
OVERVIEW OF CONSTRUCTION OF SPECIAL CYCLES

These notes, written for a workshop at Darmstadt, presume some level of familiarity with Bhatt’s lectures on

F -gauges. See also §6 of Gardner-M.

1. F -gauges

Definition 1.0.1. An F -gauge over a p-complete ring R is a quasicoherent sheaf over the syntomification Rsyn.

It is (almost) perfect if the quasicoherent sheaf is a(n almost) perfect complex. Similarly for vector bundle

F -gauges (implicitly always of finite rank).

An F -gauge of level n over a p-complete ring R is a quasicoherent sheaf over the mod-pn syntomification

Rsyn ⊗ Z/pnZ. It is (almost) perfect if the quasicoherent sheaf is a(n almost) perfect complex. Similarly for

vector bundle F -gauges of level n.

Remark 1.0.2 (Always ∞-categories). Here we mean ‘quasicoherent sheaf’ in the sense of Lurie: For an affine

scheme SpecR, this would mean an object in the stable ∞-category D(R) of unbounded complexes. But for the

purposes here, it is enough to work with the bounded above pre-stable ∞-category: this amounts to working with

almost connective objects, with connective meaning ‘cohomology supported in non-positive degrees’ (non-negative

degrees in the homological convention). For a general (pre-)stack X, the∞-category QCoh(X) is obtained via right

Kan extension from affine schemes: Concretely, giving an object F in QCoh(X) is equivalent to giving an object

Fx ∈ D(R) compatibly for each x ∈ X(R). It is (almost) perfect if Fx is an (almost) perfect complex for all such

x.1

Remark 1.0.3 (Perfectness and level). One possibly subtle point with this level-n business is when one wants to

talk about perfect F -gauges. Here, it is important to specify the level beforehand. This is simply because Z/pZ is

perfect as a complex of Zp-modules or of course Z/pZ-modules, but not as a complex of Z/pnZ-modules for n > 1.

Remark 1.0.4 (Why∞-categories). When dealing with the syntomification, we are essentially forced to work with

the derived ∞-category straight off the bat. The issue is that in general this is not going to be a classical stack,

and so there is no natural t-structure we can use. This is already the case for something like the derived category

of DG modules over a DG algebra with non-trivial cohomology in non-zero degrees.

Remark 1.0.5 (Animation for connective objects). When R is a classical ring, the subcategory of connective

objects, sometimes denoted Modcn
R , is equivalent via the Dold-Kan correspondence to the ∞-category obtained via

localization from the simplicial category of simplicial R-modules. In supermodern terminology, this means that the

assignment R 7→ Modcn
R is obtained via animation from the functor assigning to each finite dimensional polynomial

Z-algebra its category of locally free modules of finite rank.

Remark 1.0.6 (Quasi-geometricity of the syntomification). The definition of QCoh(X) for a general prestack can

be set-theoretically a bit problematic. Fortunately, Rsyn has a more controlled theory, because it is what Lurie calls

quasi-geometric. Essentially, it admits a flat cover by a (formal) algebraic stack, with the diagonal of the covering

also algebraic. This lets us describe quasicoherent sheaves over it as sheaves over the covering equipped with certain

descent data.

To begin, by the definition of Rsyn, giving an F -gauge is the same as giving a quasicoherent sheaf over the filtered

prismatization RN along with an isomorphism of the pullbacks along the two open immersions jdR, jHT : R� → RN .

1Can feel free to ignore all the ‘almosts’. ‘Almost perfect’ for complexes of modules is also sometimes referred to as ‘pseudocoherent’:

For classical rings R, this is the same as saying that the complex can be represented by a bounded above complex of finite rank

projectives. In general, they are complexes M such that some shift M [j] is connective and the tautological truncations τ≤kM [j] are

finitely presented (or compact) objects in the subcategory of k-truncated complexes. Note that, over a Noetherian ring, every finitely

generated module can be viewed as an almost perfect complex.

1
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Second, for most ‘nice’ R, we have a quasisyntomic cover R→ R∞ where R∞ is semiperfectoid, and Rsyn
∞ → Rsyn

is an fpqc cover. Moreover, all the higher (derived) tensor products R⊗Rm+1
∞ are also semiperfectoid. This means

that we can ‘write down’ F -gauges over R in terms of F -gauges over R∞ equipped with certain descent data along

the simplicial stack (R⊗•+1
∞ )syn.

Lastly, when R is semiperfectoid, R� is affine and given by Spf �R where �R is its absolute prismatic cohomology

(which is miraculously an animated commutative ring). Moreover, RN is given by the Rees stack associated with

the Nygaard filtration Fil•N �R.

Concretely, a quasicoherent sheaf over RN is simply a complex of filtered modules Fil•M over the filtered ring

Fil•N �R. The pullback along jdR amounts to forgetting the filtration, while the pullback along jHT amounts to

noting that Frobenius takes FiliN �R to ξi�R, and so symbolically we look at the �R-module∑
i

ξ−iϕ∗ FiliM.

Therefore, in the end (once again symbolically), the F -gauge structure amounts to writing down an isomorphism∑
i

ξ−iϕ∗ FiliM
'−→ M.

This might be familiar (with ξ replaced by p) from the theory of Fontaine-Laffaille modules. When R is an

Fp-algebra, we actually have ξ = p.

Remark 1.0.7 (Rings with finite differentials). The category of R admitting such quasisyntomic covers R→ R∞
includes all rings such that Ω1

π0(R/pR)/Fp is a finitely generated π0(R)-module. This encompasses all rings with

π0(R/pR) of finite type over a field with finite p-basis or with π0(R/pR) semiperfect. We will assume this condition

implicitly from now on.

Remark 1.0.8 (The quasisyntomic case). When R is quasisyntomic, R∞ above is what is called a quasiregular

semiperfectoid. In this case, �R is a classical ring and Fil•N �R is a classical filtered ring (that is, the filtration is by

submodules). In particular, all the stacks involved are firmly in the classical world, and so it makes sense to talk

about coherent sheaves and quasicoherent sheaves in the usual sense without any derived intervention. This applies

of course to R = Zp or to R = OK with K/Qp finite. Still, the syntomifications of these ‘simple’ rings are quite

complicated geometrically, and it’s best to use indirect means to study their cohomology.

rem:k_f-gauges Remark 1.0.9 (Explicit description for perfect rings). Let’s apply the ‘explicit’ description in terms of filtered

modules to the case of a perfect field κ: We see that Fil•N �κ is just W (κ) with its p-adic filtration, and one can now

translate everything to get Bhatt’s description of F -gauges over κ as the Fontaine-Jannsen category (also known

to Faltings) of systems of maps M i t
↼−−⇁
u
M i−1 of complexes of W (κ)-modules for i ∈ Z, with u ◦ t = t ◦ u = p. The

underlying complex is the colimit M = M−∞ under the t-maps, where we view M i = FiliM as the i-th filtered

part, with t giving the transition map FiliM → Fili−1M . The map u then says that multiplication by p on FiliM

factors via Fili+1M , so that the filtration is indeed p-adic. Taking the colimit M∞ along the u maps gives another

W (κ)-complex, and the F -gauge structure now corresponds to an isomorphism ϕ∗M∞
'−→M .

The same description is actually valid with κ replaced by any perfect ring in char p.

Construction 1.0.10 (The Hodge filtered de Rham realization). Given an F -gauge M over R, we can obtain a

filtered complex of R-modules Fil•Hdg M , which can be viewed as the Hodge filtered de Rham realization of M.

Concretely, in the semiperfectoid case, this is obtained via base-change along the map of filtered rings Fil•N �R →
Fil•triv R, where we view R as a filtered ring with trivial decreasing filtration—that is, the filtration with associated

graded supported in degree 0 and equal to R itself.

Remark 1.0.11 (Perfectness from the de Rham realization). It is possible to show thatM corresponds to a perfect

complex over RN (or its mod-pn counterpart) precisely when gr•Hdg M is a graded perfect complex of R-modules.

Explicitly, this means that only finitely many Hodge-Tate weights can appear and griHdg M is a perfect complex

over R for each i.
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Similarly, M is a vector bundle F -gauge (of level n) when it has only finitely many Hodge-Tate weights and

griHdg M is a vector bundle over R (over R/Lpn) for each i.

Definition 1.0.12. The Hodge-Tate weights of M are the integers j such that gr−jHdg M 6= 0 (i.e. is not

nullhomotopic).

Remark 1.0.13 (Sign convention). The reason for this normalization is that we would like for geometric F -

gauges obtained from the syntomic cohomology of smooth proper schemes to have negative Hodge-Tate weights

(see Proposition 1.0.17 below). Another way of saying this is that via p-adic Hodge theory we would like the

cyclotomic character to have Hodge-Tate weight 1 (and not −1).

Remark 1.0.14 (PD thickenings: F -gauges and crystals). For every divided power thickening R′ � R, one can

show that there is a canonical lift Spf R′ → R� of the de Rham section Spf R → R� (for R semiperfectoid this

just corresponds to the surjection �R → R). When R is a semiperfect Fp-algebra, this is because �R = Acrys(R)

is the p-complete divided power envelope of the map W (R[) → R. In particular, every F -gauge gives a crystal in

the (big) crystalline site of R. Of course, we only need a quasicoherent sheaf over R� (one can call this a prismatic

crystal) for this.

Remark 1.0.15 (Strongly divisible filtered F -crystals). When R is a smooth Fp-algebra and R′ is a (necessarily

p-completely smooth) flat lift over Zp with with R′/pR′ = R, R′ � R has canonical divided powers. Therefore, via

the usual dictionary between crystals and vector bundles with connection, every prismatic crystal of vector bundles

gives a vector bundle M over R′ with topologically nilpotent integrable connection connection. If the crystal comes

from a vector bundle F -gauge, and R′ is equipped with a Frobenius lift ϕ, then the vector bundle is equipped with

a p-adic filtration Fil•M , along with an isomorphism∑
i

p−iϕ∗ FiliM
'−→M.

In other words, every vector bundle F -gauge over R gives a p-adically filtered divisible F -crystal over R′. Giving a

lift of the F -gauge to one over R′ refines Fil•M to a filtration Fil•Hdg M by vector subbundles such that

FiliM =
∑
j≤i

pi−j FiljHdg M.

So we obtain a functor from F -gauges over R′ to strongly divisible filtered F -crystals over R′. This is an equivalence

in the Fontaine-Laffaille range where the Hodge-Tate weights are less than p− 1 apart.

Remark 1.0.16 (F -gauges of geometric origin). The way to get F -gauges geometrically is as follows: For any

formal scheme X over Spf R, we obtain a map of stacks Xsyn → Rsyn. Under natural conditions on X (say X is

formally of finite type), the (derived) pushforward of the structure sheaf on Xsyn under this map gives an F -gauge

over R: this is the relative syntomic cohomology of X over R.

The next result gives some idea of how one can use quasisyntomic descent to study F -gauges, but can be skipped.

prop:pushforwards_proper_smooth Proposition 1.0.17. Let π : X → S be a proper smooth map of p-adic formal algebraic spaces of relative dimension

d. IfM is a perfect F -gauge over X of Hodge-Tate weights ≤ m and Tor amplitude [a, b], then Rπsyn
∗ M is a perfect

F -gauge over S of Hodge-Tate weights ≤ m and Tor amplitude [a, b+ 2d].

Proof. It is of course enough to prove it after replacing ‘syn’ with ‘N ’. One can reduce to the case where S = SpecR

is in CRingp-nilp. By Noetherian approximation, we can assume that in fact we have R = CRingp-nilp,f . Now, by

quasisyntomic descent we can assume that R is semiperfectoid. In particular, RN is canonically isomorphic to

the formal Rees stack R(Fil•N �R). This means that perfect complexes over RN are equivalent to filtered perfect

complexes over the filtered animated commutative ring Fil•N �R.2

2We are using the fact that such objects are automatically derived (p, IR)-complete.
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Suppose that SpecA→ X is an affine quasisyntomic cover with A semiperfectoid, and consider the corresponding

simplicial scheme SpecA(•) where

SpecA(i) = SpecS ×X SpecS × · · · ×X SpecS︸ ︷︷ ︸
i-times

.

Then AN → XN is a flat cover, and we have

A(i),N ' AN ×XN AN × · · · ×XN AN︸ ︷︷ ︸
i-times

.

This shows that RπN∗ M corresponds to the filtered complex Tot
(

FilFNM(•)
)

, where FilFNM(•) is the filtered

perfect complex over FilFN A
(•). To show that this is perfect with Tor amplitude in [a, b + 2d], it is enough to

know that the associated graded Tot
(

grFNM(•)
)

is a graded perfect complex over grFN �R with Tor amplitude in

[a, b+ 2d].

Let gr♥Hdg M be the graded perfect complex over X obtained by pulling M back along the de Rham point, and

let gr♥Hdg M
(i) be the graded perfect complexes over A(•) obtained by via restriction along SpecA(•) → X.

Then grFNM(•) admits a canonical finite ‘weight’ filtration whose i-th graded piece admits a canonical isomor-

phism

griwt grFNM
(•) ' griHdg M

(•) ⊗A(•) grFN �A(•)(−i),
where (−i) denotes the −i-shift in grading.

This shows that Tot
(

grFNM(•)
)

inherits a finite filtration with associated graded pieces

Tot
(

griHdg M
(•) ⊗A(•) grFN �A(•)(−i)

)
Now, the condition on Hodge-Tate weights implies that these pieces are non-zero precisely when i ≥ −m. This

reduces us to the following

Lemma 1.0.18. For any perfect complex M over X restricting to a graded perfect complex M (•) over A(•) with

Tor amplitude in [a, b], the graded complex

Tot
(
M (•) ⊗A(•) grFN �A(•)

)
is graded perfect over grFN �R with Tor amplitude [a, b+ 2d], and supported in non-negative graded degrees.

Proof. Choose a map R0 → R with R0 perfectoid along with a generator ξ ∈ Fil1N �R0
. For i ≥ 0, this yields

isomorphisms

griN �A(•)
'−→ griN ϕ

∗�A(•)/R0

'−→ Filconj
i �A(•)/R0

,

and we have grconj
i �A(•)/R0

' ∧iLA(•)/R0
[−i].

Therefore, Tot
(
M (•) ⊗A(•) grFN �A(•)

)
corresponds to a decreasingly filtered complex over Filconj

F �A(•)/R0
, and

considering associated gradeds reduces us to knowing that the graded complex

Tot
(
M (•) ⊗A(•) grconj

F �A(•)/R0

)
' RΓ(X,M ⊗OX ∧FLX/R0

[−F])

is graded perfect over grconj
F �R/R0

with Tor amplitude in [a, b+ 2d], and supported in non-negative graded degrees.

Now, ∧iLX/R0
is canonically filtered with graded pieces isomorphic to ∧kLX/R ⊗ ∧lLR/R0

, for k + l = i.

One can upgrade this to knowing that ∧FLX/R0
[−F], as a complex over X = X ×SpecR Spec(grconj

F �R/R0
)/Gm,

is filtered with graded pieces isomorphic to ∧kLX/R[−k] ⊗R OX . Now we finally use our assumption that X is

smooth over R of relative dimension d, which tells us that each of these graded pieces is a shifted vector bundle in

degree k and vanishes if k > d.

Therefore, we are now reduced to knowing that the relative cohomology over Spec(grconj
F �R/R0

)/Gm of the

restriction of a perfect complex M of Tor amplitude [a, b] over the product X ×SpecR Spec(grconj
F �R/R0

)/Gm is
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represented by a graded perfect complex with Tor amplitude in [a, b + d]. This is of course a standard fact about

the coherent cohomology of proper morphisms of relative dimension d. �

�

Example 1.0.19 (Relative syntomic cohomology). In particular, we see that Rπsyn
∗ O is perfect of Hodge-Tate

weights ≤ 0 and Tor amplitude [0, 2d].

Remark 1.0.20. There is a Poincaré duality on relative syntomic cohomology that would place further constraints

on the Hodge-Tate weights. In the previous example, it would bound the weights between −d and 0.

ex:abelian_scheme Example 1.0.21 (Syntomic cohomology of abelian schemes). When X is the p-completion of an abelian scheme,

one can show that we have

Rπsyn
∗ O '

2d⊕
i=0

(∧iM)[−i],

whereM is a vector bundle F -gauge of Hodge-Tate weights −1, 0. The idea is to reduce (using moduli of polarized

abelian schemes for instance) to the case where R is p-completely smooth, in which case F -gauges admit a t-

structure. Here, we can takeM = R1πsyn
∗ O, and reduce the claim to standard facts about the coherent cohomology

of abelian schemes.

ex:breuil-kisin_twist Example 1.0.22 (The Breuil-Kisin twist). Take X to be the formal projective line. Then we see that RπsynO is

perfect of Tor amplitude [0, 2]. To see what this is, we can reduce to the case where R = Zp. Here R1πsynO turns

out to be a line bundle, the (inverse) Breuil-Kisin twist O{−1}, which has Hodge-Tate weight −1. As usual, we

can use this twist to shift Hodge-Tate weights of arbitrary F -gauges.

Construction 1.0.23 (The étale realization). Suppose that R is semiperfectoid. Then every perfect F -gauge

of level n over R gives a perfect complex M over �R[1/ξ] ⊗ Z/pnZ equipped with an isomorphism ϕ∗M
'−→ M .

Following Katz and Bhatt-Scholze, one can use Artin-Schreier and almost purity arguments to show that such

objects are equivalent to perfect complexes of locally constant Z/pnZ-sheaves over R[1/p]ét.
3 This gives the p-adic

étale realization functor Tét.

Remark 1.0.24 (Comparison with étale cohomology). One can show that, in the context of Proposition 1.0.17,

the étale realization of the relative syntomic cohomology yields the relative p-adic étale cohomology of the adic

generic fiber.

Remark 1.0.25 (p-adic comparison for abelian schemes). In particular, ifM is as in Remark 1.0.21, then its étale

realization is the dual of the Tate module of the abelian scheme A.

2. Representability of syntomic cohomology

The content of this section can be gleaned from Section 8 of Gardner-M. We will take R to be a p-nilpotent ring.

Theorem 2.0.1. Suppose thatM is a(n almost) perfect F -gauge of level n over R with Hodge-Tate weights bounded

below by −1. Then the functor4

Γsyn(M) : C 7→ τ≤0RHomOCsyn⊗Z/pnZ(M,O)

is representable by a(n almost) finitely presented derived algebraic stack over R. Moreover, the deformation theory

of this stack is controlled by the complex Fil1Hdg M ; that is, for all square-zero (or even nilpotent PD) thickenings

C ′ � C of p-nilpotent R-algebras with fiber I, we have a fiber sequence

Γsyn(M)(C ′)→ Γsyn(M)(C)→ MapModR
(Fil1Hdg M, I).

3Note that �R[1/ξ] ⊗ Z/pnZ vanishes if R[1/p] = 0!
4This definition clashes with the current definition in the arXiv version of G.-M., but fits better with Grothendieck’s definition of

V(M) for an R-module M , and is the correct one for almost perfect F -gauges.
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Remark 2.0.2. Explicitly, we have

Γsyn(M)(C) = τ≤0 hker

(
RHomOCN⊗Z/pnZ

(M,O)
j∗dR−j

∗
HT−−−−−−→ RHomOC�⊗Z/pnZ

(M,O)

)
rem:syn_cohom_perfect_field Remark 2.0.3 (Over perfect fields). In terms of the explicit description of F -gauges (of level 1) over perfect fields

in Remark 1.0.9, M is given by a system M i t
↼−−⇁
u
M i−1 of perfect complexes of κ-modules with u ◦ t = t ◦ u = 0.

The restriction on the Hodge-Tate weights means that t : M i → M i−1 is the zero map and u : M i−1 → M i is an

isomorphism for i ≥ 2. In particular, we have M1 = M∞, and the F -gauge structure is given by an isomorphism

ϕ∗M1 '−→M−∞.

The structure sheaf of level 1 is given by N i = κ for all i with

u =

{
id if i ≥ 1

0 otherwise.
; t =

{
0 if i ≥ 1

id otherwise.

The F -gauge structure is given simply by the identity on κ.

From this, one finds that

RHomOκN⊗Z/pnZ
(M,O) = RHomκ(M1, κ) ; RHomOC�⊗Z/pnZ

(M,O) = RHomκ(M−∞, κ).

The map j∗dR is given as the limit of precomposition with the maps M−i
ui+1

−−−→ M1 for i ≥ 0, and the map j∗HT is

via precomposition with the inverse of the semilinear isomorphism M1 '−→M−∞ giving the F -gauge structure.

Note in particular, that syntomic cohomology is computing the (homotopy) kernel of the difference between a

linear and a semilinear map. This is a fundamental feature.

Remark 2.0.4 (The adic generic fiber). If R is p-completely flat, then we can still define a formal algebraic stack

Γsyn(M) over Spf R by taking the limit of the corresponding stacks over SpecR/pnR. We can also take the adic

generic fiber Γsyn(M)rig over (Spf R)rig. If Tét(M) is the étale realization of M, then we get a canonical map

Γsyn(M)rig → RHom(Tét(M),Z/pnZ)

where the right hand side is the internal RHom in the category of perfect complexes of Z/pnZ-sheaves over (Spf R)rig.

Remark 2.0.5 (The case of vector bundles). The main application of this result is in the case where M = F∨ is

the dual of a vector bundle of Hodge-Tate weights ≤ 1. In this case, we are looking at the functor

C 7→ τ≤0RΓ(Csyn ⊗ Z/pnZ,F)

of ‘global sections’ of F . In this case, Γsyn(F∨)(C) is just an abelian group for classical C, and the deformation

theory is given by the fact that we have

Γsyn(F∨)(C ′) = ker(Γsyn(F∨)(C)→ gr−1
Hdg F ⊗R I).

Note that gr−1
Hdg F is the ‘bottom’ degree associated graded for Fil•Hdg F .

rem:quasismooth_vdim_zero Remark 2.0.6 (Quasi-smooth spaces of sections). When M is a vector bundle, Fil1Hdg M is a vector bundle over

R/Lp, and so a perfect complex of Tor amplitude [−1, 0] over R of virtual rank 0. The deformation theory is telling

us that its pullback over Γsyn(M) is the cotangent complex for this (derived) scheme. This tells us that this derived

scheme is quasismooth or derived lci over R of virtual codimension 0: That is, étale locally on the source, Γsyn(M)

can be presented as the derived vanishing locus of n functions on n-dimensional affine space over R.

Remark 2.0.7 (Endomorphisms of syntomic cohomology of abelian schemes). One way to get such a vector bundle

F -gauge is from Example 1.0.21: Take a vector bundle F -gauge N of Hodge-Tate weights −1, 0 obtained from the

syntomic cohomology of an abelian scheme A, and consider the endomorphism F -gauge F = N∨⊗N : this has HT

weights −1, 0, 1. As we will see below, the global sections of its mod-pn quotients are exactly giving (for at least

for classical inputs) the endomorphism scheme of the truncated BT group scheme A[pn]. In general, the underlying

classical scheme is far from being lci, so the F -gauge construction is providing a sort of derived resolution.
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Remark 2.0.8 (Sub-bundles of endomorphisms). We can also take any vector subbundle of an endomorphism

F -gauge as above. If it is cut out by ‘PEL’ type conditions, then the result is just giving us (derived resolutions of)

endomorphism schemes respecting these additional structures. But one can have non-PEL situations where such an

interpretation is less clear. This happens of course in the basic situation of orthogonal Shimura varieties associated

with quadratic spaces over Q.

The rest of this section is about the proof of the key result and can be skipped at a first reading.

Remark 2.0.9. By standard dévissage, one can reduce the proof of the theorem immediately to the case where

n = 1, so we will assume from here on that this is the case.

Remark 2.0.10 (Derived descent). One can actually reduce to the case where R is an Fp-algebra; this is the

content of §8.9 of G.-M. This involves the remarkable notion of derived descent along the map Zp → Fp. The basic

point is that the map SpecFp → Spf Zp satisfies descent in the following sense: Giving a p-complete Zp-module

is the same as giving its (derived) mod-p quotient, along with the data of descent for the cosimplicial animated

ring given by the derived tensor products F⊗Zp (i+1)
p . See this nice answer on MO: https://mathoverflow.net/

questions/430129/basic-example-of-derived-descent.

Remark 2.0.11 (Syntomification from conjugate and Hodge filtrations). The proof involves understanding the

stack Rsyn ⊗ Fp in a different way. The starting point is that RN lives over the mod-p fiber of that of Zp equipped

with its p-adic filtration. The latter can be explicitly written as [Spf Zp[u, t]/(ut − p)/Gm], where z · t = zt and

z · u = z−1u, and is in fact canonically isomorphic to FNp . Its mod-p fiber contains the closed substacks

(FNp )(u=0) = [SpecZp[t]/Gm] = A1/Gm ; (FNp )(u=0) = A1/Gm,

where the weights of the Gm-action are opposite. The mod-p fiber RN ⊗ Fp is obtained by gluing these two closed

substacks along their common closed sub-locus (u = t = 0).

Therefore, for any R, RN ⊗ Fp is obtained by gluing together the two closed substacks RN(u=0) and RN(t=0) along

their common closed substack RN(u=t=0).

When R is semiperfect we can describe everything in terms of the Nygaard filtration. The map t is giving

the transition maps FiliN �R → Fili−1
N �R and u is giving the factoring of the multiplication by p map through

Fili−1
N �R → FiliN �R.

Setting u = 0 is basically giving the associated graded FiliN �R/pFili−1
N �R, and this can be mapped to �R =

�R/p�R (all quotients are understood to be derived). The result is the i-th Hodge filtered piece FiliHdg �R, which

gives the decreasingly filtered ring Fil•Hdg �R. In fact, RN(u=0) is just the Rees stack for this ring.

Setting t = 0 is giving the associated graded griN �R: This maps via the divided Frobenius to �R giving the

i-th conjugate filtered piece Filconj
i �R. This in turn makes �R an increasingly filtered ring, and RN(t=0) is the

corresponding Rees stack.

The gluing along u = t = 0 amounts to the observation that these two filtered rings have (by construction) the

same associated gradeds up to sign change.

To get the mod-p syntomification one now glues the two closed substacks further along the common open loci

RN(u=0,t6=0) and RN(t=0,u 6=0), both of which are isomorphic to Spf �R.

One can now reverse the order of gluing:

(1) First glue the two substacks RN(u=0) and RN(u=0) along the common open locus: A vector bundle over this

glued stack is the same as a vector bundle F over �R equipped with two filtrations, Fil•Hdg F (corresponding

to the u = 0 locus) and Filconj
• F (corresponding to the t = 0 locus).

(2) Then glue the resulting stack along the commong closed locus u = t = 0.

This shows that a vector bundle over Rsyn⊗Fp is the same as a doubly filtered vector bundle M over �R equipped

with an isomorphism gr•Hdg F
'−→ grconj

−• F.

In particular, the syntomic cohomology of this vector bundle F -gauge can be computed in terms of a complex

Fil0Hdg F×F Filconj
0 F→ gr0

Hdg F,

https://mathoverflow.net/questions/430129/basic-example-of-derived-descent
https://mathoverflow.net/questions/430129/basic-example-of-derived-descent
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where the map is the difference between the two projections onto the common quotient gr0
Hdg F.

Remark 2.0.12 (The F -zip stack). There is a simpler stack obtained via the same method. It is the F -zip stack

RFZip, obtained as follows:

(1) Take two copies of A1
R, one with the standard Gm-action, and the other with the action twisted by the

automorphism z 7→ z−1 of Gm: We can also view these as the Rees stacks associated with the decreasing

trivial filtration Fil•triv R and the increasing trivial filtration Filtriv• R.

(2) Glue these two copies along the automorphism of Gm,R to get a (non-separated!) Gm-equivariant scheme

X: Gm-equivariant vector bundles over X are the same as vector bundles F over R equipped with two

filtrations, one decreasing Fil•Hdg F and the other increasing Filconj
• F , which we think of as the Hodge and

conjugate filtrations.

(3) Next, glue the zero section SpecR of the first copy with that of the second copy via Frobenius to get another

Gm-equivariant scheme Y : Gm-equivariant vector bundles over Y are now doubly filtered modules as above

equipped further with an isomorphism ϕ∗ gr•Hdg F
'−→ grconj

−• F .

The F -zip stack is now defined by RFZip = Y/Gm. By construction vector bundles over it are the same as F -

zips, as defined by Pink-Wedhorn-Ziegler. The cohomology of such a vector bundle (which can be termed ‘F -zip

cohomology’) can be computed in terms of a complex

Fil0Hdg F ×F Filconj
0 F → grconj

0 F

where the map is the difference between the natural projection from Filconj
0 F and the Frobenius twisted one from

Fil0Hdg F .

To make this more compatible with syntomic cohomology, let us rewrite it as the quasiisomorphic complex

Fil0Hdg F ×F (Filconj
0 F ×grconj0 F gr0

Hdg F )→ gr0
Hdg F,

where we are now taking the difference between the two natural projections

Fil0Hdg F → gr0
Hdg F ; Filconj

0 F ×grconj0 F gr0
Hdg F → gr0

Hdg F.

Remark 2.0.13 (From F -gauges to F -zips). There is a canonical map RFZip → Rsyn⊗Fp that can be understood

explicitly in the semiperfect case in terms of maps of filtered rings. In particular, we have a canonical map from

syntomic cohomology to F -zip cohomology.

rem:graded_base_change Remark 2.0.14. A basic but fundamental observation about graded modules that will be used in the proof is

the following: Suppose that B• is a non-positively graded (animated commutative) ring and that M• is a graded

B•-module (or complex of such modules) with Mi = 0 for i ≥ a (for some integer a). Let M• be the (derived)

graded base-change of M• over B0. Then:

(1) Ma
'−→Ma;

(2) There is a canonical fiber sequence

Ma ⊗B0 B−1 →Ma−1 →Ma−1.

rem:height_1_group scheme Remark 2.0.15 (Height 1 group schemes). Associated with any vector bundle N with a ϕ-semilinear endomor-

phism ψ is a canonical finite flat height 1 group scheme5 G(N,ψ) whose Cartier dual is given by the kernel of the

map

V(N)
ψ∨−ϕ∗−−−−−→ V(ϕ∗N).

When N = R and ψ = id, the Artin-Schreier sequence combined with Cartier duality ends up giving us µp. When

ψ = 0, we get the self-dual group αp.

5This is a commutative p-torsion finite flat group scheme with Frobenius acting by 0.
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Sketch of proof. As observed before, we can assume that n = 1 and R is an Fp-algebra. Assume for simplicity that

M = F∨ for a vector bundle F with HT weights bounded above by 1. What one shows is that Γsyn(F∨) is fibered

over the functor ΓFZip(F∨) computing F -zip cohomology, which is manifestly representable being given by maps

between vector bundles. Moreover, the kernel is a certain finite flat height 1 group scheme.

To begin, by Remark 2.0.14, the condition on Hodge-Tate weights ensures that we have

gr−1
Hdg F

'−→ gr−1
Hdg F.

It also tells us that we have a fiber sequence

gr−1
Hdg F ⊗R gr1

Hdg �R → gr0
Hdg F→ gr0

Hdg F.

This is in fact the only (though essential) utility of the condition on the Hodge-Tate weights. Another way of

phrasing the first isomorphism is that we have

Fil0Hdg F = F×F Fil0Hdg F.eqn:fil0_cartesianeqn:fil0_cartesian (2.0.15.1)

And another way of phrasing the fiber sequence is:

grconj
0 F ⊗R grconj

1 �R → grconj
0 F→ gr0

Hdg F.eqn:fund_fiber_sequenceeqn:fund_fiber_sequence (2.0.15.2)

This means that the homotopy kernel (i.e. shifted cone) of

Fil0Hdg F×F Filconj
0 F→ Fil0Hdg F ×F (Filconj

0 F ×grconj0 F gr0
Hdg F )

is the same as that of Filconj
0 F→ Filconj

0 F ×grconj0 F gr0
Hdg F . One checks that this is isomorphic to

gr−1
Hdg F ⊗R hker(Filconj

1 �R → R).

In sum the fiber of the map from syntomic cohomology to F -zip cohomology is computed by a complex

gr−1
Hdg F ⊗R hker(Filconj

1 �R → R)→ gr−1
Hdg F ⊗R grconj

1 �R.eqn:artin-milne_complexeqn:artin-milne_complex (2.0.15.3)

This is the kind of thing studied in §7 of G.-M. and is a prismatic spin on a classical construction of Artin-Milne.

Note that we have a canonical semilinear endomorphism of gr−1
Hdg F given by

ϕ∗ gr−1
Hdg F

'−→ Filconj
1 F → F → gr−1

Hdg F.

By Remark 2.0.15, this gives us a height 1 group scheme G over R. It turns out that the complex 2.0.15.3 is

computing the fppf cohomology of G. When R is a smooth Fp-algebra, this is literally what Artin-Milne prove

(after unwinding definitions). Note that in this case, we have

grconj
1 �R

'−→ LR/Fp [−1] ' Ω1
R/Fp [−1],

and

hker(Filconj
1 �R → R)

'−→ hker(τ≤1Ω•R/Fp → R)
'−→ Z1(Ω•R/Fp)[−1].

In particular, the kernel of the map (2.0.15.3) is simply computing the values of the group scheme G. This

completes the sketch of the proof, except perhaps for the part about the deformation theory. While one can piece

that together from the proof, the cleaner way is to make systematic use of frames and what one can call the

‘Lau-Zink unique lifting principle’. This is explained in §8.9 of G.-M. �

3. Apertures and p-divisible groups

More stuff from G.-M. We fix a reductive group scheme G over Zp and a minuscule cocharacter µ defined over an

unramified ring of integers O. This gives in particular a G-torsor Pµ over BGm × Spf O classified by the map Bµ.

Definition 3.0.1. A(n n-truncated) (G, µ)-aperture over a p-complete O-algebra R is a G-torsor over Rsyn (

Rsyn ⊗ Z/pnZ) whose restriction to RN (RN ⊗ Z/pnZ) is p-completely flat locally on Spf R is isomorphic to Pµ.

Remark 3.0.2. There is a canonical Hodge point BGm × Spf R→ RN . It suffices to check that this is flat locally

on R isomorphic to Pµ. In fact, assuming Spf R connected, it suffices to check this after restriction to BGm×Specκ

for some algebraically closed field κ over R.
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Remark 3.0.3 (The adjoint F -gauge). Given an n-truncated G-aperture Q[n] over R, we can twist the Lie algebra

LieG by Q to obtain a vector bundle F -gauge (LieG)Q[n] over R of level n. The minuscule condition on µ

ensures that this has Hodge-Tate weights −1, 0, 1. In particular, we have the Hodge filtered de Rham realization

Fil•Hdg dRQ[n](LieG) associated with this F -gauge, which is a filtered vector bundle over R/Lpn supported in graded

degrees −1, 0, 1, and so can be viewed as a filtered perfect complex over R of Tor amplitude [−1, 0].

Remark 3.0.4 (The case of GLh). When G = GLh, µ is conjugate to a cocharacter µd of type (1, . . . , 1, 0, . . . , 0)

with d 1s, a (GLh, µd)-aperture is the same as a vector bundle F -gauge F of Hodge-Tate weights 0, 1 and rank h

with gr−1
Hdg F of rank d.

Theorem 3.0.5. (1) n-truncated (G, µ)-apertures are parameterized by a smooth formal Artin stack BTG,µn
over Spf O of virtual dimension 0 and with affine diagonal.

(2) The deformation theory of BTG,µn is governed by gr−1
Hdg dRQ[n](LieG)[−1], where Q[n] is the tautological

aperture. More precisely, this is the tangent complex for BTG,µn over O.

(3) The transition maps BTG,µn+1 → BTG,µn are smooth and surjective.

(4) BTGLh,µd
n is canonically equivalent to the stack of n-truncated Barsotti-Tate groups.

Remark 3.0.6. The map from BTGLh,µd
n to the stack of BT group schemes is easy to define: It’s just given by the

global sections functor F 7→ Γsyn(F∨) from the previous section. The rest of the proof uses the smoothness of the

stack of truncated BTs (a famous theorem of Grothendieck), and an inverse functor for qrsp algebras constructed

by Anschütz-Le Bras and Mondal.

Remark 3.0.7. The proof of (1) in the theorem is a non-linear version of the argument from the previous section.

The dévissage from level 1 to level n ≥ 1 happens by noting that the deformation theory from level n− 1 to level

n is governed by the syntomic cohomology of the level-1 perfect F -gauge (LieG)Q[−1]⊗ Fp of Hodge-Tate weights

−1, 0, 1. Derived descent works again to reduce to the case of Fp-algebras. Here one shows that BTG,µ1 is presented

over the (smooth Artin) stack of G-zips of type µ as a gerbe banded by a certain height 1 group scheme called the

Lau group scheme. This amounts to studying deformations of G-bundles from the F -zip stack to the syntomification.

Remark 3.0.8 (The Hodge type case). When we have a faithful representation (G, µ) → (GLh, µd) (the Hodge

type situation), we can interpret BTG,µn as parameterizing truncated BT groups with additional structure, though

already in the case of GSp2g with its standard representation (and µd = µg), the precise interpretation of what this

additional structure is can be subtle. See the discussion in §11.6 of G.-M.

Remark 3.0.9 (The étale realization for apertures). One can use the construction used for the étale realization

of F -gauges, or argue using Tannakian reconstruction, to see that every (G, µ)-aperture Q over R of level n gives a

G(Z/pnZ)-local system Tét(Q) over R[1/p]. For (GLh, µd)-apertures, this is a repackaging of the p-adic Tate module

of the associated p-divisible group.

4. The syntomic realization for Shimura varieties

Suppose now that G is a reductive model over Zp for a reductive group G over Q underlyiing a Shimura datum

(G,X). Let v|p be a place of the reflex field E = E(G,X), and suppose that the level K ⊂ G(Af ) has been chosen

such that K = KpK
p with Kp = G(Zp). If {µ} is the conjugacy class of Shimura cocharacters associated with X,

then we can find a representative µv defined over Ev and extending to a minuscule cocharacter of G over O = OEv .

In particular, we can consider the formal pro-Artin stack

BTG,µ
−1
v

∞ = lim←−
n

BTG,µ
−1
v

n .

Theorem 4.0.1. Suppose that (G,X) is of abelian type and that ZG does not admit an R-split subtorus that is not

Q-split6, and let SK be Kisin’s integral canonical model over OE [1/D] where D is the product of all primes at which

6This is a technical ‘cuspidality’ condition that exists only because we are afraid of stacks with infinite discrete stabilizers.
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the level K is not hyperspecial, and let S F
K,v be the associated formal scheme over Spf O. There is a canonical

surjective formally étale syntomic realization map

S F
K,v → BTG,µ

−1
v

∞ .

When G = GSp2g, this is the map associating with every principally polarized abelian scheme (up to prime-to-p

isogeny) its principally polarized p-divisible group. Moreover, the étale realization of the syntomic realization is the

canonical G(Zp)-local system over the generic fiber.

Remark 4.0.2. When p > 2, this is due to Imai-Kato-Youcis, who use a detour via prismatic and crystalline

cohomology and Ito’s theory of prismatic G-displays.

Remark 4.0.3 (Characterization of the integral canonical model). As observed by I-K-Y, the integral model SK,v

over O is actually characterized by the existence of this formally étale map and the fact that the tube around its

special fiber in rigid space Shrig
K,Ev

consists exactly of the crystalline points.

Remark 4.0.4 (BST models). One can show that the exotic exceptional integral canonical models constructed

by Bakker-Shankar-Tsimerman also support such realizations. This essentially comes down to their exhibiting

Fontaine-Laffaille modules associated with representations of G, and of course only works for large enough primes

p.

One key input into the proof of the theorem is the following:

Theorem 4.0.5 (Tate’s full faithfulness for apertures). Suppose that R is a p-complete normal Noetherian domain.

Then the functor Tét is a fully faithful functor from BTG,µ∞ (R) to pro-étale G(Zp)-local systems over R[1/p].

Sketch. The main point is that the diagonal of BTG,µ∞ is affine, so a section of it over R[1/p] extends to one over R

if and only if it does so after completion at every height 1 prime of R. This reduces us to the case of p-complete

DVRs where we can use full faithfulness results of Bhatt-Scholze (or Guo-Reinecke).

There is one other key point: We have to first algebraize BTG,µn to a stack over SpecR by gluing (in the sense

of Beauville-Laszlo) the formal stack with the stack of G(Z/pnZ)-bundles over R[1/p] via the étale realization

functor. �

Remark 4.0.6 (Tate’s theorem for p-divisible groups). In the case of GLh, this is just Tate’s full faithfulness

theorem for p-divisible groups.

Sketch of construction of the syntomic realization for abelian type cases. We want to show that the canonical G(Zp)-
torsor over the generic fiber underlies a (G, µ)-aperture over S F

K,v. The full faithfulness above lets us prove this flat

locally: the descent data is obtained for free. So using standard methods in the business (with some refinements

by Lovering), one reduces to the case where (G,X) is of Hodge type or of CM type. The second case can be dealt

with Lubin-Tate theory.

In the first case, one wants to give a reduction of structure group of the (GSp2g, µg)-aperture associated with a

principally polarized p-divisible group. One reduces to exhibiting this for the complete local rings of S F
K,v, which

are deformation rings constructed by a method of Faltings. It turns out that these rings are also deformation rings

for BTG,µ∞ , and this does the job.7

Now, the map S F
K,v → BTG,µn is smooth and so has open image. To show that it is surjective, it is enough to show

that the image is closed and that the target is connected. The former can be shown by showing that S F
K,v → BTG,µ∞

satisfies the relative valuative criterion for properness, which amounts in the end to the Nerón-Ogg-Shafarevich

criterion for good reduction. The connectedness can be verified mod-p and with n = 1, where it comes down to the

fact that the stack of G-zips of type µ is connected (since G is itself connected). �

Remark 4.0.7 (Non-emptiness of strata). The surjectivity can be used to easily deduce that all Newton and

Ekedahl-Oort strata are non-empty. For the former, one needs a result of Wintenberger saying that the hyperspecial

ADL Xµ(b) is non-empty if and only if b ∈ B(G,µ).

7The same method also works for the BST models, where a F-L module associated with a faithful representation plays the role of

the (GSp2g , µg)-aperture.
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5. Formal special cycles

Now suppose that W is a representation of G on which µ acts via weights −1, 0, 1. We’d like to associate certain

special cycles on SK,v associated with W . For this, we fix a lattice WZ ⊂W such that WẐ is K-stable. In particular,

Wp = WZp ⊂WQp is a Kp-stable lattice and so corresponds to an algebraic G-representation over Zp. Here, we will

construct the formal completions of the special cycles along their special fibers.

Example 5.0.1 (Siegel type). Suppose that H1, H2 are two representations of G of Siegel type. This means that

the associated variations of Hodge structures on ShK(C) are homological realizations of abelian schemes A1,A2 up

to isogeny over ShK . Then Hom(H1, H2) satisfies the constraints on weights.

Construction 5.0.2 (Local cycles). Let Q be the canonical (G, µ−1
v )-aperture over S F

K,v. For every lattice Wp ⊂
WQp as above, we can twist its dual by Q to obtain a vector bundle F -gauge SynQ(W∨p ) of Hodge-Tate weights

−1, 0, 1. Therefore, we obtain, for every n ≥ 1, a formally quasi-smooth of virtual codimension 0 derived algebraic

scheme

Z syn
K,v,n(Wp) = Γsyn

(
SynQ(W∨p )⊗ Z/pnZ

)
Also set

Z syn
K,v (Wp) = lim←−

n

Z syn
K,v,n(Wp).

The tangent complex of this stack over S F
K,v is given by the pullback of gr−1

Hdg dRK(Wp)[−1].

Example 5.0.3 (Siegel type local cycles). When W = Hom(H1, H2) is of Siegel type and Wp is of the form

Hom(H1,p, H2,p) for Kp-stable lattices Hi,p ⊂ Hi, SynQ(Hi,p) is an F -gauge of Hodge-Tate weights 0, 1 associated

with the p-divisible group Ai[p∞], and one sees that Z syn
K,v,n(Wp) (resp. Z syn

K,v (Wp)) is a derived resolution of the

scheme of homomorphisms Hom(A1[pn],A2[pn]) (resp. Hom(A1[p∞],A2[p∞])).

Remark 5.0.4 (Points of local cycles). Suppose that z ∈ SK,v(κ) is a geometric point. Then Z syn
K,v (Wp)(z) is

a finite free Zp-module (which is course compatible with the previous example). Indeed, the description from

Remark 2.0.3 shows that it is the kernel of a map

M1 F−ι−−−→M−∞

of finite free W (κ)-modules of the same rank, where F is ϕ-semilinear, and ι is an inclusion as a submodule. After

inverting p, we are getting the finite dimensional Qp-vector space of invariants in an F -isocrystal (generating the

slope 0 part), and it’s not hard to see from this that the kernel is already free of finite rank over Zp before inverting

p.

Remark 5.0.5 (Basic idea behind formal special cycles). As the previous example shows, a purely local construction

cannot give us the right construction of cycles: indeed, we would like to have spaces of homomorphisms between

abelian schemes (perhaps up to prime-to-p isogeny), which is at worst a Z(p)-linear object. What we have here is a

Zp-linear object of homomorphisms between their p-divisible groups. Now, Serre-Tate theory tells us that the map

from the locally of finite type scheme Hom(A1,A2) to Hom(A1[p∞],A2[p∞]) is formally étale, so we essentially only

have to know how to pick out the correct set of Fp-points to pin down the correct finite type object. Ideally, for a

given representation W , we would know exactly what the associated family of motives over the Shimura variety is,

and picking out these points is the same as picking out the sections of Z syn
K,v (Wp)(z) that are actually motivic. Of

course, we are far from such an idyll. Still, we can exploit as much as possible the motivic realizations of abelian

schemes to pick out a canonical Q-subspace of the finite dimensional Qp-vector space

Z syn
K,v (W )(z) = Z syn

K,v (Wp)(z)[1/p].

Assumption 5.0.6. Suppose that there exist H1, H2 of Siegel type and an equivariant embedding W ⊂ E
defn
=

Hom(H1, H2).8

8One actually only needs these auxiliary representations to exist for some cover of G.
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Remark 5.0.7. The subcategory of representations satisfying this assumption is closed under direct sums and

subquotients, and also contains the trivial representation.

const:rational_structure Construction 5.0.8 (A possibly non-canonical rational structure). In this situation, we set

ZK(Wp)(z) = Z syn
K,v (W )(z) ∩Hom◦(A1,z,A2,z) ⊂ Z syn

K,v (E)(z) = Hom◦(A1,z[p
∞],A2,z[p

∞]).

This is a finite free Z(p)-module.

Remark 5.0.9. Here, A1,z and A2,z are determined up to isogeny by the representations H1, H2, and Hom◦ means

homomorphisms in the isogeny category.

Theorem 5.0.10. There is a canonical locally finite unramified quasismooth map ZK(Wp)
F
v → S F

K,v characterized

by the following properties:

(1) It admits a formally étale map ZK(Wp)
F
v → Z syn

K,v (Wp) over S F
K,v.

(2) For any choice of H1, H2 as in the assumption above, and any geometric point z ∈ SK,v(κ), ZK(Wp)
F
v (z)

agrees with the Z(p)-module from Construction 5.0.8.

Sketch of construction. The main point is to construct the map first in the situation where Wp = Hom(H1,p, H2,p)

where Hi,p ⊂ Hi is a Kp-stable lattice. At least on classical points, ZK(Wp)(z) should just be the space of maps

Hom(A1,A2), where A1,A2 are now abelian schemes up to prime-to-p isogeny associated canonically with the

chosen lattices. The question is now: How do we thicken this up into a quasi-smooth derived scheme? There aren’t

really that many choices since we are requiring that we have a formally étale map

ZK(Wp)
F
v → Z syn

K,v (Wp),

so there is at most one way of doing this ‘thickening up’.

The Hom scheme Hom(A1,A2) can be made into a derived scheme9 as follows: A classical rigidity theorem

says that the scheme of homomorphisms is the same as the scheme of morphisms that respect the zero section.

This makes perfect sense for animated inputs as well, and gives us the desired derived thickening H̃(A1,A2).

However, this isn’t the ‘correct’ object: Standard arguments show that its deformation theory is governed by

Lie(A2) ⊗ τ≥1RΓ(A1,OA1
), and unless A1 is an elliptic curve, this tangent complex sits in too many degrees for

us to get something quasi-smooth: an unramified quasi-smooth map must have tangent complex concentrated in

cohomological degree 1. We’d like to get rid of the contributions from the higher degrees, so we can get something

with tangent complex Lie(A2)⊗H1(A1,OA1
)[−1].

Now, let Mi be the F -gauge of HT weights −1, 0 over S F
K,v associated with Ai as in Example 1.0.21. Then

Z syn
K,v (Wp) is the functor of sections associated with (the dual of) M∨1 ⊗M2. One sees that its tangent complex is

given by (the pullback of) Lie(A2)⊗H1(A1,OA1
)[−1].

But we can also look at the functor associated with
(
⊕i≥1 ∧iM1[−i]

)∨⊗M2: this still has HT weights bounded

above by 1, and so the theorem from § 2 still gives a derived scheme, but now its tangent complex is the pullback of

Lie(A2)⊗ τ≥1RΓ(A1,OA1
)

. There is a syntomic realization map from H̃(A1,A2) to this scheme, and Kodaira-Spencer theory shows that it is

actually formally étale. Therefore, we obtain ZK(Wp)
F
v as the pullback of Z syn

K,v (Wp) along this syntomic realization

map.

In general, we can always find lattice Hi,p such that Wp ⊂ Ep = Hom(H1,p, H2,p), and we can set

ZK(Wp)
F
v = ZK,v(Ep)

F ×Z syn
K,v(Ep) Z syn

K,v (Wp).

To see that this is independent of choices, one has to work a bit harder. The key is to prove a refinement of

Tate’s theorem on homomorphisms of abelian schemes. Namely, we need to know that when z is defined over a

finite field, the natural map

ZK(W )(z)⊗Qp → Z syn
K,v (W )(z)

9In general, any classical scheme can be lifted into the derived world in infinitely many ways. Indeed, for affine schemes, we are

asking for animated commutative rings R with a given π0.
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is an isomorphism. This can be shown using the strong rationality results from Kisin’s paper on the Langlands-

Rapoport conjecture. �

Remark 5.0.11 (Products of formal cycles). One can now easily show that if W1,W2 are two representations

satisfying the standing assumption and Wi,p ⊂Wi are Kp-stable lattices, then we have a canonical isomorphism

ZK(W1,p)
F
v ×S F

K,v
ZK(W2,p)

F
v
'−→ ZK(W1,p ⊕W2,p)

F
v .

Here, on the left, we are of course taking the derived fiber product.

Remark 5.0.12 (Formal cycles and étale realizations). For every prime `, we have an étale realization EtK,`(W )

over SK [`−1] associated with W (standard constructions for Shimura varieties). Using the `-adic realization for

homomorphisms of abelian schemes and the refined Tate conjecture mentioned above, one can show that, for ` 6= p,

we have a canonical map

ZK(Wp)
F
v → EtK,`(W ).

For any Kp-stable lattice W p ⊂WApf , we obtain Z`-lattices

EtK,`(W
p) ⊂ EtK,`(W ),

and their common pre-image in ZK(Wp)
F
v gives a finite unramified quasi-smooth map ZK(WZ)Fv associated with

the Z-lattice

WZ = W ∩Wp ∩W p ⊂WAf .

rem:zero_section Remark 5.0.13 (Structure over the zero section). Consider the zero section 0 : S F
K,v → ZK(WZ): this lands in

an open and closed substack ZK(WZ, 0) ⊂ ZK(WZ) that is still quasi-smooth over S F
K,v with tangent complex

given by the pullback of coWp [−1]
defn
= gr−1

Hdg dRK(Wp)[−1]. Moreover, the underlying classical scheme of this stack

is S F
K,v. By a general principle, any such quasi-smooth map is obtained in the following way: Given any vector

bundle M over a scheme X, we can take the derived self-intersection of the zero section

X ×0,V(M∨),0 X

and view it as a derived scheme over X via either projection. Concretely, this is just X as a topological space, but

with its structure sheaf replaced by the Koszul complex of the zero cosection of M∨, which is just
⊕

i ∧iM∨[i].

Observe that the class of this complex in K0(X) is precisely the top Chern class of M and maps to the r-th Adams

eigenspace K0(X)
(r)
Q where r = rank(M) (here we assume that X is regular).

Remark 5.0.14 (Classicality criterion). The following are equivalent for a connected component Z F
v of ZK(WZ)Fv :

(1) Z F
v is a classical formal stack;

(2) The classical truncation of Z F
v ⊗ k(v) is lci and unramified over SK ⊗ k(v) of codimension rankcoWp

;

(3) The classical truncation in (2) is equidimensional of dimension dim ShK −rankcoWp
.

The point is that the quasi-smooth formal stack Z F
v is étale locally (on the source) cut out as a derived formal

scheme by d = rankcoWp
equations in S F

K,v, and is classical if and only if the d equations form a regular sequence.

Since SK ⊗ k(v) is regular, and in particular Cohen-Macaulay, any classical subscheme cut out by d equations has

codimension at most d, and has codimension exactly d if and only if the equations form a regular sequence.

rem:adjoint Remark 5.0.15 (The adjoint representation). A somewhat interesting observation (made to me by Rapoport a

couple of years ago) is that, for any abelian type Shimura datum (G,X), there is a canonical representation W that

one can look at: The adjoint representation! The cycles in this case have codimension dim ShK , and so are virtual

1-cycles on SK . These seem related to the very big CM cycles considered by Wei Zhang in his proof of the AFL.
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6. Properties of formal special cycles: the classical orthogonal case

Example 6.0.1 (Quadratic spaces: special divisors). The ur-example is the Shimura variety associated with a

quadratic space V over Q of signaure (n, 2). Here, we have G = SO(V )10, and we can take W = V and G = SO(Vp)

for some self-dual lattice Vp ⊂ VQp . The Kuga-Satake construction tells us that our Siegel type assumption is

satisfied (via the GSpin cover). The space ZK(VZ)Fv is the formal completion of the stack of special endomorphisms

(of the Kuga-Satake abelian scheme, but could be of a power, or a summand, or indeed a space of homomorphisms

from one summand to another: the particular abelian schemes involved are not important, and are not in any sense

God-given.).

The deformation theory here is governed by gr−1
Hdg dRK(Vp), which is a line bundle. This means that we are

getting quasi-smooth maps of virtual codimension 1. In fact, it turns out that as long as we are dealing with non-

zero endomorphisms, we always get genuine (generalized) Cartier divisors, which are the so-called special divisors.

In fact, the quadratic form on V induces a canonical map11

ZK(VZ)Fv → Q≥0
,

and taking the pre-image of m ∈ Q≥0 gives a finite unramified quasi-smooth map ZK(VZ,m)Fv → S F
K,v.

When m 6= 0, this is a classical object and can be constructed and studied without any derived nonsense. The

classicality can be checked for instance using the criterion from the end of the previous section: One just has to

know that its special fiber does not contain any connected components of SK ⊗ k(v).

Remark 6.0.2 (Linear invariance for special divisors). Note that we can replace VZ by N · VZ for any rational

number N 6= 0. This won’t change the cycle ZK(VZ)Fv , but it will change the induced quadratic form, so that

ZK(N · VZ,m)Fv ' ZK(VZ, N
2m)Fv

This is an easy instance of what Howard calls linear invariance.

Remark 6.0.3 (The case m = 0). The locus over the zero section ZK(VZ, 0)Fv is, by Remark 5.0.13, a derived

square zero thickening of S F
K,v by ωVp [1], where ωVp

defn
= co∨Vp = Fil1Hdg dRK(Vp)

12 This is an explanation for why

the tautological bundle ωVp (or rather its inverse) shows up as the degree 0 term for the generating series of special

divisors on the orthogonal Shimura variety.

Example 6.0.4 (Higher codimension cycles). In the previous example, we can replace V with W = V n for some

n ≥ 2. In this case, there are many more interesting Kp-stable lattices Wp ⊂ WQp (not just ones of the for V nZ
necessarily), and, if we fix the lattices away from p, each such choice will give a quasi-smooth morphism of virtual

codimension n, ZK(WZ)Fv → S F
K,v. The quadratic form on V will now induce a map

ZK(WZ)Fv → Symn(Q)≥0

where the right hand side is the locally constant sheaf valued in positive semi-definite symmetric matrices over Q.

Therefore, we can take the pre-image of any T ∈ Symn(Q)≥0 to get a cycle

ZK(WZ, T )Fv → S F
K,v.

Remark 6.0.5 (Relationship with Howard-M.). If WZ = V nZ , and m1, . . . ,mn are the diagonal entries of T , then

we immediately see that ZK(WZ, T )Fv is the open and closed substack of the derived fiber product

ZK(VZ,m1)FK,v ×S F
K,v

ZK(VZ,m2)Fv × · · · ×S F
K,v

ZK(VZ,mn)Fv

supported on the locus where the moment matrix of the m-tuple of special endomorphisms is exactly T . In this

way, we see that the structure sheaf of ZK(V nZ , T )Fv recovers (formally locally), the more ad hoc constructions of

Howard-M.

10There is the GSpin variant that’s actually of Hodge type, but its only real role is to reassure us that there is in fact an abelian

scheme floating around somewhere.
11The positivity here is a consequence of the positivity of the Rosati involution.
12Here, we are actually using the self-duality of Vp. If we were working more canonically, we would have to replace it with the dual

V ∨p .



16 OVERVIEW OF CONSTRUCTION OF SPECIAL CYCLES

Remark 6.0.6 (Linear invariance in higher codimensions). There is an action of GLn on V n that commutes with

that of G. Once again, this action doesn’t affect the cycles ZK(WZ)Fv , but it does change the moment matrices.

That is, for any g ∈ GLn(Q), we have a canonical isomorphism

ZK(gWZ, T )Fv
'−→ ZK(WZ,

tgTg).

When WZ = V nZ and g ∈ GLn(Z), this recovers the key linear invariance result from Howard-M.

rem:zero_locus_higher_codim Remark 6.0.7 (Zero locus in higher codimensions). Remark 5.0.13 shows that we have

ZK(WZ, 0)Fv
'−→ S F

K,v ×0,V(ωWp ),0 S F
K,v

This shows that it is just S F
K,v equipped with the structure sheaf given by the Koszul complex associated with the

zero cosection of ωWp . In the global setting, the class in K-theory of this structure sheaf will represent the top

Chern class of coWp . When Wp = V np , this is nothing but (−1)nc1(ωVp)n.

Remark 6.0.8 (Product formula with moment matrices). If W1,Z and W2,Z are lattices in V n1 and V n2 , then we

have (once again all fiber products are derived):

ZK(W1,Z, T1)Fv ×S F
K,v

ZK(W2,Z, T2)Fv
'−→

⊔
T=

T1 ∗
∗ T2


ZK(W1,Z ⊕W2,Z, T )Fv .

Example 6.0.9 (Product formula with one zero matrix). Suppose that T2 = 0. In this case, combining the previous

remark with Remark 6.0.7 shows that we have

ZK(W1,Z, T1)Fv ×0,V(ωW2,p
),0 S F

K,v ' ZK(W1,Z, T1)Fv ×S F
K,v

ZK(W2,Z, 0)Fv ' ZK(W1,Z ⊕W2,Z,

(
T1 0

0 0

)
)Fv .

Here, we are using the fact that there is only one semi-definite symmetric matrix with T1 and 0 along the block

diagonal.

Example 6.0.10 (Improper intersection). Suppose that ZK(WZ, T ) is classical (can be checked using the criterion

from the end of the previous section). Taking W1,Z = W2,Z = WZ and T1 = T2 = T , and applying Remark 5.0.13,

we see that

ZK(WZ, T )Fv ×S F
K,v

ZK(WZ, T )Fv ' ZK(WZ, T )Fv ×0,V(ωWp ),0 S F
K,v ' ZK(WZ, T )Fv ×S F

K,v
ZK(WZ, 0)Fv

rem:generalization Remark 6.0.11 (Generalization). Everything here generalizes mutatis mutandis to the situation where V is a

ι-Hermitian space over an associative Q-algebra D equipped with a positive involution ι, with G = UD(V ) the

associated unitary group, and with the Shimura cocharacter splitting an isotropic subspace of VR. In this case,

the cycles one obtains are indexed by positive semi-definite ι-Hermitian matrices with coefficients in D, and the

minimal (virtual) codimension one sees is the dimension d+ of the isotropic subspace. A basic case is where D = E

is a CM field with totally real maximal subfield F , in which case the Shimura cocharacter is given by a tuple (pτ , qτ )

of signatures indexed by places τ : F → R. Here, the minimal codiension is
∑
τ min{pτ , qτ}.

7. Algebraization

Let the setup be as in §5. Here’s a quick explanation of how one algebraizes the cycles ZK(WZ)Fv into quasi-

smooth maps ZK(WZ)→ SK .

Remark 7.0.1 (Beauville-Laszlo gluing). The maps ZK(WZ)Fv → S F
K,v are finite. Therefore, if we choose an

affine étale cover SpecR → SK , the restriction of ZK(WZ)Fv over Spf R̂v (here R̂v is the v-adic completion of R)

algebraizes, in the sense that it is represented by the spectrum of a finite13 animated commutative R̂v-algebra, call it

B̂v. Derived Beauville-Laszlo gluing (as explained for instance by Bhatt) now says that algebraizing B̂v to a finite

(animated commutative) R-algebra B is the same as finding a finite R[1/p]-algebra B[1/p] and an isomorphism

13For us, this means that the complex of R̂v-modules underlying B̂v is perfect.
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R̂v ⊗R B[1/p]
'−→ B̂v[1/p] of finite R̂v[1/p]-algebras. In other words, to get ZK(WZ), we have to write down the

generic fiber ZK(WZ) → ShK of ZK(WZ), and show that its restriction to p-adic affinoid animated Qp-algebras is

given by the rigid fiber of ZK(WZ)Fv .14

Remark 7.0.2 (Saved by abelian varieties). This sort of gluing condition is a little bit involved to check directly, so

we will take a shortcut, and fall back to the space H̃(A1,A2) of derived morphisms that exists globally. Now, we just

have to cut out ZK(WZ) within this existing derived scheme. It turns out we can characterize this derived subscheme

by knowing its points over Fp and C, and by knowing what its tangent complex should be. Therefore, once we have

the construction of the generic fiber and of the formal cycle, the gluing data necessary for Beauville-Laszlo will be

obtained automatically.

So all said and done, it remains to describe the generic fiber ZK(WZ).

Construction 7.0.3 (Derived special cycles over the complex fiber). Over the complex fiber ShK(C) = G(Q)\X×
G(Af )/K, we can consider the local system

G(Q)\X × Y (WZ)/K → G(Q)\X ×G(Af )/K,

where Y (WZ) = {(w, g) ∈W ×G(Af ) : w ∈ gWẐ}. This admits a map to the vector bundle gr−1
Hdg dRK(W ) = coW

where Fil•Hdg dRK(W ) is the filtered de Rham realization associated with W obtained in the complex fiber from the

associated filtered vector bundle over the compact dual X̌. The derived pullback of the zero section of gr−1
Hdg dRK(W )

now gives a locally finite unramified derived lci (in the sense of derived complex geometry, whatever that is) map

ZK(WZ)an → ShK(C).

Remark 7.0.4 (Noether-Lefschetz loci). The underlying classical cycle of ZK(W )(C) is a Noether-Lefschetz locus

where the associated variation of Z-Hodge structures is picking up additional Hodge cycles: Indeed, the image of

(w, g) ∈W in gr−1
Hdg dRK(W ) vanishes precisely when it lies in Fil0Hdg dRK(W ).

Construction 7.0.5 (Algebraization and descent). The theory of Shimura varieties gives an immediate algebraiza-

tion of the classical analytic space ZK(WZ)(C) underlying ZK(WZ)an, and we can give an algebraization of its derived

structure sheaf by working étale locally, where it is given by a Koszul complex associated with a cosection of coW .

The theory of canonical models now gives a canonical descent over the reflex field E for the classical truncation,

and a similar noodling around with Koszul complexes also gives the descent for the derived scheme.

Remark 7.0.6 (Alternate construction using infinitesimal cohomology). In the arXiv version of the derived cycles

paper, there is a more elaborate construction of the generic fiber that once again uses the Siegel type assumption,

and uses infinitesimal cohomology of abelian schemes to cut out ZK(WZ) inside a derived Hom scheme H̃(A1,A2).

This agrees with the construction using canonical models, but only works under the Siegel type assumption.

Remark 7.0.7 (Virtual fundamental classes). Once we have the quasi-smooth cycles ZK(WZ) → SK , in the

situation of Remark 6.0.11, we can obtain for every T ∈ Hermn(D)≥0, virtual fundamental classes CK(WZ, T ) ∈
CHnd+(SK)Q. This is constructed using K-theoretic methods and is explained in Appendix H of the arXiv version

of the derived cycles paper. Many properties of these cycle classes fall out immediately from the properties of the

underlying geometric cycles explained in the formal situation in §6.

14There is recent work of Achinger-Youcis that pushes this kind of gluing through for arbitrary algebraic spaces, though only in the

classical context.
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