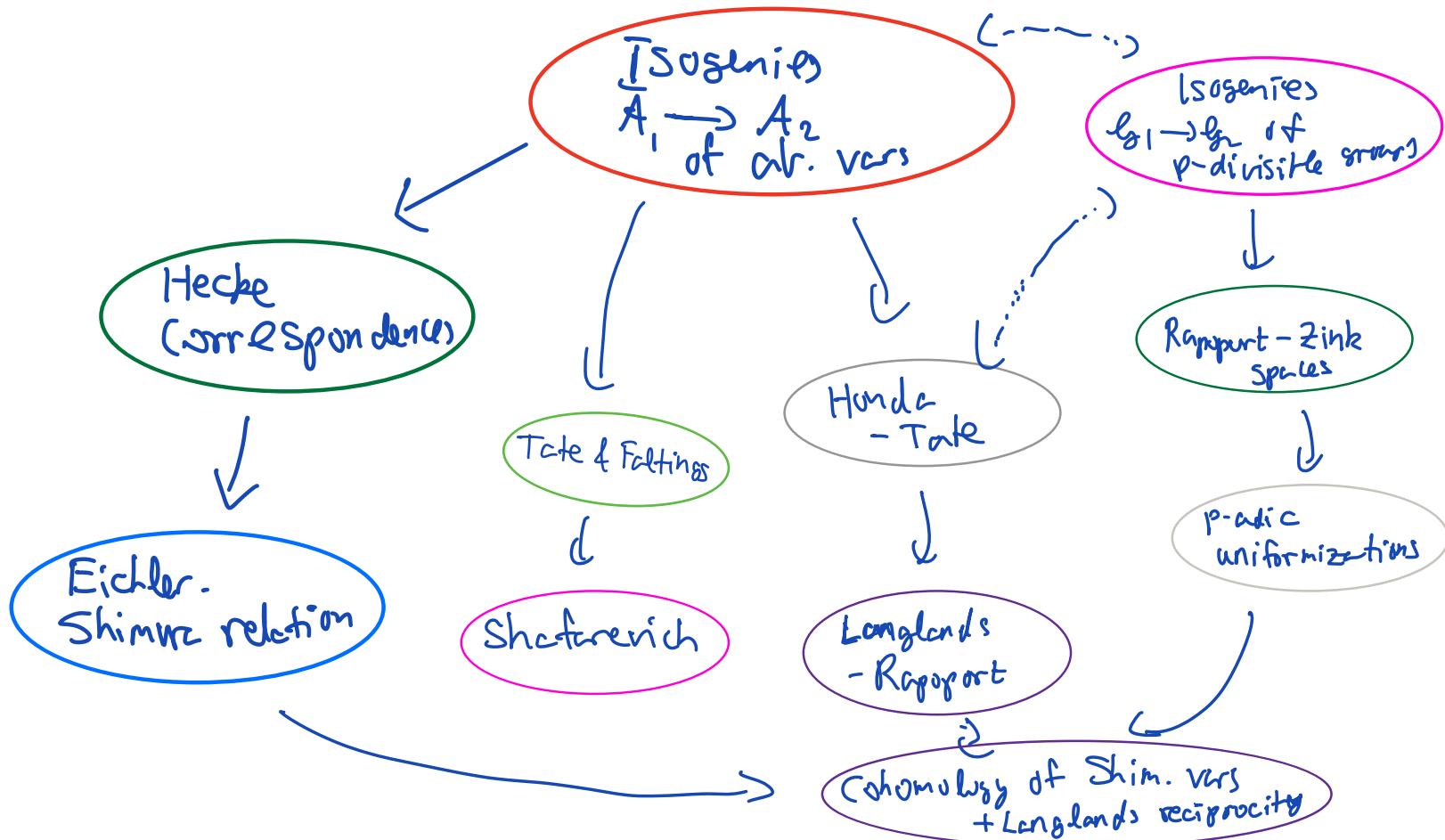


Isogenies, p -Hecke correspondences & Rapoport-Zink spaces

Joint w.
Si Ying Lee



Drawbacks of isogenies
of ab. vars / p -divisible groups

- ① Geometry of p -isogenies in char p is complicated
- ② Functoriality for maps of groups is non-obvious
- ③ Requires moduli interpretation in terms of ab. vars / p -divisible groups
- ④ When defining Hecke correspondences, connection with rep. theoretic* understanding of Spherical Hecke algebra is not clear

*Satake

Global results

Setup

- (G, X) : Shimura datum w. reflex field E
- $K \subseteq G(\mathbb{A}_f)$ next compact open
- Sh_K : canonical model for Shimur var. / E
- p prime s.t. $K \subseteq G(\mathbb{Q}_p)$ is hyperspecial
- $v|p$: place of E
- $T \subseteq G_{\mathbb{Q}_p}$: unramified quasi-split torus
- $X_\lambda(T)_+$: dominant characters with Bruhat ordering \preceq

$$\forall \lambda \in X_\lambda(T)_+, \quad \text{Sh}_{K \cap \mathbb{Z}(p)^1 \backslash K^2(p)} \xrightarrow{\text{can. int}(\mathbb{Z}(p))} \text{Sh}_K \times \text{Sh}_K$$

Hecke correspondence

Theorem
(M.-Yoncis, Lee-M.)
+
PSTEG (André-Vort)

Suppose:

- 1 (G, x) is of pre-abelian type
- 2 G^{cd} is anisotropic + φ is large enough

Then: Sh_K admits an integral canonical model $\mathfrak{J}_K / \Theta_{E, (v)}$

and: 1 $\forall \lambda \in X_0(\Gamma)_+$, \exists Hecke correspondences

Hecke Correspondence

$$\begin{array}{ccc} \text{Isog}_{\leq \lambda} & \xrightarrow{(\text{S}, t)} & \mathfrak{J}_K \times \mathfrak{J}_K \\ \cup & & \\ \text{Isog}_\lambda & \xrightarrow{(\text{S}, t)} & \end{array}$$

s.t. a $\text{Isog}_{\leq \lambda}$ is proper with generic fiber

$$\bigsqcup_{\lambda \in \mathbb{Z}_2} \text{Sh}_{K \cap \varphi(\mathfrak{m}^1 \mathfrak{m}^2(p))}$$

b Isog_λ is lci & flat / $\Theta_{E, (v)}$ with generic fiber

$$\text{Sh}_{K \cap \varphi(\mathfrak{m}^1 \mathfrak{m}^2(p))}$$

c

If $2 \leq 2'$, \exists closed immersion

$$\begin{matrix} \text{Isogeny}_2 & \longrightarrow & \text{Isogeny}_{2'} \\ \downarrow & & \downarrow \\ \text{det}_K & & \end{matrix}$$

2

Every $x \in \det_K(\overline{F}_p)$ admits a

CM lift up to isogeny

Hasse-Tate

3

The Langlands-Rapoport-Zink conjecture

holds for \mathcal{S}_K

Point counting

Remark

These are properties of
integral canonical models as defined
in work with Yousaf

Local results

Setup

$$\check{Z}_p = W(\bar{F}_p) \\ \check{Q}_p = \check{Z}_p[C^1(p)]$$

- \mathfrak{g} : reductive gr / Z_p

- \mathfrak{su}_λ : Conj. class of minuscule
Cochars of \mathfrak{g}

- $h \in G(\check{Q}_p)$

$$X_{\mathfrak{su}_\lambda}(h)(\bar{F}_p) = \{g \in G(\check{Q}_p)/G(\check{Z}_p) : g^{-1}h\bar{g}(g) \in G(\check{Z}_p) \cup \{1\} \}$$

Affine Deligne-Lusztig set

Example : $G = \mathrm{GL}_h, m = m_d = (\underbrace{1, \dots, 1}_d, \underbrace{0, \dots, 0}_{h-d})$
 $X_{\mathfrak{su}_\lambda}(h)(\bar{F}_p) \neq \emptyset \Leftrightarrow h \bar{g} \hookrightarrow \text{Dieudonné } F\text{-isocrystal}$
 of height h , char m_d

$Sht_{G, \mathbb{F}}^{\leq \mu}$

: Space of mixed char shtukas
defined by Scholze - Weinstein

Diamond over $Spt(\breve{\mathbb{A}}_f)$

Thm. (Lee - M.)

There is a formal scheme $RZ_v^{G, \mu}$ over
 $Spt(\breve{\mathbb{A}}_f)$ that is formally smooth & locally of
finite type functorial in (G, μ) s.t.

$$\bullet \quad RZ_v^{G, \mu}(\overline{\mathbb{F}}_p) = X_{\mu}(G)(\overline{\mathbb{F}}_p)$$

$$\bullet \quad (RZ_v^{G, \mu})^\diamond = Sht_{G, \mathbb{F}}^{\leq \mu}$$

Moreover, If $\cdot (G, \mu) = (hL_n, \mu_d)$

\exists \mathbb{F} -div group g_0/\mathbb{Z}_p^d
of height h & dim d
 $D(g_0)\mathbb{F}_p^1 \xrightarrow{F} D(g_0)\mathbb{Z}_p^1$
 $\xrightarrow{\cong} \mathbb{Q}_p^d \xrightarrow{\text{tr} \sigma} \mathbb{Q}_p^d$

Then: $RZ_f^{hL_n, \mu_d}$ is the "classical"
Rapoport-Zink space

parameterizing quasi-isogenies

$RZ_f^{g_0} \dashrightarrow g_0$

Local-to-Global principle

$$\begin{array}{ccc}
 S^*I_{\text{Sug}} & & t^*I_{\text{Sug}} \\
 \downarrow & & \downarrow \\
 \hat{S} & & \\
 & \xrightarrow{x \mapsto A_x[\rho^\infty]} & \\
 & & \xrightarrow{\quad \quad \quad} & \\
 & & I_{\text{Sug}} & \\
 & & S \downarrow & \downarrow t \\
 & & & \\
 & & & p\text{-div}
 \end{array}$$

I_{Sug} ening
 $g_S \rightarrow g_t$
 $\text{ut } p\text{-div gps}$

$A \rightarrow \hat{S}$
 abelian scheme

$P\text{-}I_{\text{Sug}} = \{(\pi, y, \xi) : \}$
 $\pi, y \in \hat{S}, \xi : A_\pi[\rho^\infty] \rightarrow A_y[\rho^\infty]$

$S^*I_{\text{Sug}} = \{(\pi, \xi) : \begin{array}{l} x \in \hat{S} \\ \xi : A_x[\rho^\infty] \rightarrow g_x \end{array}\}$
 $t^*I_{\text{Sug}} = \{(\pi, \xi) : \begin{array}{l} y \in \hat{S} \\ \xi : g_y \rightarrow A_y[\rho^\infty] \end{array}\}$

If \hat{S} is sufficiently universal, with maps
 are isomorphisms.

Reinterpreting isogenies

M_1, M_2 : Vector bundles / S : flat/ \mathbb{Z}_p

$M_1 \xrightarrow{f} M_2$
 $\downarrow p^n$ $\uparrow p^n$
 $M_1 \xrightarrow{f} M_2$

$\text{rank } M_1 = \text{rank } M_2 = h$

p -isogeny of
 $\deg \leq p^n$

||

$X(n) = \left\{ (A, B) \in M_{h \times h} \times M_{h \times h} : \right. \\ \left. \begin{array}{l} AB = BA = p^n I_h \\ X(n)[A] \cong GL_h \\ (A, B) \mapsto A \end{array} \right\}$

\uparrow
 $GL_h \times GL_h$
 $(g_1, g_2)(A, B) = (g_1 A g_1^{-1}, g_2 B g_1^{-1})$

Sections of
 $X(n)(M_1, M_2)$
"twist of $X(n)$
by $GL_h \times GL_h$ -bundle
 $(M_1, M_2)'$

Isogenies between G -bundles

$X / \text{Spec } \mathbb{Z}_p$
 \uparrow
 $G \times \mathbb{G}_m$ + $X[\mathbb{Z}_p] \xrightarrow{\sim} GL[\mathbb{Z}_p]$
 $G \times \mathbb{G}_m$ -equivariant

"Isogeny
model"

$Q_1, Q_2 \rightarrow S : X(Q_1, Q_2)$
two G -bundles : "twist of X by
 $G \times \mathbb{G}_m$ -torsor (Q_1, Q_2) "

Sections of
 $X(Q_1, Q_2)$ are
isogenies from $\underline{Q_1}$
to $\underline{Q_2}$ bounded by
 \underline{X}

Vinberg monoid V_G

$$G_{\text{enh}} = G \times_{\mathbb{Z}_p} T \hookrightarrow V_G : \begin{matrix} \text{monoid scheme} \\ / \mathbb{Z}_p \end{matrix}$$

$\downarrow \Gamma$ $\begin{matrix} G \times G \\ -\text{invariant} \end{matrix} \rightarrow \downarrow$

$$T_{\text{ad}} = \prod_{\alpha \in \Delta} \mathbb{G}_m \hookrightarrow \prod_{\alpha \in \Delta} (A^\vee)^\vee = \mathbb{F}_{\text{ad}}$$

Geometrically

$$\lambda \in X_\ast(T)_+ \rightsquigarrow \lambda(p) \in \overline{T_{\text{ad}}(\mathbb{Z}_p)} \cap T_{\text{ad}}(\mathbb{Q}_p) \subseteq T_{\text{ad}}(\mathbb{Q}_p)$$

$$V_{G,2} = V_G \times_{\mathbb{F}_{\text{ad}}} \{-w_0 \lambda(p)\} \subseteq V_G$$

$$V_{G,2} = V_G \times_{\mathbb{F}_{\text{ad}}} \{-w_0 \lambda(p)\} \subseteq V_G$$

Then:

1

$$V_{G,2} \triangleleft G \times G$$

2

$$G[\mathbb{F}_p] \xrightarrow{\sim} V_{G,2}[\mathbb{F}_p]$$

$$g \mapsto [(g, (-w_0 \lambda)(p))]$$

3

$$V_{G,2}(2_p) = \bigsqcup_{v \in \mathbb{Z}/2} G(2_v) v(p) G(2_v)$$

4

$$\subseteq G(\mathbb{Q}_p)$$

$$\text{If } 2, 2_1, 2_2 \in X_0(T)_+$$

$$V_{G,2} \rightarrow V_{G,2_2}$$

$\mathbb{A} \times \mathbb{A}$ - equivariant

Isogenies bounded by 2

Q_1, Q_2 : G -bundles /
sections of
 $Isog_{\leq 2}(Q_1, Q_2) = V_{G, 2}(Q_1, Q_2)$

Isogenies from
 Q_1 to Q_2 bounded
by 2

Vinberg monoid can be
used to set robust theory of isogenies
between G -torsors with clear connection
with Satake basis

Connection to p -divisible groups

Thm. (Anschütz - le Bru, Gardner - M. - Mathew)

X : p -adic formal scheme

$\{$

X^{syn} : syntamification

There exists canonical fully faithful functor

$p\text{-div}(X)_{\sim}$

\hookrightarrow

$\text{Vect}(X^{\text{syn}})_{\sim} \simeq \text{BGL}(X^{\text{syn}})$

realizing source as

objects on RHS with

Hodge-Tate wts $0, 1$

Apertures

A (h, n) -aperture over X is an object in $BG(X^{\text{syn}})$ "bounded by n "

Then (Harder - M.)

(formally smooth)

(h, n) -apertures are parameterized by a formal pro-algebraic stack

$BT_{\infty}^{h, n}$

over

$\text{Spf } \mathcal{O}$

refer ring for $\{n\}$

Remark

↑ canonical functor

$BT_{\infty}^{h, n} \rightarrow \mathcal{G}\text{-F-Isoc}$

$X_{\text{syn}}(L)(\bar{F}_p) \neq \emptyset \iff \exists Q \in BT_{\infty}^{h, n}(\bar{F}_p) \text{ of type } \text{rig}$

Isogenies between apertures

$Q_1, Q_2 \in \text{BH}(X^{\text{syn}})$
 $V_{h,2}(Q_1, Q_2) \rightarrow X^{\text{syn}}$

$\text{Isog}_{\leq 2}(Q_1, Q_2)(X)$
 $= \left\{ \text{sections} \right. \\ \left. X^{\text{syn}} \rightarrow V_{h,2}(Q_1, Q_2) \right\}$

Then

$$\text{Isog}_{\leq 2} \xrightarrow{(s, t)} \text{BT}_{\infty}^{\text{frm}} \times \text{BT}_{\infty}^{\text{frm}}$$

is proper & finely presented
 over each projection

$Q\text{Isog} = \varinjlim_2 \text{Isog}_{\leq 2} :$ colimit of closed
immersions of formal
 stacks

Reform-Zink spaces

$$X_{\text{reg}}(l)(\widehat{\mathbb{F}_p}) \neq \emptyset$$

$\bigcup_{Q \in \mathcal{BT}_{\text{reg}}^{\text{frob}}(\widehat{\mathbb{F}_p}) \text{ of type } l_0} \{Q \in \mathcal{BT}_{l_0}^{\text{frob}}(\widehat{\mathbb{F}_p})\}$

$$R\mathcal{Z}_r^{\text{frob}}(X) = Q\text{Isog}(Q|_{X,r})$$

Finiteness results of Viehmann-Hanegraaf
Show this is a formal scheme

Global application

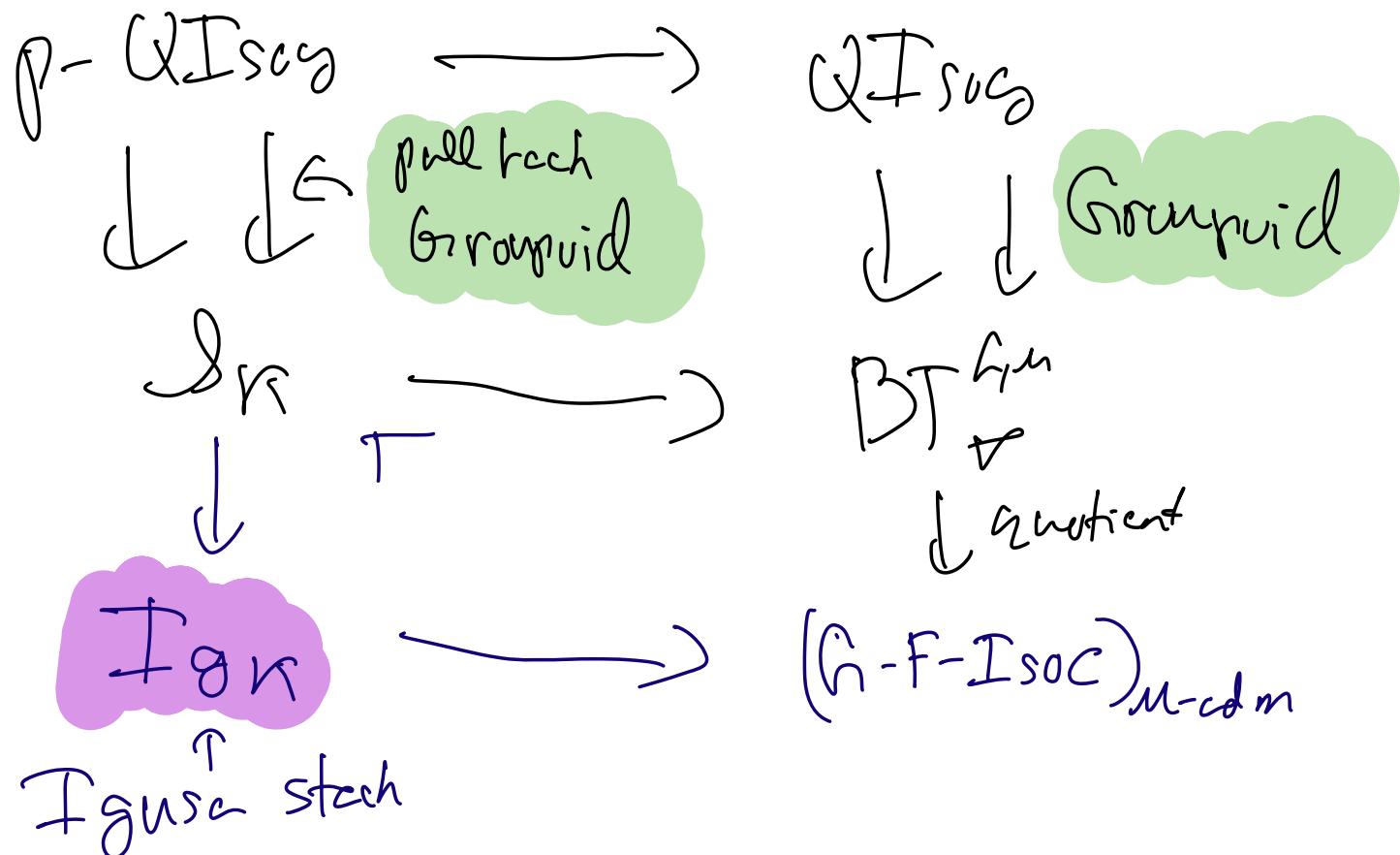
$$\hat{J}_K \xrightarrow[\text{formally étale}]{\text{"Serre-Tate"} \atop \Gamma} BT_{\wp}^{G,m}$$

integral
canonical model
of
M - Yoncis

$$S^* I_{\text{sg} \leq 2} \xrightarrow{\sim} t^* I_{\text{sg} \leq 2}$$

yielding space of isogenies
over $\hat{J}_K \times \hat{J}_K$

Igusa stack interpretation



Dieudonné theory (reformulated)

Thm (Dieudonné- Manin/
Cartier / Fontaine)

k : perfect field in char p

≡ Equivalence

$\{$ p -divisible groups
/ k $\}$

$\xleftarrow{\cong}$

$\{ (M, F) : \begin{array}{l} M: \text{finite free} \\ W(k)\text{-module} \end{array} \}$
 $F: \varphi^* M \rightarrow M$ s.t.
 $p \cdot (M/F(\varphi^* M)) = 0$

$\{$ $\begin{array}{c} \text{finite free } / W(k) \\ \text{M}_0 \xrightarrow{t} M_1 \xrightarrow{t} M_2 \xrightarrow{t} \dots \\ \parallel \quad \parallel \quad \parallel \\ M_0 \xrightarrow{p} M_1 \xrightarrow{F} \varphi^* M_1 \xrightarrow{p} \varphi^* M_2 \xrightarrow{F} \dots \end{array} \}$ $\xleftarrow{\cong}$

$\{ (M, F, V) : M: \text{finite free } / W(k) \}$
 $M \xrightarrow{V} \varphi^* M \xrightarrow{F} M$
 \xrightarrow{p}

Dieudonné theory & F-gauges

$$\left\{ \begin{array}{c} \mathbb{Z} \xrightarrow{t} M^{-1} \xrightarrow{t} M^0 \xrightarrow{t} M^1 \xrightarrow{t} M^2 \in \mathbb{Z} \\ \xleftarrow{u} \qquad \qquad \qquad \xleftarrow{u} \qquad \qquad \qquad \xleftarrow{u} \end{array} \right.$$

s.t. 1 $ut = tu = p$

2 If $M^{-\infty} = \underset{t}{\operatorname{colim}} M^i$
 $M^0 = \underset{u}{\operatorname{colim}} M^i$
 then $\varphi^* M^0 \xrightarrow{\sim} M^{-\infty}$

3 $\bigoplus_{i \in \mathbb{Z}} M^i$ is finite

$$\text{free } / W(k) \frac{[u, t]}{(ut - p)}$$

$$\begin{array}{l} \deg u = -1 \\ \deg t = 1 \end{array}$$

4 generated in
 $\frac{\deg u}{\deg t} = 0, 1$

F-gauge / k
 of Hodge-Tate weights
 $0, 1$