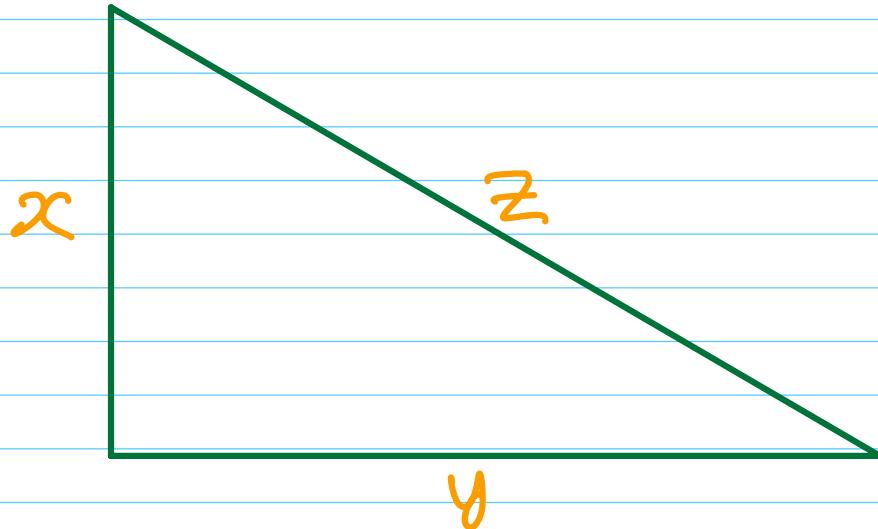


Pythagorean triples

$$x^2 + y^2 = z^2, \quad x, y, z \in \mathbb{Z}_{\geq 1}$$



Euclid's formula

Given $m > n \in \mathbb{Z}_{\geq 1}$

$$x = m^2 - n^2$$

$$y = 2mn$$

$$z = m^2 + n^2$$

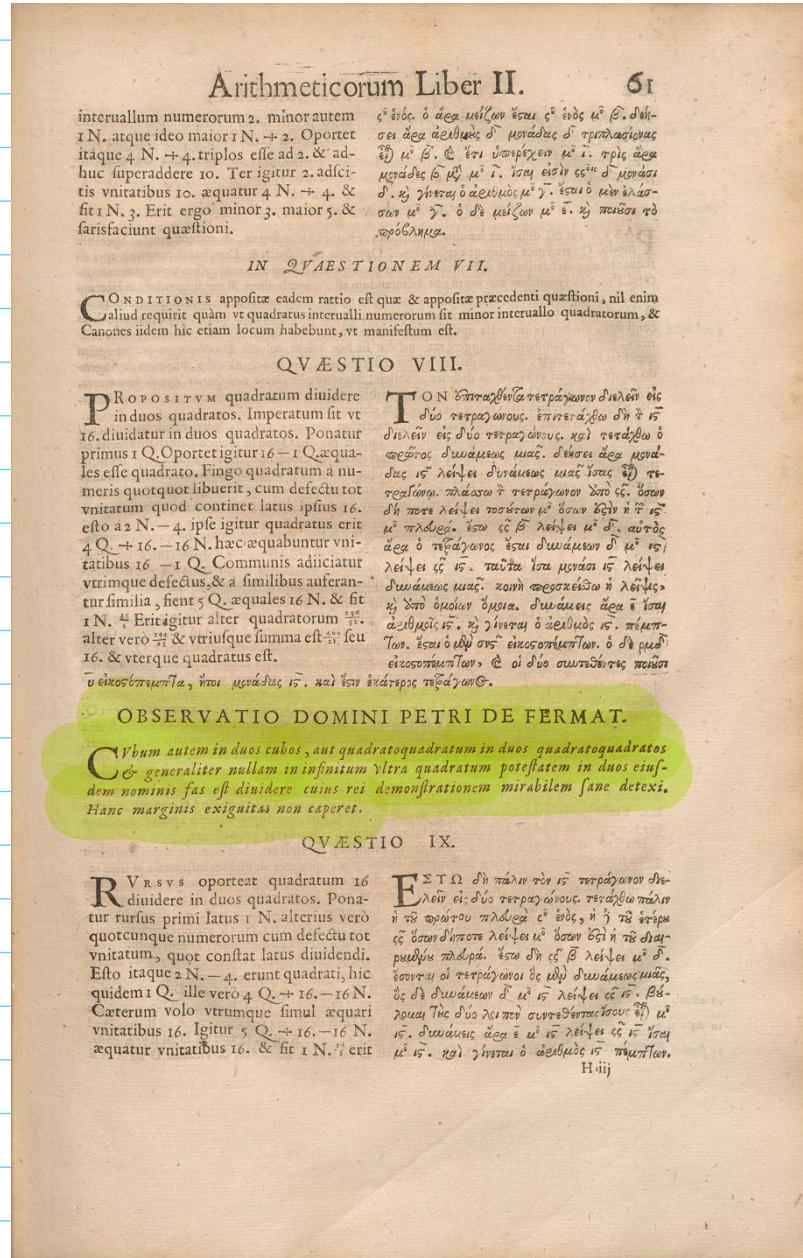
is a Pythagorean triple

In fact, all Pythagorean triples can be obtained in this way (up to scaling)

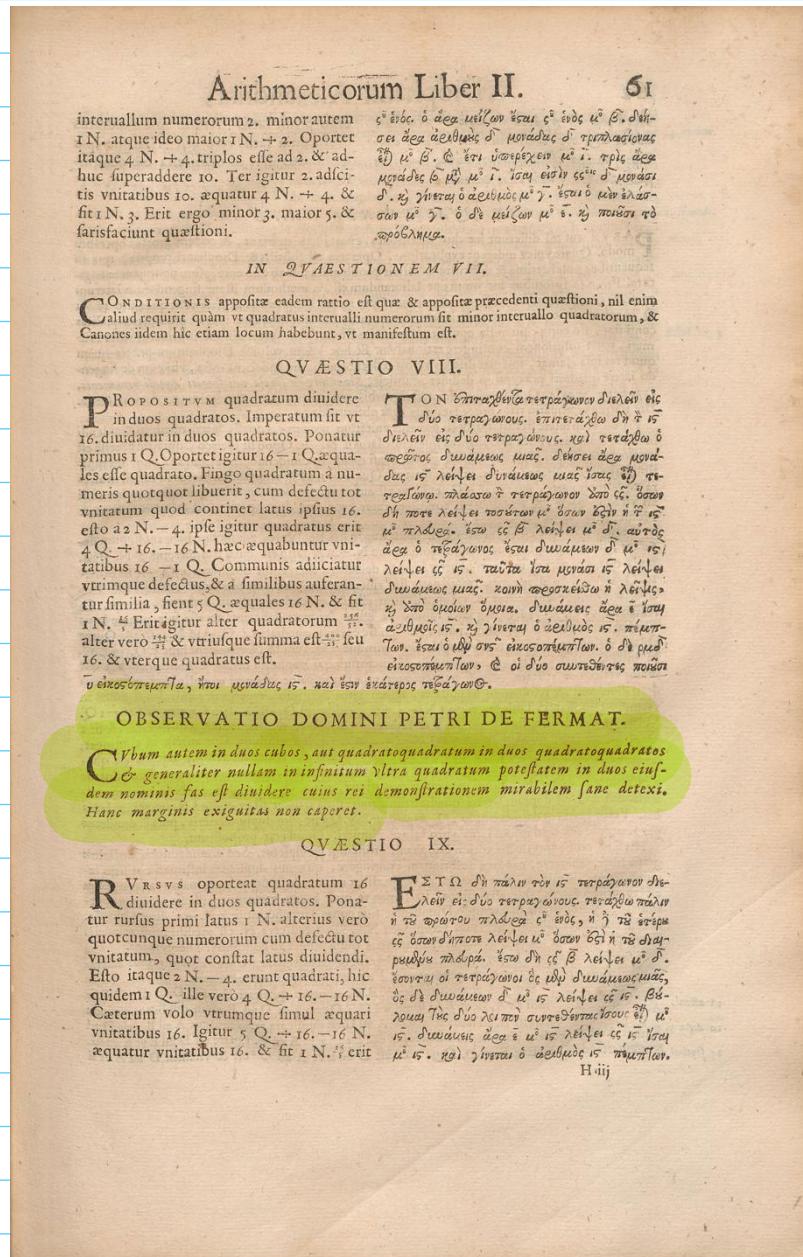
Can be shown using unique factorization in the Gaussian integers $\mathbb{Z}[i]$

Fermat's Last Theorem (1634)

Fermat's Last Theorem

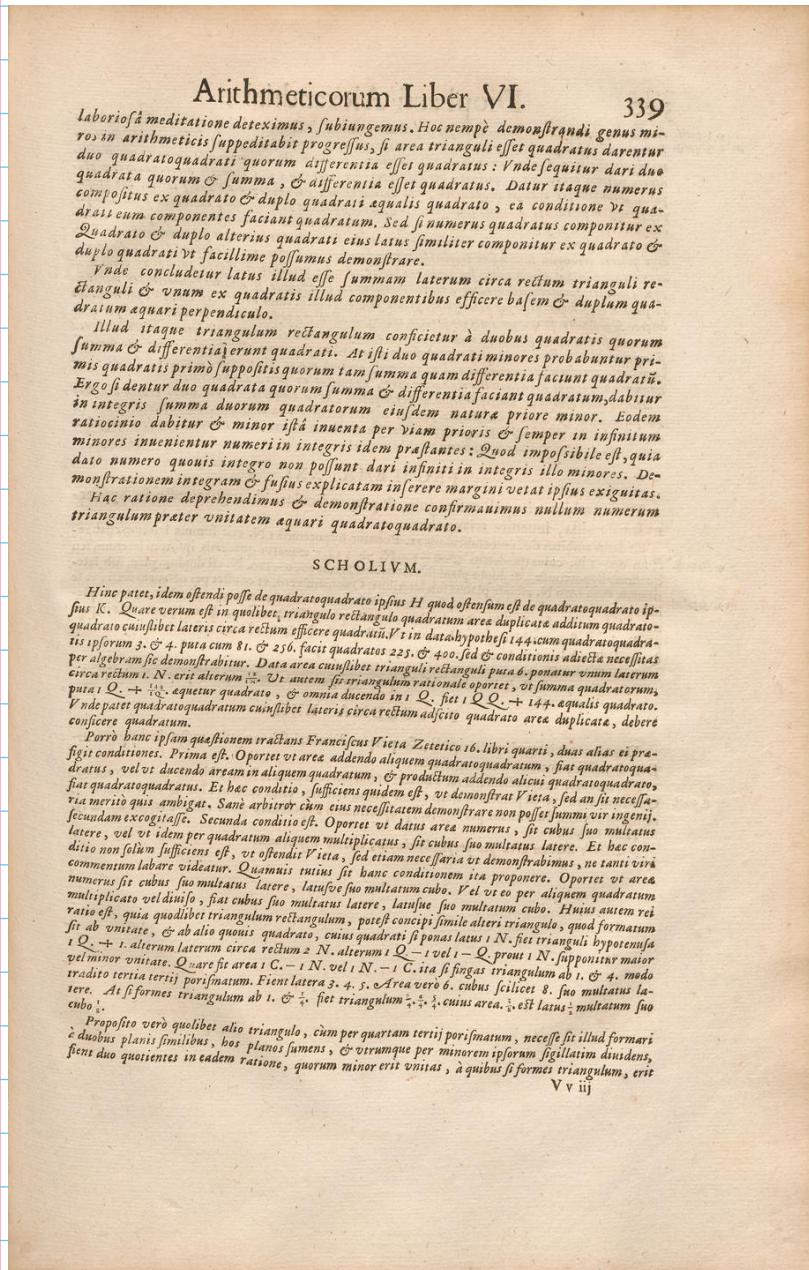


Fermat's Last Theorem



"It is impossible for a cube to be the sum of two cubes, a fourth power to be the sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly marvelous demonstration of this proposition that this margin is too narrow to contain."

The method of infinite descent



$$x^4 + y^4 = z^2,$$

x, y, z rel. prime
 y even

$\exists m > n \in \mathbb{Z}_{\geq 1}$ s.t.

$$x^2 = m^2 - n^2, y^2 = 2mn, z = m^2 + n^2$$

(x, n, m) is a Pythagorean triple

$\exists p > q \in \mathbb{Z}_{\geq 1}$ s.t.

$$x = p^2 - q^2, n = 2pq, m = p^2 + q^2$$

$$y^2 = 4pq(p^2 + q^2) \Rightarrow \begin{aligned} p &= a^2, q = b^2 \\ p^2 + q^2 &= c^2 \end{aligned}$$

$$a^4 + b^4 = c^2$$

But $c \leq c^2 = m < z$

Sophie Germain

(1776-1831)

$p > 2$: odd prime

$$x^p + y^p = z^p$$

: x, y, z rel. prime

Sophie Germain's theorem

Suppose there is an auxiliary prime

q s.t. (a) There is no integer m s.t.
 m & $m+1$ are both p -th
powers modulo q .

(b) $x^p \equiv p \pmod{q}$ has no solns

Then:

p^2 divides one of x, y, z

Sophie Germain primes: p s.t. $2p+1$ is prime

In this case, $2p+1$ is an auxiliary prime

Ernst Kummer (1810 - 1893)

Kummer's theorem (1850)

FLT holds for regular primes

Expectation

About 60.65% of primes are regular

Example

The only irregular primes < 100 are 37, 59, 67

Mordell conjecture (Faltings' theorem)

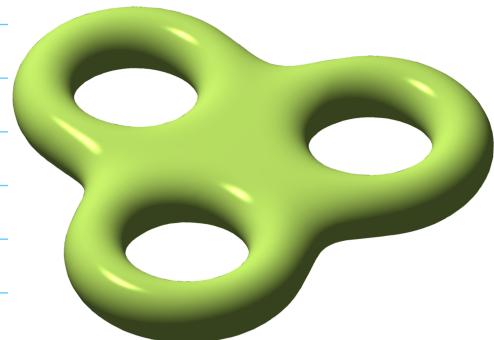
(1983)

Louis Mordell
(1888 – 1972)

For any $n > 3$, there are only finitely many integer solutions to the Fermat equation

$$x^n + y^n = z^n$$

Gerd Faltings
(1954 –)



Topology

Finitely many integer solutions (! !)
(≥ 2 holes)

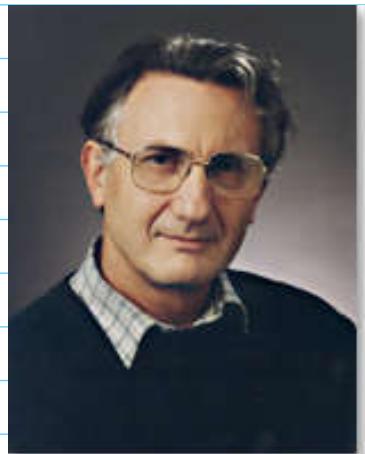
Arithmetic

The Frey-Hellegouarch Curve

(1975 / 1982)

(p : odd prime)

Gerhard Frey
(1944 -)



Yves Hellegouarch
(1936 - 2022)

Suppose that

$$a^p + b^p = c^p, \quad a, b, c \text{ rel. prime}$$

is a non-trivial solution to
the Fermat equation

Then the equation

$$y^2 = x(x-a^p)(x+b^p)$$

has very interesting
geometric properties

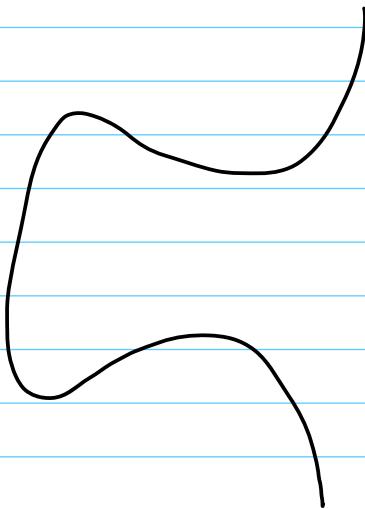
if $a+b$ is even

$$\bullet a \equiv 3 \pmod{4}$$

It is a
semi-stable
elliptic curve
over \mathbb{Q}

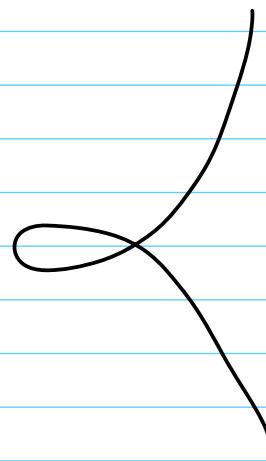
The trichotomy of cubic equations

$$y^2 = x(x-A)(x-B)$$



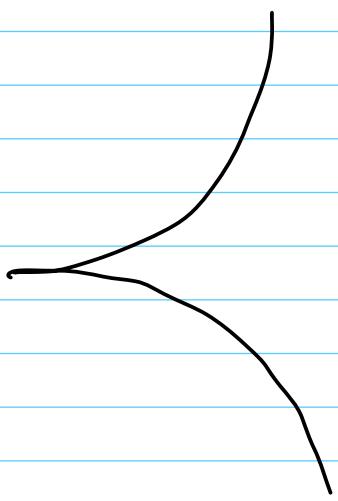
Elliptic curve

$$0 \neq A \neq B \neq 0$$



Nodal cubic

$$0 = A \neq B$$



Cuspidal cubic

$$A = B = 0$$

$$\Delta = \frac{1}{256} A^2 B^2 (A+B)^2$$

: Discriminant of the cubic $\Delta \neq 0 \iff$ elliptic curve

Back to the Frey curve

$$y^2 = x(x-a^p)(x+b^p)$$

$$a^p + b^p = c^p$$

If we view a^p, b^p as rational numbers
then we get an elliptic curve over \mathbb{Q}

Discriminant

$$\frac{1}{256} a^{2p} b^{2p} c^{2p}$$

The discriminant is
a geometric invariant
but it is keeping
track of arithmetic
information

Semistability of the Frey curve

But we can also view a, b, c as integers
modulo l for any prime l
(i.e. as elements of $\mathbb{Z}/l\mathbb{Z}$)

In this case, the conditions on a, b, c
tell us that we obtain:

Note:

- $a^3 \equiv 0 \pmod{l} \Leftrightarrow l \mid a$
- $(-b)^3 \equiv 0 \pmod{l} \Leftrightarrow l \mid b$
- $a^3 \equiv -b^3 \pmod{l} \Leftrightarrow l \mid c$

An elliptic curve
if $l \nmid abc$

A nodal cubic
otherwise

This is telling us that the Frey-Hellegouarch
curve is semistable of conductor abc

Shimura-Taniyama & modularity

Goro Shimura

(1930 - 2019)



Yutaka Taniyama

(1927 - 1958)

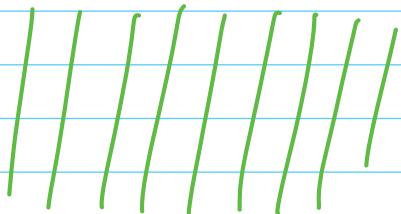
Conjecture:
(1950s)

Every elliptic curve over
 \mathbb{Q} with conductor N is
modular of level $\Gamma_0(N)$

Cuspidal

Modular forms S

(of wt 2 & level $\Gamma_0(N)$)



$$H = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$$

$\Gamma_0(N)$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \begin{array}{l} a, b, c, d \in \mathbb{Z} \\ ad - bc = 1 \\ c \equiv 0 \pmod{N} \end{array} \right\}$$

$\Gamma_0(N) \curvearrowright H$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$

$$f : H \rightarrow \mathbb{C} \quad \text{s.t.}$$

(i) f is complex diff'ble or holomorphic

$$(ii) \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N), z \in H$$

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 f(z)$$

$$(iii) f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

weight 2
level $\Gamma_0(N)$

cuspidal
condition

Modularity

An elliptic curve

$$(*) y^2 = x(x-\alpha)(x-\beta)$$

modular

if $\exists f$ s.t.

For almost all primes ℓ ,

$$\ell + 1 - a_{\ell} = \# \text{ of solns to } (*) \text{ in } \mathbb{Z}/\ell\mathbb{Z}$$

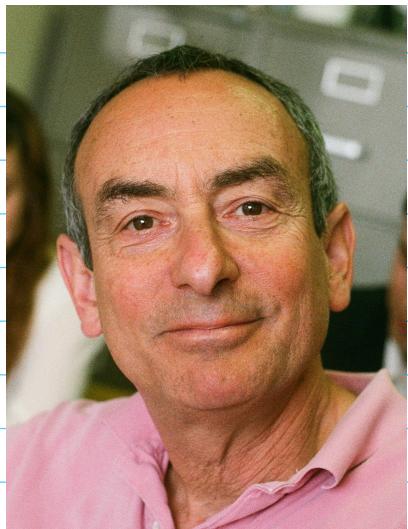
modular mod p

if $\exists f$ s.t. for almost all ℓ

$$\ell + 1 - a_{\ell} \equiv \# \text{ of solns to } (*) \pmod{p}$$

S-T conjecture \Rightarrow FLT
(1986)

Barry Mazur
(1937 -)



Ken Ribet
(1948 -)

Theorem

If the Taniyama - Shimura
conjecture holds for
semistable elliptic curves / \mathbb{Q}
then

$$a^p + b^p = c^p \Rightarrow$$

semistable Frey curve
of discriminant $\frac{1}{256} a^4 b^4 c^4$

\Downarrow Taniyama - Shimura

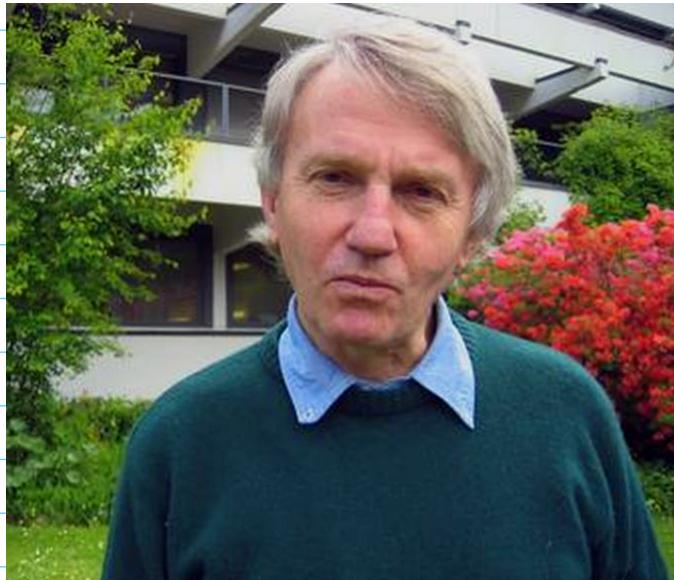
cuspidal modular form of
weight 2 & level $P_0(2)$

Level
lowering
Mazur - Ribet

cuspidal modular form
of weight 2 &
level $P_0(abc)$

Doesn't exist!!

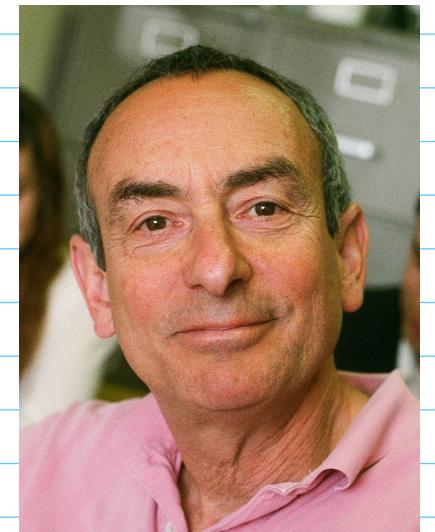
Hopeless ? ?



impossible to
actually prove

John Coates

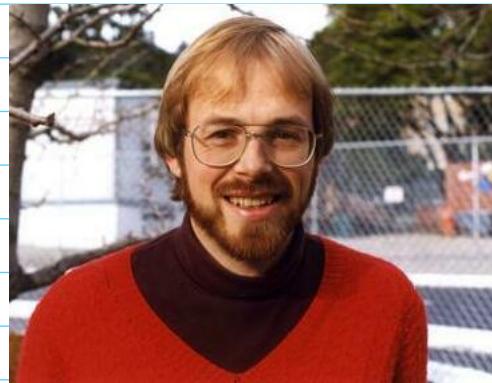
completely
inaccessible



Wiles (& Taylor-Wiles)

Andrew Wiles

(1953 -)



Richard Taylor
(1962 -)

Theorem
(1994-95)

The Taniyama-Shimura conjecture holds
for semistable elliptic
curves over \mathbb{Q} (!!!)

Modularity lifting

Theorem
(Wiles)

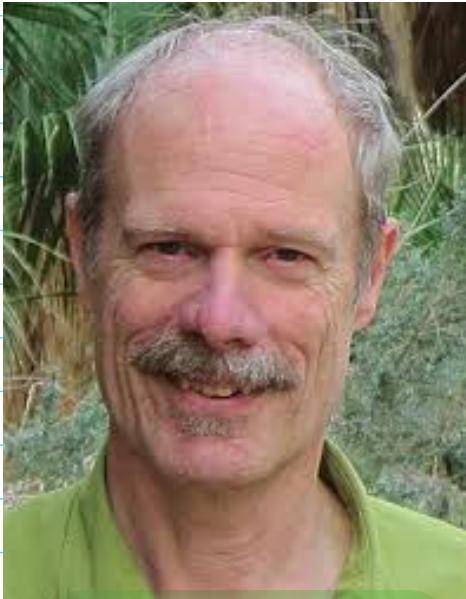
Suppose that E is a semistable elliptic curve/qp
s.t. for some prime $l > 2$:

- (i) E is modular mod l
- (ii) E is absolutely irreducible
mod l

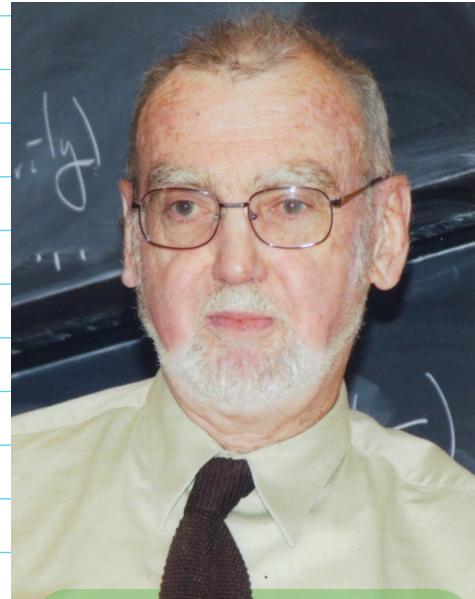
Then E is modular!

We still need a
starting point!

Langlands-Tunnell



Jerry Tunnell
(1950 - 2022)



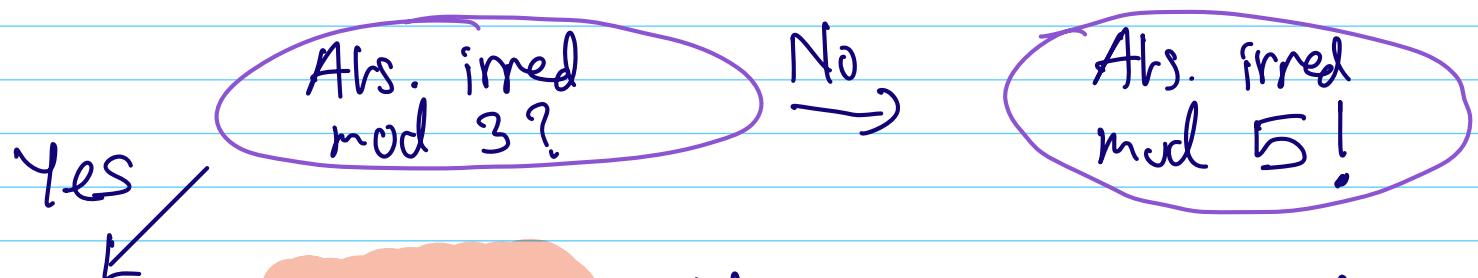
Robert Langlands
(1936 -)

Theorem

Suppose that E is absolutely
irreducible mod 3. Then E
is modular mod 3.
(eek!)

Wiles's strategy

E/\mathbb{Q} : semistable elliptic curve
Want to show it's modular



Theorem

If E is abs. irred mod 5, \exists another s.st. s.t. (i) $|E(2/\ell 2)| \equiv |E'(2/\ell 2)| \pmod{5}$
for almost all ℓ

(ii) E' is abs. irred. mod 3

$\Rightarrow E'$ is modular

$\Rightarrow E$ is modular mod 5 $\xrightarrow[\text{Mod. lifting}]{} E$ is modular!