ) = {c∨ : X → B∨univ : the reduction of c∨ is c∨0 : X → B∨0 }.

This is evidently a torsor over the formal group of the abelian scheme Hom(X,B∨univ) over

Rab. It is therefore relatively pro-representable over Rab by a formally smooth Rab-algebra
Rsab.

Finally, we would like to consider Def(Q0,λ0) as a deformation problem over Rsab. For

this we need some preparation. Over Rsab, we have the universal pair (Juniv, λ
ab
univ). By

(3.1.1.5), we have maps cuniv : Y → Buniv and c∨univ : X → B∨univ over Rsab, the latter of
which classifies Juniv. Over Buniv ×Rsab B

∨
univ we have the Poincaré bundle PBuniv

. The
map

cuniv × c∨univ : Y ×X → Buniv ×Rsab B
∨
univ

allows us to pull P−1
Buniv

back to the line bundle I = (cuniv × c∨univ)∗P−1
Buniv

over Y × X.

I has the structure of a Gm-bi-extension over Y ×X (cf. discussion above (1.2.2.3)), and
(1 × λét)∗I has the structure of a symmetric Gm-bi-extension over Y × Y (cf. discussion
above (1.2.2.8)).
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Set

B
λét = {Pairings 〈 , 〉 : Y×X → Z : such that 〈y, λét(y′)〉 = 〈y, λét(y′)〉, for all y, y′ ∈ Y }.

Let S
λét = B∨

λét be its dual abelian group: this is a certain quotient of the tensor product

Y ⊗X. Let E
λét be the split torus over Rsab with character group S

λét .

Consider the functor Ξ
λét that assigns to each Rsab-algebra C, the set

Ξ
λét(C) =


Trivializations τ : 1Y×X

'−→ I over C
of Gm-bi-extensions of Y ×X

inducing a symmetric trivialization of

the symmetric Gm-bi-extension (1× λét)∗I of Y × Y .


One checks that this is a torsor over E

λét , and is therefore representable by an Rsab-
scheme, which we will again denote by Ξ

λét . In fact, it is the E
λét-torsor that assigns to

every element ∑
i

[yi ⊗ xi] ∈ S
λét

the Gm-torsor
⊗i(c(yi)× c∨(xi))

∗P−1
Buniv

.

By the very definition of Ξ
λét , there is a canonical trivialization over Ξ

λét of Gm-bi-
extensions

τuniv : 1Y×X
'−→ I

of Y ×X.
Let N0 = NQ0

: Y → Hom(X,P gp) be the monodromy map associated with Q0
(cf. 1.2.2.2). Viewing N0 as a pairing Y × X → P gp, we see that it must satisfy the
identity

N0(y, λét(y′)) = N0(y′, λét(y))

for all y, y′ ∈ Y . This follows, for example, from the description of N0 in terms of the
trivializations τ(y, x) in (1.2.2.3)(4) and from the symmetry condition in (1.2.2.8) satisfied
by these trivializations. In particular, N0 determines an element of B

λét ⊗ P gp, and thus
a map S

λét → P gp.
To proceed further, we need to make an additional

Assumption 3.1.2.1. The polarized log 1-motif (Q0, λ0) is positive; that is

N0(y, λét
0 (y)) ∈ P \ {1},

for all y ∈ Y (cf. 1.2.4.1).

For any map f : P → N of monoids, let 〈 , 〉N0,f
be the pairing on Y ×X given by

〈y, x〉N0,f
= f(N0(y, x)).
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Define a sub-monoid

σ =

{
〈 , 〉 ∈ B

λét ⊗ R : such that for y ∈ Y , x ∈ X
〈y, x〉 > 0 whenever 〈y, x〉N0,f

> 0 for all continuous maps f : P → N.

}
.

Set

C
λét =

{
〈 , 〉 ∈ B

λét ⊗ R : such that (y, y′) 7→ 〈y, y′〉
induces a positive definite pairing on Y ⊗ R

}
. (3.1.2.1.1)

This is an open convex cone inside B
λét ⊗ R.

Lemma 3.1.2.2. We have σ ⊂ C
λét. Moreover, σ is a non-degenerate, rational polyhedral

cone: that is, it is finitely generated as a monoid by elements of B
λét ⊗Q, and it does not

contain any lines; cf. [AMRT10, Ch. I].

Proof. For any f : P → N and any y ∈ Y , by assumption (3.1.2.1), we have

〈y, λét(y)〉N0,f
> 0.

So, if 〈 , 〉 lies in σ, then 〈y, λét(y)〉 > 0, for all y ∈ Y ; this means that σ consists of positive
definite pairings on Y ⊗R. It is finitely generated by elements of B

λét by Gordan’s lemma
(cf. [KKMSD73, p. 7]), and it is non-degenerate simply because it is never the case that
both a form and its negative are positive definite.

Let S
λét,σ

be the monoid σ∨ ∩ S
λét , where

σ∨ = {n ∈ S
λét ⊗ R : 〈n, s〉 ≥ 0, for all s ∈ σ}.

Explicitly, we have

S
λét,σ

= {n ∈ S
λét : f(N0(n)) ≥ 0, for all continuous f : P → N}.

Lemma 3.1.2.3. The map N0 restricts to a continuous map of monoids N0 : S
λét,σ

→ P ,

and in particular induces an embedding

S
λét,σ/S

×
λét,σ

↪→ P.

Proof. This is clear.

Let E
λét,σ

= SpecRsab[S
λét,σ

], so that we have a toric embedding E
λét ↪→ E

λét,σ
over

Rsab; and let Ξ
λét,σ

be the contraction product Ξ
λét ×

E
λét E

λét,σ
: it is a log scheme over

Rsab in an evident way with the log structure induced by the divisor that is the complement
of Ξ

λét .
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The Gm-bi-extension I of Y ×X over Ξ
λét extends to a Glog

m -bi-extension I log of Y ×X
over Ξ

λét,σ
, and the trivialization τuniv extends to a trivialization of I log over Ξ

λét,σ
. Thus,

by (1.2.2.4), τuniv gives rise to a log 1-motif Qσ = [Y
ισ−→ J

log
univ] over Ξ

λét,σ
. Qσ is naturally

equipped with a prime-to-p polarization λσ by (1.2.2.8), since τuniv satisfies the symmetry
condition in (1.2.2.8). Ξ

λét,σ
has a natural stratification arising from the stratification of

E
λét,σ

by E
λét-orbits. There is a unique closed stratum corresponding to the unique closed

orbit in E
λét,σ

.

Lemma 3.1.2.4. Let (H,MH) be an fs log scheme over Rsab, and let (JH , λ
ab
H ) be the pair

over H obtained by pull-back from the universal pair (Juniv, λ
ab
univ) over Rsab. Then giving

a map H → Ξ
λét,σ

of log schemes over Rsab is equivalent to giving a polarized log 1-motif

(QH , λH), with QH = [Y
ιH−−→ J

log
H ] such that:

1. λét
H = λét.

2. Let NH : Y × X → Glog
m,H/Gm,H be the monodromy pairing, considered as a linear

map

NH : S
λét → Glog

m,H/Gm,H ;

then, for all geometric points x̄ of H, the image of the induced map

NH,x̄ : S
λét → M

gp
H,x̄ /O

×
H,x̄

restricts to a continuous map of monoids

NH,x̄ : S
λét,σ

→ MH,x̄ /O
×
H,x̄

Proof. Indeed, giving a map H → Ξ
λét,σ

of log Rsab-schemes is equivalent to giving a

trivialization τH of the Glog
m -bi-extension I

log
H of Y × X over H, satisfying the symmetry

condition with respect to λét and λab as in (1.2.2.8), and also satisfying the positivity
condition expressed in condition (2) of the statement of the lemma. By (1.2.2.8), this is
equivalent to giving a polarized log 1-motif (QH , λH) over H satisfying the conditions of
the lemma.

In particular, the log 1-motif (Q0, λ0) over kP corresponds to a map x0,σ : Spec kP →
Ξ
λét,σ

. Let R1 be the complete local ring of Ξ
λét,σ

at the point corresponding to x0,σ, and

equip it with the induced log structure. Over R1, we have the polarized log 1-motif obtained
via pull-back of (Qσ, λσ) from Ξ

λét,σ
; we will denote this pull-back also by (Qσ, λσ). Let

k(R1) be the residue field of R1 equipped with the induced log structure, and let (Qσ,0, λσ,0)

be the reduction of (Qσ, λσ) to k(R1). We have maps of log Rsab-algebras

R1 → k(R1)
jR1−−→ kP ,
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and an identification
j∗R1

(
(Qσ,0, λσ,0)

)
= (Q0, λ0).

Just as in (3.1.1.6), we can consider the deformation problem Def(Q0,σ,λ0,σ) for the log

1-motif (Q0,σ, λ0,σ) over k(R1): For any log W -algebra C, Def(Q0,σ,λ0,σ)(C) is the category

of tuples ((QC , λC), jC , iC) where:

1. (QC , λC) is a polarized log 1-motif over C, with QC = [Y
ιC−−→ J

log
C ].

2. jC : k(R1)→ k(C) is a map of log W -algebras.

3. iC : (QC , λC)⊗C k(C)
'−→ j∗C(Q0,σ, λ0,σ) is an isomorphism of polarized log 1-motifs.

We have the diagram:

Def(Q0,λ0) > Def(Q0,σ,λ0,σ)

Def
(J0,λ

ab
0 )

= Spf Rsab.

∨>

Corollary 3.1.2.5. Let the notation be as above. Then the triple (R1, Q0,σ, λ0,σ) pro-
represents the deformation problem Def(Q0,σ,λ0,σ).

Proof. This is immediate from (3.1.2.4).

3.1.3

We have now reduced to showing relative representability of the map

Def(Q0,λ0) → Def(Q0,σ,λ0,σ) .

We will do this under certain restrictive hypotheses. First, for N ∈ Z>0, let S
λét,N

=
1
N S

λét , and let S
λét,N,σ

= σ∨ ∩ S
λét,N

.

Assumption 3.1.3.1. There exist

• N ∈ Z>0 with (N, pr) = 1 (recall that r is the degree of λ0);

• A free Z/NZ-module ΛN,g of rank 2g equipped with a symplectic pairing into Z/NZ;

• A free, isotropic Z/NZ-module ΣN,g ⊂ ΛN,g such that the quotient ΛN,g/ΣN,g is
again free over Z/NZ;
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such that (Q0, λ0) is equipped with a level N structure (cf. 1.2.3.3)

αN = (ϕab
0,N , ϕ

ét
0,N , ϕ

mult
0,N , c0,N , c

∨
0,N , τ0,N , δ).

of type (ΛN,g,ΣN,g).
Moreover, the map N0 : S

λét → P gp induces an identification

S
λét,N,σ

/S×
λét,N,σ

= P.

With the notation of this assumption, set

SQ = S
λét,N

; SQ,σ = S
λét,N,σ

.

The map N0 then induces an identification

SQ,σ/S
×
Q,σ = P.

Definition 3.1.3.2. For any complete log W -algebra C with residue field
k(C), Def(Q0,λ0,c0,N ,τ0,N )(C) will be the set of isomorphism classes of tuples

((QC , λC , αC,N , jC , iC), where ((QC , λC), jC , iC) is a deformation over C of (Q0, λ0), and
αC,N is a level N structure on (QC , λC) of type (ΛN,g,ΣN,g) reducing to the level structure
j∗Cα0,N on the reduction of (QC , λC) to k(C).

Lemma 3.1.3.3. The natural ‘forgetting level N structure’ map

Def(Q0,λ0,α0,N ) → Def(Q0,λ0)

is an isomorphism of deformation problems.

Proof. We have to show that there is a unique lift of the level N structure α0,N to any
deformation of (Q0, λ0). As always, the key is that N is prime to p. So let us sup-
pose that ((QC , λC), jC , iC) is a deformation over C of (Q0, λ0) corresponding to a tuple
(BC , Y,X, cC , c

∨
C , λ

ab
C , λ

ét, τC).

The tuple (ϕab
0,N , ϕ

ét
0,N , ϕ

mult
0,N ) consists of isomorphisms between finite flat groups

schemes that are extensions of multiplicative groups by étale ones. In particular, it lifts
uniquely over C.

Let us now lift c0,N to a map cC,N : 1
N Y → BC restricting to cC on Y . This follows

from the following

Claim. If b′ ∈ BC(C) and b0 ∈ B0(k(C)) are such that [N ]b0 is equal to the image of b′

in B0(k(C)), then there exists a unique b ∈ BC(C) such that [N ]b = b′.

Indeed, the b such that [N ]b = b′ form a torsor under the étale group scheme BC [N ] of
N -torsion points of BC . This torsor is trivial if and only if the associated B0[N ] ⊗ k(C)-
torsor is trivial, and any trivialization of this latter torsor lifts uniquely to a trivialization
of the BC [N ]-torsor.
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Similarly, one can also lift c∨0,N over C.

It remains to lift τ0,N : Note that it makes sense, for y ∈ 1
N Y and x ∈ X, to ask for a

lift of the trivialization τ0,N (y, x) to a trivialization τC,N (y, x) of the Glog
m -bundle I

log
y,x over

C. The argument for finding this lift is the same as that for the previous claim. The space
of trivializations τC,N (y, x) such that τC,N (y, x)⊗N = τC(Ny, x) is a torsor under

ker(Glog
m
↑N−−→ Glog

m ) = µN ,

the étale group scheme of N th-roots of unity. So a similar argument shows that there is a
unique such trivialization lifting τ0,N (x, y).

Let EQ be the torus with character group SQ, and let EQ,σ be the toric embedding of

EQ associated with σ. From the proof of (3.1.3.3), it follows that over Rsab we have maps

cuniv,N :
1

N
Y → Buniv; c∨univ,N :

1

N
X → B∨univ

lifting c0,N and c∨0,N .

Let IN be the Gm-bi-extension over 1
N Y ×X given by

IN = (cuniv,N × c∨univ)∗P−1
Buniv

,

and let ΞQ be the Ξ
λét-scheme of trivializations τN : 1 1

N Y×X
'−→ IN lifting the tautological

trivialization τuniv : 1Y×X
'−→ I over Ξ

λét . It is a torsor under EQ. Set

ΞQ,σ = ΞQ ×
EQ EQ,σ.

Then there exists a polarized log 1-motif (Q, λ) over ΞQ,σ equipped with universal level
N -structure of type (ΛN,g,ΣN,g,r) αuniv,N . There is a map x0 : Spec kP → ΞQ,σ of log
W -algebras and an identification

iR : x∗0
(
(Q, λ, αuniv,N )

)
= (Q0, λ0, α0,N ).

Let R be the complete local ring of ΞQ,σ at x0 equipped with the induced log structure
and the polarized log 1-motif (Q, λ) obtained via pull-back from ΞQ,σ.

Proposition 3.1.3.4. The log Rsab-algebra R equipped with the tuple ((Q, λ), jR, iR) is
the universal deformation ring pro-representing Def(Q0,λ0).

Proof. The proof is immediate from the construction, assumption (3.1.3.1), and (3.1.3.3)
above.
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3.2 Explicit deformation rings for log 1-motifs

We begin as in §3.1 with a positive prime-to-p polarized log 1-motif (Q0, λ0) over a perfect
field k of characteristic p > 0. In loc. cit., we constructed, under certain assumptions, a
deformation ring R for (Q0, λ0). We will continue to maintain these assumptions and also
the notation used above, and we will make the additional assumption that k is finite.

Our goal in this section is to give an explicit description of R. We suggest that the
reader first look at the constructions of explicit deformation rings for p-divisible groups
due to Faltings as found in [Fal99, §7] or [Moo98, §4]. The main utility of an explicit
construction, which is essentially group-theoretic, is to give us a hands-on construction of
the Dieudonné log F -crystal associated with the universal deformation of (Q0, λ0). This in
turn will enable us to easily work with ‘Tate cycles’ (more precisely, ϕ-invariant, parallel
tensors) over the Dieudonné log F -crystals associated with deformations of our log 1-motif.

The idea is to first give an explicit model R+ of Rsab: this essentially follows the
aforementioned construction of Faltings, and is done in (3.2.3.4). Then we exhibit R as an
explicit completed toric embedding over R+ in (3.2.5) and give a concrete description of
the log F -crystal associated with the universal deformation over R in (3.2.6.1).

The construction depends on certain choices of co-characters. In the interest of stream-
lining our presentation, we have opted to work with tensors right from the beginning, and
to make our choices compatible with these tensors (cf. 3.2.3).

3.2.1

Let D(Q0) be the log F -crystal over kP associated with Q0 by the theory of § 1.3. The
polarization λ0 gives rise to a symplectic Frobenius-equivariant pairing

ψ0 : D(Q0)× D(Q0)→ 1(1)

of log F -crystals over kP (cf. [KT03, §4.7]).
Let W = W (k) be the ring of Witt vectors over k, and let WP be the associated log

ring as in (1.2.1.8). Choose any map of log rings WP � kP inducing the identity on P and
with underlying map of rings the canonical surjection W → k. This will be a formal log
PD thickening, and we can evaluate any log F -crystal over k on WP along this surjection.
Set M0 = D(Q0)(WP ); to endow this with the structure of a ϕ-module, we have to choose
a Frobenius lift ϕ on WP . Recall from (1.4.3) that this amounts to fixing a splitting

β : M
gp
WP

'−→ M
gp
kP
⊕(1 + pW ).

Each choice of such lift gives us a map ϕM0,β
: ϕ∗WM0 →M0.

Set M ét
0 = W0M0 = Hom(Y,W ); M sab

0 = M0/W0M0 = D(J0)(W ); Mab
0 = grW1 M0 =

D(B0)(W ); and Mmult
0 = grW2 M0 = X⊗W (1). All these modules have canonical ϕ-module

structures, and we have ϕ-equivariant (for any choice of β) short exact sequences

0→M ét
0 →M0 →M sab

0 → 0;

80



0→Mab
0 →M sab

0 →Mmult
0 → 0.

Note that the ϕ-module structures on M ét
0 , M sab

0 , Mab
0 and Mmult

0 do not depend on the
splitting β.

The polarization λ on Q0, via the pairing ψ on log F -crystals above, induces a perfect
ϕ-equivariant (again, for any choice of β) pairing

ψ0 : M0 ⊗W M0 → W (1).

By functoriality, the weight filtration W•M0 is GSp(M0, ψ0)-split. This just means that
M ét

0 is ψ0-isotropic and its annihilator in M0 is W1M0. In particular, ψ0 induces ϕ-
equivariant perfect pairings

ψét
0 : M ét

0 ⊗Mmult
0 → W (1);

ψsab
0 : M sab

0 ⊗W1M0 → W (1);

ψab
0 : Mab

0 ⊗Mab
0 → W (1).

Let Pwt ⊂ GSp(M0, ψ0) be the parabolic sub-group stabilizing W•M0; Uwt ⊂ Pwt its
unipotent radical; and U−2

wt ⊂ Uwt the sub-group of elements that act trivially on M sab
0 .

Since W1M0 and M sab
0 are each identified with the dual of the other under ψ0, we find

that U−2
wt ⊂ Pwt is also the sub-group acting trivially on M sab

0 ⊕W1M0.
Let BQ be the Z-dual of SQ: it is naturally contained in B

λét , and we have a canonical
identification

BQ ⊗ Z(p) = B
λét ⊗ Z(p).

Lemma 3.2.1.1. There is a canonical identification

BQ ⊗ZW = LieU−2
wt

Proof. By functoriality, the pairing ψét
0 is given by the formula

ψét
0 : Hom(Y,W )⊗ (X ⊗W (1))→ W (1) (3.2.1.1.1)

ψét
0

(
ϕ, (λét ⊗ 1)(y ⊗ 1)

)
= ϕ(y). (3.2.1.1.2)

Since λét ⊗ 1 : Y ⊗W → X ⊗W (1) is an isomorphism, this is a well-defined pairing. We
now claim that we have a natural identification

LieU−2
wt =

{
Pairings N : Y ×X → W such that

N(y, λét(y′)) = N(y′, λét(y)), for all y, y′ ∈ Y

}
.

In particular, we have an identification

BQ ⊗W = B
λét ⊗W = LieU−2

wt . (3.2.1.1.3)
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Let us prove our claim above about LieU−2
wt . By definition, it is the sub-space

{N ∈ Lie(GSp(M0, ψ0)) : W1M0 ⊂ kerN ; imN ⊂M ét
0 }.

More explicitly, LieU−2
wt consists of those maps N : Mmult

0 →M ét
0 such that the diagram

Mmult
0

N
> M ét

0

(M ét
0 )
∨

(1)

ψét
0 '

∨

N∨(1)
> (Mmult

0 )
∨

(1)

' ψét
0

∨

commutes. Here the vertical isomorphisms are the ones induced by the perfect pairing ψét
0 .

Using the identifications of M ét
0 with Hom(Y,W ), and Mmult

0 with X ⊗W (1), and the

explicit formula (3.2.1.1.1) for ψét
0 , we see that LieU−2

wt is the space of maps N : X⊗W →
Hom(Y,W ) such that the diagram

X ⊗W
N

> Hom(Y,W )

Y ⊗W

λét

∧

N∨
> Hom(X,W )

(λét)
∨

∧

(3.2.1.1.4)

commutes. If we now think of an element N of LieU−2
wt as a pairing X × Y → W via the

formula

N : Y ×X → W

(y, x) 7→ N(x⊗ 1)(y ⊗ 1),

then the commuting of the diagram (3.2.1.1.4) is equivalent to requiring that

N(y, λét(y′)) = N(y′, λét(y)),

for all y, y′ ∈ Y .

3.2.2

Now we introduce ‘Tate cycles’ into the picture. Since the polarized log 1-motif (Q, λ) over
R is positive by construction, it corresponds to a polarized abelian scheme (A, λ) over the
locus U ⊂ SpecR where the log structure is trivial by (1.2.4.2).
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Suppose that we have a continuous map x : R → OK of log W -algebras, for K ⊂ K0
a finite extension of K0 with residue field k. Let (Ax, λx) be the corresponding princi-

pally polarized semi-stable abelian variety over K. Let Λx = H1
(
Ax,K0

,Zp
)

; then the

polarization λx induces a perfect Galois-equivariant Weil pairing

ψ : Λx ⊗Zp Λx → Zp(−1).

We will suppose also that we have Galois-invariant tensors {sα,x,ét} ⊂ Λ⊗x whose pointwise
stabilizer is a reductive sub-group GZp ⊂ GSp(Λx, ψx). By (2.3.2.3) and (2.4.1.1)(3),

the corresponding ϕ-invariant tensors {sα,x,st} ⊂
(
Dst(Ax)⊗

)N=0
give rise to ϕ-invariant

tensors {sα,0} ⊂M⊗0 defining a reductive group G ⊂ GSp(M0, ψ0).

Recall that we have identified BQ ⊗W with LieU−2
wt in (3.2.1.1) above. Let BQ,G =

BQ ∩ LieG, and let SQ,G be the quotient of SQ that is dual to BQ,G. Let σG be the
polyhedral cone σ ∩ (BQ,G ⊗ R), and let SσG ⊂ SQ,G be the corresponding sub-monoid.

Remark 3.2.2.1. Note that the monodromy at x, Nx = NAx , lies in σG by (2.3.1.2), which
says that Nx agrees (up to a Q-multiple) with Fontaine’s monodromy operator on Dst(Ax),
and so kills the tensors {sα,0}.

Lemma 3.2.2.2. The following is true in our situation:

1. The weight filtration W•M0 is G-split.

2. Let Pwt,G, Uwt,G, U
−2
wt,G denote the intersections with G of the groups Pwt, Uwt and

U−2
wt , respectively. Then Pwt,G ⊂ G is a parabolic sub-group and Uwt,G is its unipotent

radical. The Hodge filtration Fil1(M0 ⊗ k) ⊂M0 ⊗ k is Pwt,G ⊗ k-split.

3. SσG is the saturation of the image of SQ,σ in SG, and, moreover, the map SQ,σ →
SσG is continuous.

4. We can choose a lift ι
]
σ,0 : SQ,σ → MkP

of the identification

SQ,σ/S
×
Q,σ = MR /R

× = P

such that the composition SQ,σ → MkP
x]−→ MOK/mK

factors through SσG.

Proof. (1) follows from (2.2.4.3), and (2) from (2.3.2.3)(6). For (3), the first point follows
from [Har89, 3.1]. Recall that a map f : P → Q of monoids is continuous if f(p) is
invertible in Q only when p is already invertible in P . To check continuity of our given
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map, simply observe that we have a diagram

SQ,σ > SσG

N
∨

Nx
>

where we are considering Nx ∈ σ ∩ BQ,G as a map Nx : SQ,σ → N. It is enough to
show that Nx is continuous, but this follows because the map of algebras x : R → OK is
continuous (as a map of local rings).

As for (4), note that lifts SQ,σ → MkP
of the identification

SQ,σ/S
×
Q,σ = MR /R

× = P

form a torsor Φ under the group Hom(SQ, k
×). Lifts SQ,σ → MOK/mK

of the map Nx

also form a torsor Φ′ under the same group. In particular, Φ and Φ′ are in bijection with
one another; the bijection is given by post-composition with the map MkP

→ MOK/mK
induced by the map of log algebras R → OK/mK . As we observed in the remark directly
above the statement of the lemma, the map Nx factors through SσG . This means precisely

that the Hom(SQ, k
×)-torsor Φ′ has a ‘reduction of structure group’ to Hom(SG, k

×) given
by the sub-space of lifts of Nx that factor through SσG . Pick any lift in this sub-space,

and let ι
]
σ,0 ∈ Φ be the corresponding lift under the bijection between Φ′ and Φ.

3.2.3

Here we will construct the explicit model R+ for Rsab. Choose any co-character µ0 :
Gm ⊗ k → Pwt,G ⊗ k that splits the Hodge filtration Fil1(M0 ⊗ k) ⊂ M0 ⊗ k. This is
possible by (3.2.2.2)(2). Let A0 ⊂ Pwt,G ⊗ k be any maximal k-split torus that contains
the image of µ0, and choose a Levi sub-group L ⊂ Pwt,G such that A0 ⊂ L⊗ k. Then we

can lift µ0 to a co-character µ : Gm → L inducing a splitting M0 = Fil1M0 ⊕M0
′. Let

PF ⊂ GSp(M0, ψ0) and PF,G ⊂ G be the parabolic sub-groups associated with the filtration

Fil1M0 ⊂ M0, and let U
op
F ⊂ GSp(M0, ψ0) and U

op
F,G ⊂ G be the opposite unipotent sub-

groups associated with µ. Then, every N ∈ LieU
op
F satisfies N2 = 0 in End(M0), and the

exponential N 7→ 1 +N induces an isomorphism of groups LieU
op
F
'−→ U

op
F .

The choice of Levi L gives us a co-character w : Gm → G splitting W•M0, and, by
construction, µ commutes with w. This ensures the following:

3.2.3.1. M ét
0 ⊂M0

′ ⊂ W1M0.

3.2.3.2. U−2
wt ⊂ U

op
F ⊂ Pwt.

3.2.3.3. U
op
F is stable under conjugation by w(Gm).
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Indeed, we first note that, by the choice of µ, the filtration W•M0 is µ(Gm)-stable, and
so WiM = (WiM∩M0

′)⊕(WiM∩Fil1M0), for i = 0,−1. Since we have Fil1M0+W1M0 =
M0 and M ét

0 ∩ Fil1M0 = 0, (3.2.3.1) follows. Now (3.2.3.2) is an immediate consequence.
Finally, (3.2.3.3) follows simply because w and µ commute.

Let U+
F = U

op
F /U−2

wt ; note that this group acts naturally on M sab
0 . Our choice of co-

character w splitting the weight filtration preserves U
op
F and so gives us a section U+

F →
U

op
F . Let Û+ be the completion of U+

F along the identity section. This is a formal affine
scheme. Call the associated formally smooth W -algebras R+. Let IR+ ⊂ R+ be the
augmentation ideal corresponding to the identity section, and equip R+ with an IR+-

contracting Frobenius lift ϕR+ (that is, we have ϕR+

(
IR+

)
⊂ I2

R+). We can then define

an object M+,sab in MF[0,1](R
+) (cf. 1.4.1.5) in the following way:

As an R+-module M+,sab = M sab
0 ⊗W R+. We set Fil1M+ = Fil1M sab

0 ⊗W R. We

equip M+ with the ϕR+-semi-linear map ϕM+ = g+(ϕ
Msab

0
⊗ϕR+), where g+ ∈ Û+(R+)

is the universal element of Û+. By (1.4.2.4), it follows that there exists a unique ϕ-
compatible, topologically quasi-nilpotent connection ∇

M+,sab : M+,sab → M+,sab ⊗R+

Ω̂1
R+/W

. By (3.2.3.2), the ϕ-stable filtration W•M sab
0 of M sab

0 also extends naturally to an

ϕ-stable filtration W•M+,sab on M+, giving us a short exact sequence

0→Mab,+ →M sab,+ →Mmult,+ → 0,

in MF[0,1](R
+). This gives a deformation

0→ T+[p∞]→ G sab,+ → ‘B+[p∞]′ → 0

over R+ of the extension of p-divisible groups

0→ T0[p∞]→ J0[p∞]→ B0[p∞]→ 0

over k. Here, T+ is the split torus over R+ with character group X. Using Serre-Tate
theory, we find a unique deformation B+ of the abelian variety B0 to R+ so that ‘B+[p∞]’
is in fact the p-divisible group B+[p∞] associated with B+. Moreover, B+ is equipped
with a lift λab,+ of the polarization λab

0 on B0, since Mab,+ = W1M
sab,+ = Mab

0 ⊗W R+

carries the polarization ψab
0 ⊗ 1.

Lemma 3.2.3.4. There exists a semi-abelian scheme J+ over R+ sitting in a short exact
sequence:

0→ T+ → J+ → B+ → 0,
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equipped with an isomorphism

0 > T+[p∞] > J+[p∞] > B+[p∞] > 0

0 > T+[p∞]

wwwwwwwwwwww
> G sab,+

'
∨

> B+[p∞]

wwwwwwwwwwww
> 0

Moreover, let ArtW be the category of artinian local W -algebras (R,mR) equipped with
an identification R/mR = k. The triple (R+, J+, λab,+) pro-represents the deformation
functor (cf. 3.1)

Def
(J0,λ

ab
0 )

: ArtW → Set

Def
(J0,λ

ab
0 )

(A) =

 Pairs (J ′, λab,′) where J ′ is a deformation of J0 over A

and λab,′ is a lift to B′ of the polarization λab
0 on B0.

 .
In particular, the classifying map Rsab → R+ corresponding to the deformation (J+, λ+)
over R+ is an isomorphism of W -algebras.

Proof. To begin, we remark that, over any R ∈ ArtW equipped with a deformation J ′ of
J0, the inclusion T0 ↪→ J0 deforms uniquely to an inclusion T ′ ↪→ J ′ (T ′ is the split torus
over A with character group X), and so the quotient B′ of J ′ by T ′ is unambiguously
determined; cf. proof of (1.1.3.1). In particular, our deformation problem makes sense.

By (1.1.3.2), our deformation problem is equivalent to the one for the pair
Def

(J0[p∞],λab
0 )

. The corresponding deformation functor is pro-represented by a formally

smooth W -algebra T = W [|t1, . . . , tr|] and a universal deformation (G sab, λab) over T . The
universal deformation gives rise, via the Dieudonné functor, to a Dieudonné F -crystal M sab

over T . If we fix the Frobenius lift ϕT on T taking ti to t
p
i , we can reinterpret M sab as a

tuple (M sab, ϕ
Msab ,Fil1M sab,∇

Msab) inMF[0,1](T ), and we can choose the co-ordinates

ti so that reducing M sab modulo (t1, . . . , tr) gives the Dieudonné module M sab
0 over W .

The versality of T gives us a map f : T → R+ and an identification

f∗M sab = M sab,+.

Let

KS
M+,sab : LieU+

F ⊗W R+ → Hom

(
Fil1M+,sab,

M+,sab

Fil1M+,sab

)

be the Kodaira-Spencer map arising from the connection on M+,sab. Then we see from
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(1.4.2.2)(3) that KS
M+,sab ⊗R+W is simply the inclusion

LieU+
F ↪→ Hom

(
Fil1M sab

0 ,
M sab

0

Fil1M sab
0

)
.

Now we note:

• Mab
0

Fil1Mab
0

=
Msab

0
Fil1Msab

0

is identified with the dual of Fil1Mab
0 under the polarization

ψab
0 .

• LieU+
F consists of those elements of Hom

(
Fil1M sab

0 ,
Msab

0
Fil1Msab

0

)
that restrict to sym-

metric maps from Fil1Mab
0 to (Fil1Mab

0 )
∨

under the identification via ψab
0 of the

latter space with
Msab

0
Fil1Msab

0

.

It is easy to see that the latter is also a description of the image of the tangent space of
T under the Kodaira-Spencer map KS

Msab ⊗TW . This implies that the map f : T → R+

has to be an isomorphism.

From now on we will identify the triple (Rsab, Juniv, λ
ab
univ) with (R+, J+, λab,+).

3.2.4

Let ι
]
σ,0 : SQ,σ → MkP

be the lift chosen in (3.2.2.2)(4). It gives us a map SQ → M
gp
kP

;

restricting this to S
λét gives us an element of B

λét ⊗M
gp
kP

, which amounts to a pairing

〈 , 〉ισ,0 : X × Y → M
gp
kP

such that 〈λét(y), y′〉ισ,0 = 〈λét(y′), y〉ισ,0 , for all y, y′ ∈ Y . This in turn provides us with

a log 1-motif [Y
ισ,0−−→ T

log
0 = Hom(X,Glog

m )] over kP , where

ισ,0(y)(x) = 〈x, y〉ισ,0 .

The difference u0 = ι0 − ισ,0 gives us a classical 1-motif Qcl
0 = [Y

u0−→ J0] over k that is

naturally equipped with a polarization λcl
0 . Let

Gu0 = lim→
n

(
[Y

u0−→ J0]⊗L Z/pnZ[−1]
)

be its associated p-divisible group over k. It is polarized, and we know from the construction
in § 1.3 that D(Gu0)(W ) is naturally isomorphic to (M0, ϕM0

, ψ0) as a polarized Dieudonné
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module over W . Here ϕM0
is associated with some choice of section β : MkP

→ MWP
(cf.

3.2.1). We will fix this ϕ-module structure on M0, from now on.
We now consider the space Ûcl, the completion of U

op
F along the identity section. Let

Rcl be its ring of global sections, and let I
Rcl ⊂ Rcl be its augmentation ideal at the

identity. Equip Rcl with an I
Rcl-contracting Frobenius lift ϕ

Rcl that lifts ϕR+ . Set Mcl =

M0 ⊗W Rcl, Fil1Mcl = Fil1M0 ⊗W Rcl, ϕ
Mcl = g(ϕM0

⊗ ϕ
Rcl). Here g ∈ Ûcl(Rcl) is the

universal element. Just as it was the case for M+ above, we can use (1.4.2.3) to extend this

to an object (Mcl, ψcl) in MFpol
[0,1](R

cl). This corresponds to a deformation of Gu0 along

with its polarization, and thus of the polarized 1-motif (Qcl
0 , λ

cl
0 ), over Rcl by (1.1.3.2).

Lemma 3.2.4.1. Let us denote by (Qcl, λcl) the deformation over R+ of (Qcl
0 , λ

cl
0 ) found

above.

1. (Qcl, λcl) is a universal deformation of the polarized 1-motif (Qcl
0 , λ

cl
0 ).

2. The choice of weight co-character w : Gm → Pwt,G made in (3.2.3) gives us a

deformation (Q+, λ+) over R+ of the 1-motif (Qcl
0 , λ

cl
0 ).

Proof. The argument for (1) is similar to the one in (3.2.3.4) and will be omitted: it uses
the fact from (1.1.3.1) that deforming a 1-motif is equivalent to deforming its associated
p-divisible group.

For (2), we note that w gives us a section LieU+
F ↪→ LieU

op
F , and hence a section

Û+ ↪→ Ûcl. This is because both U+ and U
op
F are vector groups isomorphic to their Lie

algebras (cf. 3.2.3). By assertion (1), the section Û+ ↪→ Ûcl will determine a deformation
(L+, λ+) over R+ of the polarized 1-motif (Qcl

0 , λ
cl
0 ).

3.2.5

Let Rσ be the complete local W -algebra obtained by completing the toric scheme

SpecW [SQ,σ] along the point corresponding to the map of monoids ι
]
σ,0 : SQ,σ → MkP

chosen in (3.2.2.2)(4). Rσ has a natural log structure and we get a map ισ : Rσ → kP of

log W -algebras. Just as above, over Rσ we have the log 1-motif [Y
uσ−−→ T log] induced by

the natural maps S
λét ↪→ SQ → M

gp
Rσ

.
Let us summarize what we have so far:

• There is a formally smooth W -algebra R+ equipped with a pair (J+, λab,+) deforming
(J0, λ0). It is identified with the deformation ring Rsab for the pair (J0, λ0).

• There is a formally smooth and log formally smooth log W -algebra Rσ equipped with

a log 1-motif [Y
uσ−−→ T log] reducing to the log 1-motif [Y

ισ,0−−→ T
log
0 ] over kP . uσ

is induced by the natural map of monoids S
λét,σ

→ Rσ and ισ,0 is induced by the

map ι
]
σ,0. The difference between this last log 1-motif and the polarized log 1-motif

(Q0, λ0) over kP is a classical polarized 1-motif (Qcl
0 , λ

cl
0 ) over k.
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• The choice of weight co-character w : Gm → Pwt,G gives us a polarized 1-motif

(Q+, λ+) over R+ deforming the 1-motif (Qcl
0 , λ

cl
0 ).

Let R′ = R+⊗̂Rσ: this is a local log W -algebra with the log structure induced from
the one on Rσ. Let x′0 : R′ → kP be the natural surjection. Over R′ we have the polarized

1-motif (Q+, λ+), where Q+ = [Y
u+
−−→ JR′ ] arising from the one over R+, and the log

1-motif [Y
uσ−−→ T

log
R′ ], arising from the one over Rσ. The map ι′ = u+ + uσ gives us a

polarized log 1-motif (Q′, λ′) over R′ (with Q′ = [Y
ι′−→ J

log
R′ ]) reducing to the polarized log

1-motif (Q0, λ0) along x′0.
R′ with the deformation (Q′, λ′) of (Q0, λ0) will be our explicit model for the deforma-

tion ring R. We codify this in the next:

Proposition 3.2.5.1. Giving a continuous map f : R′ → C of local log W -algebras is
equivalent to giving a deformation over C of (Q0, λ0) (cf. 3.1.1.6). In particular, the
triples (R′, (Q′, λ′)) and (R, (Q, λ)) are naturally isomorphic.

Proof. If we have such a map f , then clearly the pull-back f∗(Q′, λ′) gives rise to a deforma-
tion over C of (L0, λ0). Conversely, suppose we have a deformation ((QC , λC), jC , iC) over
C of (L0, λ0). In particular, we have a deformation (JC , λ

ab
C ) over C of the pair (J0, λ

ab
0 );

by (3.2.3.4), this corresponds to a map f+ : R+ → C such that f+(J+, λab,+) = (JC , λ
ab
C ).

Moreover, from the construction in (3.2.4), we have the polarized 1-motif (L+, λ+) over
R+ and this gives us a classical 1-motif (Qcl

C , λ
cl
C) over C when pulled back along f+.

Note that QC is of the form [Y
ιC−−→ J

log
C ] and Qcl

C is of the form [Y
ιcl
C−−→ JC ]. Moreover,

the difference ιC−ιcl
C factors through T

log
C and gives us a map from Y to T log(C). This last

map can also be viewed as a pairing Y ×X → M
gp
C , and the presence of the polarization

λT ensures that this pairing factors through a linear map S
λét → M

gp
C . We claim that we

can extend this to a map SQ → M
gp
C . To do this, consider the following diagram:

Hom

(
SQ
S
λét

,M
gp
C

)
⊂ > Hom(SQ,M

gp
C ) > Hom(S

λét ,M
gp
C ) >> Ext1

(
SQ
S
λét

,M
gp
C

)

Hom

(
SQ
S
λét

,M
gp
lC

)'
∨

⊂ > Hom(SQ,M
gp
lC

)
∨

> Hom(S
λét ,M

gp
lC

)
∨

>> Ext1

(
SQ
S
λét

,M
gp
lC

)'
∨

All the rows of the diagram are exact, and the middle square is Cartesian, since the vertical
arrows at the ends are isomorphisms. To see this last fact, first observe that the quotient

group K =
SQ
S
λét

is finite of prime-to-p order. So any map from K to M
gp
C or M

gp
lC

must

land in k×; this shows that the vertical arrow on the extreme left is an isomorphism. For
the other isomorphism, the argument is similar: Since 1 +mC (mC is the maximal ideal of
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C) is a pro-p group, the groups Exti(K, 1 +mC) vanish for all i ≥ 0. This implies that the
arrow on the extreme right is also an isomorphism, since we have the short exact sequence

1→ 1 + mC → M
gp
C → M

gp
lC
→ 1.

Now we return to our map ι
log
C : S

λét → M
gp
C : The induced map S

λét → M
gp
lC

agrees

with the restriction to S
λét of the map j

]
T : SQ → M

gp
lC

induced from jT : kP → kL and the

surjection x′0 : Rσ → kP . Since the middle square above is Cartesian, we obtain a unique

map f ] : SQ → M
gp
C inducing ι

log
C and j

]
T .

We claim that the restriction of f ] to SQ,σ lands in MC ; indeed, we only have to check

that the induced map j
]
T lands in MkC

, and this is true by hypothesis. By definition, f ]

then amounts to giving a continuous map fσ : Rσ → C of log W -algebras.
Now, the map f = f+⊗̂fσ : R′ → C is the one inducing the deformation

((QC , λC), jC , iC).

From now on we will identify R with R′ along with the polarized log 1-motifs (and
hence the degenerating family of polarized abelian varieties) over them.

3.2.6

There is a natural element Θσ ∈ BQ⊗ Ω̂
1,log
Rσ/W

= LieU−2
wt ⊗W Ω̂

1,log
Rσ/W

induced by the map

SQ → Ω̂
1,log
Rσ/W

s 7→ dlog(s).

Set M = M0 ⊗W R and equip it with the constant filtrations Fil1M = Fil1M0 ⊗W R,
W•M = W•M0 ⊗W R, and the constant polarization ψ = ψ0 ⊗ 1.

Let Θ+ ∈ LieU+
F ⊗ Ω̂1

R+/W
be the connection matrix associated with the connection

on M sab,+. The choice of co-character w : Gm → Pwt,G splitting W•M0 made in (3.2.3)

gives us a section LieU+
F ↪→ LieU

op
F , and we can use this to view Θ+ as an element of

LieU
op
F ⊗Ω̂1

R/W . This also gives us a section U+
F → U

op
F , which we can use to view elements

of U+
F as automorphisms of M0. Let Θσ ∈ LieU−2

wt ⊗W Ω̂
1,log
R/W be the element arising from

the natural inclusion Rσ ↪→ R. Let ∇M be the connection on M with connection matrix
Θ = Θ+ + Θσ. Fix the Frobenius lift ϕσ on Rσ that restricts to the p-power map on
SQ,σ ⊂ Rσ, let ϕR = ϕR+⊗̂ϕσ, and let ϕM be the map

ϕ∗RM = ϕ∗WM0 ⊗W R
ϕM0

⊗1
−−−−−→M0 ⊗W R

g+
−−→M0 ⊗W R = M,

where g+ ∈ U+
F (R) is the image of the universal element in U+

F (R+). By construction, ϕM
is parallel for the connection ∇M .
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Lemma 3.2.6.1. The tuple M = (M,ϕM ,Fil1M,∇M , ψ) corresponds to the polarized
Dieudonné log F -crystal D(A) attached to the degenerating polarized abelian scheme (A, λ)
over R.

Proof. This is immediate from the construction.

3.3 G-admissibility

Let R be the explicit log deformation ring constructed in § 3.2. In this section, we construct
an explicit map R 7→ RG (it will be the normalization of a surjection) that will be the
local model for maps between complete local rings at the boundary of integral models of
appropriate Shimura varieties. Given the theory of the previous section, the construction
is quite simple; however, showing that it has the correct properties, and in particular that
RG has the right dimension, is more involved and requires certain additional assumptions
that will be verified in applications.

There are two main results here. One is (3.3.3.6), which is a formal analogue of the
rationality result for Hodge cycles found in Lemma 1 of the introduction; the second is
(3.3.4.10), which gives a criterion for the normalization of a quotient O of R to be identified
with RG. Both these results involve the notion of (strong) G-admissibility of points in
(Spf R)an away from the boundary divisor. One should think of this condition as follows:
the points which are (strongly) G-admissible correspond to semi-stable abelian varieties
appearing near the (p-adic) boundary of an appropriate Shimura variety associated with
G.

3.3.1

Let U+
F,G = U

op
F,G/U

−2
wt,G, and let Û+

G be the completion of U+
F,G along the identity section.

Call the associated formally smooth W -algebra R+
G: this is a quotient of R+. Let RσG be

the complete local log W -algebra obtained from the toric scheme associated to the monoid

SσG completed along the map x
]
0 : SσG → k.

Lemma 3.3.1.1. The natural map Rσ → RσG of log W -algebras is continuous, and is the

normalization of a surjection. Moreover, we have dimRσ = dimU−2
wt,G = rkZ BQ + 1, and

dimRσ,G = rkZ BQ,G + 1.

Proof. The continuity follows from that of the map of monoids SQ,σ → SσG (3.2.2.2)(3).
That the map is then the normalization of a surjection follows from [Har89, 3.1]. The last
assertion about dimensions is immediate from the definitions.

Let RG = R+
G⊗̂RσG : by the lemma above, this is the normalization of a continuous

quotient of R. RG with its inherited (from R) family of degenerating abelian varieties will
be our ‘local model with Tate cycles’. The first difficulty is to show that it has the right
dimension. To deal with this issue, we will need a little detour.
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3.3.2

The notation used in this sub-section will be strictly local to it. We fix a sharp, fs monoid
P (cf. 1.2.1.2). Let L/K0 be a finite extension, and let A be the logarithmic OL-algebra
OL[P ] with the log structure given by the monoid P , and let Â be its completion along
the ideal generated by P \ {1}. Let M(A) be the set of continuous maps of log W -algebras
Â→ OK0

. For any quotient ring T of Â, let M(T ) = M(A) ∩ T (OL). Consider the map

νT : M(T )
x 7→νx−−−−→ Hom(P gp,Q).

Definition 3.3.2.1. The ν-dimension of a quotient T of Â is the dimension of the vector
sub-space of Hom(P gp,Q) generated by the image of νT .

Lemma 3.3.2.2. Suppose T = Â/q, for some prime ideal q ⊂ Â, and that m /∈ q, for all
m ∈ P . If T is moreover W -flat (that is, if p /∈ q), then we have ν-dim(T ) ≥ dim(T )− 1.

Before we give a proof, here are two examples with P = N2 and L = K0, so that
Â = W [|t1, t2|]. Let e1, e2 be the standard basis elements of Z2, and, for any x ∈ M(A),
set ν1(x) = νx(e1) and ν2(x) = νx(e2).

Example 3.3.2.3. First, take q = (t1 − t2); then, for any x ∈ M(T ), we must have
ν1(x) = ν2(x). This is the only constraint, and the image of νT generates the sub-space of
maps f : Z2 → Q such that f(e1) = f(e2). So ν-dim(T ) = 1 = dim(T )− 1 in this case.

For the second example, take q = (t1 − pt2); then, for any x ∈M(T ), we have ν1(x) =
ν2(x) + 1. If (a1, a2) ∈ Z2, then we have

νx(a1, a2) = (a1 + a2)ν2(x) + a1.

Since there is no constraint on ν2(x) (other than that it be positive) for varying x ∈M(T ),
this means that the common kernel of all the νx for x ∈ M(T ) is 0, and so the sub-space
of Hom(Z2,Q) generated by im νT must be everything. In particular, ν-dim(T ) = 2 > 1 =
dim(T )− 1.

Remark 3.3.2.4. The examples show that the following is a reasonable interpretation of
ν-dim(T ): it is the dimension of the smallest ‘toric’ sub-scheme of Spf Â that contains
Spf T . In particular, they show that the ν-dimension of T conveys non-trivial information
about the special fiber of T over k. Indeed, the generic fibers of the sub-schemes of Spf Â
corresponding to the two quotients above are conjugate in (Spf Â)an under the action of
the torus with character group P gp.

Remark 3.3.2.5. The lemma should be a consequence of the following theorem in non-
archimedean tropical geometry: The closure of the image of νT in Hom(P gp,R) is a locally
finite union of Q-rational d-dimensional polytopes, where d = dimT − 1. See [EKL06] or
[Gub07]. Nonetheless, the specific result we need admits an elementary proof, which we
present below.
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Proof. We will prove this by induction on n = rkP gp. For the purposes of the induction,
we will allow P to be merely fine, and do not demand that it be saturated as well.

If n = 1, then the normalization of Â is OL[|t|], and there exists some prime q′ ⊂ OL[|t|]
such that q′∩ Â = q and such that T ′ = OL[|t|]/q′ satisfies the same conditions as T . Since
dimT ′ = dimT and im νT ′ is contained in im νT , it is enough to prove the lemma with

T replaced by T ′ and Â replaced by OL[|t|]. In this case, either q = (0) or q is principal,
generated by q(t) for some irreducible polynomial q(t) not equal to t or p. In both cases,
the lemma is easily checked by hand.

So suppose n > 1, and define Σ = {N ⊂ P gp a rank 1 summand : N ∩ P = {1}}.
For every N ∈ Σ, the image PN of P in P

gp
N = P gp/N is again a fine monoid without

non-trivial invertible elements, and, if ÂN = OL[|PN |], we get a surjection Â → ÂN of
local log W -algebras. Let pN ⊂ Â be the kernel of this surjection: this is a height 1 prime
in Â.

Fix x ∈ M(T ) (this exists, by our hypotheses on T ). Let Σx = {N ∈ Σ : N 6⊂ ker νx};
then we have the following:

Claim. ⋂
minimal primes p′⊃q+pN

N∈Σx

p′ = q.

To prove this claim, it is enough to show that the collection ∆ of ideals {q + pN : N ∈
Σx} is infinite. That will imply that the collection of primes minimal over ideals in ∆ is
infinite. If a is the intersection on the left hand side and is not equal to q, then all the
primes minimal over ideals in ∆ will be minimal over a, because pN has height 1 for every
N . But this is impossible, since there can only be finitely many primes minimal over any
ideal of the Noetherian ring Â.

To show the infinitude of ∆, choose m1,m2 ∈ P that generate two distinct lines in P gp

and are such that νx(m1) = νx(m2). Then νx(m1m
−l
2 ) 6= 0, for all l ≥ 2. Let Nl ⊂ P gp be

the line generated by m1m
−l
2 ; then Nl ∈ Σx, and m1 −ml

2 ∈ pNl = pl. If ∆ were finite,
we can find l > k ≥ 2 such that q + pk = q + pl. In particular, we will have

mk
2(1−ml−k

2 ) = mk
2 −ml

2 = (m1 −ml
2)− (m1 −mk

2) ∈ q.

Since 1−ml−k
2 is a unit in Â, this implies that mk

2 ∈ q, which contradicts our hypothesis
that q contains no element of P .

Now, choose finitely many generators m1, . . . ,ml for P , and let a = p
∏
imi. By

hypothesis, a /∈ q, so by the claim above it follows that there exists N ∈ Σx and a minimal
prime q′ ⊃ q+ pN such that a /∈ q′. Let T ′ = Â/q′; then T ′ is a quotient of ÂN , and, since
a /∈ q′, it satisfies all the conditions that T did. So by induction (since rkP

gp
N = n− 1) it

follows that ν-dim(T ′) ≥ dim(T ′)− 1, and we have

ν- dim(T ) ≥ ν- dim(T ′) + 1 ≥ dim(T ′)− 1 + 1 ≥ dim(T )− 1.
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Here, the first inequality follows since N is contained in the common kernel of the image of
νT ′ , but not in that of the image of νT (it is not killed by νx). The last inequality follows

because Â is catenary and pN has height 1.
And we have the conclusion of the lemma.

3.3.3

We return now to the notation and setting of §3.2.

Definition 3.3.3.1. A continuous map y : Rσ → OK0
of log W -algebras is G-admissible

if the induced map Ny : SQ → K0
ν−→ Q, viewed as an element of BQ⊗Q, lies in BQ,G⊗Q.

Here ν is the p-adic valuation on K0 taking p to 1.

Remark 3.3.3.2. exp(Ny) can be viewed as the monodromy of M around y. Having y be
G-admissible is therefore equivalent to asking that the the tensors {sα} be invariant under
monodromy around y.

Definition 3.3.3.3. A continuous map y : R→ OK0
of W -algebras is G-admissible if

• The induced map yσ = y|Rσ is G-admissible.

• The induced map y+ = y|R+ factors through R+
G.

As above, let M(R) be the set of continuous maps of log W -algebras R → OK0
. For

any quotient ring O of R, we set M(O) = M(R) ∩ O(OK0
).

Definition 3.3.3.4. We say that a quotient O = R/q of R is adapted to G if the following
conditions hold:

1. q is prime (so that O is a domain).

2. O is flat over W .

3. dim O = rkW LieU
op
F,G + 1.

4. Every element of M(O) is G-admissible.

5. The original lift x : R→ OK chosen in (3.2.2) factors through O.

We will consider the following restriction on our setup.

Assumption 3.3.3.5. (Rationality) BQ,G generates LieU−2
wt,G as a W -module; in other

words, rkZ BQ,G = rkW LieU−2
wt,G.
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Lemma 3.3.3.6. Suppose that there exists a quotient O of R adapted to G, and suppose
σ ⊂ BQ⊗R has maximal dimension. Let x+ : R+ → OK be the restriction of our original

lift x to R+. Suppose also that we can find a prime p ⊂ O minimal over ker(x+)O such
that O ′ = O/p satisfies the following:

1. O ′ is flat over W .

2. For all s ∈ SQ,σ, the image of s in O does not lie in p.

3. dim O ′ ≥ rkW U−2
wt,G + 1.

Then assumption (3.3.3.5) holds.

Proof. In order to show that BQ,G generates LieU−2
wt,G, it suffices to show

dimQ(BQ,G ⊗Q) ≥ s := rkW LieU−2
wt,G.

The condition that σ has maximal dimension ensures that Rσ is simply the completed
monoid ring W [|SQ,σ|]. Let x+ : R+ → OK and p ⊂ ker(x+)O be as in our hypotheses.

Then R ⊗R+,x+ OK is isomorphic to OK [|SQ,σ|], and O ′ = O/p is a quotient domain of
this ring.

The hypotheses of (3.3.2.2) are now valid with P = SQ,σ, L = K, and T = O ′, and

so is therefore its conclusion. By condition (4) of (3.3.3.4), every element of M(O ′) is
G-admissible: this means that, for every y ∈M(O ′), the associated element Ny ∈ BQ⊗Q
lies in BQ,G⊗Q. On the other hand, by (3.3.2.2) and hypothesis (3) above, the sub-space

of BQ⊗Q generated by Ny for y ∈M(O ′) has dimension at least s. So we have the desired
inference.

In fact, under some mild conditions, we can get the numbered hypotheses of the lemma
above for free.

Lemma 3.3.3.7. Suppose O is a quotient of R adapted to G. Suppose also that we have

• A flat map f : X → Y of flat, finite type, integral W -schemes;

• A closed sub-scheme Z ⊂ X; and

• a point z ∈ Z(k);

such that the completion of the diagram

Z ⊂ > X

Y

f

∨
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at z is isomorphic over W to the diagram

Spf O ⊂ > Spf R

Spf R+.

Spf ι+

∨

Then the numbered hypotheses of (3.3.3.6) are valid.

Proof. First, we claim that M(O) is Zariski dense in the rigid analytic space (Spf O)an

associated with O. Since x factors through O and is a map of log W -algebras, no s ∈ SQ,σ
maps to 0 in O. Indeed, if some s did map to 0 in O, then it would have to map to 0 under
x as well, which is impossible, since x is a map of log W -algebras.

Now, we find, using conditions (1),(2) and (4) of (3.3.3.4), that the restriction
Spf ι+|Spf O factors through Spf R+

G. This is because the restriction of every element of

M(O) to Spf R+ factors through Spf R+
G (implied by G-admissibility), and because M(O)

is dense in (Spf O)an.
Let Y ′ ⊂ Y be the closure of the image of Z in Y ; then, it follows that, for any small

enough affine neighborhood V of s = f(z) in Y ′, we have dimV ≤ dimR+
G. Replacing

Y ′ by V , and Z by any affine neighborhood of z in the pre-image of V , we can assume
that Z → Y ′ is induced by a map B ← A of finitely generated domains over W , with
dimB = dim O and dimA ≤ dimR+

G.
Let mz ⊂ B be the maximal ideal corresponding to z, and let ms ⊂ A be the one

corresponding to s. The map x+ : R+
G → OK induces a map j : A → K, such that

IA := ker j ⊂ ms, and the fiber B/IAB
[

1
p

]
of B

[
1
p

]
over j has dimension at least

dim O − dimR+
G = rkW U

op
F,G − rkW U+

G = rkW U−2
wt,G,

by the upper semi-continuity of dimensions of fibers. Let pB ⊃ IAB be any minimal prime
such that (B/pB) [1/p] has dimension at least rkW U−2

wt,G, and such that pB ⊂ mz.

Then the closure of pB in O under the identification B̂mz = O will give us the prime
p ⊂ O needed in the hypotheses of (3.3.3.6). Indeed, the closure of IA in O is ker(x+)O,
and so p will be minimal over ker(x+)O. By construction, O ′ = O/p is flat over W and
its dimension satisfies the lower bound in hypothesis (3) of (3.3.3.6). Moreover, we have
the map x : R → OK , which factors through O by condition (5) of (3.3.3.4), and so in
fact factors through O/(kerx+)O. In particular, for any s ∈ SQ,σ, the image of s in

O/(kerx+)O is non-zero, since its image in OK under x is non-zero as already observed at
the beginning of this proof. This implies hypothesis (2) of (3.3.3.6), since, if some s ∈ SQ,σ
belonged to p, then some high enough power sN would lie in ker x+ and thus would map
to 0 in O/(kerx+)O.
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3.3.4

Let L0/K0 be an unramified extension. We endow the power series ring L0[|u|] with a
ϕL0

-semi-linear endomorphism ϕ taking u to up. We also endow it with the log structure

ML0[|u|] = L0[|u|] \ {0} ↪→ L0[|u|],

thus making L0[|u|] a log L0-algebra. The endomorphism ϕ can be viewed as a ϕL0
-semi-

linear endomorphism of L0[|u|] as a log L0-algebra.
Suppose that D0 is a ϕ-module over L0: that is, D0 is a finite dimensional L0-vector

space equipped with an isomorphism

ϕD0
: ϕ∗L0

D0
'−→ D0.

Let D = D0 ⊗L0
L0[|u|], and suppose that D is equipped with a logarithmic connection

∇D : D → D ⊗ L0[|u|] dlog(u) and an isomorphism

ϕD : ϕ∗D '−→ D

such that:

• ϕD reduces modulo u to the endomorphism ϕD0
.

• ϕD is ∇D-parallel.

Then the residue N : D0 → D0 at u = 0 of ∇D is an operator satisfying NϕD0
= pϕD0

N ,
and so D0 has the structure of a (ϕ,N)-module over L0.

Let L0[|u|]log = L0[|u|][lu] be the polynomial ring in the variable lu over L0[|u|].
L0[|u|]log can be equipped with a natural logarithmic connection ∇ : lu 7→ −1 ⊗ dlog(u),
and a ϕ-semi-linear map ϕ given by ϕ(lu) = plu. The logarithmic connection corresponds
to a L0[|u|]-derivation N : lu 7→ −lu of L0[|u|]log, and we have

L0[|u|] = (L0[|u|]log)N=0.

Set

Ψ(D) =
(
D ⊗L0[|u|] L0[|u|]log

)∇=0
,

where D ⊗L0[|u|] L0[|u|]log is equipped with the tensor product logarithmic connection.

This is naturally a (ϕ,N)-module over L0: the endomorphism N of Ψ(D) is given by
(∇D⊗1)|Ψ(D). Moreover, by [Vol03, Theorem 9], the inclusion Ψ(D) ↪→ D⊗L0[|u|]L0[|u|]log

induces a (ϕ,∇)-equivariant isomorphism

Ψ(D)⊗L0
L0[|u|]log '−→ D ⊗L0[|u|] L0[|u|]log.

The map L0[|u|]log → L0 sending u and lu to 0 gives rise to an isomorphism

Ψ(D)
'−→ D0

97



of (ϕ,N)-modules over L0, and so we obtain a (ϕ,∇)-equivariant isomorphism

ξ : D0 ⊗L0
L0[|u|]log '−→ D ⊗L0[|u|] L0[|u|]log.

In particular, if d ∈ D0 is such that N(d) = 0, then ξ(d) will be a parallel section of

D =
(
D ⊗L0[|u|] L0[|u|]log

)N=0
.

Lemma 3.3.4.1. Let G ⊂ GL(D0) be a reductive sub-group, which is the pointwise
stabilizer of a collection of ϕ-invariant tensors {sα, 0} ⊂ (D⊗0 )N=0. For each α, let
s̃α = ξ(sα,0) ∈ D⊗ be the unique ∇D-parallel, ϕ-invariant element lifting sα,0. Let
θ ∈ GL(D) be the composition

D = D0 ⊗ L0[|u|]
ϕ−1
D0
⊗1

−−−−−→ ϕ∗L0
D0 ⊗ L0[|u|] = ϕ∗D

ϕD−−→ D;

Suppose that D0 is equipped with a filtration Fil•D0 such that:

1. The tuple (D0, ϕD0
,Fil•D0) gives a weakly admissible ϕ-module over L0;

2. Fil•D0 is split by a co-character µ : Gm → G;

3. θ lies in Uop(L0[|u|]), where Uop is the opposite unipotent associated with µ;

4. The tensors s̃α lie in Fil0(D⊗), where we equip D with the constant filtration Fil•D =
Fil•D0 ⊗ L0[|u|].

Then θ lies in (Uop ∩ G)(L0[|u|]), and, for all α, s̃α = sα,0 ⊗ 1 (we are using the trivial
identification of D with D0 ⊗ L0[|u|]).

Proof. This is just a slight generalization of [Kis10, 1.5.6], and the proof of that result goes
through for us verbatim.

Let L/K0 be a finite extension with residue field l, and let L0 = W (l)
[

1
p

]
be its

maximal absolutely unramified sub-extension. Fix some uniformizer πL ∈ L and let SL be
the associated log W -algebra equipped with the Frobenius lift ϕ : u 7→ up (cf. 2.2.5). Let

J = ker(SL → OK): this is a PD-ideal, and we have the PD-filtration J [i] given by the

divided powers of J . Let ŜL = lim← SL/J
[i] be the PD-completion of SL along J : this

inherits a log structure from SL and also admits an embedding in L0[|u|].

Proposition 3.3.4.2. Let y : R → OL be a continuous map of log W -algebras. Let Ay
be the semi-stable abelian variety induced over L. Set My = D(Ay)(SL), and suppose that
there exist ϕ-invariant, ∇-parallel tensors {s̃α} ⊂ M⊗y lifting {sα ⊗ 1} ⊂ M0 ⊗W W (l)
such that:

1. The pointwise stabilizer of {s̃α} is a reductive sub-group GS ⊂ GL(My);

2. The tensors {s̃α} reduce to tensors {sα,OL} ⊂ D(Ay)(OL)⊗ defining a reductive sub-

group GOL
⊂ GL

(
D(Ay)(OL)

)
, and the Hodge filtration on D(Ay)(OL) is GOL

-split.
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Then:

1. The induced map y : R→ OL is G-admissible.

2. Suppose, in addition, that (3.3.3.5) holds; then the induced map of monoids SQ,σ →(
MOL

/l×
)

factors through SσG.

3. In particular, if (3.3.3.5) holds, and if the induced map yσ,0 : Rσ → OL/mL of log
W -algebras factors through RσG, then y factors through RG.

Proof. Set My,0 = My ⊗SL W (l). Note that My,0 is identified with M0 ⊗W W (l) by

(2.4.1.1)(3); so it makes sense to ask for lifts to M⊗y of tensors in (M0 ⊗W W (l))⊗. In
hypothesis (2), we are using notation and results from (2.3.2.3).

Let M̂y = My ⊗SL ŜL; by the argument in [Kis10, 1.5.8], we can find a GS-split

filtration Fil1 M̂y on My lifting both the GW (l)-split filtration Fil1M0 ⊗W W (l) and the

GOL
-split Hodge filtration Fil1 D(Ay)(OL). Applying (1.3.4.1), this gives us a deformation

[Y
ι̃y−→ J

log
ỹ ] over ŜL of the log 1-motif [Y

ιy−→ J
log
y ] corresponding to Ay. So we have a

map ỹ : R→ ŜL inducing this deformation (cf. 3.2.5.1).
Let M0 ⊗W ŜL = D(A)⊗R ŜL = M̂y be the identification induced by ỹ.

Claim 3.3.4.3. Under this identification, the tensors {sα,0⊗1} ⊂M⊗0 ⊗W ŜL are identified
with {s̃α} ⊂ M⊗y . In particular, they are ϕ-invariant and ∇-parallel.

Let D0 = M0 ⊗W L0, and let D =My ⊗SL L0[|u|]. D0 is equipped with the filtration

Fil1D0 = Fil1M0 ⊗ L0, and the lift ỹ gives us an identification D = D0 ⊗L0
L0[|u|]. We

note:

• The filtered ϕ-module D0 is weakly admissible.

• The filtration Fil1D0 is GL0
-split.

• For every α, s̃α lies in Fil0D⊗.

• The composition

D0

ϕ−1
D0−−−→ ϕ∗D

ϕD−−→ D = D0 ⊗L0
L0[|u|]

is an element of U
op
F (L0[|u|]).

Only the last assertion is not immediate. To see it, first observe that ϕ−1
D0

= ϕ−1
M0

gy, for

some gy ∈ U−2
wt,G(L0); this was observed above. Also above, we saw that ϕ∗D had the

factorization

ϕ∗WM0 ⊗W L0[|u|] ε−→ ϕ∗WM0 ⊗W L0[|u|]
ϕM0

⊗1
−−−−−→M0 ⊗W L0[|u|] ỹ∗g+−−−→M0 ⊗W L0[|u|].
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So it suffices to show that (ϕM0
⊗ 1) ◦ ε ◦ ϕ−1

M0
lies in U

op
F (L0[|u|]). This follows from the

argument in [Kis10, 1.5.3]: one just has to replace the derivations ∂ti with their logarithmic
analogues. Now, the hypotheses of (3.3.4.1) are valid and we see that s̃α must equal sα⊗1:
our claim is proven.

To prove assertion (1), it will be enough to show two things:

• The induced map ỹ+ : R+ → ŜL factors through R+
G.

• The monodromy Ny for Ay lies in BQ,G ⊗Q.

Let us tackle the first statement. The map ϕM̂y
is given by the composition

ϕM̂y
: ϕ∗WM0 ⊗W ŜL

ε−→' ϕ∗WM0 ⊗W ŜL
ỹ∗ϕM−−−−→M0 ⊗W ŜL.

Here, the isomorphism ε is given by parallel transport (cf. 1.4.2). Since the tensors
{ϕ∗W sα,0 ⊗ 1} are parallel for the connection on ϕ∗My, they must be preserved by ε,
and, since they are taken to {sα,0⊗1} by ϕM̂y

, they must be taken to {sα,0⊗1} by ỹ∗ϕM
as well. But, by construction, ỹ∗ϕM is given as the following composition:

ϕ∗WM0 ⊗ ŜL
ϕM0

⊗1
−−−−−→M0 ⊗ ŜL

ỹ∗g+
−−−→M0 ⊗ ŜL,

where g+ ∈ U+
F (R) is the image of the universal element in U+

F (R+). In particular, we see

that ỹ∗g+ lies in U+
F,G, which means precisely that ỹ|R+ factors through R+

G.

For the second statement, note that the residue at u = 0

res
ŜL
∇M̂y

: My,0 →My,0 ⊗
(

M
ŜL

/Ŝ×L

)
= My,0

of the logarithmic connection on M̂y, is identified with a rational multiple of the mon-
odromy Ny. Since the tensors {s̃α} are parallel for ∇M̂y

, it follows that Ny(sα,0) = 0, for

all α, and so Ny ∈ BQ,G ⊗ Q. Together with what we proved in the previous paragraph,
this shows (1).

Suppose that (3.3.3.5) is valid. To show, as in assertion (2), that the map SQ,σ →
MOL

/l× of monoids factors through SσG , it is enough to show that the map SQ → M
gp

ŜL
/l×

of their group envelopes factors through SQ,G. We observe that the following square is
cartesian:

M
ŜL

/l× > M
ŜL

/W (l)×

MW (l)N
/l×

∨
> N

∨
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With this observation in hand, we can now finish the proof of (2) with the following two
claims:

Claim 3.3.4.4. The induced map SQ → M
gp

ŜL
/W (l)× factors through SQ,G.

Let Θy ∈ LieU
op
F ⊗ ŜL dlog(u) be the connection matrix forMy; then, since the tensors

{sα,0⊗ 1} are parallel, Θy actually has values in LieU
op
F,G. Recall that our choice of weight

co-character w gave us a splitting

LieU
op
F,G = LieU+

F,G ⊕ LieU−2
wt,G.

By construction, the projection of Θy onto LieU−2
wt,G⊗ŜL dlog(u) is the matrix correspond-

ing to the map

SQ
ỹ
]
σ

> M
gp

ŜL
> M

gp

ŜL
/W (l)× ⊂

dlog
> ŜL dlog(u).

It follows that the composition of the first two maps factors through SQ,G. Note that we are
using the rationality assumption (3.3.3.5) here. This finishes the proof of claim (3.3.4.4).

Claim 3.3.4.5. The induced map SQ → M
gp
W (l)N

/l× factors through SQ,G.

Let us call this map ȳ. Let ϕN be the Frobenius lift on WN induced from that on ŜL;
by (1.4.3.1), this Frobenius lift gives us a splitting

M
gp
W (l)N

= M
gp
lN
⊕(1 + pW (l))

compatible with the Teichmüller splitting W (l)× = l× ⊕ (1 + pW (l)). This splitting is
defined as follows: We define a map

Φ : M
gp
W (l)N

→ 1 + pW (l)

m 7→ ϕN(m)m−p.

The section M
gp
W (l)N

→ 1 + pW (l) associated with ϕN is now (Φ|1+pW (l))
−1 ◦ Φ. Dividing

by the sub-group l×, we obtain a splitting

M
gp
W (l)N

/l× = (MlN /l
×)⊕ (1 + pW (l)). (3.3.4.5.1)

By (1), Ny lies in BQ,G⊗Q; moreover, a rational multiple of it corresponds to the map

SQ → M
gp
lN
/l× = Z

induced from ȳ. This implies that SQ → M
gp
lN
/l× must factor through SQ,G. So, to show

that ȳ factors through SQ,G, it is enough to show that its projection onto 1 + pW (l) via
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the splitting (3.3.4.5.1) above also factors through SQ,G. Explicitly, we have to show that
the map

fy : SQ > 1 + pW (l)

m > ϕN(ȳ(m))ȳ(m)−p
(3.3.4.5.2)

factors through SQ,G. Let us now consider the map log(fy) : SQ → W (l): this corresponds

to an element Uy ∈ LieU−2
wt ⊗W (l) via the identification (cf. 3.2.1.1)

Hom(SQ,W ) = BQ ⊗W = LieU−2
wt .

Since our rationality assumption (3.3.3.5) is in force, to show that fy factors through SQ,G,

it is enough to show that Uy lies in LieU−2
wt,G ⊗W (l).

Now we observe that we have two different ϕ-semi-linear maps on My,0 =My⊗SLW (l).
There is the map ϕM0

⊗ 1 obtained from the identification M0 ⊗W W (l) = My,0 induced
by ỹ, and there is also the map ϕMy,0

induced from the reduction of ϕMy . Let us see how

these two maps are related.
Let ϕN be as above, and let ϕP be the Frobenius lift on WP induced from that on Rσ.

Note that, by the choice of Frobenius lift on Rσ (cf. 3.2.6), ϕP (m) = mp, for all m in the
image of the map SQ → M

gp
WP

. The map ỹ : R → ŜL induces a map of log W -algebras

ỹ0 : WP → W (l)N. Let ỹ
]
0 : MWP

→ MW (l)N
be the induced map of monoids, and set

Φy : M
gp
WP
→ 1 + pW (l)

m 7→ ϕN(ỹ
]
0(m))ỹ

]
0(ϕP (m))−1.

Note that the induced composition

SQ → M
gp
WP

Φy−−→ 1 + pW (l)

is simply the map fy considered in (3.3.4.5.2). This follows because ϕP (m) = mp, for all
m in the image of SQ. Therefore, by (1.4.3.5), we have:

ϕMy,0
= (ϕM0

⊗ 1) ◦ (1 + Uy).

Note that the tensors {sα,0⊗1}, being the reductions of {s̃α}, are ϕ-invariant in M⊗y,0, and

so Uy must lie in LieU−2
wt,G ⊗W W (l). This finishes the proof of claim (3.3.4.5) and hence

also the proof of assertion (2).
Finally, for assertion (3), to show that y factors through RG, we need to show that

y+ = y|R+ factors through R+
G and that yσ = y|Rσ factors through RσG . The first of these

conditions holds because of assertion (1), and, for the second, we only have to check that
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the map y
]
σ : SQ,σ → MOL

of monoids factors through SσG . By (2), we already know that

the induced map SQ,σ → MOL
/l× factors through SσG . Observe that the following square

is cartesian:

MOL
> MOL/mL

MOL
/l×

∨
> MOL

/O×L .
∨

So to show that y
]
σ factors through SσG it is now enough to show that the induced map

SQ,σ → MOL/mL
factors through SσG . But this is precisely the hypothesis of (3), and so

we are done.

Definition 3.3.4.6. A continuous map y : R → OL of log W -algebras is strongly G-
admissible if there exists a diagram of log W -algebras

R
ỹ

> ŜL

OL
∨

y

>

such that ỹ satisfies the hypotheses of (3.3.4.2). In particular, a strongly G-admissible map
is G-admissible.

A continuous map of log W -algebras y : R→ OK0
is strongly G-admissible if there

is a finite extension L/K0 inside K0, and a strongly G-admissible map y′ : R → OL such

that y factors as R
y′−→ OL ↪→ OK0

.

Proposition 3.3.4.7 (Criterion for strong G-admissibility). Let L ⊂ K be a finite exten-
sion of K; let y : R→ OL be a continuous map of log W -algebras, let Ay be the associated

polarized semi-stable abelian variety over L, and let Λy = H1
(
Ay,K ,Zp

)
. Suppose that

we have Galois-invariant tensors {sα,ét,y} ⊂ Λ⊗y , and let {sα,dR,y} ⊂ H1
dR(Ay)⊗ be the

corresponding tensors obtained via the p-adic de Rham comparison isomorphism. Suppose
in addition that the parallel transport isomorphism

H1
dR(Ay)⊗L Llog ηx,y−−−→ H1

dR(Ax ⊗K L)⊗L Llog = H1
dR(Ax)⊗K Llog

carries {sα,dR,y⊗1} to {sα,dR,x⊗1}. Then y is strongly G-admissible, and is in particular
G-admissible.
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Proof. Let {sα,st,y} ⊂ (Dst(Ay)⊗)N=0 be the tensors obtained from {sα,ét,y} via the func-

tor Dst. By (2.3.2.3)(4), we obtain ϕ-invariant ∇-parallel tensors {sα,S,y} ⊂ D(Ay)(SL)⊗

reducing modulo u to {sα,st,y} and defining a reductive group GS ⊂ GL(D(Ay)(SL)).
Write M for D(Ay)(SL): it is equipped with a polarization ψM.

With the given hypotheses, and the commutativity of the diagram in (2.4.1.1)(6), the
tensors {sα,dR,y ⊗ 1} map to the tensors {sα,0 ⊗ 1} in (M0 ⊗W L0)⊗. Moreover, under
the isomorphism in (2.4.1.1)(3), the tensors {sα,st,y} map to {sα,0 ⊗ 1}. In particular, the
tensors {sα,S,y} reduce to {sα,0 ⊗ 1} in (M0 ⊗W W (l))⊗. The hypotheses of (3.3.4.2) are
now satisfied and so y is strongly G-admissible.

Definition 3.3.4.8. A quotient O of R is strongly adapted to G if it is is adapted to
G (3.3.3.4) and satisfies in addition:

(4’) Every element in M(O) is strongly G-admissible.

(6) There exists a finite extension l/k such that the set

{y ∈M(O) : y factors through L ⊂ K0 with residue field l}

is Zariski dense in (Spf O)an.

Remark 3.3.4.9. If O is the completion at a point of a flat, integral, finite-type scheme
over W , then Condition (6) above is automatic. This is clear if O is formally smooth (in
this case, even the W valued points in M(O) will be dense in O). In general, [dJ96, 2.13]
shows that O admits a finite, injective map f : O → O ′, where O ′ is formally smooth over
a (possibly ramified) extension OL of W . Since, for some unramified extension L′/L, the
OL′-valued points are dense in O ′, the result follows.

Proposition 3.3.4.10. Suppose that there exists a quotient O of R strongly adapted to
G, and suppose (3.3.3.5) holds. Let Onorm be the normalization of O. Then the map
R→ Onorm factors through RG = R+

G⊗̂RσG and identifies Onorm with RG. In particular,

Onorm is (the completion of) a toric embedding over R+
G corresponding to the torus with

co-character group BQ,G and the rational polyhedral cone σG ⊂ BQ,G ⊗ R.

Proof. Let l/k be a finite extension for which condition (6) of (3.3.4.8) is valid for O; let
r = #l×. Consider the r-power map r : SQ,σ → SQ,σ; this restricts to the r-power map on

SσG . It induces a map fr : R+[SQ,σ]→ R+[SQ,σ], and localizing the target of this map at
the point x0, and the domain at the point x0 ◦ fr, we obtain a finite flat map fr : Rr → R
of R+-algebras. This induces a finite flat map fr|RG : RG,r → RG of R+

G-algebras
Choose an element y : R → OL in M(O), for some finite extension L/K with residue

field l. By hypothesis, such points are dense in (Spf O)an. Since O is strongly adapted
to G, y admits a lift ỹ : R → ŜL satisfying the equivalent conditions of (3.3.4.2). Then
y is G-admissible, and so y|R+ factors through R+

G. By density of such points, it follows
that the map R+ → Onorm, given by pre-composition of R → Onorm with the inclusion
ι+ : R+ → R, factors through R+

G.
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By (3.3.4.2)(2), it follows that the induced map SQ,σ → MOL
/l× factors through SσG .

In particular, the composition y ◦ fr : Rr → OL of log W -algebras factors through RG,r.

By density of such points, we conclude that the composition Rr
fr−→ R → Onorm factors

through RG,r. In particular, both Spf Onorm and Spf RG, being of the same dimension
(cf. 3.3.1.1), are normalizations of irreducible components of Spec(RG,r ⊗Rr R). This

already tells us that Onorm is the complete local ring of a toric embedding over R+
G.

By condition (5) of (3.3.3.4), the point x factors through Onorm. We claim that x
factors through RG as well. Indeed, by the choice we made in (3.2.2.2)(4), the map of

monoids x
]
σ,0 : SQ,σ → MOK/mK

factors through SσG . The hypotheses of (3.3.4.7) are

tautologically true for x, and so x is strongly G-admissible. By (3.3.4.2)(3), it then follows
that x factors through RG.

It now follows that SpecRG and Spec Onorm must map onto the same irreducible com-
ponent of Spec(RG,r ⊗Rr R) and must therefore be identified.
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CHAPTER 4
COMPACTIFICATIONS OF INTEGRAL MODELS OF

SHIMURA VARIETIES

4.1 Shimura varieties and absolute Hodge cycles

This is essentially a resumé of the first part of [Kis10, §2].

4.1.1

Definition 4.1.1.1. A Shimura datum is a pair (G,X), where G is a connected reductive
group over Q and X is a G(R)-conjugacy class of homomorphisms

h : S := ResC/RGm → GR

satisfying:

1. The composite

S h−→ GR
Ad−−→ GL(Lie(G))

defines a Hodge structure of type (−1, 1), (0, 0), (1,−1) on Lie(G);

2. h(i) is a Cartan involution of GR;

3. Gad has no Q-simple factors whose R-points form a compact group.

A map ι : (G1, X1) → (G2, X2) of Shimura data consists of a map ι : G1 → G2 of
Q-groups inducing a map X1 → X2 over R. It is an embedding if the underlying map of
groups is a closed embedding.

Let Af be the ring of finite adéles, let K ⊂ G(Af ) be a compact open sub-group of the

adélic points of G. We will write K = KpKp, where Kp ⊂ G(Qp) and Kp ⊂ G(Apf ), where

Apf ⊂ Af denotes the sub-ring of adéles with trivial p-component.

By results of Baily-Borel, Shimura, Deligne, Milne, Borovoi and others (see [Mil90,
§4.5]), the double coset space

ShK(G,X)C = G(Q) \X ×G(Af )/K

has the natural structure of an algebraic variety over C with a canonical model ShK(G,X)
over a number field E(G,X) (the reflex field), which depends only on the Shimura datum
(G,X).
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Lemma 4.1.1.2. Let ι : (G1, X1) ↪→ (G2, X2) be an embedding of Shimura data, let
K2,p ⊂ G1(Qp) be a compact open sub-group, and let K1,p = K2,p ∩ G2(Qp). For any

compact open sub-group K
p
1 ⊂ G1(Apf ), we can find a compact open sub-group K

p
2 ⊂ G2(Apf )

containing K
p
1 such that ι induces an embedding

ShKp
1K1,p

(G,X) ↪→ ShKp
2K2,p

(G,X)

defined over E(G1, X1).

Proof. This is [Kis10, 2.1.2].

Definition 4.1.1.3. Let V be a Q-vector-space equipped with a symplectic form ψ. The
Siegel Shimura datum associated to (V, ψ) is the pair (GSp(V, ψ), S±), where S± is the
GSp(V, ψ)(R)-conjugacy class of maps h : S→ GSp(V, ψ)R such that:

1. h induces a Hodge structure of type (1, 0), (0, 1) on V , so that we have a corresponding
decomposition

VC = V
1,0
h ⊕ V 0,1

h ;

2. The symmetric form (x, y) 7→ ψ(x, h(i)y) is (positive or negative) definite on VR.

The reflex field of a Siegel Shimura datum is Q.

4.1.2

Let (GSp, S±) be a Siegel Shimura datum associated to (V, ψ), and let K = KpKp ⊂
GSp(Af ) be a compact open sub-group. For Kp sufficiently small, ShK(GSp, S±) can
be interpreted as the fine moduli space of polarized abelian varieties with level structure.
To be more precise, we fix some Z-lattice VZ ⊂ V such that ψ restricts to a bilinear
form on VZ and such that VZ ⊗ Ẑ is stable under K. For any abelian variety A over an
algebraically closed field k, let H1(A, Ẑ) =

∏
l primeH

1
ét(A,Zl). Then, for any algebraically

closed extension k/Q, ShK(GSp, S±)(k) parametrizes tuples (A, λ, η), where

• A is an abelian variety;

• λ is a polarization of A;

• η is a K-orbit of isomorphisms

(VZ ⊗ Ẑ, ψ ⊗ 1)
'−→ (H1(A, Ẑ), ψλ)

that respect polarizations up to a Ẑ×-multiple. Here, the right hand side is equipped
with the alternating form ψλ induced by the Weil pairing and the polarization λ.
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For more details, see [Del71, §4] or [RZ96, §6]. We see therefore that, for Kp sufficiently
small, there exists a universal abelian scheme A over ShK(GSp, S±).

Definition 4.1.2.1. A Shimura datum (G,X) is of Hodge type if it admits an embedding

(G,X) ↪→ (GSp, S±)

into a Siegel Shimura datum.

4.1.3

Let (G,X) be a Shimura datum of Hodge type equipped with an embedding

(G,X) ↪→ (GSp(V, ψ), S±).

Let K = KpKp ⊂ G(Af ) be a compact open subgroup. By (4.1.1.2), we can find K ′ ⊂
GSp(Af ) containing K such that the map ShK(G,X)→ ShK′(GSp, S±) is an embedding

defined over E = E(G,X). Moreover, we can ensure that Kp and K ′p are sufficiently small,
and fix a Z-lattice VZ ⊂ V as above, so that ShK′(GSp, S±) admits an interpretation as a
fine moduli space of polarized abelian schemes with level structure. Let h : A → ShK(G,X)
be the pull-back of the universal family of abelian varieties over ShK′(GSp, S±).

Suppose that we have a finite collection of tensors {sα,B} ⊂ V ⊗ whose pointwise

stabilizer in GSp is G. Let V = H1
dR(A/ ShK(G,X)) be the first relative de Rham coho-

mology of A over ShK(G,X): this is a vector bundle with flat connection over ShK(G,X).
From [Kis10, §2.2], we see that the tensors {sα,B}, via the de Rham isomorphism, give

rise to parallel tensors {sα,dR} ⊂ V⊗. Moreover, for any field extension κ of E, any
point x ∈ ShK(G,X)(κ), and any choice of algebraic closure κ of κ, we get a Gal(κ/κ)-
invariant tensor sα,ét,x ∈ H1

ét(Ax,κ̄,Qp)
⊗. Given any choice of embeddings σ : κ̄ ↪→ C and

ι : Qp ↪→ C, under the isomorphisms

H1
dR(Ax)⊗κ,σ C '−→ H1(Ax,σ(C),C)

'−→ H1
ét(Ax,κ̄,σ,Qp)⊗Qp,ι C,

sα,dR,x is carried to sα,ét,x. This is a consequence of the main result of [DMOS82]: ‘Hodge
implies absolutely Hodge for abelian varieties over C’.

We also have one additional piece of compatibility between sα,dR,x and sα,ét,x. For
this, consider the case where κ is a finite extension of Ev, the completion at v for some
place v|p of E. Then we also have the p-adic comparison isomorphism

H1
dR(Ax)⊗κ BdR

'−→ H1
ét(Ax,κ̄,Qp)⊗Qp BdR.

Proposition 4.1.3.1. Under the p-adic comparison isomorphism above, sα,dR,x is carried
to sα,ét,x.
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Proof. This is essentially the main result of [Bla94], which applies directly whenAx is in fact
defined over a number field. For the generality we need, as pointed out in [Moo98, 5.6.3],
we can either appeal to a trick of Lieberman as in [Vas99, 5.2.16], or we can directly use
the fact that Ax arises from the family A defined over the number field E.

4.2 Toroidal compactifications of integral canonical models

4.2.1

Let (GSp, S±) be a Siegel Shimura datum associated with a symplectic space (V, ψ).
Suppose that Kp ⊂ GSp(Qp) is a hyperspecial sub-group. For us, this means that
Kp = GSp(VZp , ψ), where VZp = VZ(p)

⊗ Zp, for a Z(p)-lattice VZ(p)
⊂ V such that ψ

induces a Z(p)-valued symplectic form on VZ(p)
. Let Kp ⊂ GSp(Apf ) be compact open

sub-group such that K = KpKp ⊂ GSp(Af ) is neat1. For example, suppose that we fix
an Z-lattice VZ ⊂ VZ(p)

stable under the pairing ψ and such that the pairing is perfect on

VZ
[

1
r

]
, for some r ∈ Z>0. Choose N such that (N, pr) = 1; then it makes sense to con-

sider the compact open sub-group
∏
l-r GSp(VZl) of GSp(Af ), and within it the congruence

sub-group K(N) given by

K(N) = ker

∏
l-r

GSp(VZl)→ GSp(V ⊗ Z/NZ)

 .
By Serre’s lemma, it follows that K(N) is a neat sub-group for N ≥ 3, and we clearly have
K(N)p = Kp. In particular, any compact open sub-group K = KpKp contained in K(N)
for some N will be neat.

Fix a choice of VZ ⊂ VZ(p)
and a neat sub-group K = K(N) as above. Then, the moduli

problem represented by ShK(GSp, S±) over Q (cf. 4.1.2) extends naturally to a moduli
problem over Z(p) that is representable by a smooth Z(p)-scheme S = SK(GSp, S±)

(cf. [Kis10, 2.3.3]).
The moduli scheme S is not compact, and there arises the problem of finding a good

compactification for it. This problem was solved by Faltings and Chai in [FC90], but
[Lan08] will be a better source of precise statements for us. To explain these results, we
will need a fresh panoply of definitions. It might be helpful at this point to skim over their
relatives in (1.2.3).

Set VZ/NZ = VZ ⊗ (Z/NZ).

Definition 4.2.1.1. A cusp label Φ for (VZ, ψ) at level K (cf. [Lan08, 5.4.1]) is a tuple
(Y,X, λét,ΨN,r, ϕ

ét
N , ϕ

mult
N , δ), where:

1. cf [Lan08, 1.4.1.8].
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1. Y and X are free Z-modules of rank r and λét : Y → X is an injective map of groups.

2. ΨN,r ⊂ VZ/NZ is a free isotropic Z/NZ-sub-module such that the quotient

VZ/NZ/ΨN,r is again free over Z/NZ.

3.
ϕét
N : VZ/NZ/Ψ

⊥
N,r

'−→ Y/NY ;

ϕmult
N : ΨN,r

'−→ Hom(X,Z/NZ)

are isomorphisms of groups such that the pairing

(
VZ/NZ/Ψ

⊥
N,r

)
×ΨN,r

ϕét
N×ϕ

mult
N−−−−−−−→ Y/NY × Hom(X,Z/NZ)

〈λét(·),·〉−−−−−−→ Z/NZ

is equal to the perfect pairing induced from ψ.

4. δ is a symplectic splitting of the filtration

0 ⊂ ΨN,r ⊂ Ψ⊥N,r ⊂ VZ/NZ.

There is a large collection of objects associated with a cusp label Φ:

• Choose any isotropic free and co-free Z-sub-module Ψr ⊂ VZ whose reduction modulo
N is ΨN,r. Then the induced alternating form on V Φ

Z = Ψ⊥r /Ψr is non-degenerate

after extending scalars to Q. Let us take KΦ ⊂ GSp(V Φ
A ) to be

KΦ = ker

∏
l-r

GSp(V Φ
Zl)→ GSp(V Φ

Z ⊗ Z/NZ)

 .
Then we can consider the Shimura variety ShKΦ(GSp(V Φ), S±) and its model SΦ =

SKΦ(GSp(V Φ), S±) over Z(p): the latter is a fine moduli space over Z(p) for polarized

abelian schemes (B, λab) with level N structure of type Ψ⊥N,r/ΨN,r (cf. 1.2.3.1). It

is shown in [Lan08, 5.2.7.5] that the space SΦ and the moduli problem it represents
are independent of the choice of Ψr.

• Let (B, λab) be the universal polarized abelian scheme over SΦ. Consider the SΦ-
scheme:

P̈Φ = Hom
(

1

N
Y,B

)
×Hom(Y,B∨) Hom

(
1

N
X,B∨

)
.
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This is the fiber product of the diagram:

Hom
(

1

N
Y,B

)

Hom
(

1

N
X,B∨

)
> Hom(Y,B∨),

∨

where the vertical arrow is restriction followed by post-composition with λab, and

the horizontal arrow is pull-back along the map Y
λét
−−→ X ↪→ 1

NX. P̈Φ is a smooth,
proper group scheme over SΦ. It is shown in [Lan08, 6.2.3.4] that there is a natural
map

∂ : P̈Φ → Hom
(

1

N
Y/Y,B[N ]

)
of group schemes whose fibers are abelian schemes over SΦ. The cusp label Φ gives
us a distinguished element bΦ in the image of ∂ (cf. [Lan08, 6.2.3.1]). Let PΦ be the
fiber of ∂ over bΦ: this is an abelian scheme over SΦ.

• Over PΦ, we have the tautological maps

cN,Φ :
1

N
Y → B;

c∨N,Φ :
1

N
X → B∨.

Let cΦ = cN,Φ|Y and let c∨Φ = c∨N,Φ|X . Set

IN,Φ = (cN,Φ × c∨Φ)∗P−1
B ;

IΦ = (cΦ × c∨Φ)∗P−1
B .

Then IN,Φ is a Gm-bi-extension of 1
N Y ×X over PΦ (cf. discussion before (1.2.2.3)),

and IΦ is a Gm-bi-extension of Y ×X over PΦ such that (1×λét)∗IΦ is a symmetric
Gm-bi-extension of Y × Y (cf. discussion before (1.2.2.8)).

• We have the groups

BΦ =
1

N
B
λét ; SΦ =

1

N
S
λét ,

as defined in (3.1.2). We also have the open convex cone

CΦ = C
λét ⊂ BΦ ⊗ R

as defined in (3.1.2.1.1).
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• Let EΦ be the torus over PΦ with character group SΦ. We then have the EΦ-torsor
ΞΦ over PΦ, whose points over any PΦ-scheme C are given by:

ΞΦ(C) =


Trivializations τN : 1Y×X

'−→ IN,Φ over C
of Gm-bi-extensions of Y ×X

inducing a symmetric trivialization of

the symmetric Gm-bi-extension (1× λét)∗IΦ of Y × Y .


• We have the group

ΓΦ =

(γY , γX) ∈ GL(Y )(N)×GL(X)(N) : λét = γXλ
étγY

,
where GL(Y )(N) (resp. GL(X)(N)) is the group of automorphisms of Y (resp. X)
that act trivially on Y/NY (resp. X/NX).

Definition 4.2.1.2. A smooth, admissible, rational, polyhedral cone decomposi-
tion ΣΦ (cf. [Lan08, 6.1.1.14]) associated with a cusp label Φ is a collection {σα}α∈Π such
that

1. For each α ∈ Π, σα is a non-degenerate rational polyhedral cone in CΦ, smooth with
respect to the lattice BΦ.

2. CΦ is the disjoint union of the σα. For each α ∈ Π, the closure of σα in CΦ is a
disjoint union of certain σβ with β ∈ Π.

3. For any g ∈ ΓΦ and any α ∈ Π, gσα = σβ , for some β ∈ Π, and the action of ΓΦ on
{σα} has only finitely many orbits.

Given such a decomposition ΣΦ associated with Φ and a cone σα within it, we can
consider the monoid

SΦ,σ = σ∨ ∩ SΦ,

where
σ∨α = {n ∈ SΦ ⊗ R : 〈n, s〉 ≥ 0, for all s ∈ σ}.

Let EΦ,σ = SpecOPΦ
[SΦ,σ]: this gives us a torus embedding

EΦ ↪→ EΦ,σ

over PΦ. We set

ΞΦ,σ = ΞΦ ×EΦ EΦ,σ :

This is a log scheme over PΦ in the evident way with the log structure induced by the
divisor that is the complement of ΞΦ,σ. Moreover, the tautological trivialization τ of the
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Gm-bi-extension IΦ of Y × X over ΞΦ extends to a trivialization τ of the induced Glog
m -

bi-extension I
log
Φ over ΞΦ,σ (cf. discussion above (1.2.2.3). This means that we have a

tautological tuple
(B, Y,X, λab, λét, cΦ, c

∨
Φ, τ)

over ΞΦ,σ satisfying the conditions of (1.2.2.8), and so we have a tautological polarized log
1-motif (QΦ,σ, λΦ,σ) over ΞΦ,σ. It is also evident from the construction that this polarized
log 1-motif has a tautological level N structure αΦ,σ of type (VZ/NZ,ΨN,r) (cf. 1.2.3.3).
The stratification of EΦ,σ by orbits of EΦ gives rise to a stratification on ΞΦ,σ as well.
There is a unique closed stratum; let XΦ,σ be the formal scheme obtained by completing
ΞΦ,σ along this closed stratum.

We now direct the reader to [Lan08, 6.3.3.4] for the notion of a compatible choice
of smooth admissible rational polyhedral cone decomposition data Σ associated with
(VZ, ψ,K): this involves choosing enough cusp labels Φ for (VZ, ψ,K), and choosing com-
patibly for each cusp label Φ a smooth admissible rational polyhedral cone decomposition
ΣΦ associated with Φ.

Theorem 4.2.1.3 (Faltings-Chai,Lan). For a compatible choice of admissible smooth ratio-
nal polyhedral cone decomposition data Σ (cf [Lan08, 6.3.3.4]), there exists a proper smooth
Z(p)-scheme S Σ into which S embeds as an open dense sub-scheme. It satisfies:

1. The complement DΣ = S Σ \S , viewed as a closed reduced sub-scheme of S Σ, is a
Cartier divisor with normal crossings. More precisely:

• S Σ admits a decomposition

S Σ =
⊔

[(Φ,σ)]

Z[(Φ,σ)]

into locally closed strata indexed by equivalence classes of pairs (Φ, σ) (under
a certain equivalence relation; cf. [Lan08, 6.2.6.1]: in particular, for fixed Φ,
(Φ, σ) and (Φ, σ′) can be equivalent if and only if there exists g ∈ ΓΦ such that
gσ = σ′), where Φ is a cusp label belonging to the compatible choice and σ is a
cone in ΣΦ.

• There is an incidence relation between equivalence classes of pairs (Φ, σ), and

Z[(Φ,σ)] is in the closure of Z[(Φ′,σ′)] if and only if
[
(Φ′, σ′)

]
is a face of [(Φ, σ)].

• The formal completion of S Σ along the [(Φ, σ)]-stratum is isomorphic to XΦ,σ,
which was constructed just above; this does not depend on the choice of (Φ, σ)
representing the equivalence class.

2. The universal polarized abelian scheme π : (A, λ) → S extends to a polarized semi-
abelian scheme πΣ : (AΣ, λ) → S Σ. For any equivalence class [(Φ, σ)] indexing a
stratum Z[(Φ,σ)] of S Σ, the pull-back of (A, λ) over the complement of the boundary

in XΦ,σ corresponds to the tautological polarized log 1-motif (QΦ,σ, λΦ,σ) over XΦ,σ
via the equivalence in (1.2.4.2).
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3. Let s0 ∈ S Σ be a closed point, and let Z[(Φ,σ)] be the minimal stratum in which it lies.

Let Os0 := OS Σ,s0
be the complete local ring of S σ at s0 equipped with the log struc-

ture induced from the boundary divisor. Let (Qs0 , λs0) be the reduction to k(s0) of the
natural polarized positive log 1-motif over Os0, induced from that on X(Φ,σ). Here,

we equip k(s0) with the log structure induced from Os0. Then Os0 is the universal
deformation ring for the log 1-motif (Qs0 , λs0) over k(s0) (cf. (3.1.1.6),(3.1.3)).

4. Let OL be a complete discrete valuation Z(p)-algebra with residue field l and fraction

field L. Let (A, λ) be a polarized abelian variety over L arising from a point in
x̃ : S (L). Let x ∈ S Σ(OL) be the point obtained from x̃ via properness of S Σ, and
let x0 ∈ S Σ(l) be its reduction. The minimal stratum Z[(Φ,σ)] of S Σ containing x0

is determined as follows: By (1.2.4.2), (A, λ) corresponds to a tuple

(B, Y,X, c, c∨, λab, λét, τ).

This tuple, along with the level N structure on A, determines a cusp label

Φ = (Y,X, λét,ΨN,r, φ
ét
N , φ

mult
N , δ)

that is isomorphic to a cusp label in the compatible choice of admissible cone decom-
position data. Once Φ is determined, the cone σ is determined to be the minimal cone
in the decomposition ΣΦ such that the monodromy NA (cf. 2.3) of (A, λ) lies in σ.

5. π can be extended to a compactification π : A → S Σ such that the complement of A
in A is a relative normal crossings divisor over S Σ.

Proof. (1), (2) and (4) follow from [Lan08, 6.4.1.1], and (5) follows from [Lan10a, 2.15]; cf.
also [FC90, VI.1.1]. As for (3), it can be directly deduced by comparing the construction of
X(Φ,σ) with that of the deformation space for (Qs0 , λs0) in §3.1: cf. especially (3.1.3.4).

4.2.2

Let us start with a Shimura datum (G,X). Suppose that G is unramified at p: this means
that GQp is quasi-split and splits over an unramified extension. This is also equivalent to

saying that G has a reductive model GZ(p)
over Z(p). Fix such a model.

Definition 4.2.2.1. An embedding i : (G,X) ↪→ (G′, X ′) of Shimura data is said to be
p-integral if there exists a reductive model G′Z(p)

of G′ over Z(p), and if the embedding of

groups G ↪→ G′ underlying i is induced by an embedding GZ(p)
↪→ G′Z(p)

.

Lemma 4.2.2.2. Suppose (G,X) is a Shimura datum of Hodge type such that G is un-
ramified at p with reductive model GZ(p)

.
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1. There exists a p-integral embedding of Shimura data i : (G,X) ↪→ (GSp, S±) into a
Siegel Shimura datum.

2. Suppose that the embedding G ↪→ GSp arises from an embedding GZ(p)
↪→ GSpZ(p)

=

GSp(VZ(p)
, ψ), for a symplectic Z(p)-lattice (VZ(p)

, ψ). Then there exist tensors

{sα} ⊂ V ⊗Z(p)
such that GZ(p)

⊂ GSpZ(p)
is the pointwise stabilizer of VZ(p)

.

Proof. For (1), choose any embedding i′ : (G,X) ↪→ (GSp(V, ψ), S±) of Shimura data. By
[Kis10, 2.3.1], there exist a Z(p)-lattice VZ(p)

⊂ V and an embedding GZ(p)
↪→ GL(VZ(p)

)

that induces i′ over Q. The problem is that ψ might not induce a perfect Z(p)-pairing
on VZ(p)

. To take care of this, we apply Zarhin’s trick, which tells us that there exists a

perfect pairing ψ′ on V ′Z(p)
= (VZ(p)

×V ∨Z(p)
)4 and an embedding GSp(V, ψ) ↪→ GSp(V ′, ψ′)

induced by the natural diagonal embedding V ↪→ (V × V ∨)4 (here we use the polarization
ψ to identify V with V ∨). This also induces an embedding of the corresponding Shimura
data. We can then check that the induced embedding (G,X) ↪→ (GSp(V ′, ψ′), S±) arises
from an embedding GZ(p)

↪→ GSp(V ′Z(p)
, ψ′) and is thus p-integral.

(2) follows from [Kis10, 1.3.2].

Let K ⊂ G(Af ) be a neat compact open sub-group such that Kp = GZ(p)
(Zp). Choose

some p-integral embedding
(G,X) ⊂ (GSp, S±),

so that Kp = K ′p ∩G(Qp), where K ′p = GSpZ(p)
(Zp). By (4.1.1.2), we can find a compact

open K ′ = K
′pK ′p ⊂ GSp(Af ) such that K ⊂ K ′, and the map

ShK(G,X) ↪→ ShK′(GSp, S±)

is a closed embedding defined over E(G,X). By replacing K
′p with a finite index sub-group

containing Kp, if necessary, we can assume that K ′ is also neat.
Choose a place v|p of E = E(G,X), let Ov be the completion of OE at v, and let

S ′ = SK′(GSp, S±)Ov be the base change of SK′(GSp, S±) from Z(p) to Ov. Choose
also a compatible choice of admissible smooth rational polyhedral cone decomposition data
Σ and let S

′
Σ be the compactification of S ′ from (4.2.1.3). Let DΣ be the complement

S ′Σ \S ′ equipped with its reduced closed sub-scheme structure. Let S be the Zariski

closure of ShK(G,X) in S
′
Σ; let s0 ∈ S (l) be a closed point valued in a finite field l/Fp;

and let O ′ (resp. O) be the complete local ring of S
′
Σ (resp. S ) at k. Over Spec O ′ \DΣ

we have the pull-back A of the universal abelian scheme over S ′. By (4.2.1.3)(3), we can
identify O ′ with a log deformation ring R of polarized log 1-motives as described in § 3.1.

It is known by the functoriality of analytic toroidal compactifications [Har89], and

the compatibility between analytic and arithmetic compactifications [Lan], that DΣ

[
1
p

]
intersects S

[
1
p

]
transversally. In particular, S \DΣ is open and dense in S . Since S is
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flat over Ov by construction, we can find a finite extension L/Ov with residue field l and
some lift s ∈ S (OL) of s0 such that we have a factoring:

Spec OL
s

> Ss

SpecL

∧

s|SpecL
> ShK(G,X)Ev

∧

So s is associated with a polarized semi-stable abelian variety (As, λs) over L. Fix
some algebraic closure Ev of Ev and an embedding L ⊂ Ev. Since s arises from
a point of ShK(G,X)(L), we find from the theory of (4.1.3) Galois-invariant tensors
{sα,s,ét} ⊂ H1

ét(As,Ev
,Zp) associated with the Hodge tensors {sα} defining the embed-

ding GZ(p)
⊂ GSpZ(p)

. The theory of § 3.2 now allows us to construct an explicit model

for R (cf. (3.2.2) to see how the tensors {sα,s,ét} are used); and the theory of § 3.3 gives
us a continuous map R→ RG of log W -algebras that is the normalization of a surjection.

Proposition 4.2.2.3. Let O(s) be the quotient domain of R corresponding to the irre-
ducible component of SpecR through which s factors. Then O(s) is strongly adapted to G
(cf. 3.3.4.8).

Proof. We have to check that conditions (1)-(3) and (5) from (3.3.3.4), and conditions (4’),
and (6) from (3.3.4.8), hold for the quotient O(s). Conditions (1) and (2) are clear from
construction, and condition (3) is true, since dim ShK(G,X) = rkW LieU

op
F,G, as can be

seen from the analytic uniformization of ShK(G,X). Since the original lift s : R → OL
factors through O(s) by construction, condition (5) holds. The validity of condition (6)
follows from algebraicity of O(s) via (3.3.4.9).

The only thing that remains to be checked is condition (4’). So choose a lift
s̃ : O(s) → O

L̃
of s0, for some finite extension L̃/L within Ev, and suppose s̃ corre-

sponds to a polarized semi-stable abelian variety As̃ over L̃. We have Galois-invariant
tensors {sα,s̃,ét} ⊂ H1

ét(As̃,Ev
,Zp) arising from the Hodge tensors {sα}, and correspond-

ing de Rham tensors {sα,s̃,dR} ⊂ H1
dR(As̃). By (4.1.3.1) and (3.3.4.7), to check that s̃ is

strongly G-admissible, it is enough to show that the parallel transport isomorphism

ηs,s̃ : H1
dR(As)⊗L L̃log '−→ H1

dR(As̃)⊗L̃ L̃
log

carries sα,s,dR ⊗ 1 to sα,s̃,dR ⊗ 1, for all α.

Let Z (s) be the irreducible component of S through which s factors, and let Z =

(Z (s) \DΣ)
[

1
p

]
. Then Z is a smooth, connected Ev-scheme, and there is a polarized

abelian scheme A over Z specializing to As and As̃. Moreover, the tensors {sα} give rise
to parallel tensors over the relative de Rham cohomology H1

dR(A/Z) specializing to the

tensors {sα,s,dR} at s and {sα,s̃,dR} at s̃. By (1.2.4.2)(2), H1
dR(A/Z) is naturally identified
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with D(A)(R)|Z as a vector bundle with flat connection. Since the tensors {sα} are rational
over a number field, p-adic parallel transport of these tensors must agree with archimedean
parallel transport. This means precisely that ηs,s̃ must carry sα,s,dR to sα,s̃,dR, for all
α.

Let L/Ev be a finite extension and let s ∈ ShK(G,X)(L) ⊂ ShK′(GSp, S±)(L) be a
point giving rise to a semi-stable polarized abelian variety (A, λ) over L.

Lemma 4.2.2.4. Let (A, λ) and s ∈ Sh′K(GSp, S±)(L) be as above. Then we can find a
compatible choice of smooth admissible rational polyhedral cone decomposition data Σ such
that the minimal stratum Z[(Φ,σ)] of S

′
Σ containing the specialization of s (cf. (4.2.1.3)(4))

satisfies the following property: The cone σ has maximal dimension in CΦ; that is, we have
dimσ = rank BΦ.

Proof. First of all, it is simple to check that this property does not depend on the choice of
representative (Φ, σ) of the equivalence class of [(Φ, σ)]. Next, since the level structure and
degeneration data associated with (A, λ) determine the equivalence class of Φ entirely, the
issue of finding a good compatible choice comes down to an entirely combinatorial question:

Given N in the interior of CΦ (in our specific situation, this N will be the monodromy
NA of A), can we find a smooth admissible rational polyhedral cone decomposition for CΦ
such that the minimal cone in the decomposition containing N has the maximal possible
dimension in CΦ?

The case where CΦ has dimension 1 is trivial. In the other cases, the dimension of CΦ
is at least 3, and we find from [KKMSD73, Ch. III] that the answer to our question is
indeed ‘yes’.2

Let (A, λ) and s ∈ ShK(G,X)(L) still be as above. Let (Q, λ) be the polarized log
1-motif over OL associated with (A, λ) via (1.2.4.2). Suppose that (Q, λ) corresponds to
the tuple (B, Y,X, c, c∨, λab, λét, τ) over OL (cf. 1.2.2.8). Let Λ = H1

ét(AL,Zp) and let
W•Λ be the weight filtration so that we have

W0Λ = Hom(Y,Zp); grW2 Λ = X ⊗ Zp(−1).

Let U−2
wt,Zp ⊂ GSp(Λ) be the sub-group preserving W•Λ and acting trivially on W1Λ. Let

B
λét be as in (3.1.2). By the argument in (3.2.1.1), we have

B
λét ⊗ Zp = LieU−2

wt,Zp .

Corollary 4.2.2.5. With the notation above, B
λét ∩ LieGZp generates

LieU−2
wt,G,Zp = LieU−2

wt,Zp ∩ LieGZp

as a Zp-module.

2. The answer is not always ‘yes’ for cone decompositions of 2-dimensional spaces.
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Proof. To begin, we make a compatible choice Σ of admissible decomposition data as in
(4.2.2.4), and let S

′
Σ be the corresponding compactification of S ′. Let s0 ∈ S

′
Σ be the

specialization of s. The completion of S ′Σ along the minimal stratum Z[(Φ,σ)] containing
s0 will be of the form XΦ,σ: this is the completion along the closed stratum of a torus
embedding of a torus torsor over PΦ (cf. 4.2.1.3)(1). By our choice of Σ, σ has the maximal
possible dimension in CΦ; in other words, {s0} is the unique closed stratum of XΦ,σ.

If we further complete along s0, then we get the deformation ring Os0 for the polarized
log 1-motif over k(s0) (where k(s0) has the induced log structure; cf. (4.2.1.3)(4)). We can
again use the point s and the theory of §3.2 to build an explicit model R for Os0 , along
with the polarized log 1-motif over it. Let O(s) be the irreducible quotient of R associated
with s and SK(G,X) as in (4.2.2.3).

Let M0 = M(Λ)/uM(Λ) be as in (2.2.4.3); then, by loc. cit., we have a reductive
sub-group GW ⊂ GSp(M0) (here W = W (l)), a GW -split weight filtration W•M0, and an
isomorphism

Λ⊗Zp W (l̄)
'−→M0 ⊗W W (l̄)

identifying GZp ⊗W with GW ⊗W (l̄). Let U−2
wt ⊂ GSp(M0) be the unipotent sub-group

preserving W•M0 and acting trivially on W1M0. Then by (3.2.1.1) we have a natural
identification

B
λét ⊗W = LieU−2

wt .

By (4.2.2.3), O(s) is a strongly adapted to G. So it follows from (3.3.3.6) that B
λét∩LieGW

generates
LieU−2

wt,G = LieU−2
wt ∩ LieGW .

This is where we need our assumption on Σ, since we need σ to be of maximal dimension
to apply loc. cit.

Now, consider Fontaine’s comparison isomorphism

Λ⊗Zp BdR
'−→M0 ⊗W BdR :

by functoriality, it preserves weight filtrations and therefore carries LieU−2
wt,Zp ⊗BdR onto

LieU−2
wt ⊗BdR. Again, by functoriality, it carries GZp⊗BdR onto GW ⊗BdR, and B

λét ⊂
LieU−2

wt,Zp onto B
λét ⊂ LieU−2

wt . In particular, it takes

B
λét ∩ LieGZp = B

λét ∩ (LieGZp ⊗BdR)

onto
B
λét ∩ LieGW = B

λét ∩ (LieGW ⊗BdR).

This shows that the rank of B
λét ∩ LieGZp must equal the rank of LieU−2

wt,G,Zp , and so

finishes the proof of the corollary.
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4.2.3

Theorem 4.2.3.1. With the notation as above, the integral canonical model SK(G,X)
over Ov for ShK(G,X) constructed in [Kis10] admits a compactification SK(G,X) such
that:

1. The boundary D = SK(G,X) \SK(G,X) is an effective Cartier divisor relative to
Ov.

2. SK(G,X) is normal with at most toroidal singularities along the boundary. In par-
ticular, it is log smooth with respect to the log structure induced from the boundary
divisor.

3. The vector bundle with flat connection V◦ over SK(G,X) obtained from the relative
de Rham cohomology of the family of abelian varieties (cf. [Kis10, 2.3.9]) extends
to a vector bundle V◦ over SK(G,X) with regular singularities along the boundary
divisor D . Moreover, the parallel sections {sα,dR} of V⊗ over ShK(G,X) extend to

parallel sections of V◦.

Proof. Choose a p-integral embedding (G,X) ↪→ (GSp, S±), K ′ ⊂ GSp(Af ) neat such that

K ′p = GSpZ(p)
(Zp) and such that we have a closed embedding

ShK(G,X) ↪→ ShK′(GSp, S±).

Choose some smooth toroidal compactification S
′
Σ for S ′ := SK′(GSp, S±)Ov . Let

S be the Zariski closure of ShK(G,X) in S
′
Σ, and let SK(G,X) be the normalization

of S . We will show that this has the desired properties. Fix some point s0 ∈ S (l) valued

in some finite extension l/Fp; let O ′ (resp. O) be the completion of S
′
Σ (resp. S ) at s0.

We fix some lift s ∈ S (OL) of s0 corresponding to a semi-stable abelian variety As over
a finite extension L/Ev, and we use the tensors {sα,s,ét} ⊂ H1

ét(As,L,Zp)
⊗ to build our

explicit model R for O ′. We see from (4.2.2.3) that the quotient O(s) of R (the irreducible
component of O through which s factors) is strongly adapted to G. Moreover, by (4.2.2.5)
above, the rationality assumption (3.3.3.5) is valid. Let O(s)norm be the normalization of
O(s). It follows from (3.3.4.10) that the map R → O(s)norm can be identified with the
explicit map R→ RG. This immediately implies assertions (1) and (2).

Assertion (3) follows from the argument used in [Kis10, 2.3.9]. Over R we have the log
crystal D(A) associated with the family of degenerating abelian varieties over R, and over

S
′
Σ, we have the vector bundle with regular singularities given by

V◦ = R1π∗(Ω•A/S ′Σ
(log)),

the first de Rham cohomology of A, the relative compactification of the family A of abelian
varieties over S ′, with logarithmic singularities along the complement of A. The re-
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striction of V◦ to SpecR is D(A)(R)(cf (1.2.4.2)(2)). In particular, over SpecRG
[

1
p

]
=

Spec Onorm
[

1
p

]
, we have parallel tensors {sα,dR} in V◦.

By construction of RG, we also have parallel sections {sα,0 ⊗ 1} ⊂ D(A)⊗|Spf RG
. The

argument in (4.2.2.3) shows that the specializations of these sections at a dense set of points
of (Spf RG)an = (Spf O(s)norm)an agrees with the specialization of the de Rham tensors
{sα,dR}. In other words, the tensors {sα,0 ⊗ 1} give us an arithmetic parallel extension
(even over the boundary) of the tensors {sα,dR}.

4.2.4

We end by listing some immediate corollaries of our construction.

Corollary 4.2.4.1. The geometric special fiber of the integral canonical model SK(G,X)
over Ov has the same number of connected components as ShK(G,X)C.

Proof. This follows from Zariski’s Main Theorem, since we have a normal compactification
SK(G,X) of SK(G,X). See [FC90, 5.10].

Corollary 4.2.4.2. Suppose G/Z(G) is anisotropic; then SK(G,X) is proper over Ov.

Proof. The hypothesis implies that ShK(G,X) is proper over E; cf. [BB66]. Consider the
compactification SK(G,X): the complement of SK(G,X) in it is the boundary divisor
D , which is a Cartier divisor and is in particular flat over Ov. Since ShK(G,X) is proper
over E, it follows that the generic fiber of D is trivial; by flatness, this implies that D is
itself trivial. The corollary follows.

Theorem 4.2.4.3. Suppose A is an abelian variety defined over a number field F , and
suppose its Mumford-Tate group G is anisotropic modulo its center. Then, for every p > 2
such that G has a reductive model over Zp and for every finite place v|p of F , A has
potentially good reduction over Fv.

Proof. Fix some embedding F ↪→ C, and let V = H1(A(C),Q) be the rational Hodge
structure of weights (0, 1), (1, 0) associated with A. If necessary, we can replace A by
A4 × (A∨)4, and assume via Zarhin’s trick that A is principally polarized; this will not
affect the truth of the statement of the theorem. Now, G is the Mumford-Tate group
associated with the rational Hodge structure V . Let X be the G(R)-conjugacy class of the
map h : S→ GR classifying the Hodge structure on VR. For each p where G is unramified,
we can find some neat compact open sub-group K ⊂ G(Af ) such that Kp is hyperspecial

and such that A corresponds to a point s ∈ ShK(G,X)(F ′), for some finite extension
F ′/FE(G,X). For each such p > 2 and each place v|p of E = E(G,X), we know from
(4.2.4.2) above that ShK(G,X) extends to a smooth proper scheme SK(G,X) over OE,v.
In particular, the point s extends to a point s̃ ∈ SK(G,X)(OF ′,w), for some place w|v of

F ′. This tells us that A must have good reduction over F ′w.
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