OVERVIEW OF CONSTRUCTION OF SPECIAL CYCLES

These notes, written for a workshop at Darmstadt, presume some level of familiarity with Bhatt’s lectures on
F-gauges. See also §6 of Gardner-M.

1. F-GAUGES

Definition 1.0.1. An F-gauge over a p-complete ring R is a quasicoherent sheaf over the syntomification R%Y™.
It is (almost) perfect if the quasicoherent sheaf is a(n almost) perfect complex. Similarly for vector bundle
F-gauges (implicitly always of finite rank).

An F-gauge of level n over a p-complete ring R is a quasicoherent sheaf over the mod-p™ syntomification
R¥™ @ Z/p"Z. Tt is (almost) perfect if the quasicoherent sheaf is a(n almost) perfect complex. Similarly for
vector bundle F-gauges of level n.

Remark 1.0.2 (Always oo-categories). Here we mean ‘quasicoherent sheaf’ in the sense of Lurie: For an affine
scheme Spec R, this would mean an object in the stable co-category D(R) of unbounded complexes. But for the
purposes here, it is enough to work with the bounded above pre-stable oo-category: this amounts to working with
almost connective objects, with connective meaning ‘cohomology supported in non-positive degrees’ (non-negative
degrees in the homological convention). For a general (pre-)stack X, the oo-category QCoh(X) is obtained via right
Kan extension from affine schemes: Concretely, giving an object F in QCoh(X) is equivalent to giving an object
Fz € D(R) compatibly for each x € X(R). It is (almost) perfect if F, is an (almost) perfect complex for all such
T

Remark 1.0.3 (Perfectness and level). One possibly subtle point with this level-n business is when one wants to
talk about perfect F-gauges. Here, it is important to specify the level beforehand. This is simply because Z/pZ is
perfect as a complex of Z,-modules or of course Z/pZ-modules, but not as a complex of Z/p™Z-modules for n > 1.

Remark 1.0.4 (Why oo-categories). When dealing with the syntomification, we are essentially forced to work with
the derived oco-category straight off the bat. The issue is that in general this is not going to be a classical stack,
and so there is no natural ¢-structure we can use. This is already the case for something like the derived category
of DG modules over a DG algebra with non-trivial cohomology in non-zero degrees.

Remark 1.0.5 (Animation for connective objects). When R is a classical ring, the subcategory of connective
objects, sometimes denoted Mod%', is equivalent via the Dold-Kan correspondence to the oo-category obtained via
localization from the simplicial category of simplicial R-modules. In supermodern terminology, this means that the
assignment R — Mod}' is obtained via animation from the functor assigning to each finite dimensional polynomial
Z-algebra its category of locally free modules of finite rank.

Remark 1.0.6 (Quasi-geometricity of the syntomification). The definition of QCoh(X) for a general prestack can
be set-theoretically a bit problematic. Fortunately, R®¥™ has a more controlled theory, because it is what Lurie calls
quasi-geometric. Essentially, it admits a flat cover by a (formal) algebraic stack, with the diagonal of the covering
also algebraic. This lets us describe quasicoherent sheaves over it as sheaves over the covering equipped with certain
descent data.

To begin, by the definition of RY", giving an F-gauge is the same as giving a quasicoherent sheaf over the filtered
prismatization RV along with an isomorphism of the pullbacks along the two open immersions jqr, jur : B — RV.

1Can feel free to ignore all the ‘almosts’. ‘Almost perfect’ for complexes of modules is also sometimes referred to as ‘pseudocoherent’:
For classical rings R, this is the same as saying that the complex can be represented by a bounded above complex of finite rank
projectives. In general, they are complexes M such that some shift M[j] is connective and the tautological truncations 7<*M[j] are
finitely presented (or compact) objects in the subcategory of k-truncated complexes. Note that, over a Noetherian ring, every finitely
generated module can be viewed as an almost perfect complex.
1
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Second, for most ‘nice’ R, we have a quasisyntomic cover R — R, where R, is semiperfectoid, and R¥Y" — R%"
is an fpqc cover. Moreover, all the higher (derived) tensor products R€R™*! are also semiperfectoid. This means
that we can ‘write down’ F-gauges over R in terms of F-gauges over R, equipped with certain descent data along
the simplicial stack (RZ*F1)sn,

Lastly, when R is semiperfectoid, R is affine and given by Spf g where g is its absolute prismatic cohomology
(which is miraculously an animated commutative ring). Moreover, RV is given by the Rees stack associated with
the Nygaard filtration Fil}, g.

Concretely, a quasicoherent sheaf over RV is simply a complex of filtered modules Fil®* M over the filtered ring
Fili, g. The pullback along jqr amounts to forgetting the filtration, while the pullback along jgr amounts to
noting that Frobenius takes Filj\/‘ R to & g, and so symbolically we look at the g-module

D &P FI'M,
i
Therefore, in the end (once again symbolically), the F-gauge structure amounts to writing down an isomorphism
D> P FI'M S M,
i

This might be familiar (with £ replaced by p) from the theory of Fontaine-Laffaille modules. When R is an
F,-algebra, we actually have § = p.

Remark 1.0.7 (Rings with finite differentials). The category of R admitting such quasisyntomic covers R — Ro,
includes all rings such that Q}ro (R/pR)/F, is a finitely generated mo(R)-module. This encompasses all rings with
mo(R/pR) of finite type over a field with finite p-basis or with 7o(R/pR) semiperfect. We will assume this condition

implicitly from now on.

Remark 1.0.8 (The quasisyntomic case). When R is quasisyntomic, R, above is what is called a quasiregular
semiperfectoid. In this case, g is a classical ring and Fil}, g is a classical filtered ring (that is, the filtration is by
submodules). In particular, all the stacks involved are firmly in the classical world, and so it makes sense to talk
about coherent sheaves and quasicoherent sheaves in the usual sense without any derived intervention. This applies
of course to R = Z, or to R = O with K/Q, finite. Still, the syntomifications of these ‘simple’ rings are quite
complicated geometrically, and it’s best to use indirect means to study their cohomology.

Remark 1.0.9 (Explicit description for perfect rings). Let’s apply the ‘explicit’ description in terms of filtered
modules to the case of a perfect field x: We see that Fil}, , is just W (k) with its p-adic filtration, and one can now
translate everything to get Bhatt’s description of F-gauges over k as the Fontaine-Jannsen category (also known

to Faltings) of systems of maps M* LM of complexes of W (x)-modules for i € Z, with uot =tou = p. The

u
underlying complex is the colimit M = M~ under the t-maps, where we view M* = Fil' M as the i-th filtered
part, with ¢ giving the transition map Fil' M — Fil*"! M. The map u then says that multiplication by p on Fil’ M
factors via Fil“™ M, so that the filtration is indeed p-adic. Taking the colimit M along the u maps gives another
W (k)-complex, and the F-gauge structure now corresponds to an isomorphism ¢* M > =M.
The same description is actually valid with k replaced by any perfect ring in char p.

Construction 1.0.10 (The Hodge filtered de Rham realization). Given an F-gauge M over R, we can obtain a
filtered complex of R-modules Filﬁdg M, which can be viewed as the Hodge filtered de Rham realization of M.
Concretely, in the semiperfectoid case, this is obtained via base-change along the map of filtered rings Fil}, r —
Filf;, R, where we view R as a filtered ring with trivial decreasing filtration—that is, the filtration with associated

graded supported in degree 0 and equal to R itself.
Remark 1.0.11 (Perfectness from the de Rham realization). It is possible to show that M corresponds to a perfect
complex over RV (or its mod-p™ counterpart) precisely when grﬁdg M is a graded perfect complex of R-modules.

Explicitly, this means that only finitely many Hodge-Tate weights can appear and grﬁdg M is a perfect complex
over R for each i.
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Similarly, M is a vector bundle F-gauge (of level n) when it has only finitely many Hodge-Tate weights and
grﬁdg M is a vector bundle over R (over R/"p™) for each i.

Definition 1.0.12. The Hodge-Tate weights of M are the integers j such that grgigM # 0 (i.e. is not
nullhomotopic).

Remark 1.0.13 (Sign convention). The reason for this normalization is that we would like for geometric F-
gauges obtained from the syntomic cohomology of smooth proper schemes to have negative Hodge-Tate weights
(see Proposition below). Another way of saying this is that via p-adic Hodge theory we would like the
cyclotomic character to have Hodge-Tate weight 1 (and not —1).

Remark 1.0.14 (PD thickenings: F-gauges and crystals). For every divided power thickening R’ — R, one can
show that there is a canonical lift Spf R — R of the de Rham section Spf R — R (for R semiperfectoid this
just corresponds to the surjection r — R). When R is a semiperfect Fj-algebra, this is because g = Acrys(R)
is the p-complete divided power envelope of the map W(Rb) — R. In particular, every F-gauge gives a crystal in
the (big) crystalline site of R. Of course, we only need a quasicoherent sheaf over R (one can call this a prismatic
crystal) for this.

Remark 1.0.15 (Strongly divisible filtered F-crystals). When R is a smooth F,-algebra and R’ is a (necessarily
p-completely smooth) flat lift over Z,, with with R’'/pR’ = R, R’ — R has canonical divided powers. Therefore, via
the usual dictionary between crystals and vector bundles with connection, every prismatic crystal of vector bundles
gives a vector bundle M over R’ with topologically nilpotent integrable connection connection. If the crystal comes
from a vector bundle F-gauge, and R’ is equipped with a Frobenius lift ¢, then the vector bundle is equipped with
a p-adic filtration Fil®* M, along with an isomorphism

> pTetFil' M S M.

In other words, every vector bundle F-gauge over R gives a p-adically filtered divisible F-crystal over R’. Giving a
lift of the F-gauge to one over R’ refines Fil* M to a filtration Filf{dg M by vector subbundles such that

Fil' M = " p' 7 Filf},, M.
J<i
So we obtain a functor from F-gauges over R’ to strongly divisible filtered F-crystals over R’. This is an equivalence
in the Fontaine-Laffaille range where the Hodge-Tate weights are less than p — 1 apart.

Remark 1.0.16 (F-gauges of geometric origin). The way to get F-gauges geometrically is as follows: For any
formal scheme X over Spf R, we obtain a map of stacks X — R%™. Under natural conditions on X (say X is
formally of finite type), the (derived) pushforward of the structure sheaf on X®™ under this map gives an F-gauge
over R: this is the relative syntomic cohomology of X over R.

The next result gives some idea of how one can use quasisyntomic descent to study F-gauges, but can be skipped.

Proposition 1.0.17. Letw: X — S be a proper smooth map of p-adic formal algebraic spaces of relative dimension
d. If M is a perfect F-gauge over X of Hodge-Tate weights < m and Tor amplitude [a,b], then Rm" M is a perfect
F-gauge over S of Hodge-Tate weights < m and Tor amplitude [a,b + 2d).

Proof. Tt is of course enough to prove it after replacing ‘syn’ with ‘A/”. One can reduce to the case where S = Spec R
is in CRing? ™. By Noetherian approximation, we can assume that in fact we have R = CRing?™'"/. Now, by
quasisyntomic descent we can assume that R is semiperfectoid. In particular, RN is canonically isomorphic to
the formal Rees stack R(Fily, g). This means that perfect complexes over RN are equivalent to filtered perfect
complexes over the filtered animated commutative ring Fil}, RE'

2We are using the fact that such objects are automatically derived (p, Ir)-complete.
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Suppose that Spec A — X is an affine quasisyntomic cover with A semiperfectoid, and consider the corresponding
simplicial scheme Spec A(®) where

Spec AW = Spec S x x Spec S X - -+ X x Spec S'.

i-times
Then AN — X is a flat cover, and we have
ADN o AN o AN x oo AV
i-times

This shows that RaY' M corresponds to the filtered complex Tot (Fﬂf\(/ M(‘)>, where Fil}/ M®) is the filtered

perfect complex over Filf\(/ A®) . To show that this is perfect with Tor amplitude in [a,b 4+ 2d], it is enough to
know that the associated graded Tot (grf\‘/ /\/l(')) is a graded perfect complex over gr/*\} r with Tor amplitude in
la,b+ 2d].

Let grgdg M be the graded perfect complex over X obtained by pulling M back along the de Rham point, and
let grgdg M@ be the graded perfect complexes over A(®) obtained by via restriction along Spec A(®) — X.

Then gr}} M(®) admits a canonical finite ‘weight’ filtration whose i-th graded piece admits a canonical isomor-
phism

grh g M) ~ griy MO @ 40 gr¥ a0 (—i),

where (—%) denotes the —i-shift in grading.

This shows that Tot (gr}f/ M(°)) inherits a finite filtration with associated graded pieces

Tot (grﬁdg M® @ A0 gff/ A<')(_i)>

Now, the condition on Hodge-Tate weights implies that these pieces are non-zero precisely when ¢ > —m. This
reduces us to the following

Lemma 1.0.18. For any perfect complex M over X restricting to a graded perfect complex M(®) over A(®) with
Tor amplitude in [a,b], the graded complex

Tot (M(') & Ao grff A('>>
is graded perfect over gr/f/ r with Tor amplitude [a,b+ 2d], and supported in non-negative graded degrees.

Proof. Choose a map Ry — R with Ry perfectoid along with a generator £ € Filjl\; R,- For i > 0, this yields
isomorphisms

grﬁ\/ Al®) — grj\/ QO* A(')/Ro — Fﬂgon'] A(')/R(ﬂ
nj

and we have gri™ " 4 /g, ~ AL /g, [—i]-
Therefore, Tot (M(°) @A) grf\'[ A(.>) corresponds to a decreasingly filtered complex over Fil‘;ffnj 7A<.>/RO, and

considering associated gradeds reduces us to knowing that the graded complex
Tot (M(’> Do) gr ™ 7A<->/Ro) ~ RT(X, M ®4y, N¥Ly/r,|—%])

is graded perfect over gr;?nj R /R, With Tor amplitude in [a, b+ 2d], and supported in non-negative graded degrees.

Now, /\iIL,X/RO is canonically filtered with graded pieces isomorphic to /\k]LX/R ® /\lLR/RO, for k+1=1.

One can upgrade this to knowing that A*Ly, g, [—%], as a complex over X = X Xgpec & SPeC(gry " Rr/Ro)/Cm,
is filtered with graded pieces isomorphic to AFL x/r|—k] ®r Ox. Now we finally use our assumption that X is
smooth over R of relative dimension d, which tells us that each of these graded pieces is a shifted vector bundle in
degree k and vanishes if k£ > d. _

Therefore, we are now reduced to knowing that the relative cohomology over Spec(gr;,(’nJ 73/ .RO) /G, of the

restriction of a perfect complex M of Tor amplitude [a,b] over the product X Xspecr Spec(gr;f,’nJ R/Ro)/Gm is
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represented by a graded perfect complex with Tor amplitude in [a,b + d]. This is of course a standard fact about
the coherent cohomology of proper morphisms of relative dimension d. O

O

Example 1.0.19 (Relative syntomic cohomology). In particular, we see that Rm*"O is perfect of Hodge-Tate
weights < 0 and Tor amplitude [0, 2d].

Remark 1.0.20. There is a Poincaré duality on relative syntomic cohomology that would place further constraints
on the Hodge-Tate weights. In the previous example, it would bound the weights between —d and 0.

Example 1.0.21 (Syntomic cohomology of abelian schemes). When X is the p-completion of an abelian scheme,

one can show that we have
2d

Ra™0 ~ PN M)[i],
i=0
where M is a vector bundle F-gauge of Hodge-Tate weights —1,0. The idea is to reduce (using moduli of polarized
abelian schemes for instance) to the case where R is p-completely smooth, in which case F-gauges admit a ¢-
structure. Here, we can take M = R'72" O, and reduce the claim to standard facts about the coherent cohomology
of abelian schemes.

Example 1.0.22 (The Breuil-Kisin twist). Take X to be the formal projective line. Then we see that R7"O is
perfect of Tor amplitude [0,2]. To see what this is, we can reduce to the case where R = Z,. Here R'7*"O turns
out to be a line bundle, the (inverse) Breuil-Kisin twist O{—1}, which has Hodge-Tate weight —1. As usual, we
can use this twist to shift Hodge-Tate weights of arbitrary F-gauges.

Construction 1.0.23 (The étale realization). Suppose that R is semiperfectoid. Then every perfect F-gauge
of level n over R gives a perfect complex M over g[1/€] ® Z/p"Z equipped with an isomorphism @*M = M.
Following Katz and Bhatt-Scholze, one can use Artin-Schreier and almost purity arguments to show that such
objects are equivalent to perfect complexes of locally constant Z/p™Z-sheaves over R[1/ p]étﬂ This gives the p-adic
étale realization functor Ty .

Remark 1.0.24 (Comparison with étale cohomology). One can show that, in the context of Proposition [1.0.17]
the étale realization of the relative syntomic cohomology yields the relative p-adic étale cohomology of the adic
generic fiber.

Remark 1.0.25 (p-adic comparison for abelian schemes). In particular, if M is as in Remark [1.0.21] then its étale
realization is the dual of the Tate module of the abelian scheme A.
2. REPRESENTABILITY OF SYNTOMIC COHOMOLOGY
The content of this section can be gleaned from Section 8 of Gardner-M. We will take R to be a p-nilpotent ring.

Theorem 2.0.1. Suppose that M is a(n almost) perfect F-gauge of level n over R with Hodge-Tate weights bounded
below by —1. Then the functo7E|

Lyn(M) - C = TSORHOIHOCSW@Z/;J"Z(M: 0)

is representable by a(n almost) finitely presented derived algebraic stack over R. Moreover, the deformation theory
of this stack is controlled by the complex Fil%ldg M ; that is, for all square-zero (or even nilpotent PD) thickenings
C" — C of p-nilpotent R-algebras with fiber I, we have a fiber sequence

FSyn(M) (C/) - FSyIl (M)(C) — MapModR (Fllll-ldg Ma I)
3Note that g[1/¢] ® Z/p™Z vanishes if R[1/p] = 0!

4This definition clashes with the current definition in the arXiv version of G.-M., but fits better with Grothendieck’s definition of
V(M) for an R-module M, and is the correct one for almost perfect F-gauges.
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Remark 2.0.2. Explicitly, we have

Ly (M)(C) = 750 hker (RHom@ (M, 0) 2575, RHome, (M, 0))

N @z pnz

Remark 2.0.3 (Over perfect fields). In terms of the explicit description of F-gauges (of level 1) over perfect fields

in Remark [1.0.9, M is given by a system M® L M of perfect complexes of xk-modules with uot =towu = 0.
u

The restriction on the Hodge-Tate weights means that ¢ : M* — M~ ! is the zero map and u : M*~' — M is an
isomorphism for ¢ > 2. In particular, we have M = M, and the F-gauge structure is given by an isomorphism
MY S M,

The structure sheaf of level 1 is given by N* = & for all i with

id ifi>1 . 0 ifi>1
u = ; =
0 otherwise. id otherwise.

The F-gauge structure is given simply by the identity on .
From this, one finds that

RHomo ., .,(M,0) = RHom, (M, k) ; RHome

o o2z (M, O) =RHom, (M™%, k).
. i+1
The map jjg is given as the limit of precomposition with the maps M ~* L M* for i > 0, and the map Jir s
via precomposition with the inverse of the semilinear isomorphism M?* =» M~ giving the F-gauge structure.
Note in particular, that syntomic cohomology is computing the (homotopy) kernel of the difference between a
linear and a semilinear map. This is a fundamental feature.

Remark 2.0.4 (The adic generic fiber). If R is p-completely flat, then we can still define a formal algebraic stack
Isyn(M) over Spf R by taking the limit of the corresponding stacks over Spec R/p™R. We can also take the adic
generic fiber Ty, (M)™8 over (Spf R)™e. If Ty, (M) is the étale realization of M, then we get a canonical map

Layn (M) — RHom (Tt (M), Z/p"Z)
where the right hand side is the internal RHom in the category of perfect complexes of Z/p"Z-sheaves over (Spf R)"&.

Remark 2.0.5 (The case of vector bundles). The main application of this result is in the case where M = FV is
the dual of a vector bundle of Hodge-Tate weights < 1. In this case, we are looking at the functor

C — 7S°RT(C™ ® Z/p"Z, F)

of ‘global sections’ of F. In this case, Isyn(F")(C) is just an abelian group for classical C, and the deformation
theory is given by the fact that we have

Tayn(FY)(C') = ker(Tayn (FY)(C) — grygg, F @r D).
Note that grﬁég F' is the ‘bottom’ degree associated graded for Filf{dg F.

Remark 2.0.6 (Quasi-smooth spaces of sections). When M is a vector bundle, Filhdg M is a vector bundle over
R/“p, and so a perfect complex of Tor amplitude [—1,0] over R of virtual rank 0. The deformation theory is telling
us that its pullback over Iy, (M) is the cotangent complex for this (derived) scheme. This tells us that this derived
scheme is quasismooth or derived lci over R of virtual codimension 0: That is, étale locally on the source, I'syn (M)
can be presented as the derived vanishing locus of n functions on n-dimensional affine space over R.

Remark 2.0.7 (Endomorphisms of syntomic cohomology of abelian schemes). One way to get such a vector bundle
F-gauge is from Example Take a vector bundle F-gauge N of Hodge-Tate weights —1,0 obtained from the
syntomic cohomology of an abelian scheme A, and consider the endomorphism F-gauge F = NV @ N: this has HT
weights —1,0,1. As we will see below, the global sections of its mod-p™ quotients are exactly giving (for at least
for classical inputs) the endomorphism scheme of the truncated BT group scheme A[p"]. In general, the underlying
classical scheme is far from being lci, so the F-gauge construction is providing a sort of derived resolution.
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Remark 2.0.8 (Sub-bundles of endomorphisms). We can also take any vector subbundle of an endomorphism
F-gauge as above. If it is cut out by ‘PEL’ type conditions, then the result is just giving us (derived resolutions of)
endomorphism schemes respecting these additional structures. But one can have non-PEL situations where such an
interpretation is less clear. This happens of course in the basic situation of orthogonal Shimura varieties associated
with quadratic spaces over Q.

The rest of this section is about the proof of the key result and can be skipped at a first reading.

Remark 2.0.9. By standard dévissage, one can reduce the proof of the theorem immediately to the case where
n = 1, so we will assume from here on that this is the case.

Remark 2.0.10 (Derived descent). One can actually reduce to the case where R is an F,-algebra; this is the
content of §8.9 of G.-M. This involves the remarkable notion of derived descent along the map Z, — F,. The basic
point is that the map SpecF, — SpfZ, satisfies descent in the following sense: Giving a p-complete Z,-module
is the same as giving its (derived) mod-p quotient, along with the data of descent for the cosimplicial animated
ring given by the derived tensor products F?ZP(ZH). See this nice answer on MO: https://mathoverflow.net/
questions/430129/basic-example-of-derived-descent.

Remark 2.0.11 (Syntomification from conjugate and Hodge filtrations). The proof involves understanding the
stack R*" ® F), in a different way. The starting point is that RN lives over the mod-p fiber of that of Z,, equipped
with its p-adic filtration. The latter can be explicitly written as [Spf Z,[u,t]/(ut — p)/G,,], where z - t = zt and
Ly, and is in fact canonically isomorphic to IFQ/ . Its mod-p fiber contains the closed substacks

(Fﬁf)(u=0) = [Spec ZP [ﬂ/Gm] = Al /Gm 3 (Fﬁf)(u=0) = Al /Gma

where the weights of the G,,-action are opposite. The mod-p fiber RV @ IF,, is obtained by gluing these two closed
substacks along their common closed sub-locus (v =t = 0).
Therefore, for any R, RV ® [F,, is obtained by gluing together the two closed substacks Rﬁ:o) and Rf\t/:o) along

Z U=z

their common closed substack R{‘[L —t=0)"

When R is semiperfect we can describe everything in terms of the Nygaard filtration. The map t is giving
the transition maps Filj\/ R — Filj\71 r and u is giving the factoring of the multiplication by p map through
Filiy! gr—Fily g

Setting u = 0 is basically giving the associated graded Filj\/ RrR/D Filﬁ\fl g, and this can be mapped to g =

r/p r (all quotients are understood to be derived). The result is the i-th Hodge filtered piece Fﬂf{dg " R, which
gives the decreasingly filtered ring Filjyy, " g. In fact, R(Nu —0) is just the Rees stack for this ring.

Setting ¢t = 0 is giving the associated graded grj\/ r: This maps via the divided Frobenius to g giving the
i-th conjugate filtered piece Filé®™
corresponding Rees stack.

The gluing along u = ¢ = 0 amounts to the observation that these two filtered rings have (by construction) the
same associated gradeds up to sign change.

To get the mod-p syntomification one now glues the two closed substacks further along the common open loci
Rﬁ:()’tio) and R?t[:O,u;éo)’ both of which are isomorphic to Spf g.

g. This in turn makes g an increasingly filtered ring, and R.é\t/:O) is the

One can now reverse the order of gluing:

(1) First glue the two substacks Rj(\i —0) and Rﬁi —0) along the common open locus: A vector bundle over this
glued stack is the same as a vector bundle F over g equipped with two filtrations, Filf{dg F (corresponding
to the u = 0 locus) and Fil;"™ F (corresponding to the ¢ = 0 locus).

(2) Then glue the resulting stack along the commong closed locus u =t = 0.

This shows that a vector bundle over R*V" ® I}, is the same as a doubly filtered vector bundle M over g equipped
conj =

with an isomorphism grf;y, F = oor
In particular, the syntomic cohomology of this vector bundle F-gauge can be computed in terms of a complex

Filfqy F xp FiIE™ F — g, F,


https://mathoverflow.net/questions/430129/basic-example-of-derived-descent
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where the map is the difference between the two projections onto the common quotient gr%dg F.

Remark 2.0.12 (The F-zip stack). There is a simpler stack obtained via the same method. It is the F-zip stack
RFZip_obtained as follows:

(1) Take two copies of AL, one with the standard G,,-action, and the other with the action twisted by the
automorphism z + 27! of G,,: We can also view these as the Rees stacks associated with the decreasing

trivial filtration Fil®;, R and the increasing trivial filtration Fil"¥ R.

(2) Glue these two copies along the automorphism of G,, g to get a (non-separated!) G,,-equivariant scheme
X: G,,-equivariant vector bundles over X are the same as vector bundles F' over R equipped with two
filtrations, one decreasing Filfyy, F' and the other increasing Fils®™ F, which we think of as the Hodge and
conjugate filtrations.

(3) Next, glue the zero section Spec R of the first copy with that of the second copy via Frobenius to get another
G-equivariant scheme Y: G,,-equivariant vector bundles over Y are now doubly filtered modules as above

equipped further with an isomorphism ¢* gryq, F' = g p

The F-zip stack is now defined by RF%P = Y/G,,. By construction vector bundles over it are the same as F-
zips, as defined by Pink-Wedhorn-Ziegler. The cohomology of such a vector bundle (which can be termed ‘F-zip
cohomology’) can be computed in terms of a complex

Filg, F xp Fil™ F — grg™ F
where the map is the difference between the natural projection from FilgOnj F and the Frobenius twisted one from
Filpg, F.
To make this more compatible with syntomic cohomology, let us rewrite it as the quasiisomorphic complex
Filjg, F xp (Filg™ F X geoni o 81T1ag F) — g F)
where we are now taking the difference between the two natural projections

10 0 -1conj 0 0
Filga, F — grpag F; Filg™ F X greoni p BTHdg F' = 8Thag F-

Remark 2.0.13 (From F-gauges to F-zips). There is a canonical map RF%P — R" @[, that can be understood
explicitly in the semiperfect case in terms of maps of filtered rings. In particular, we have a canonical map from
syntomic cohomology to F-zip cohomology.

Remark 2.0.14. A basic but fundamental observation about graded modules that will be used in the proof is
the following: Suppose that B, is a non-positively graded (animated commutative) ring and that M, is a graded
Be-module (or complex of such modules) with M; = 0 for i > a (for some integer a). Let M, be the (derived)
graded base-change of M, over By. Then:

(1) M, i MaQ

(2) There is a canonical fiber sequence

Ma ®B, B_{—>M,_1 — Mafl.

Remark 2.0.15 (Height 1 group schemes). Associated with any vector bundle N with a ¢-semilinear endomor-
phism ¢ is a canonical finite flat height 1 group Schemeﬂ G(N, ) whose Cartier dual is given by the kernel of the
map

V(N) L2255 V(g*N).
When N = R and v = id, the Artin-Schreier sequence combined with Cartier duality ends up giving us p,. When
¥ =0, we get the self-dual group «,.

5This is a commutative p-torsion finite flat group scheme with Frobenius acting by 0.
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Sketch of proof. As observed before, we can assume that n =1 and R is an [Fj-algebra. Assume for simplicity that
M = FY for a vector bundle F with HT weights bounded above by 1. What one shows is that sy, (F") is fibered
over the functor I'pzip(FY) computing F-zip cohomology, which is manifestly representable being given by maps
between vector bundles. Moreover, the kernel is a certain finite flat height 1 group scheme.

To begin, by Remark [2.0.14] the condition on Hodge-Tate weights ensures that we have

grﬁég F= grﬁég F.
It also tells us that we have a fiber sequence
grﬁég F®gr gr%{dg R gr?{dg F— gr%dg F.

This is in fact the only (though essential) utility of the condition on the Hodge-Tate weights. Another way of
phrasing the first isomorphism is that we have
(2.0.15.1) Filj, F = F x5 Filjy, F.

And another way of phrasing the fiber sequence is:

(2.0.15.2) gr P @R grt™ T — g™ F - griag F-
This means that the homotopy kernel (i.e. shifted cone) of
Fil g, F x¢ Fili™ F — Filfy, F xp (FiI§™ F X greoni o 8l ag F)

is the same as that of Fil5°™ F — Fils°™ F X greoni grfrqg F- One checks that this is isomorphic to

grﬁég F ®p hker(Fil$™ " — R).
In sum the fiber of the map from syntomic cohomology to F-zip cohomology is computed by a complex
(20.15.3) Brinds £ O Wher (FIF™ 75— R) = gyl F op ™ .

This is the kind of thing studied in §7 of G.-M. and is a prismatic spin on a classical construction of Artin-Milne.
Note that we have a canonical semilinear endomorphism of grﬁé . I given by

¢ gryg, F = Fil"™ F — F — gry) F.
By Remark [2.0.15] this gives us a height 1 group scheme G over R. It turns out that the complex [2.0.15.3] is
computing the fppf cohomology of G. When R is a smooth [Fp-algebra, this is literally what Artin-Milne prove

(after unwinding definitions). Note that in this case, we have

conj —

g™ R = Ly, [—1] ~ Qp/e, [-1],
and ‘
hker(Fil{™ " g — R) = hker(r='Q% p — R) = Z(Qg ¢ )[-1].

In particular, the kernel of the map (2.0.15.3) is simply computing the values of the group scheme G. This
completes the sketch of the proof, except perhaps for the part about the deformation theory. While one can piece
that together from the proof, the cleaner way is to make systematic use of frames and what one can call the
‘Lau-Zink unique lifting principle’. This is explained in §8.9 of G.-M. d

3. APERTURES AND p-DIVISIBLE GROUPS

More stuff from G.-M. We fix a reductive group scheme G over Z, and a minuscule cocharacter p defined over an
unramified ring of integers O. This gives in particular a G-torsor P,, over BG,, x Spf O classified by the map Bp.

Definition 3.0.1. A(n n-truncated) (G, u)-aperture over a p-complete O-algebra R is a G-torsor over R™™ (
RY" @ Z/p"Z) whose restriction to RV (RN @ Z/p"Z) is p-completely flat locally on Spf R is isomorphic to P,

Remark 3.0.2. There is a canonical Hodge point BG,,, x Spf R — RN . Tt suffices to check that this is flat locally
on R isomorphic to P,. In fact, assuming Spf R connected, it suffices to check this after restriction to BG,, x Spec &
for some algebraically closed field x over R.
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Remark 3.0.3 (The adjoint F-gauge). Given an n-truncated G-aperture Q[n] over R, we can twist the Lie algebra
LieG by Q to obtain a vector bundle F-gauge (LieG)gqp, over R of level n. The minuscule condition on p
ensures that this has Hodge-Tate weights —1,0,1. In particular, we have the Hodge filtered de Rham realization
Fill'{dg dR g}, (Lie G) associated with this F-gauge, which is a filtered vector bundle over R/ Lp" supported in graded
degrees —1,0, 1, and so can be viewed as a filtered perfect complex over R of Tor amplitude [—1,0].

Remark 3.0.4 (The case of GLj,). When G = GLj, p is conjugate to a cocharacter pq of type (1,...,1,0,...,0)
with d 1s, a (GLp, ugq)-aperture is the same as a vector bundle F-gauge F of Hodge-Tate weights 0,1 and rank h
with grﬁég F of rank d.

Theorem 3.0.5. (1) n-truncated (G, pu)-apertures are parameterized by a smooth formal Artin stack BT
over Spf O of virtual dimension 0 and with affine diagonal.
(2) The deformation theory of BT is governed by grﬁég dRg,(Lie G)[~1], where Q[n] is the tautological
aperture. More precisely, this is the tangent complex for BT%“ over O.
(3) The transition maps BTgfl — BTY* are smooth and surjective.
(4) BTSLh’”d is canonically equivalent to the stack of n-truncated Barsotti-Tate groups.

Remark 3.0.6. The map from BTSL’“M to the stack of BT group schemes is easy to define: It’s just given by the
global sections functor F — I'syn(FY) from the previous section. The rest of the proof uses the smoothness of the
stack of truncated BTs (a famous theorem of Grothendieck), and an inverse functor for qrsp algebras constructed
by Anschiitz-Le Bras and Mondal.

Remark 3.0.7. The proof of (1) in the theorem is a non-linear version of the argument from the previous section.
The dévissage from level 1 to level n > 1 happens by noting that the deformation theory from level n — 1 to level
n is governed by the syntomic cohomology of the level-1 perfect F-gauge (Lie G)q[—1] ® F,, of Hodge-Tate weights
—1,0, 1. Derived descent works again to reduce to the case of [F,-algebras. Here one shows that BTf’“ is presented
over the (smooth Artin) stack of G-zips of type p as a gerbe banded by a certain height 1 group scheme called the
Lau group scheme. This amounts to studying deformations of G-bundles from the F-zip stack to the syntomification.

Remark 3.0.8 (The Hodge type case). When we have a faithful representation (G, u) — (GLp, ug) (the Hodge
type situation), we can interpret BT%”‘ as parameterizing truncated BT groups with additional structure, though
already in the case of GSp,, with its standard representation (and p1q = f14), the precise interpretation of what this
additional structure is can be subtle. See the discussion in §11.6 of G.-M.

Remark 3.0.9 (The étale realization for apertures). One can use the construction used for the étale realization
of F-gauges, or argue using Tannakian reconstruction, to see that every (G, p)-aperture Q over R of level n gives a
G(Z/p™Z)-local system T (Q) over R[1/p]. For (GLy, ua)-apertures, this is a repackaging of the p-adic Tate module
of the associated p-divisible group.

4. THE SYNTOMIC REALIZATION FOR SHIMURA VARIETIES

Suppose now that G is a reductive model over Z, for a reductive group G over Q underlyiing a Shimura datum
(G, X). Let v|p be a place of the reflex field E = E(G, X)), and suppose that the level K C G(Ay) has been chosen
such that K = K,K? with K, = G(Z,). If {u} is the conjugacy class of Shimura cocharacters associated with X,
then we can find a representative u, defined over E, and extending to a minuscule cocharacter of G over O = O, .
In particular, we can consider the formal pro-Artin stack

BT M ' =l

=)

—1
BT{ "

1

Theorem 4.0.1. Suppose that (G, X) is of abelian type and that Z¢g does not admit an R-split subtorus that is not
Q—spliﬂ and let Sk be Kisin's integral canonical model over Og[1/D] where D is the product of all primes at which

6This is a technical ‘cuspidality’ condition that exists only because we are afraid of stacks with infinite discrete stabilizers.
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the level K 1is not hyperspecial, and let ygv be the associated formal scheme over Spf O. There is a canonical
surjective formally étale syntomic realization map

IR
When G = GSpy,,, this is the map associating with every principally polarized abelian scheme (up to prime-to-p

isogeny) its principally polarized p-divisible group. Moreover, the étale realization of the syntomic realization is the
canonical G(Z,)-local system over the generic fiber.

Gyt
— BT .

)

Remark 4.0.2. When p > 2, this is due to Imai-Kato-Youcis, who use a detour via prismatic and crystalline
cohomology and Ito’s theory of prismatic G-displays.

Remark 4.0.3 (Characterization of the integral canonical model). As observed by I-K-Y, the integral model . ,
over O is actually characterized by the existence of this formally étale map and the fact that the tube around its
special fiber in rigid space Shi®p, ~consists exactly of the crystalline points.

Remark 4.0.4 (BST models). One can show that the exotic exceptional integral canonical models constructed
by Bakker-Shankar-Tsimerman also support such realizations. This essentially comes down to their exhibiting
Fontaine-Laffaille modules associated with representations of G, and of course only works for large enough primes
.

One key input into the proof of the theorem is the following;:

Theorem 4.0.5 (Tate’s full faithfulness for apertures). Suppose that R is a p-complete normal Noetherian domain.
Then the functor Ts is a fully faithful functor from BTS(R) to pro-étale G(Z,)-local systems over R[1/p].

Sketch. The main point is that the diagonal of BT is affine, so a section of it over R[1/p] extends to one over R
if and only if it does so after completion at every height 1 prime of R. This reduces us to the case of p-complete
DVRs where we can use full faithfulness results of Bhatt-Scholze (or Guo-Reinecke).

There is one other key point: We have to first algebraize BT%’“ to a stack over Spec R by gluing (in the sense
of Beauville-Laszlo) the formal stack with the stack of G(Z/p™Z)-bundles over R[1/p] via the étale realization
functor. O

Remark 4.0.6 (Tate’s theorem for p-divisible groups). In the case of GLj, this is just Tate’s full faithfulness
theorem for p-divisible groups.

Sketch of construction of the syntomic realization for abelian type cases. We want to show that the canonical G(Z,)-
torsor over the generic fiber underlies a (G, u)-aperture over fg’v. The full faithfulness above lets us prove this flat
locally: the descent data is obtained for free. So using standard methods in the business (with some refinements
by Lovering), one reduces to the case where (G, X) is of Hodge type or of CM type. The second case can be dealt
with Lubin-Tate theory.

In the first case, one wants to give a reduction of structure group of the (GSp,, i1y)-aperture associated with a
principally polarized p-divisible group. One reduces to exhibiting this for the complete local rings of 5’1?”, which
are deformation rings constructed by a method of Faltings. It turns out that these rings are also deformation rings
for BT&“, and this does the job

Now, the map ngv — BT%’“ is smooth and so has open image. To show that it is surjective, it is enough to show

that the image is closed and that the target is connected. The former can be shown by showing that YE’U — BTgC;“
satisfies the relative valuative criterion for properness, which amounts in the end to the Nerén-Ogg-Shafarevich
criterion for good reduction. The connectedness can be verified mod-p and with n = 1, where it comes down to the
fact that the stack of G-zips of type u is connected (since G is itself connected). O

Remark 4.0.7 (Non-emptiness of strata). The surjectivity can be used to easily deduce that all Newton and
Ekedahl-Oort strata are non-empty. For the former, one needs a result of Wintenberger saying that the hyperspecial
ADL X, (b) is non-empty if and only if b € B(G, u).

"The same method also works for the BST models, where a F-L module associated with a faithful representation plays the role of
the (GSpQQ7 g )-aperture.
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5. FORMAL SPECIAL CYCLES

Now suppose that W is a representation of G on which p acts via weights —1,0,1. We’d like to associate certain
special cycles on . ,, associated with W. For this, we fix a lattice Wz C W such that W7 is K-stable. In particular,
Wy, =Wz, C Wy, is a K-stable lattice and so corresponds to an algebraic G-representation over Z,. Here, we will
construct the formal completions of the special cycles along their special fibers.

Example 5.0.1 (Siegel type). Suppose that Hy, Hy are two representations of G of Siegel type. This means that
the associated variations of Hodge structures on Shy (C) are homological realizations of abelian schemes A;, A3 up
to isogeny over Shy. Then Hom(H;, Hs) satisfies the constraints on weights.

Construction 5.0.2 (Local cycles). Let Q be the canonical (G, u; )-aperture over y}‘?v' For every lattice W, C
W, as above, we can twist its dual by 9 to obtain a vector bundle F-gauge SynD(WZ}/ ) of Hodge-Tate weights
—1,0,1. Therefore, we obtain, for every n > 1, a formally quasi-smooth of virtual codimension 0 derived algebraic
scheme
2R n(Wp) = Tayn (Syng (W) @ Z/p"Z)
Also set
2y (W) = lim 220 (W)

The tangent complex of this stack over 5”;37” is given by the pullback of gr}_kl1g dR g (Wp)[—1].

Example 5.0.3 (Siegel type local cycles). When W = Hom(H1, Hz) is of Siegel type and W, is of the form
Hom(H, p, Ha,,) for Kp-stable lattices H; , C H;, Syng (H; ) is an F-gauge of Hodge-Tate weights 0, 1 associated
with the p-divisible group A;[p™], and one sees that 277 (W,) (resp. 277 (W),)) is a derived resolution of the
scheme of homomorphisms Hom (A, [p"], Az[p"]) (resp. Hom (A, [p™], As[p>])).

Remark 5.0.4 (Points of local cycles). Suppose that z € Sk ,(x) is a geometric point. Then 27 (W),)(z) is
a finite free Z,-module (which is course compatible with the previous example). Indeed, the description from
Remark [2:0.3] shows that it is the kernel of a map

Ml F— M~
of finite free W (x)-modules of the same rank, where F' is y-semilinear, and ¢ is an inclusion as a submodule. After
inverting p, we are getting the finite dimensional Q,-vector space of invariants in an F-isocrystal (generating the
slope 0 part), and it’s not hard to see from this that the kernel is already free of finite rank over Z,, before inverting
p.

Remark 5.0.5 (Basic idea behind formal special cycles). As the previous example shows, a purely local construction
cannot give us the right construction of cycles: indeed, we would like to have spaces of homomorphisms between
abelian schemes (perhaps up to prime-to-p isogeny), which is at worst a Z,)-linear object. What we have here is a
Zyp-linear object of homomorphisms between their p-divisible groups. Now, Serre-Tate theory tells us that the map
from the locally of finite type scheme Hom(A;,.42) to Hom(A; [p™°], A2[p®°]) is formally étale, so we essentially only
have to know how to pick out the correct set of Fp—points to pin down the correct finite type object. Ideally, for a
given representation W, we would know exactly what the associated family of motives over the Shimura variety is,
and picking out these points is the same as picking out the sections of 2%, (W,)(z) that are actually motivic. Of
course, we are far from such an idyll. Still, we can exploit as much as poséible the motivic realizations of abelian
schemes to pick out a canonical Q-subspace of the finite dimensional Q,-vector space

2y (W)(2) = 258, (W) (2)[1/p).

Assumption 5.0.6. Suppose that there exist Hy, Hy of Siegel type and an equivariant embedding W C E defn
Hom(H:, H)fj

80ne actually only needs these auxiliary representations to exist for some cover of G.
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Remark 5.0.7. The subcategory of representations satisfying this assumption is closed under direct sums and
subquotients, and also contains the trivial representation.

Construction 5.0.8 (A possibly non-canonical rational structure). In this situation, we set
2 (Wy)(2) = 22 (W)(2) NHom® (A 2, As,2) C 2377(E)(2) = Hom® (Ay 2 [p™], Az, [p™]).
This is a finite free Z,)-module.

Remark 5.0.9. Here, A, , and A, , are determined up to isogeny by the representations Hy, Hs, and Hom® means
homomorphisms in the isogeny category.

Theorem 5.0.10. There is a canonical locally finite unramified quasismooth map ffK(Wp)g — ygw characterized
by the following properties:
(1) It admits a formally étale map Zx(Wp)S — 270 (W,) over Yg}v.
(2) For any choice of Hy, Ha as in the assumption above, and any geometric point z € i (), Zx(W,)S(2)
agrees with the Zy)-module from Construction [5.0.8

Sketch of construction. The main point is to construct the map first in the situation where W, = Hom(H; ,, Hz p)
where H; , C H; is a K,-stable lattice. At least on classical points, 2% (W,)(z) should just be the space of maps
Hom(A;, As), where A;, A2 are now abelian schemes up to prime-to-p isogeny associated canonically with the
chosen lattices. The question is now: How do we thicken this up into a quasi-smooth derived scheme? There aren’t
really that many choices since we are requiring that we have a formally étale map

ffK(Wz))g - g,f?";(wp)?

so there is at most one way of doing this ‘thickening up’.

The Hom scheme Hom(A;, As) can be made into a derived schemeﬂ as follows: A classical rigidity theorem
says that the scheme of homomorphisms is the same as the scheme of morphisms that respect the zero section.
This makes perfect sense for animated inputs as well, and gives us the desired derived thickening H(Al,Ag).
However, this isn’t the ‘correct’ object: Standard arguments show that its deformation theory is governed by
Lie(Az) ® 721RT (A1, O4,), and unless A; is an elliptic curve, this tangent complex sits in too many degrees for
us to get something quasi-smooth: an unramified quasi-smooth map must have tangent complex concentrated in
cohomological degree 1. We’d like to get rid of the contributions from the higher degrees, so we can get something
with tangent complex Lie(As) ® HY (A1, Oa,)[—1].

Now, let M; be the F-gauge of HT weights —1,0 over ng associated with A; as in Example Then
2% (W) is the functor of sections associated with (the dual of) MY ® M,. One sees that its tangent complex is
given by (the pullback of) Lie(A2) ® H (A1, Oa,)[—1].

But we can also look at the functor associated with (692-21 AP My [—i])v ® Ms: this still has HT weights bounded
above by 1, and so the theorem from § 2 still gives a derived scheme, but now its tangent complex is the pullback of

Lie(Az) ® T2 RT(A1, Oa,)

. There is a syntomic realization map from H(Al, As) to this scheme, and Kodaira-Spencer theory shows that it is
actually formally étale. Therefore, we obtain 25 (W,)S as the pullback of Z; %o (Wp) along this syntomic realization
map.

In general, we can always find lattice H;, such that W, C E, = Hom(H1 p, H ), and we can set
L (Wp)§ = Zio(Bp)Y X g (,) 250 (W)

To see that this is independent of choices, one has to work a bit harder. The key is to prove a refinement of
Tate’s theorem on homomorphisms of abelian schemes. Namely, we need to know that when z is defined over a
finite field, the natural map

Zx(W)(2) ® Qp = 2, (W)(2)

9n general, any classical scheme can be lifted into the derived world in infinitely many ways. Indeed, for affine schemes, we are
asking for animated commutative rings R with a given mg.
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is an isomorphism. This can be shown using the strong rationality results from Kisin’s paper on the Langlands-
Rapoport conjecture. ]

Remark 5.0.11 (Products of formal cycles). One can now easily show that if W, Wy are two representations
satisfying the standing assumption and W; , C W; are K,-stable lattices, then we have a canonical isomorphism

L (Wip)s X g5 Zx(Wap)§ = Zx(Wip ® Way)S.
Here, on the left, we are of course taking the derived fiber product.

Remark 5.0.12 (Formal cycles and étale realizations). For every prime ¢, we have an étale realization Et g (V)
over Yk [(~1] associated with W (standard constructions for Shimura varieties). Using the f-adic realization for
homomorphisms of abelian schemes and the refined Tate conjecture mentioned above, one can show that, for ¢ # p,
we have a canonical map

Zc(Wp)§ — Bt (W).
For any KP-stable lattice WP C WN;, we obtain Zy-lattices
Etg (WP) C Etg (W),
and their common pre-image in 2% (W,)5 gives a finite unramified quasi-smooth map 2% (Wz)3 associated with

the Z-lattice

Wz =W NW,NWP C Wy,.
Remark 5.0.13 (Structure over the zero section). Consider the zero section 0 : .75 — % (Wz): this lands in

an open and closed substack 2% (W7,0) C 2% (W7) that is still quasi-smooth over yg,v with tangent complex

given by the pullback of cow, [-1] defe grﬁég dR g (Wp)[—1]. Moreover, the underlying classical scheme of this stack

,U

is YE »- By a general principle, any such quasi-smooth map is obtained in the following way: Given any vector
bundle M over a scheme X, we can take the derived self-intersection of the zero section

X XO,V(MV),O X

and view it as a derived scheme over X via either projection. Concretely, this is just X as a topological space, but
with its structure sheaf replaced by the Koszul complex of the zero cosection of MY, which is just €, A"MV[i].
Observe that the class of this complex in Ky(X) is precisely the top Chern class of M and maps to the r-th Adams

eigenspace KO(X)(S) where r = rank(M) (here we assume that X is regular).

Remark 5.0.14 (Classicality criterion). The following are equivalent for a connected component 25 of 25 (Wz)3:

(1) 25 is a classical formal stack;
(2) The classical truncation of 2§ ® k(v) is lci and unramified over #x ® k(v) of codimension rankcoy, ;
(3) The classical truncation in (2) is equidimensional of dimension dim Shx —rankcoyy, .

The point is that the quasi-smooth formal stack 25 is étale locally (on the source) cut out as a derived formal
scheme by d = rankcow, equations in ,VE,U, and is classical if and only if the d equations form a regular sequence.
Since .Sk ® k(v) is regular, and in particular Cohen-Macaulay, any classical subscheme cut out by d equations has
codimension at most d, and has codimension exactly d if and only if the equations form a regular sequence.

Remark 5.0.15 (The adjoint representation). A somewhat interesting observation (made to me by Rapoport a
couple of years ago) is that, for any abelian type Shimura datum (G, X), there is a canonical representation W that
one can look at: The adjoint representation! The cycles in this case have codimension dim Shg, and so are virtual
1-cycles on .. These seem related to the very big CM cycles considered by Wei Zhang in his proof of the AFL.
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6. PROPERTIES OF FORMAL SPECIAL CYCLES: THE CLASSICAL ORTHOGONAL CASE

Example 6.0.1 (Quadratic spaces: special divisors). The ur-example is the Shimura variety associated with a
quadratic space V over Q of signaure (n,2). Here, we have G = SO(V)EL and we can take W =V and G = SO(V,,)
for some self-dual lattice V), C Vg,. The Kuga-Satake construction tells us that our Siegel type assumption is
satisfied (via the GSpin cover). The space 2% (V7)? is the formal completion of the stack of special endomorphisms
(of the Kuga-Satake abelian scheme, but could be of a power, or a summand, or indeed a space of homomorphisms
from one summand to another: the particular abelian schemes involved are not important, and are not in any sense
God-given.).

The deformation theory here is governed by grﬁég dRk (V,), which is a line bundle. This means that we are
getting quasi-smooth maps of virtual codimension 1. In fact, it turns out that as long as we are dealing with non-
zero endomorphisms, we always get genuine (generalized) Cartier divisors, which are the so-called special divisors.
In fact, the quadratic form on V' induces a canonical maﬂ

Zic(V2)§ = Qg

and taking the pre-image of m € Qx> gives a finite unramified quasi-smooth map 2% (Vz, m)S — Y}‘?U.

When m # 0, this is a classical object and can be constructed and studied without any derived nonsense. The
classicality can be checked for instance using the criterion from the end of the previous section: One just has to
know that its special fiber does not contain any connected components of .S ® k(v).

Remark 6.0.2 (Linear invariance for special divisors). Note that we can replace Vz by N - V7 for any rational
number N # 0. This won’t change the cycle 2% (V7)3, but it will change the induced quadratic form, so that

gK(N . Vz, m)g >~ gK(Vz,NZm)g
This is an easy instance of what Howard calls linear invariance.

Remark 6.0.3 (The case m = 0). The locus over the zero section 2% (Vz,0)3 is, by Remark [5.0.13] a derived

.
square zero thickening of ‘yfgw by wy, [1], where wy, ogin co\‘ﬁp = Filhdg dR x (V,) 4 This is an explanation for why

the tautological bundle wy, (or rather its inverse) shows up as the degree 0 term for the generating series of special
divisors on the orthogonal Shimura variety.

Example 6.0.4 (Higher codimension cycles). In the previous example, we can replace V with W = V" for some
n > 2. In this case, there are many more interesting K ,-stable lattices W), C Wg, (not just ones of the for V'
necessarily), and, if we fix the lattices away from p, each such choice will give a quasi-smooth morphism of virtual
codimension n, 2% (Wz)S — ng. The quadratic form on V' will now induce a map

2% (Wz)§ — Sym™(Q)>o

where the right hand side is the locally constant sheaf valued in positive semi-definite symmetric matrices over Q.
Therefore, we can take the pre-image of any T € Sym"(Q)> to get a cycle

QpK(Wz,T)g: — y]gv'

Remark 6.0.5 (Relationship with Howard-M.). If W5 = V', and ma,...,m, are the diagonal entries of T', then
we immediately see that 2% (W7, T)3 is the open and closed substack of the derived fiber product

fK(Vz,ml)%m Xygu g]{(Vz,mg)g X oo Xygv f‘fK(Vz,mn)g

supported on the locus where the moment matrix of the m-tuple of special endomorphisms is exactly 7. In this
way, we see that the structure sheaf of 2% (V7 T)S recovers (formally locally), the more ad hoc constructions of
Howard-M.

10There is the GSpin variant that’s actually of Hodge type, but its only real role is to reassure us that there is in fact an abelian
scheme floating around somewhere.

1 The positivity here is a consequence of the positivity of the Rosati involution.

12Here, we are actually using the self-duality of V},. If we were working more canonically, we would have to replace it with the dual
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Remark 6.0.6 (Linear invariance in higher codimensions). There is an action of GL,, on V™ that commutes with
that of G. Once again, this action doesn’t affect the cycles 2% (Wz)S, but it does change the moment matrices.
That is, for any g € GL,(Q), we have a canonical isomorphism

L (W2, T)S = Zi(Wa,'gTg).
When W7z = V' and g € GL,,(Z), this recovers the key linear invariance result from Howard-M.
Remark 6.0.7 (Zero locus in higher codimensions). Remark [5.0.13[shows that we have
P (Wz,0)8 = Yﬁv X0,V (ww,),0 5”5,1,

This shows that it is just yg » equipped with the structure sheaf given by the Koszul complex associated with the
zero cosection of wyy, . In the global setting, the class in K-theory of this structure sheaf will represent the top
Chern class of cow,. When W), = V", this is nothing but (—1)"c1(wy,)".

Remark 6.0.8 (Product formula with moment matrices). If Wy z and Ws 7 are lattices in V™ and V"2, then we
have (once again all fiber products are derived):

Wiz, T))8 X5 P (Waz, To)S = |_| P Wiz @ Wag,T)S.

<T1 * )
T=
* T2

Example 6.0.9 (Product formula with one zero matrix). Suppose that T = 0. In this case, combining the previous
remark with Remark [6.0.7 shows that we have

T, 0
P (Wi z,T))8 X0,V (ww, )0 VE,U ~ P Wiz, Th)S X3, Pk (Waz,0)8 ~ 2 (W17 ©Waz, ( 01 0))5

Here, we are using the fact that there is only one semi-definite symmetric matrix with 77 and 0 along the block
diagonal.

Example 6.0.10 (Improper intersection). Suppose that Zx (W7, T) is classical (can be checked using the criterion
from the end of the previous section). Taking Wiz = Waz = Wy and Th = T» = T, and applying Remark [5.0.13 m
we see that

P (Wz, T)S X8 P (W, T)S ~ 25 (Wy, T)S XOwa)oyK@—fK(WZ, T)$ X3 P (Wz,0)8

Remark 6.0.11 (Generalization). Everything here generalizes mutatis mutandis to the situation where V is a
t-Hermitian space over an associative Q-algebra D equipped with a positive involution ¢, with G = Up(V) the
associated unitary group, and with the Shimura cocharacter splitting an isotropic subspace of Vg. In this case,
the cycles one obtains are indexed by positive semi-definite (-Hermitian matrices with coefficients in D, and the
minimal (virtual) codimension one sees is the dimension d of the isotropic subspace. A basic case is where D = F
is a CM field with totally real maximal subfield F, in which case the Shimura cocharacter is given by a tuple (p;, ¢;)
of signatures indexed by places 7 : F' — R. Here, the minimal codiension is ) _min{p-, ¢, }.

7. ALGEBRAIZATION

Let the setup be as in §5. Here’s a quick explanation of how one algebraizes the cycles 2% (Wz)S into quasi-
smooth maps Zx (Wz) — Sk

Remark 7.0.1 (Beauville-Laszlo gluing). The maps 2% (Wz)S — Yg’v are finite. Therefore, if we choose an

affine étale cover Spec R — .k, the restriction of 2% (Wz)3 over Spf R, (here R, is the v-adic completion of R)
algebraizes, in the sense that it is represented by the spectrum of a ﬁnit animated commutative Rv—algebra, call it
B,. Derived Beauville-Laszlo gluing (as explained for instance by Bhatt) now says that algebraizing B, to a finite
(animated commutative) R-algebra B is the same as finding a finite R[1/p]-algebra B[1/p] and an isomorphism

LFor us, this means that the complex of R,-modules underlying By is perfect.
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R, ®g B[1/p] = B,[1/p] of finite R,[1/p]-algebras. In other words, to get 2% (Wz), we have to write down the
generic fiber Zx(Wz) — Shi of Z%(Wz), and show that its restriction to p-adic affinoid animated Qp-algebras is
given by the rigid fiber of 2% (Wz)3

Remark 7.0.2 (Saved by abelian varieties). This sort of gluing condition is a little bit involved to check directly, so
we will take a shortcut, and fall back to the space ﬁ:]l(/ll, As) of derived morphisms that exists globally. Now, we just
have to cut out 2% (Wz) within this existing derived scheme. It turns out we can characterize this derived subscheme
by knowing its points over F,, and C, and by knowing what its tangent complex should be. Therefore, once we have
the construction of the generic fiber and of the formal cycle, the gluing data necessary for Beauville-Laszlo will be
obtained automatically.

So all said and done, it remains to describe the generic fiber Zx (Wg).

Construction 7.0.3 (Derived special cycles over the complex fiber). Over the complex fiber Shi (C) = G(Q)\ X x
G(Ay)/K, we can consider the local system

GQ\X x Y (Wz)/K — GQ\X x G(Af)/K,

where Y/(Wz) = {(w,g) € W xG(Ay) : w e gW5}. This admits a map to the vector bundle grﬁég dR k(W) = cow
where Filfjy, dRg (W) is the filtered de Rham realization associated with W obtained in the complex fiber from the
associated filtered vector bundle over the compact dual X. The derived pullback of the zero section of gry ég dR (W)
now gives a locally finite unramified derived lci (in the sense of derived complex geometry, whatever that is) map

ZK(Wz)an — ShK(C)

Remark 7.0.4 (Noether-Lefschetz loci). The underlying classical cycle of Zx (W)(C) is a Noether-Lefschetz locus
where the associated variation of Z-Hodge structures is picking up additional Hodge cycles: Indeed, the image of
(w,g) € W in grﬁég dR g (W) vanishes precisely when it lies in FilUHdg. dR g (W).

Construction 7.0.5 (Algebraization and descent). The theory of Shimura varieties gives an immediate algebraiza-
tion of the classical analytic space Zx (Wz)(C) underlying Zx (W7)?", and we can give an algebraization of its derived
structure sheaf by working étale locally, where it is given by a Koszul complex associated with a cosection of coy .
The theory of canonical models now gives a canonical descent over the reflex field E for the classical truncation,
and a similar noodling around with Koszul complexes also gives the descent for the derived scheme.

Remark 7.0.6 (Alternate construction using infinitesimal cohomology). In the arXiv version of the derived cycles
paper, there is a more elaborate construction of the generic fiber that once again uses the Siegel type assumption,
and uses infinitesimal cohomology of abelian schemes to cut out Zx (W) inside a derived Hom scheme H(.A;, As).
This agrees with the construction using canonical models, but only works under the Siegel type assumption.

Remark 7.0.7 (Virtual fundamental classes). Once we have the quasi-smooth cycles 2% (Wz) — Yk, in the
situation of Remark we can obtain for every T € Herm, (D)>¢, virtual fundamental classes Cx(Wz,T) €
CH"™+ (k). This is constructed using K-theoretic methods and is explained in Appendix H of the arXiv version
of the derived cycles paper. Many properties of these cycle classes fall out immediately from the properties of the
underlying geometric cycles explained in the formal situation in §6.

14T here is recent work of Achinger-Youcis that pushes this kind of gluing through for arbitrary algebraic spaces, though only in the
classical context.
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