ON THE IRREDUCIBILITY OF THE MODULI OF POLARIZED K3
SURFACES IN FINITE CHARACTERISTIC

KEERTHI MADAPUSI PERA

ABSTRACT. We study p-Hecke correspondences on the p-ordinary locus of the mod-p fiber of
a Shimura variety of Hodge type. We also study the p-adic monodromy over the p-ordinary
locus using ideas of Chai and Hida. Applying these ideas to certain orthogonal Shimura
varieties attached to quadratic lattices, and using the Kuga-Satake period map, we conclude
that the moduli stack of primitively polarized K3 surfaces of any fixed degree is geometrically
irreducible in characteristic p > 0.

INTRODUCTION

Fix a positive integer d > 1, and consider the moduli stack M3, over Z that parameterizes
primitively polarized K3 surfaces of degree 2d. In this note, we prove:

Theorem 1. For every prime p, the fiber Mgdﬁp is geometrically irreducible.

When p is odd and p? t d, this result was shown in [25]. The point here is to prove this
unconditionally, for which we follow the spirit of a paper of de Jong [5] and reduce to the
known cases, by relating the ordinary locus of M3, /p? with that of M3, using p-ordinary Hecke
correspondences.

A Hodge theoretic analogue of the essential idea is easy to explain: Suppose that (X,¢) is a
primitively polarized K3 surface over C of degree 2d. Then the Betti cohomology H?(X,Z) is
a pure Hodge structure of weight 2, and the Poincaré pairing endows it with the structure of a
quadratic space over Z that is isometric to U = H®3 @ E§92. Here, H is the hyperbolic plane,
and Ejg is the root lattice corresponding to its eponymous Dynkin type.

We will distinguish one hyperbolic plane H C U, and choose a hyperbolic basis e, f for it
satisfying e? = f2 =0, [e, f] = 1. Let U’ = H* C U be its orthogonal complement, so that we
can write U as the orthogonal direct sum

U=H _LU.
We can choose the isometry
H*(X,7) = U
so that the Chern class of & maps to the element e + df € H. Within H%(X,Q) we have a
lattice corresponding on the right hand side to the subspace

(p~'e,pf) LU C Ug.

The basic point is that this lattice corresponds to an ‘isogenous’ K3 surface X’ equipped with
an isometry

H*(X',Z) = (pe.p™'f) LU,
and that it admits a canonical primitive polarization £ of degree 2p?d, whose Chern class maps
under the above isometry to the element pe + p? - (p~1f).

If one does this carefully in families, one finds essentially a Hecke correspondence between
the moduli of primitively polarized K3 surfaces of degrees 2d and 2p?d, and this allows the
direct comparison between their connected components.
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In characteristic p of course, Hodge theoretic methods are no longer valid. However, an
analogue does work if we restrict to the ordinary locus. It gives us a p-adic Hecke correspondence
between the ordinary loci of the moduli spaces above. Roughly speaking, we obtain a morphism

between the ordinary loci, which factors as a purely inseparable map followed by a finite étale
cover obtained from the so-called Igusa tower over the ordinary locus. To finish, we show that
the monodromy of the Igusa tower can be sufficiently controlled so as to see that the finite étale
cover involved above induces a bijection on geometric connectec components.

This is of course an impressionistic sketch: none of this is possible in so direct a fashion.
Instead, we have to work with the associated GSpin Shimura varieties and their integral models,
considered in [24]. As always is the case with these spaces, the lack of a moduli interpretation
necessitates the use of more group theoretic methods, and appeals (implicitly) to the theory of
motives with absolute Hodge cycles and (explicitly) to integral p-adic Hodge theory.

The methods used here can also be used to prove irreducibility results for Noether-Lefschetz
loci in the moduli of polarized K3 surfaces or of cubic fourfolds. They will also be employed in
ongoing work of the author with B. Howard concerning the modularity of generating series of
higher codimension cycles on orthogonal Shimura varieties.

Also, since there is little additional effort to working more generally, we have chosen to
include a study of the p-ordinary locus of a general Shimura variety of Hodge type at a place
of good reduction, as well as the Igusa tower over it. Among other things, this should find
applications towards the Blasius-Rogawski congruence conjecture, as in [27], [33].

Here is a brief summary of the contents of this paper. In §[I} we introduce in abstract form
ideas due to Chai and Hida concerning certain irreducibility results for an abstract version
of the Igusa towers arising in this theory. The methods are quite straightforward, and, in
applications, require only a good understanding of the set of connected components of the fibers
of the Shimura variety, as well as the existence of certain so-called hypersymmetric points.

In § 2] we lay out the study of the p-ordinary locus of a Shimura variety of Hodge type at
a place of good reduction. This mainly involves collecting results of [18],[16],]34] and [32]. We
apply these results in §[3]to construct the Igusa tower over the p-ordinary locus and to study its
relation with the p-adic tower over the generic fiber. In § [ we look at the space of p-isogenies
over the ordinary locus, and show that it has the expected properties.

In the final section, we apply these general results to the case of GSpin Shimura varieties
to show that some the integral models constructed in [24] continue to have geometrically ir-
reducible special fibers at certain places of bad reduction. As mentioned above, this is done
by comparing the ordinary loci of such integral models with those with good reduction using
p-adic correspondences. We combine this with the integral period map constructed in [25] to
prove Theorem
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CONVENTIONS

e We will fix a prime number p for the entirety of this paper.
e Given a set X and any Grothendieck site, we will write X for the locally constant sheaf
over the site associated with the constant presheaf sending every object to X.
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o Given a topos, a smooth Z,-group scheme D and an object S in the topos, an D(Z,)-
torsor w: P — S is an inverse system

{70 Pn — Stnezs,s

where 7, is a torsor under D(Z/p"Z).
e For any finite set of primes T', we will set
I
AT =T] @,
L¢T
the restricted product over all completions of Q at finite places not in T. If T = {¢} is
a singleton, we will write A? instead.

e For any local or global field F' in characteristic 0, we will write O for its ring of integers.

e Suppose that H is an algebraic group over a local or global field F' with a model Hg,.
over Op. If R is an Op-algebra, we will abuse notation and write H(R) instead of
Hg,. (R) whenever the integral model is clear from context.

e We will on occasion use the geometric notation for change of scalars. If f : R — S
is a map of rings and M is an R-module, then we will denote the induced S-module
S®sr M by f*M. If the map f is clear from context, then we will also write Mg for
the same S-module.

e If o : R — R is an endomorphism of R, then a p-module over R is an R-module M
equipped with a map ¢*M — M of R-modules.

e Suppose that R is a ring and suppose that C is an R-linear tensor category that is a
faithful tensor sub-category of Modg, the category of R-modules. Suppose in addition
that C is closed under taking duals, symmetric and exterior powers in Modg. Then, for
any object D € Obj(C), we will denote by D® the direct sum of the tensor, symmetric
and exterior powers of D and its dual.

e In this paper, ‘abelian scheme’ will be used exclusively as short-hand for ‘abelian scheme
up to prime-to-p isogeny’ as defined in, for instance, [24] §3.7].

1. GROUP THEORETIC PRELIMINARIES

The purpose of this short section is to abstract some ideas due to Chai and Hida on a ‘pure
thought’ study of the monodromy of Igusa towers. All the key ideas can already be found in [11]
and [4].

The reader can return to consult it as necessary.

Proposition 1.1. Let H be a connected reductive group over Q such that Hg, contains a
magzimal torus that splits over a cyclic extension of Q, (this hypothesis holds in particular when
H is unramified at p). Then H satisfies weak approzimation with respect to {p}; that is, H(Q)
is dense in H(Q,).

Proof. This is essentially contained in [30]. If H is semi-simple and simply connected, the result
follows directly from Theorem 7.8 of loc. cit. In general, let H be the simply connected cover
of the derived group of H. Then we find from Proposition 2.11 of loc. cit. that there are
quasi-triviaﬂ tori T and 15 over Q, and an integer m > 1 such that there is a central isogeny:
H™ x T, — H™ x Ty. In fact, the proof of this result shows that we can choose T} and T5 to
have the same splitting field as the maximal central torus of H. It is easy to see H satisfies
weak approximation with respect to {p} if and only if H™ x T does, so we can replace H by
the latter group and assume that it admits a central cover H; — H where H; is a product of
a semi-simple, simply connected group with a quasi-trivial torus.

1This means that the Galois representation attached to the character group is a permutation representation.
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Let F be the kernel of H; — H: It is a central sub-group of Hq, and so, by our hypothesis,
splits over a cyclic extension of Q. The result now follows from Proposition 7.10 and Corollary
2 in Ch. 7 of loc. cit.. O

Corollary 1.2. With the hypotheses as above, for any integer n > 1, the map
H(Z(p)) — H(Z/an)
18 surjective.
Proof. Let P, =ker(H(Z,) - H(Z/p"Z)). By (1.1), H(Q)P, = H(Qp). We now have:
H(Zp) = H(Qy) NH(Zp) = H(Q)P, N H(Zp) = H(Zy)) Pa.
The corollary now follows, since the map H(Z,) — H(Z/p"Z) is surjective by the smoothness
of HZ(p) . O

1.3. Keep the hypotheses of (1.1)). Suppose that we have a finite set of primes T' containing p,
a reductive group G over Q, and an H(Z,)-torsor P over a scheme S, such that the morphism
P — S is equivariant for an action of G(A?) that commutes with the H(Z,)-action on P. In
particular, for every n > 1, the H(Z/p™Z)-torsor

Pn — S

is H(Z/p"Z) x G(AT)-equivariant, with the first factor acting trivially on S.

Let @ C Hz, be a closed Z,-subgroup scheme such that the quotient X = Hz,/Q is repre-
sented by a scheme over Z,,.

We will need, for every n > 1, the contraction product

Pxn 1= Py x HEP" D) X(7,/p" 7).
We will be interested in the morphism of the sets of connected components
(1.3.1) 70(Px,n) = mo(S5).

1.4. With the notation as above, suppose now that we have anothe reductive group M over
Q with the following properties:

e There exists an embedding
w : MA’}“ — GA}"

e There exists a smooth model My, for M over Z,), and an isomorphism

p)»
¢ Mz, @z, Ly = Hz,y @2 Lyp-
In particular, we have an embedding
mi=(p(m) 1 (m))
O M(Z,)) — 00 H(Z) x G(AT),
inducing for every n > 1 a map
mi=(on (m),1p(m)) n
@, 1 M(Z,)) 2 H(Z/p L) x G(AT).

For any reductive group D over a field, let PD D — D be the simply connected cover of
the derived subgroup of D. Let MZ( ) (resp HZ ) be the normalization of Mz, in M (resp.
H) and let Q be the pre-image of @ in HZ

Let Zy 7, C Hyz, be the Zariski closure of the center Zy C H.

Proposition 1.5. Suppose that the following conditions hold:

(1) pc(G(Qy)) acts trivially on mo(S);
(2) For allt ¢ T, Gg, is isotropic;
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(3) G(AT) acts transitively on mo(S);
(4) ®n(M(Zp))) fizes a point w € mo(Px,n);
(5) Q contains Zyz,;

(6) The Z)-group Mz(m and the Z,-group @ are smooth with connected special fiber.
Then (1.3.1) is a bijection.

Proof. We will need the following consequence of the Kneser-Tits conjecture (see [30, Theorem
7.6]): For any simply connected isotropic group D over Q;, D(Qy) does not admit any finite
index sub-groups.

This, combined with hypotheses (I)) and (2), implies that pc(G(Qy)) acts trivially on 7 (Px.n)
as well. Let @ be as in hypothesis , and let Fiy, C mo(Px.,) be the fiber over the image of @
in m(S). By hypothesis (3]), it is enough to show that Fi, is a singleton: Any other fiber is a
translate of this by an element of G (A?)

Hypothesis implies that the subgroup

i, = {6um) : m € M(Zqy)), (m) € pa(G(AT))} C H(Z/p"Z)

fixes w.

It is now enough to show that ﬂ'n acts transitively on the fiber F, C mo(Px,n). For this, it
is enough to know that it surjects onto X(Z/p"Z) via the map induced by ¢,,. Note, however
that H, contains py (M(Z(p))). Therefore, it is enough to show that the latter surjects onto
X(Z/p™Z).

First, note that the natural map

Hy,/Q — Hz,/Q

is an isomorphism of fppf sheaves over Z,. Indeed, it is a monomorphism by definition, and
hypothesis implies that it is also surjective.

Now, hypothesis @ ensures that ﬁzp and é are smooth over Z, with connected fibers.
Therefore, by Lang’s theorem, we have

X(Z/p"Z) = H(Z/p"Z)|Q(Z/p"L).

It now follows from (1.2)) that prs(M(Zp))) maps surjectively onto X(Z/p"Z) via ¢,. O

2. THE p-ORDINARY LOCUS

Let (G, X) be a Shimura datum with reflex field F, and suppose that G is unramiﬁecﬂ at p.
This is equivalent to requiring that it admit a reductive model Gz, over Z,), which we now
fix for the remainder of this section. Set K, = Gz, (Zp): this is a hyperspecial compact open
sub-group in G(Q,). We will also assume that (G, X) is of Hodge type, so that it is equipped
with an embedding

(G, X) = (GSp(H),S*(H))
into a Siegel Shimura datum.
Further, we will fix a Z,-lattice H(,) C H such that the embedding G — GL(H) arises
from an embedding of Z,)-group schemes Gz, — GL(H, (P))ﬂ There now exists a collection of
tensors {sq} C Hg) such that Gz, is their point-wise stabilizer in GL(Hy)); cf. [18, p. 1.3.2].

2Quas.i—split and split over an unramified extension.
3This is always possible; cf. [16].
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2.1. Since Gg, is unramified by hypothesis, and therefore quasi-split, we can find a Borel
subgroup of Gg,, arising as the generic fiber a Borel sub-group scheme

B C GZP'

Fix a maximal torus T' C B defined over Z,, and let X, (T’) be the (unramified) Gal(Q,/Q,)-
module of cocharacters of 7.

Let X.(T)" C X.(T) be the subset of dominant cocharacters: Here, a cocharacter \ :
Gy, — T is dominant if the eigenvalues of A(p) acting on (Lie B)@p have non-negative p-adic
valuations.

2.2. Fix a place v|p of E, a choice of algebraic closure @p of Q, and an embedding E, — @p.

Let K C G(Ay) be a neaiﬂ compact open sub-group of the form K,K? = K, x K? C
G(Qp) x G(A%). Attached to this is the Shimura variety Shy := Shy (G, X) over E along with
its smooth integral canonical model Sk = Sk (G, X)(,) over O (). Using the representation
H ), we obtain over Sk an abelian scheme A, defined up to prime-to-p isogeny, and equipped
with a canonical class of quasi-polarizaitions [A].

2.3.  The representation H has several motivic incarnations: First, over Shx, we have the dual
H,, of the p-adic Tate module T,,(.A): This is a lisse p-adic étale sheaf over Shx. Secondly,
we have the first relative de Rham cohomology Hgg of A over Sk: This is a vector bundle
over Sk equipped with a Hodge filtration Fil' Hyr C Hygg, and the integrable Gauss-Manin
connection.

Next, over the special fiber Sk 1 (), we have the contra-variant Dieudonné F-crystal Hyis
attached to .ASK’W): It is equipped with a Frobenius operator

*
F FrSK)k(U)Hcris — HCI‘iS7

where Frg, , . is the absolute Frobenius endomorphism of Sk (). The evaluation of this F-
crystal over the formal completion of Sk along Sk x(,) is a vector bundle with topologically
nilpotent connection, which can be canonically identified with that obtained from Hgg.
Further, over the analytic space Shgl‘(n’(c, we have the relative first Betti (or singular) coho-
mology Hp with coefficients in Z,): this can be viewed as a variation of Hodge structures over

an
S K,C*

2.4. On the Betti side, we have a collection of Hodge tensors {sq,5} C H°(Shi' ¢, Hj) such

that the sheaf I'g of isomorphisms H, ») = H B carrying s, to so, p is a torsor under the locally
constant sheaf Gy (Zy). This is because Shx (C) admits a uniformization:

(2.4.1) Shi (C) = Gz, (Zp))\ (X x G(AL))/KP.

Under this uniformization, the local system Hp is the one attached to the representation H,)
of GZ@) (Z(p))
This slightly modified uniformization can be deduced from the tautological uniformization:

Shi (C) = G(Q\ (X x G(Ay))/K,
combined with weak approximation for connected reductive groups over Z,) (cf. for exam-

ple [18| p. 2.2.6]), which shows that G(Q)K, = G(Q,).

4ef. |29, p. 0.6]
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2.5.  There exists a collection of tensors {s,, A?} c H° (SK, pr) with the following property:
’ !

Let I? be the étale sheaf (over Sk ) of trivializations A’} ® Hp) = H I carrying, for each «,
1® sq to S, AL+ Then I? is a right torsor under the constant sheaf of groups G(A’}). More

precisely, we have a canonical KP-torsor over Sk represented by the inverse limit

SKP = llm SKPKfa
K{CKP

where K C KP ranges over the finite-index subgroups of K?, and I? is obtained from this
torsor as a contraction product

7 = Sk, x*" G(AD).

Therefore, I?/KP admits a canonical section [n] € H(Sk, I?/KP), called a KP-level struc-
ture.

In terms of the uniformization in , given a pair (h,g?P) € X x G(AIJ’C) mapping to a point
z € Shk(C), the associated abelian scheme A, with its KP-level structure can be described
as follows: The map h : S — Gg endows H,) with the structure of a polarizable Z,)-Hodge
structure of weight 1. This is exactly the cohomology of the abelian scheme A, which is now
equipped with an identification H,) = H B,z- The level structure is now the KP-coset of the
isomorphism

Hy

R [

~ P _ )
? HA? — Af , P
2.6. There also exists a collection of tensors
{800} € H°(Shi, Hy')

such that the sheaf I, of isomorphisms Z, ® H,) = H,, carrying 1 ® s, to sa7 is a torsor
under the locally constant sheaf G(Z,).

This torsor is actually independent of the choice of symplectic representation H, and can be
canonically described as the torsor represented by the tower

Sh[{p = {ShKn}ru
where Shg, — Shy is the finite cover associated with the sub-group
K, =ker(K, - G(Z/p"Z)) x K* C K, x K? = K.

Under the canonical comparison isomorphism between Z, ® Hp and Hp", 1® s, p is carried
t0 54, for each a.

2.7. There is also a collection of parallel tensors

{Sa,ar} C H* (S, Fil" Hy).
For each «, the de Rham comparision isomorphism

Osngr . ® Hp — Harl|sna .,
carries 1 ® s4.B t0 Sq,dR-

5We will term such isomorphisms G-structure preserving. We leave to the reader the task of formalizing
this notion, although we hope that its meaning will be clear from context in the remainder of the paper.
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2.8.  We also have a collection of tensors {sa,cris} C H®((Sk k(o) /W (k(v)))eris, HS

oris)» Whose
realizations along the formal completion of Sk along Sk () agree with {s, dr} as se)ctions of
Hig.
These tensors also have the following property: For every point xq : Speck — Sk r(v) valued
in a perfect field k, the evaluation of H,,s on the formal PD thickening Speck — Spec W (k)
gives rise to an F-crystal Heyis z, over W (k). More precisely, if o : W(k) — W (k) is the lift of
the Frobenius automorphsim of k, we obtain an operator

F U*Hcris,wo — HCI‘iS,(E[)'
This in turn induces an isomorphism
. -1® = -1
F O'*Hcris,wo [p } — Hcris,wo [p }

Now, for every o, the evaluation Sq crisz, € H®

cris.a, 18 F-invariant, when viewed as an
»L0

® —17.
element of H ;. [p ]
*
F(U Sa,cris,xg) = Sa,cris,zo -

Further, there exists an isomorphism
T W(k) ® H(p) i} Hcris,aco

carrying, for each o, 1 ® sq t0 54 cris,a -

2.9. In particular, the Fr(W (k))-module Heyis 2, [p~!] is an F-isocrystal with G-structure in
the language of [21]. Given a choice of isomorphism 7 as above, there exists a unique b €
G(Fr(W (k))) such that the following diagram commutes:

o*r
W(k') & H(p) — U*Hcris7w0
bzo,r F
W(k) ® H(p) T> Hcris,:z:0~

Let D be the diagonalizable group over Q with character group Q. Associated with this data
is the Newton cocharacter vy,  : D — G, which splits the pull-back to W (k) ® H ) of the slope
filtration on His g -

If 7 is replaced by 7o g for ¢ € G(W(k)), then by, - is in turn replaced by its o-conjugate
g 'bsy.70(9), and vy, - is replaced by g vy, - g.

2.10. The final point in this tensorial history is to do with the p-adic comparison isomorphism.
Suppose that we are given a point xq : Speck — Sk r(v) as above and a lift z : Spec 07 — Sk,
where L/ Fr(W(k)) is a finite extension. Choose a geometric point Z : Spec L — Shy lying
above the restriction of x to Spec L. Then there exists a canonical crystalline comparison
isomorphism

Bcris ®ZP Hp,i — Bcris ®W(k) Hcris,wo-

This isomorphism preserves G-structure, carrying, for each o, 1 ® sqpz t0 1 ® 54 cris,aq -
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2.11. Cousider the conjugacy class {ux} of Shimura cocharacters of G¢ associated with the
datum X. By the very definition of the reflex field, this conjugacy class is defined over E. Since
G, is quasi-split, Lemma 1.1.3 of [22] implies that this conjugacy class has a representative over
FE,,. Furthermore, this representative can be chosen in such a way as to extend to a dominant
cocharacter

px : Gmep, = Top, -

Set p, = px'. Viewing this cocharacter as an element of the Galois module X, (T) fixed by
the subgroup

Gal(@p/Ev) C Grad(@p/(@p)7
we form its ‘norm’

Vi= X o e XSG,
oc€Gal(E, /Qp)

which is a cocharacter of 1" defined over Z,.
We will also need the ‘average’

1 Gal @p Qp
vp = Ny € X.(T)g" /%),

[Ey : Q)

Let My, C Gz, be the centralizer of Nyu,. Let LieUy,, (resp. LieU, ) be the direct sum
of the eigenspaces of Lie Gz, on which Ny, (p) acts via eigenvalues of positive (resp. negative)
p-adic valuation. These subspaces are the Lie algebras of unipotent subgroups Uy, and Uy L of
Gz, which are the radicals of opposite parabolic subgroups Py, and Py u with common Levi
subgroup M.

2.12.  Consider the reflex norm

Res(up

Tyt Ty = ResﬁEv /Z, G, ——)—> ResﬁEv /Z, TﬁEv i\I—m—> T

associated with p,,.
Here, the map on the far right is the usual norm map on tori: over Z, it can be identified
with the homomorphism

Lemma 2.13. The homomorphism r, has central image in Mpy,,.

Proof. Working over Q,,, this amounts to the following claim: If « is a root for 7' (that is, a
character appearing in the eigenspace decomposition of Lie G@p) such that (o, pp) > 0, then
(a, Npp) > 0.

To see this, note that we have

<O‘7N/’LP> = Z <U_1avup>'

oc€Gal(E, /Qp)

The condition (a, i) > 0 ensures that « is a positive root, appearing in Lie Bg . Since B
P

is defined over Z, by hypothesis, the set of positive roots is Galois stable, and since p, is

dominant, we must have (o~ a, p1,,) > 0, for all o € Gal(E,/Q,). This finishes the proof. O
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2.14. To be able to work with p-divisible groups over g, uniformly, without making excep-
tions for the case p = 2, it will be useful to employ the theory of Breuil-Kisin modules from [17],
extended to the case p = 2 by, among others, W. Kim [15]. This can be summarized as follows:
Suppose that k is a perfect field of characteristic p. Consider &, = W (k)[|u|], the power
series ring in over variable over W(k), and equip it with the Frobenius lift ¢ : & — &
restricting to the canonical Frobenius automorphism o on W (k) and satisfying ¢(u) = uP. Set
&(u) = u+ p, and consider the category BT g, of pairs (I, Fon) where:
e 1 is a finite free Gx-module;
o Fyp : *M — M is an injective homomorphism whose cokernel is killed by £(u).
Such pairs are called Breuil-Kisin modules. Usually, Fyy will be omitted from the notation,
and we will refer to the entire Breuil-Kisin module by its first entry 991.
Then there is a contravariant equivalence of categories between p-divisible groups over W (k)
and BT g, associating with a p-divisible group H a Breuil-Kisin module 9t(#). Moreover, this
equivalence has the following properties:

o If H is the reduction of H over k, then the (contravariant) Dieudonné F-crystal M (H)

u—0

over W (k) can be recovered by base-change along the map &, —— W (k) of the pair
(" M(H), " Fr).

e The de Rham realization Myr(H) of H over W(k), along with its Hodge filtration
Fil' Mg (#), can be recovered as follows: We have

Mar(H) = 61/E(u)6k Qe ¢"M(H),
and Fil' Myg(#) is the image in Myg(H) of the subspace
Fil' 0" M(H) = Fopyy) (E(@)M(H)).

o If k'/k is an extension of perfect fields, and H' = W(k') ®w ) H, then there is a
canonical isomorphism of Breuil-Kisin modules:

G ®s, M(H) = M(H).

2.15.  For future use, we note that BT g, is embedded in the larger tensor category BrK g,
of pairs (9, Fon) where 9 is a finite free G;-module and

Foy + 0" ME(u) ™) = MIE(u) ]

is an isomorphism of &i-modules.
In fact, it is shown in [18] that there is a covariant fully faithful tensor functor

om : Repms(I‘k) — BI‘K/Gk

such that, for every p-divisible group H as above, we have a canonical isomorphism of Breuil-
Kisin modules:

M(H) = M((T,H)Y),

Here, I'y, = Gal(Fr(W(k))/Fr(W (k))) is the absolute Galois group of Fr(W (k)), and Rep,,;s(T'x)
is the category of I';-stable lattices in crystalline Q)-representations of I'j.

This functor is not exact. However, if Og is the p-adic completion of the localization
(Gk(v))(p), and Modfﬁg is the category of finite free modules & g-modules .# equipped with
an isomorphism

F:o'H =,
then the functor

93?'—)0’@0@(5}9937

BI"K/G,C Modfﬁg
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is a fully faithful tensor functor, and the composition

Dt (M(D))
RS W N

M Repeyis(Tk) Modfﬁg

15 exact.
2.16. Set H, = Z, ® H(,, and Hy = O, ®z, H,. Equip Hy with the o-linear map

U(NP (P

F : O‘*HO = ﬁEv ®Zp Hp —))> ﬁEv ®Zp Hp = HO'

Since o(p,) commutes with Ny, there is an F-stable grading

d
(2.16.1) H, = H;
=0

given by the eigenspaces for Npu,. Here, d = [E, : Qp).
We also have an ascending slope filtration {S"Hy},cq by setting, for any r € Q,

S.Hy = @5 H;.
i<rd

Now, Hj is the Dieudonné module associated with a canonical p-divisible group G () over
k(v), endowed with a grading arising from ([2.16.1)). It is also equipped with a G-structure in
the sense that, for each index a, the tensor

Sa0=1®s4 € O, Rz, HS = ng)
is F-invariant.

2.17. We will now define a canonical lift of G 1) to a p-divisible group G over O, , equipped
with a grading

d
Go = EB G,
i=0

lifting the one on Gy x(,) arising from (2.16.1)).
For this, we will use (2.14), and define the corresponding object o in BT g, () @S follows:
We set $9 = Sy (v) ®z, Hp, and the map Fy, will be given by the composition:
* p(g(“))
Fea, 1 ¢"Ho = Gk(v) Rz, Hp H—> Gk(v) Rz, Hp = 5o.

This map clearly commutes with the grading

d
$o = @56
i=0
given by the eigenspaces for Ny, acting on g = Gy, @z, Hp.
We now take Gy to be the p-divisible group such that 9(Gg) = $o. Since we can identify
©* 90 /up*Ho = Hy

as F-crystals over W (k), Go has all the desired properties. It is also equipped with a descending
slope filtration {S"Go},cq given by setting

S"Go = EP G-
i>rd
Note also that, for each index «, the tensor
Sa,9H9 — 1® Sa € Gk(v) ®ZP HZ? = f)l?7

is an F-invariant element. Here, .66@ is viewed as an ind-object over the tensor category
BrK/Gk(m :
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Also, let Fill(ﬁE,, ®z, H,) be the eigenspace on which j,(p) acts via multiplication by p;
then under the identification

Mar(Go) = ¢ 90/ (v —p)p*Ho = Gy /(v — P)Bv) ¥z, Hy = O, @z, Hy

the Hodge filtration on Mag(Go) is carried to Fil'(0p, ®z, Hp).
Using this, we can now check that the p-divisible group Gy is a G-adapted lift of G j(.) in
the terminology of [16], Defn. 3.3].

2.18. Let u € 0j be such that
ﬁE ZZP[’UJ

v

Let Ty be the torus from (2.12]), so that
u € TO(ZP) = ﬁgv

Then the sub-group generated by u is Zariski dense in Tp.

Now, set v = r,(u) € T(Z,) C Mn,(Zp): this is a central element by (2.13). Since
it commutes with p,, we find that it induces an endomorphism (indeed, an automorphism)
of the Breuil-Kisin module ), and hence of the p-divisible group Gy. We will denote this
endomorphism by .

For any Op, -algebra A, set

End, (A ®p, Go) = {f € End(A®gy, Go) 1 vf = [}
Lemma 2.19. For any perfect extension k/k(v), the natural map
End, (W(k) ®6y, Go) — End, (k ®ey, Go)
s a bijection.

Proof. Using Dieudonné and Breuil-Kisin theory, it is enough to show the following linear
algebraic assertion: Suppose that we have an endomorphism f of W (k) ®z, H, that commutes
with «y, and which satisfies

(2.19.1) tp(p) oo™ f = fouy(p).
Then the induced endomorphism 1 ® f of

W(k)[|ul] @z, Hy = W (k)[ul] @w &) W (k) ®z, H,
satisfies

(2.19.2) pp(E(W)p* (1@ f) = (1® f) o pp(E(u)).

For this, note that the sub-group u? C Ty(Z,) is Zariski dense in Ty. Therefore, for any
Zy-algebra R, any endomorphism of R ®z, H, that commutes with v will also commute with
ru(To(R)), and so we must have

@) frp®) ™ = f 5 1p(E)A @ Flup(E(u) ™ =11 f.

Combining the first of these identities with (2.19.1) shows that ¢*f = f, implying that f is
defined over Z,. This in turns shows that ¢*(1® f) = 1 ® f, and so the second of the identities

now implies the desired equality in (2.19.2]). O
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2.20. Let Autp(Hjp) be the group scheme over Z, obtained as the group of units in the
algebra Endp(Hjy). Here, Endp(Hj) is the algebra of endomorphisms of the F-crystal Hy.
Write Jy C Aut(Hp) for the largest closed sub-group that fixes the tensors {s,.0} C H.

From this description, one finds easily that Jo(Z,) (resp. Jo(Qp)) is the group of automor-
phisms (resp. self-quasi-isogenies) of the p-divisible group Gy 1(,) whose crystalline realizations
are G-structure preserving automorphisms of Hy (resp. Ho[p™1]).

Proposition 2.21. Then, for any Z,-algebra A, the map
GL(A Rz, Hp) — GL(A ®z, Ho) = GL(W ®z, (A ®z, Hp))

m—1®m

carries My, (A) into Jo(A), and induces an isomorphism of Z,-groups My, = Jo.
In particular, every element of Jo(Zy) preserves the grading and slope filtration on Go.

Proof. By Lemma 2.7 of [32] (see also (2.13)), up, and hence o(up), is central in My,,. From
this, it is easy to see that the map defined does indeed carry My, (A) into Jo(A).
Any h € Jy(A) satisfies

h™o(pp) (p)o(h) = o (k) (p)-
Set d = [E, : Q,], and consider the algebra

€ ={f € W @z, Bnd(H,) : Nuyp(p)o®()Npwy(p) ™ = f}.

Choose m € H), f € £, and write f(1 ®m) = >_ja; @ my; with m; € HJ and a; € W. Then
we find:

Zaj ®@mj = f(m) = Nuy(p)o(f)Np,(p) ' (m) = Zpi‘iod(aj) ®m;.

Since ad(aj) and a; have the same p-adic valuations, we must have a; = 0 for ¢ # j and
a; = 0" (a;). This implies that £ is simply the commutant of Nu,(p) in Og, ®z, End(H),).

It is easy to check that h € £ and that it therefore arises from an element of My, (A®z, O, ).
On the other hand, using the centrality of o(p,) in My, we have:

a(h) = o(up)(p) " ho () (p) = h.

Therefore, we in fact have h € My, (A).
The last assertion follows because any element of My, (Z,) clearly preserves the grading and
hence the slope filtration on Gg. O

Corollary 2.22. Suppose that k/k(v) is a perfect extension, and that f is a self-isogeny of
k ®o,, Go » whose crystalline realization, viewed as an automorphism of W (k) ®¢, Holp™],
fizes the tensors {1® sq0}. Then f lifts to a self-isogeny of W(k) @5, Go-

Proof. By (2.19), it is enough to show that any such isogeny must commute with . However,
by (2.21), we know that any such isogeny must arise from an element of My ,(Q,), and so

by (2.13)) must commute with ~. O

2.23. Let Uu_p C Ggy, be the opposite unipotent associated with p,, so that Lie Uu_p C

1

LieGgy, is the subspace on which pu,(p) acts as p='. Let (7@ be the formal scheme over

)

Ok, obtained from the completion of U o along its identity section. Let H(()i be the eigenspace

on which p,(p) acts via p’, so that we have a direct sum decomposition

H,=H" c H{".
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We have the unipotent subgroup Uy C GL(H) with Lie algebra Hom(H(()l), Héo)). Let ffo be
its completion along the identity section. Then we have a closed embedding of formallly smooth
formal 0'g, -schemes

(/jG — ﬁo.

Following Faltings 9], we can identify (70 with the deformation space of the p-divisible group
Go,k(v) in such a way that the identity section in UO(ﬁEU) corresponds to the canonical lift
Go. Furthermore, for any algebraic extension k/k(v), we can characterize the set Ug (W (k)) as
consisting of the G-adapted lifts of G j; see |16, Prop. 3.4]. We will not need to know precisely
what this means, except to note, as we did in , that G is such a lift.

2.24. Fix an algebraic closure k of k(v). Suppose that we have a point 2o € Sk k() (k). We
will say that x( is p-ordinary if, in the notation of , with zg viewed as a kP-poin, the
trivialization 7 can be chosen such that v, , = v}.

By Proposition 7.2 of [34], being p-ordinary is also equivalent to: There exists a choice of
trivialization 7 such that by, » = o(up)(P).

It now follows from the main result of [34] that there is an open subscheme S?(ri(v) C Sk k(v)>
whose closed points are precisely the y-ordinary points of Sk x(,). We will call it the y-ordinary

~

locus, and will denote by S?gi(v) the formal completion of Sk along its p-ordinary locus.

Let zo € Sk i(v)(k) be a p-ordinary point. Let Autp(Heisz,) be the group scheme over Z,
obtained as the group of units in the algebra Endp(Heyis z,) of F-equivariant endomorphisms
of H sz, and let

Jzo C Autp (Heris z,)
be the stabilizer of the tensors {sq cris, o }-
Proposition 2.25. Let xg be a p-ordinary point in Sk (k). Then there is a canonical lift of x
to a point x € Sk (W (k)) characterized by the following property: There exists an isomorphism
of p-divisible groups
W (k) ®pyp, Go — Aulp™]
such that, for every a, the associated isomorphism of crystalline realizations
W(k) ®6’Ev HO i Hcris,wo = HdR,x

carries 1 @ 8q,0 10 54 cris,zg -
In particular, the p-divisible group G, = Ay, [p™] is equipped with a canonical grading

.
gwo = @ gio’
i=0
and a slope filtration

S"Gs, = P G-

i>rd
Moreover, there is an isomorphism of Zy-group schemes My, — Jy,.

Proof. When p > 2, this is shown in [32]. The same proof more or less works when p = 2 as well.
We recall the details: Choose a trivialization 7 such that by, » = o(up)(p). This immediately
implies that there is an isomorphism of p-divisible groups

k ®0Eu gO S_> gxo

whose crystalline realization carries 1 ® 84,0 t0 Sq,cris,zo, fOr €very a.
Using this, we can identify the deformation space for the p-divisible group G, with W(k)®¢,,

[70, where ﬁo is as in (2.23).
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Moreover, by Prop. 3.4 and the proof of Prop. 4.6 of [16], ﬁzo is a closed formal subscheme
of Uy that is identified with Ug. Now, as observed in (2.17)), the p-divisible group W (k) ®¢,, Go
is a G-adapted lift of G,,. Therefore, by the characterizing property of ﬁg(W(k)), explained
in ([2.23]), we find that this p-divisible group corresponds to a unique point x € S (W (k)) lifting
Zo-

The rest of the proposition is now immediate. O

Lemma 2.26. Suppose that B, = Qy,; or equivalently, that u, is defined over Q,. Then a point
xo € Sk (k) is ordinary if and only if the abelian variety Ay, is ordinary in the classical sense;
that is, if and only if Ay, [p™] is the extension of an étale p-divisible group by a multiplicative
one.

Proof. This result is certainly well-known, but since we could not find a convenient reference,
we provide a proof.
First, observe that in this situation Gy is an ordinary p-divisible group, isomorphic to

7Hom(HS, Qp/Zp) & 7H0m(H;, fip>=)-

Indeed, this is immediate from the fact that p, = o(u,) = Npyp.

Therefore, from we see that, for any p-ordinary point xg, Az, is an ordinary abelian
variety.

Conversely, suppose that A, is an ordinary abelian variety. We want to show that z¢ is
p-ordinary. For this, we can assume that k is algebraically closed. The ordinariness of A,
implies that we have a canonical F-stable grading

Hcris7:v0 = Hcris,wo (O> ® Hcris,a:g (1)

into its étale and multiplicative parts. On H® this gives us an induced grading

cris,zp?
Hgis,mo = @ Hgis,mo (Z)
=
The graded pieces can be described as follows: View I’ as a semi-linear endomorphism of
H?;is’ro, and set
(n) _ ( —i ® ®
Hi - (p ZF)n(Hcris,mo) N Hcris,wo'

Then we have
Hc@;is,aco (Z> = ﬂ Hz(n)
nEZZl

In particular, since the tensors {sq cris,z } are F-invariant, we find that we must have

{SOt,CYiS,Io} - H?;is,wo (O)

Let wo : Gpy = GL(Hyis 2, ) be the cocharacter corresponding to this decomposition, so that
po(p) acts trivially on Heis 4, (0) and via multiplication-by-p on Heyis o, (1). Then we see that
it fixes sq cris,zo, fOr each aﬁ Therefore, if we choose a trivialization 7 as in , then the
induced grading on W (k) ®z, H, is split by a cocharacter of Gy (), which we denote by g ;.

Let A" be the canonical lift of the ordinary abelian variety A;,: The corresponding Hodge
filtration on His 5, is given by the subspace Heyis z, (1). We claim that A" arises from a lift
x € Sxk(W(k)) of zp. Indeed, it corresponds to the origin for the canonical Serre-Tate formal
group structure on the deformation scheme (70 for the abelian variety A,,. Moreover, by the
main result of |28], the completion (7,;0 of Sk at x( is the translation by a torsion-point of a
formal sub-torus of 170. Since there are no such non-trivial torsion points defined over W (k),
and since Sk is smooth over Z,, it follows that the origin must lie within ﬁmo.

6This could also have been seen a bit more elegantly using a little Tannakian theory.
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Since po splits the Hodge filtration on Hgg 4, it follows that por must be G-conjugate to
tp. Therefore, by changing 7 by an element of G(W) if necessary, we can assume that it
induces identifications W (k) ®z, H}, =5 Herig (i), for i = 0,1. From this, one finds that m =
top(P) Loy r € My (W (K)). Write m = go(g)™', for g € My, (W (k)). Then by, roq = pip(p),
showing that x( is indeed p-ordinary. |

2.27.  Let Aut(A.,) be the group scheme over Z,) obtained as the group of units in the algebra
End(A,,). Note that there is a natural map of Z,-groups:

Zp ® @(Awo) — &F(Hcris,:co)-
Suppose that xg lies over a point z(, € Sk (F,) for a finite extension F,/k(v) contained in k.
Then we obtain a Zg-structure on Hyig ,:
Hcris,acg = W(k) ®Zq Hcris,ac{)-
For each r > 1, we now obtain a Z,-sub-group
@F(qu ®Zq Hcris,wg) C &F(Hcris,wo)-

Let leyisay,q- be the intersection of J;, with Autp(Zgr ®z, Hcris,m6)~ One can check that
Tevis,ay,qm = lexis,ay,q¢ for all v, s sufficiently divisible. Write Ioyis o, for this common sub-group
of Jz,.

Let 2 € Sk (W(k)) be the canonical lift of zo. Associated with this is the Z,)-group scheme
Aut(A,), defined just as above. Let I,, C Aut(A,,) (resp. I, C Aut(A;)) be the largest closed
sub-group that maps into J;,. Since every automorphism of A,, is defined over some finite
extension of F,, we find that I,, maps into e s, via the crystalline realization map, and we
obtain canonical homomorphisms of groups

(2.27.1) Ip = Iy 5 Zp @z Ly = Leris o

over Z,) and Zj, respectively.

Proposition 2.28. The natural homomorphisms in are all isomorphisms of Zy-group
schemes.

Proof. Choose an isomorphism W (k)®¢, Go = A,[p™] asin (2.25). Viasuch an isomorphism,

the automorphism + of Gy, which is central in Jy(Z,), transfers to a canonical endomorphism

Yo of Ag[p™].
Suppose that zg lies over a point x, € Sk (F,~) and that r > 1 is large enough that all
endomorphisms of A, are defined over F;-. Let

MW(-Ax) C &(-Ax) ; M’Y(Axo) C M(Axo) ; M%F(Hcris,x{)) C MF(Hcris,x’o)
be the subgroups of automorphisms that commute with ~,.
Then, by (2.19)), the natural map
(2.28.1) Aut (A;) — Aut (Ag,)
is an isomorphism.
Moreover, Tate’s theorem provides us an isomorphism of Z,-groups:
(2.28.2) Zp @z, Aut (Ag) = Aut p(Heis )

By (2:22)), we find that every element of J,,(Z,) lifts to an automorphism of A, [p>°]. This,
combined with Serre-Tate deformation theory immediately implies that the canonical map
I, — I, is an isomorphism.

To show that the second map in is an isomorphism, we will need a bit more work.
Fix a geometric point T : SpecFr(W(k)) — Shg lying above z, so that we obtain tensors
{Sa.pz} C HY7 invariant under the absolute Galois group T' = Gal(Fr(W (k))/ Fr(W (k))).
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Choose an embedding ¢ : Fr(W (k)) < C; then we obtain a natural G-structure preserving
isomorphism Z, ® Hp ) = H, 7. Let M%Hdg<HB,L(E)) be the group scheme of automor-
phisms of the Z,)-Hodge structure Hp ,(z) that commute with ~,,, and let Iz ,(z) be its largest
Z(p)-sub-group that stabilizes the tensors {sq,p,.(z)}

There now exist canonical isomorphisms of Z,)-groups:

(2.28.3) Aut, pag(Hp, 7)) — Aut, (A;) = Aut (Ag,).
Combining with (2.28.2]) now provides an isomorphism of Z,-groups:
(2284) Zp ®Z(p> M%Hdg (HB,L(E)) i> M%F<Hcris,w6)~
Since the various comparison isomorphisms are all G-structure preserving, one finds that (2.28.3)
induces isomorphisms of Z,)-groups
IB,L(E) i> Ia: i> I.’L’o
and that (2.28.4) induces an isomorphism of Z,-groups
Zp ®Z(p) IB,L(E) i) Icris,x0~
Combining these now finishes the proof of the proposition. O
Remark 2.29. Kisin has shown that (2.28) holds in general, without the ordinariness hypothe-
sisﬂ if one works instead with the associated Q,-groups; see [19]. In [20], it is shown that the
result continues to hold without the unramifiedness hypothesis on Gg, .

We could have of course appealed to these more general results, but found the direct proof
above appealing enough to present here.

Corollary 2.30. Fiz a prime £ # p, and let Hy 5, be the l-adic realization of Ay, : it is a
Qg-vector space equipped with a G(Qy)-orbit of isomorphisms Q @ H = Hy ., and thus a
canonical collection of tensors

{Sa,&xo} - He@,)aco‘

Then, for any Z,)-algebra R, I, (R) consists of the elements f € (R®z,, End(AxO))X, whose
L-adic realization fo € (R ®Z, End(Hy )™ fizes {Sa.0.00} pointwise.

Proof. This is obtained by using the Betti realization of the canonical lift, which shows that
the condition on f is independent of the prime ¢, and can in fact be checked for the p-adic
realization of the generic fiber of the canonical lift, where one can use the p-adic comparison
isomorphism to conclude. O

Corollary 2.31. With the notation as above, the following are equivalent:
(1) Icris,xg = J:vo'
(2) Lp @ Iny = Jag -
(3) For some integer v > 1, there exists an isomorphism " : Fyr ® 6, Go — Agy [p°] whose
base-change over k satisfies the conditions of (2.25)).
O

Definition 2.32. We will say that x( is hypersymmetric if it satisfies any of the equivalent

conditions in (2.31)

"Note that all relevant definitions can still be made in the absence of this hypothesis.
8The definiton is originally due to Chai [4] in the case where G = GSp(H).
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Remark 2.33. (1) Suppose that Ay, is hypersymmetric as an abelian variety; that is, sup-
pose that the natural map

Zp @1z, End(Az,) — Endp(Heris z,) = End(Ag, [p™]).

is an isomorphism. Then it is immediate that x( is hypersymmetric as a point of Sg. In
fact, it is enough to assume that A, is isogenous to a hypersymmetric abelian variety:
any abelian variety isogenous to a hypersymmetric one is itself hypersymmetric.

(2) Any ordinary elliptic curve £ is hypersymmetric in the above sense: The right hand side
is Zy, X Zy, and so it is enough to know that End(€) has rank at least 2 as a Z,)-module
(since the image of the map in question is saturated), which is clear, since Frobenius
does not act as a scalar.

(3) Suppose that Shx admits a modular curve as a sub-Shimura variety via a map of
Shimura datafl

(GLg, H) — (G, X).

Then the ordinary locus S}’gﬁ}p contains many hypersymmetric points: Indeed, the
symplectic representation H, viewed as a representation of GLo, must be isomorphic
to a direct sum of the tautological representation, for weight reasons. Therefore, if x
is a point of Sk that is the reduction of a point on the modular curve, then A, is
isogenous to a power of the elliptic curve associated with that point. In particular, if we
choose the point so that the associated elliptic curve is ordinary, then by the preceding
remarks, and by , we find that z( is a hypersymmetric p-ordinary point.

(4) We do not know a general criterion for when a hypersymmetric g-ordinary point should
exist. See however [36] for the PEL case.

3. THE CANONICAL TORSOR OVER THE j-ORDINARY LOCUS

The goal of this section is to define a canonical My, (Z,)-torsor over the p-ordinary locus—
usually referred to as the Igusa tower—and to relate this to the G(Z,)-torsor I,, over the generic
fiber ShK

As before, we fix an algebraic closure k for k(v).

Proposition 3.1. Let G = A[p™]|goza. Then there exists a descending filtration {S"G},cq of G
K
by p-divisible subgroups that specializes at every p-ordinary geometric point xq to the filtration

{57Gao brea-

Proof. Let xy be a p-ordinary point in Sk (k), and let R,, be the complete local ring of Sk at
xp. Set
ngo = A[poo] |Spec Ry -

Then, by Propositions 4.1 and 5.1 of |32], it follows that the slope filtration on G,, lifts to a
filtration {S"G Ra, treg of G R.,- The statements there assume p > 2, but the proofs go through
even for p = 2: All they need is an explicit, group-theoretic description of the complete local
ring R,, and this is available for p = 2 by the results of [16].

The content of the proposition is that these filtrations can be glued together as z( varies.
For this, it is enough to show that, for every morphism

Spf A — S

with A a p-adic, formally smooth, formally of finite type O, -algebra, the p-divisible group
Glspr 4 has a slope filtration inducing the canonical ones from the previous paragraph over
each complete local ring. Over F,, ® A, this follows from [14, Thm. 2.4.2], which shows the

9This is only possible if Ey, = Qp.
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statement on the level of Dieudonné F-crystals, and Main Theorem 1 of [6], which shows that
the Dieudonné functor is an equivalence of categories over F), ® A.
We need to now show that the slope filtration lifts over A. First, note that the maximal
étale quotient
gfg* (g|Spec(]Fp®A))
lifts canonically to the maximal étale quotient

g|SpecA — grg‘ (g|SpecA) .
Let S>0G |spec 4 be the kernel of this map. It is enough to show that the induced filtration on
5>0G |spec(F, @) lifts. Now, we are dealing with a formal p-divisible group. Let H be a formal
p-divisible group over F, ® A, and let D(H,) be the evaluation of the covariant Dieudonné
F-crystal of H on the formal divided power thickening
Spec(F, ® A) — Spf A.

It is a finite free A-module, and the F, ® A-module F, ® D(H,) has a canonical Hodge filtration
Fil* (F, ® D(Ho)). By [35, Corollary 97], there is an equivalence of categories between liftings
over A of Hy, and liftings of the Hodge filtration to a direct summand of D(Hp). Therefore,
given a lift H of Hg, corresponding to a lift

Fil' D(Ho) € D(Ho),
a sub p-divisible group Jy C Hy lifts to a sub p-divisible group of H if and only if
Fil' D(Ho) N D(J)

is a direct summand lifting Fil'(F, ® D(J)). This is a condition that can be checked by
verifying at it over the completions of A at every maximal ideal.

Now, apply this to the slope filtration on S >Ug|5pec(]pp® 4), and use the observation from the
first paragraph of the proof to conclude. O

3.2. Set
gr" G =5"G/ Ussr S°G s grG = Par’ G
reQ
Suppose that we have a formally of finite type p-adic O, -algebra AEL and a morphism of
formal schemes

Y SpfA%gf(rd.

For any integer n > 0, an isomorphism of finite flat group schemes over A
n:AQg,, grdolp"] = erGylp"]
is said to preserve My ,-structure if, for every point z of Spf A valued in k, there exists an
isomorphism
Lk ®oy, Golp"] = k@4 Gy[p"]
such that:

e For every index «, the induced isomorphism of crystalline realizations
Noris + (W(K) ®6, Ho)/p" = (W (k) ®4 Heris ) /D"
carries 1 ® sq,0 t0 1 ® S cris,aq-
e We have
gri =1y, k®epy, grGolp"] — k®agrg,p".

10By this, we mean that A is p-adicaly complete and that F, ® A is a finite type k(v)-algebra. We will
topologize such algebras using the p-adic topology.
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An isomorphism of p-divisible groups
A ®5EU gr gO i> grgy
preserves My ,-structure if the induced isomorphism on p"-torsion preserves My ,-structure
for every n > 1.
Given n > 1, let I]%L be the functor on morphisms
y: Spf A — 8%

as above that associates with y the set of My ,-structure preserving isomorphisms

A®e,, grGolp"] = grG,lp").

Similarly, let Ié\/[ be the functor that associates with y the set of My ,-structure preserving
isomorphisms

A®py, grGo — gr0y.

Proposition 3.3. The functor I, is represented by an My, (Z/p"Z)-torsor over glo{rd. More-
over, we have

M __q: M
Ip _@Ip,n’
n

M Cord
and so T," is an My, (Z)-torsor over SF.

Proof. The second assertion is clear once the first has been shown.

For the first, simply observe that there is an obvious My, (Z/p™Z)-action on I%l via pre-

composition, and that, by (2.25)), the fibers of Ié\,/[n over any k-point of S}}rd are indeed torsors
for this action. a

3.4. Let H, n, be the dual of the Tate module
7,60 = lim Go[p")(@,)

associated with the p-divisible group Go. This is a ', = Gal(Q,/E,)-module, and, by (2.21),
we have a canonical embedding

MN”(ZP) — Aut(go) — Autrv (Hp,Np)-
Note that the grading Gy = @;G} also endows H, v, with a I',-invariant grading

d
_ i
H,n, = @ H \,.
1=0

Let {Sa.6,} C HY be the F-invariant tensors from (2.17). By the full faithfulness of the
functor described in (2.15)), they correspond to I',-invariant tensors

{8ap,Nu} C HE)NW

We can view H), y, as a pro-étale sheaf over Spec F,. Now, consider the pro-étale sheaf Iy,
over Spec E,, that associates with every E,-scheme T', the set of M, (Z,)-equivariant isomor-
phisms of sheaves

HP,N P«‘T S Ep

that respect the grading on either side, and are also G-structure preserving, in the sense that
they carry {sap nu} to {Sa}.

The key result of this section is the following:

Proposition 3.5. Iy, is non-empty, and thus a left Z(My,)(Zy)-torsor over E,. Here,
Z(Mny) C My, is the center.
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Proof. 1t is clear that any two sections of I, differ by a unique automorphism of H, that
preserves G-structure and grading, and that commutes with My, (Zy). Therefore, Iy, if
non-empty, is a Z(Mpy,,)(Zp)-torsor.

It remains to show the non-emptiness. For this, let Zy;r be the Ty(Z,) = 0 Ev—torsor arising
from the Lubin-Tate tower over E, associated with the uniformizer p. More explicitly, let Gg
be the Lubin-Tate formal g, -module associated with the polynomial 29 + p; then

Tirm = Golp"\Galp" ']
with the transition maps given by multiplication-by-p.
We will now show that Zy,, is the push-forward of this torsor along the map

tesr,, (1)1

TO(Z;D) Z(MN#)(ZP),

where r,, is as in (2.13]).

Explicitly, this means the following: Let recyr : I'y — To(Z,) be the Lubin-Tate character
associated with Zy;r, which describes the action of I';, on the Tate module of Gg. Then we have
to show that the Galois representation H, 1,1 obtained from the composition

1
r, o, To(Z,) SN Z(Mnp)(Zp) — GL(H,)

is isomorphic to H, n,.

Let Repy, (Tv) be the category of algebraic representations of Tj on finite free Z,-modules.
Given p : T — GL(D) in this category, we obtain the associated Galois representation Dyt
with underlying Z,-module D. As shown in [1, Prop. 3.5.2] (following an argument due to
Rapoport-Zink [31]), Dy is a Zy-lattice in a crystalline representation of I',, and therefore, as
explained in , we can associate with it a Breuil-Kisin module 91 (D).

By the full faithfulness of the functor in , our proof will be completed by checking that
there is an isomorphism of Breuil-Kisin modules

My (Hy) = Ho.

This is best done by considering the entire category Repy (Ty). Given p : T — GL(D) here,
we can associate with a Breuil-Kisin module 9,55 (D) in a more direct way: Note that we have
a distinguished cocharacter ug € X.(Tp) determined by the choice of embedding E, — @p, SO
that 7, o po = pp. This cocharacter is actually defined over O, . Set

Muaive (D) = Gk(v) ®Zp D,
with the Breuil-Kisin module structure given by

p(po(E(u)))

F Sp*mnaive(D) = Gk(v) ®Zp D Gk(v) ®ZP D = mnaive(D)~

Observe that, by construction, we have an identification of Breuil-Kisin modules $¢ =
Muaive (D). Therefore, we will be done if we can show that, for every D as above, we have
an isomorphism of Breuil-Kisin modules

mLT(D) i §-Innaive(-l))-

If D is the tautological representation of Ty on E,,, then Dy is the dual of the Tate module
of G, and the desired isomorphism is given in [1, Prop. 2.2.1]. Since D generates the tensor
category RepZp (Tp), if we knew that My is an exact functor (as Myaive clearly is), then we
would be done. In general, however the functor from is not exact. However, this is still
okay, since, as follows from the discussion in , the composite of both functors with the
fully faithful functor .# is exact, and this is sufficient for us to conclude. ]
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3.6. Let g?(rd’an be the rigid analytic space over E, associated with the formal scheme g}’(‘"d in
the sense of Berthelot; see the appendix to |6]. It admits an immersion

Gord,an an
Sordan _, gpan

to the rigid analytic space associated with the F,-scheme Shg. In particular, we can restrict
the G(Z,)-torsor I, over Sor®*".

Lemma 3.7. The restriction of I, over gg’;d’an admits a canonical reduction of structure group
to a Py, (Zy)-torsor

P
Ip — Ip|§(}){rd,an.

Proof. Note that (3.1) gives us a filtration {S"G},cq, which translates over the rigid analytic
space S})(Td’an to an ascending filtration of the p-adic sheaf Hp|gora,an:
K

(S H| gt} e

On the other hand, we have an ascending filtration of the Z,-module H,, given by
S, H, = P H;,
i<rd
whose stabilizer in Gz, is precisely Py ,. The desired reduction of structure group is given by
the sheaf of G-admissible trivializations

ﬂp — Hp|§;{rd,an

that carry {S,H,} onto {S, H}|goraan }.
L K

To check that this is indeed a torsor under Py M(ZP)’ it is enough to do so over any classical

point x € g’;(rd’an arising from the canonical lift of a point zg € S}’;f}c( o) (k). Here, it is immediate

from (2.25)) and (3.5). O

Proposition 3.8. Let
PS5 (Z
1Y = I <P M, 2,)

be the induced My, (Zy)-torsor over §}}rd’an, By slight abuse of notation, write In, for the

Z(Mn,)(Zy)-torsor over S obtained from the torsor over Spec B, in (3.4).
Then there is a canonical isomorphism of My ,(Zy)-torsors:

M Z(Mn,)(Z =, M
Ip w Z(Mn ) (Zp) INM_>Ip |§}>(rd,an.

Proof. First, observe that the contraction product on the left is indeed an My, (Z,)-torsor in
a natural way. Indeed, since Z(My,,) is central in My, the action of m € My, (Z,) given by

B> (nom. )
1M x Iy, 220D, g gy

descends to the quotient Iéw x Z(Mn ) (Zy) In,, and gives it the structure of an Ig/[—torsor.
To finish, it suffices to construct a Z(My,)(Z,) X My, (Z,)-equivariant map

@ Iy < Iny = I goraon.
The point is that the right-hand side can be identified with the My, (Zj)-torsor of isomorphisms
0:grHyn, = gr Hp,
such that, for each n > 1, the induced isomorphism

0, : gr H, n,./p" = gr H,/p"
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can be lifted, étale locally, to a G-structure and slope fltration preserving isomorphism
O, : Hy, vy /p" = H,/p".

A section « of IZ],VI can be interpreted as an isomorphism « : gr H,, S oor H,, and a section
B of I, N, can be seen as an My, (Zp)-equivariant isomorphism § : gr H,, n, = gri,.
We now set
(o, 8)) =aofB:grHp Ny, S ogr H,.

It can be checked that 6((«, 58)) is a sction of I;X[N# and that 0 has all the desired properties.
O

Remark 3.9. Though we will not need this, it is not hard to see that both the u-ordinary locus
and the canonical torsor over it defined above are independent of the choice of the symplectic
representation H.

4. p-ISOGENIES AND p-HECKE CORRESPONDENCES

4.1. Suppose that D is a smooth affine group scheme over Z,, and that P is an D(Z,)-torsor
over an O, -scheme S. The contraction product

P xP®) D(Q,) = (P x D(@y)) /D(Z,)

gives us an D(Q,)-equivariant pro-étale sheaf over S that we will refer to as the D(Qy)-torsor

associated with P. We obtain an D(Z,)-equivariant inclusion of sheaves

P c P xPZ) D(Q,)

by taking the image of P x {1} in the right hand side.

4.2. Suppose that Py, P2 are two D(Z,)-torsors over S. An isogeny o : P; --» P2 is a

D(Qy)-equivariant isomorphism of sheaves

a: Py xP@) D@Q,) = Py xPE) D(@Q,).
Given such an isogeny, pro-étale locally on S, there exists h € D(Q,) such that
a(P1)h =Py C Py xP) D(Qy).
The class of h in D(Z,)\D(Q,)/D(Z,) is well-defined, and gives rise to a section

typ(a) € H°(S, D(Z,)\D(Q,)/D(Zy)),

which we will call the type of the isogeny «.
When D is reductive, T C D is a maximal torus with a choice of Borel subgroup B O T of
D, we can use the Cartan decomposition to obtain an identification

D(Zp)\D(Qp)/D(Zp) = CB7

where CB is the set of coroots of 1" that are dominant with respect to B and defined over Z,,. In
this situation, we will also use typ(«) to refer to the corresponding section of CE. In particular,

when typ(a) is constant on S and equals A € C};, we will say that « is of type A.
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4.3. Suppose still that D is reductive, and let ¢ C D be a parabolic subgroup with Levi
quotient L. Suppose that we have two Q(Z,)-torsors P, and P2 g over S, and an isogeny
a : P1,g --+ Pa2,¢. Then via change of structure group along the morphisms Q(Z,) — D(Z,)
and Q(Z,) — L(Z,), respectively, we obtain an isogeny of D(Z,)-torsors

ap : Pi,p --» P2 p,
as well as an isogeny of %—torsors
ar : Pi,p -+ Pa,r.

The dominant chamber in X, (T) for D determines one for L as well, and we can consider
the corresponding subspace Cz as above. The next lemma is immediate from the definitions.
Lemma 4.4. Suppose that ap has type A € CB. Then ay, has type v, where v € CZ s such
that the image of D(Z,)\(p)D(Z,) N Q(Qy) in L(Q,) intersects L(Zy,)v(p)L(Z,) non-trivially.

O
4.5. Suppose that A : G,, = D is a cocharacter defined over Z,. Let M) C D be the Levi

subgroup centralizing A, and let U ;r ,Uy C D be the unipotent subgroups whose Lie algebras
are the sum of the positive (resp. negative) valuation eigenspaces for A(p). Let

P =M\UF

be the parabolic subgroups associated with A\. We then have the projective Z,-scheme Par)
associating with every Z,-algebra R the set of parabolic subgroups @ C Dpg that are fppf
locally on Spec R conjugate to P, . Note that conjugating P,” by D induces an isomorphism
of homogeneous spaces
D/P; = Par,
over Og, .
For any n > 1, set
Prary,n = P xPE) Pary (Z/p"Z).
Also, set
Px = P/(D(Zp) N Xp)D(Zyp)A(p) ™).

These are both finite étale covers of S.
Lemma 4.6. For n sufficiently large, we have a D(Z,)-equivariant surjection:
Par(Z/p"Z) — D(Zp)\(p)D(Zp)/D(Zy).
Here, D(Z,) acts everywhere on the left. If \ is in addition miniscule then we have a D(Z,)-
equivariant isomorphism:
Pary(F,) = D(Zp)A(p)D(Zy)/ D(Zy).

In particular, we have, for n sufficiently large, a surjective map of finite étale S-schemes
Prary,n = Px; and, if A is minuscule, we have an isomorphism Ppar, 1 = Ph.
Proof. Observe that the map m — mA(p)D(Z,) sets up an isomorphism:

D(Z,)/(D(Zp) N AM(p)D(Zp)A(p) ") =+ D(Zy)A(p)D(Zy)/ D(Zy).

For n > 1, set
Up(n) = ker(D(Z,) — D(Z/p"Z)).

Then there are bijections

) g—gPy g™t

D(Zy)/Up(n)Py (Zy) = D(Z/p"Z)/ Py (Z/p"L Pary(Z/p"Z).
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Indeed, the first is because of the smoothness of D, and for the second, this follows from Lang’s
theorem, and the fact that a torsor under Py over Z/p™Z is trivial if and only if its base-change
to IF), is trivial.

It is now enough to show that that D(Z,) N A(p)~'D(Z,)\(p) contains Up(n)Py(Z,) for n
large enough. Then we have:

Up(n) = (U5 (Zp) NUp(n)) - (Mx(Zy) NUp(n)) - (Uy (Zp) N Up(n)),
so that
Up(n) Py (Zp) = (U (Zy) N Up(n)) Py (Zy).

Moreover, we have

Py (Zp) CAD) Py (Zp)A(D) ™15 A)UY (Zp)A(p) ™! C U (Zp).

Therefore, everything comes down to the easily checked fact that, for n sufficiently large, we

have
Up(n) NUY (Zy) C Xp)UY (Zp)X(p) ™"

Now, suppose that A is minuscule. This means that Lie U;\" C Lie D is the eigenspace on
which A(p) acts via p under conjugation. Moreover, U ; is a commutative unipotent group
scheme over Z,, and is thus isomorphic to its Lie algebra. We have to show, under this
assumption, that

Up(1)NUY(Z,) = )\(p)U;r(Zp))\(p)_l.
But it is easily seen that both sides are equal to U; (z,)P C U;r(Zp), the subgroup generated
by ptP-powers. O
4.7. We now return to the notation of Given two morphisms s1,s2 : S — Shg, a quasi-
isogeny of S-abelian schemes up to prime-to-p isogeny
§: AS1 - A52
is G-admissible if the associated map of QQ,-sheaves

£ H, s, [pil] = Hp,sl[p71]

carries, for each o, Sq.p,s, t0 Sap,s; -
To any G-admissible quasi-isogeny &, we can attach a canonical isogeny

O‘(g) : Ip,s1 - Ip,s2

of G(Zp)-torsors over S. Indeed, given a G-structure preserving trivialization 7y of H, ,,,

()71 omg is a G-structure preserving trivialization of H), s,[p~']. In fact, it is a section of
I, x¢%») G(Q,), and we set typ(£) = typ((€)). If this is constant and is represented by A(p),
for some X\ € Cf, we will say that ¢ has type A.

Via comparison with the Betti realization, it follows that any G-admissible quasi-isogeny &
as above induces a G-structure preserving isomorphism of prime-to-p étale realizations

* . ~
gAf .HA?“” ——)HA?’SI.

Moreover, in the notation of (2.5)), this gives us an isomorphism of G(A%)-torsors s71? = s5IP
over S. The canonical KP-level structure [n] over Sk pulls back to sections

[7751] € HO(S7 S:Ip/Kp%
for i = 1,2. We will say that £ preserves level structures if £, carries [ns,] to [1,]

The next lemma follows easily from the uniformization in (2.4)), and its relation to the moduli
description of the points of Shy as described in (2.5)).
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Lemma 4.8. If F is a field in characteristic 0, and x,y € Shg(F). If there exists a G-
admissible, level structure preserving isomorphism A, = Ay, then x =y.

O

Definition 4.9. Fix )\ € CJCS, and let Isog, be the functor on F,-schemes associating with
T the set of triples (s1,$2,&), where s1,s2 € Shi(T), and € : As, --+ As, is an admissible
quasi-isogeny of type A that preserves level structures.

Lemma 4.10. Isog, is represented by a scheme of finite type over E. Moreover, let

(81,82,§)—>s1 (81,82,§)—>s2
SSE LA LERAEN SSALhlLLlnALN

Shr

be the source and target morphisms, respectively. Then sy (resp. ty) is isomorphic tomy : I, x —
Shg (resp. m_x : Ip_x — Shg), the finite étale covers obtained from I, by the construction

m .

Proof. We will prove the assertion for sy. The one for ¢, is shown in completely analogous
fashion.

sx @ Isogy Shr ;5 tx : Isogy

It is enough to construct a G(Z,)-equivariant isomorphism of étale sheaves
ISOg)\ Xsx,Shg Ip E‘> Ip X Shy G(Zp))‘(p)G(ZP)/G(Zp)a

where the action on the right is the diagonal one whose quotient gives I, x, and the action on
the left is via that on I,,.

Suppose that we have a section ((s1, s2,£),¢) on the left hand side over some scheme S. This
gives us the Z,-lattice

TN E Hys,) C H 7.
This gives a section gG(Z,) of G(Z,)\(p)G(Zy)/G(Z,) such that

gﬂp = L_l(f*H ,82>'

It can now be checked that
((817 8275)7 L) = (ngG(Z}?))

is the desired isomorphism. O

4.11. As before, we fix an algebraic closure k/k(v). Suppose that we have two morphisms

o, Yo : Speck — S?gi(v).

A quasi-isogeny
£ Ay, -+ Ay,
is G-admissible if, for every a, the associated map on crystalline realizations
5* : HcriS,wo [p_l} i> Hcris,yo [p_l}
carries Sq,cris,ze 1O Sacris,yo -
If S is any p-adic, formally of finite type, formal & Ev—schem@ with two morphisms s1, s5 :
S — §;}rd, a quasi-isogeny
£ As, - A,
is G-admissible if it is so over every point of S(k).
It follows from below that any such quasi-isogeny induces a G-structure preserving
map of A?—sheaves:

* Lk =~ *
§A? 181 Hy, -—)52HA?.

HUThat is, a formal O, -scheme that can be covered by affine formal schemes of the form Spf A, with A a
p-adic formally of finite type O, -algebra.
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Therefore, just as in (4.7)), it makes sense to require £ to a be a level structure preserving

quasi-isogeny.

Lemma 4.12. If xg,yo € Sk (k) are two p-ordinary points , then any G-admissible isogenﬂ
60 : AIO — Ayo

lifts to an isogeny

£ A = Ay,
where x,y € Sk (W (k)) are the canonical lifts of xo,yo. Moreover, the induced isogeny of abelian
varieties over Fr(W(k)) is G-admissible in the sense of (4.7)).

Proof. Immediate from (2.22)) and (2.25). The last assertion follows from the fact that the
p-adic comparison isomorphism preserves G-structure; see (2.10)). |

4.13. Suppose that we have a morphism s : S — g}’gd. Associated with this is the My, (Zp)-
torsor Izﬂ‘/f parameterizing My ,-structure preserving isomorphisms

grGo,s = grgs.

The associated My, (Qy)-torsor Z xMxuZp) My, (Q,) can be described as the sheaf param-
eterizing My ,-structure preserving quasi-isogenies

n:grGos -+ grgs,

where the quasi-isogeny 7 is said to preserve My ,-structure if, for every k-point ¢ factoring
through S, the crystalline realization of 7,

Norts.zo * W(K) @65, &1 Holp™'] = g8 Heris oo [p 7]
is equal to gr7,, for some G-structure preserving isomorphism
Mwo : W (k) @0, Holp™'] = Heris o [P™']-
4.14. As is easily seen from this description, any G-admissible quasi-isogeny
§: Az, - Ay,
for 1,29 : S — §f§d gives rise to a canonical isogeny of My, (Z,)-torsors

B(€) : x’{IIJ,W -5 ac;IZI)VI

carrying a quasi-isogeny 7 : gr Go,s --» gr G, to gré[p™]on.
We set typ(€) = typ(B(€)). If this section is constant and is represented by A(p) for some
A€ CX/[NH, then we say that ¢ has type A.

Remark 4.15. The type of an isogeny £ as above can be computed as follows: Let us assume
that the type is constant. Fix a point xg € S(k). We then have two lattices

—1
Hcris,:L'l 5 g*Hcris,a:Q C Hcris,;cl [p ]

Fix a trivialization
t:W(k)®@6p, Ho — Heris
as in (2.25)). Then the type of & is the unique A\ € C&N“ such that

THE Heris,oy) = mAP) (W (k) @, Ho),

for some m € My, (Z,).

12That is, an isogeny that is admissible when viewed as a quasi-isogeny.
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In particular, suppose that we have a map s : S — S%‘}C(v), and that Fr : S — S is the
absolute Frobenius. Then we have the canonical Frobenius isogeny:

F,: A, — .Apr(s)

Then the explicit description of Hy in (2.17)) shows that F; has type o(u,). In fact, since o ()
is centralized by My, we find that any other G-admissible isogeny of type o(u,) must differ
from Fs by a G-admissible automorphism of A;.

4.16. Fix a p-ordinary point zo € Sk (k). Let Isog®™ (k) be the set of pairs (yo,€), where

xo
Yo € Sk k) (k), and where £ : A, --» Ay, is a G-admissible, level structure preserving

quasi-isogeny. Let z € Sig(W(k)) be the canonical lift of xzy. By (2.25), we can a G-
structure preserving isomorphism 7 : W(k) ®¢,, Go =5 G,. There now exists a unique coset
iy (&) Mny(Zp) € My (Qp) /My (Zp) such that

Meris (€ Heris,yo) = my () (W () @6, Ho).-

This gives us a map:

(4.16.1) my, : Ts0g? (k) — My (Qp)/ My, (Zy).

zo
For any cocharacter A € CL, let

Tsog™s (k) C Tsog2(k)

A,xo zo

be the subset of pairs (yo, &), where £ has type A.

Proposition 4.17. The map (4.16.1)) is a bijection. Moreover, it maps the subset Isog;’:io(k)
onto My (Zp)\(p) MNu(Zp) /My (Zy).

Proof. This can be deduced from the very general description of isogeny classes found in |19,
81], but we give a direct proof here for the convenience of the reader.
Once the first assertion is known, the second is immediate from the definitions and .
To prove the bijectivity of , we will use the canonical lift.
First, suppose that we have two G-admissible quasi-isogenies

&1 Axg -2 Ayo ;& Amo -2 Azo
with m,, (&) My, (Zp) = my(§2) My, (Zyp). Then one finds that the quasi-isogeny
& 05;1 P Az - Ay,
is in fact an honest isomorphism A, = Ay, By 7 it lifts to an isomorphism
A, = A,

of the canonical lifts that is a G-admissible, level structure preserving isomorphism over Fr(W (k)).
But then y = z, by , and hence yg = zo. Therefore, to finish the proof of injectivity, it is
enough to know that A, has no non-trivial G-admissible, level structure preserving automor-
phisms, but this is a consequence of the fact that Si is a scheme, because of the neatness of

K[

1310 more detail: The Zpy-group Iz, is compact-mod-scalars over R, and so the embedding
Lz (Z(p)) = g (A?) - G(A?)
has discrete image. Here, the second embedding is obtained from the étale realization for Iy, acting on zg HA?,
which can be identified with H,» in a G-structure preserving way. This embedding can be chosen so that the

level structure preserving elements of I, (Z(p)) map into KP, and thus form a finite subgroup of K?. Since KP

is neat by hypothesis, this finite subgroup has to be trivial.
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To prove surjectivity, we will first define a map

@ : G(Qy)/G(Zy) — Tsoggy (k)

o

as follows: Fix an embedding ¢ : W (k) — C, and suppose that the canonical lift =, viewed as a
point ¢(z) € Shg (C) is the image of a pair (h, g”) under the uniformization (2.4.1). This means
that we have chosen a G-structure preserving trivialization o : H,) = H B,u(x) Such that the
induced Hodge structure on H(,) corresponds to h € X.

As observed in , given a coset gG(Zy), there exists v € G(Q) NgG(Z,). Now, the point
g =[(v"'h,v7'g)] € Shik(C) depends only on gG(Z,), as we find from the observation that, if
7" € G(Q) is another choice satisfying 7' € gG(Zy), then v~ 1" € G(Z)).

Notice now that the action of v on H gives a natural map Hp gy — Hp (), which is the
Betti realization of a G-admissible, level structure preserving isogeny

ﬁ(g) : Ab(w) — .Ag.

This implies that the point § arises from a point 7 defined over the algebraic closure Fr(W (k))
of Fr(W(k)) in C. In particular, if yo € Sk (k) is the reduction of g, then @w(g) reduces to a
G-admissible, level structure preserving isogeny

w@(g) : Azg = Ayo-

Indeed, this is immediate from the fact that the various comparison isomorphisms preserve
G-structure.

We claim that the composition m, ow(g) can be described as follows: Write Z for the points
z viewed as a Fr(W (k))-valued point, and observe that in the notation of the proof of (3.4),
the trivialization n induces a G-structure preserving isomorphism

77; ‘H,7z — Hp n,.

Choose go € G(Z,) such that the composition

*

go Ap p
H, - H, ~ H), 5 = Hy vy

is a section of the sheaf Iy, from (3.4).
Using the Iwasawa decomposition

G(Q) = UJ\?;L(QP)MN;L(QP)G(ZP),

we can write g € G(Q,) in the form n™ (g)m(g)k(g), where the coset m(g)Mn,(Z,) is canoni-
cally determined.
It can now be checked from the definitions that, for all ¢ € G(Q,), we have

my (@ (9)) My (Zy) = m(galg)MNu(Zp)~

This finishes the proof of surjectivity and thus of the proposition.
a

4.18. We will say that \ € CIT/[N“ is effective if A(p) acts on H,, via eigenvalues of non-negative
p-adic valuation. In this case, any admissible quasi-isogeny of type A is actually an honest
isogeny at all geometric points. This can be seen for instance from the description of the type

in (4.15)) above.

——ord
Let Isogir be the functor on p-adically complete formally of finite type Og, -schemes S,
associating with S the set of triples (x1, 2, &), where

T1,T2 S%S?(rd

and & : A, — A,, is a G-admissible, level structure preserving isogeny of type A.
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— ord
We will write Isog3™ for the reduction of Isogi mod p.
We have the source and target maps

OI‘d ——ord (m17z27€)b—>:61 —ord ($17Z27€)HI2

: Isog), —>S°rd g Iso Sord.

4.19. Fix a G-structure preserving isogeny &) : Go — Go of type A. For instance, such an
isogeny arises from the map
Hy 2208
In the notation of , let
[707 A C ﬁg X ﬁg
be the closed formal subscheme consisting of lifts (z,y) where f x lifts to an isogeny & : G, — G,,.
Suppose that we have a point (zg, yo, o) € Isogord(k:) Let Uxo (resp. Uyo) be the completlon
of Sk at x (resp. yo). Then the completion U(:r:o,yo,so) is a closed formal subscheme of U o X U
As seen in the proof of , given a choice of G-structure preserving 1som0rphlsm

Nz - W(k) ®ﬁEv Go i> gwou

we can identify ﬁxo with [7@7W(k) =W(k) ®ep, Uc. Similarly, a choice of trivialization 7, for
Gy, allows us to identify ﬁyo with (/jg’w(k). By the definition of the type of £y, we can choose
Neo and 1y, such that

77;)1 080N, =1®@ay: W(k) ®og, Go — W (k) ®og, Go.

The following lemma is immediate.

Lemma 4.20. Under the isomorphisms ﬁmo = ﬁG,W(k) and Uyn = UG’W(;@) chosen abowve,
the subspace ﬁ(x07y0750) - ﬁro X lAfyO s mapped onto ﬁc)\,w(k).

O

Proposition 4.21.

_—— ord

(1) Isog())\r is represented by a formally of finite type, p-adically complete formal scheme
over Ug, .

(2) The source and target maps factor as

——ord g, 7
M ord
x» Iy — 8¢

Ord IsogA I 7T—> Sord tord Isog
where the maps o) and ,8,\ are finite flat homeomorphisms, and
grd I ! _>Sord’ rord . IM \ _)Sord
are the finite étale covers obtained from Iéw n .
Proof. The first assertion is standard: In fact, the morphism
(s7,1) : Toogn — St x St

is locally of finite type and formally unramified. Indeed, it is formally unramified because
homomorphisms between abelian schemes have at most one lift over any nilpotent thickening;
see [13, Lemma 1.1.3], and it is locally of finite type over Sord Sord since that is the case for
the homomorphism scheme Hom (7} A, 75.A), where, for i = 1,2

Sord % Sord N Sord

is the natural projection onto the ith—factor.

Moreover, by [10, Proposition 2.7], (sx,tx) satisfies the valuative criterion of properness,
_~—ord N
and therefore Isog(;r is a union of finite, formally unramified formal schemes over Sord x Sord,
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By (and ), both sy and ¢ have finite fibers, from which it follows that s§*4 and ¢§™
are both finite morphisms.

We now construct the morphisms «y and ). This proceeds just as in . For instance,
for ax, one needs to construct an My, (Z,)-equivariant isomorphism

——ord

Isogy X sera gora ' -1 X gora My (Zp)MNp) ™ Mu(Zp) /My p(z,)-

This is done as follows: Given a section ((z1,22,£),n) on the left hand side over a connected
p-adic formal scheme S, we send it to (n, mMn,(Z,)), where mMy,,(Z,) is the unique coset

mMNu(Zp) C MN;A(ZP)/\(p)ilMN;A(ZP)
such that, for every point ¢ € S(k) valued in an algebraically closed field k, we have
W(k) ®6’EU ar Hy=m- ncris,zlot(szcris,wgot) C HO[p_1]~

It now follows from that the rank of the fibers of the finite morphisms a\ and 3, are
constant. Since Z)A and Z)) , are formally smooth over &g, , this immediately implies that c
and By are both also flat.

Since ay and B are finite flat, to check that they are homeomorphisms it is enough to see
that they induce bijections on k-valued points for all algebraically closed fields k. But this is

immediate from (4.17). O

Corollary 4.22. Suppose that Sk x(v) has a hypersymmetric p-ordinary point. Then both maps
sx and ty induce isomorphisms on the schemes of connected components.

Proof. By (4.21), this is equivalent to showing that the maps 7§™ and 7°7 induce isomorphisms
on the schemes of connected components. This can be done using (4.6]), the existence of the

hypersymmetric point, and results from §[[] We do not give the details since we will not need
this result, but see the proof of ((5.25) below. O

4.23. Let G,, C T be the group of scalars, and let xo : G,, < T be the canonical inclusion.
For any \ € CX/[, there exists i € Z~¢ such that \(¢) :=i-xo+ A is effective. We can now define

— ord
Isogi to be the moduli of tuples (z,y,&), where § is a quasi-isogeny from A, to A, such that
rd

the tuple (s, t,[p'] o €) is a section of Igo\gi(i). This definition does not depend on the choice of
1, as shown by:

Lemma 4.24. Suppose that A is effective; then the map

—ord —ord

Isogy — Isogy()
(s,t,6) = (8,1, p€)
s an isomorphism of functors.
Proof. This amounts to the following assertion, which is easily deduced from the definitions:

Suppose that zg,yg € S})(r",i(v)(k) and that £ : A,, — A,, is a G-admissible p-isogeny of type
A(1). Then ¢ factors uniquely through the multiplication-by-p endomorphism of Ay, . a

4.25. We now look at the relation between the two definitions of admissible quasi-isogenies,
one over Shg, and the other over Slogd. Suppose that we have A € CJGF7 and consider the
E,-scheme E, @ Isog,: It restricts to a finite morphism

gord Gord
Isogd" — Sp @™ x S,

— ord
Similarly, if we have v € CL, then we can restrict Isogjr to obtain another finite morphism

—— ord,an ~ .
; d d
Isog,, — Syt x SOt
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For every A € Cf;, let S(\) C C}; be the subset of cocharacters v such that v(p) can be lifted
to an element of Py (Qp) N G(Zp)A(p)G(Zy).

Proposition 4.26. There exists a canonical identification

an ™~ ——ord,an
|_| Isogy" — |_| Isog,,
xecd, vect,

of spaces over S}}rd’an X S;’{rd’an. It maps Isogy" into the disjoint union

— ord,an
|_| Isog,
veES(A)

Proof. After replacing A by A(¢) for some integer i € Z>o, if necessary, we can and will assume
that it is an effective cocharacter.

Giving a point of S x 824" valued in a smooth affinoid Q,-algebra R amounts to speci-
fying an open, bounded, integrally closed subring R° C R, and a pair of maps x°,y° : Spf R° —
S, K of formal g, -schemes. Two such pieces of data, corresponding to tuples (RY, 5, yS) and
(RS, x3,v3), give the same point if there exists a bounded subring R° C R containing both

¢, RS such that the maps =9, x5 and yi, yS agree when restricted to Spf R°.

Now, suppose that we have an R-valued point ¢ of §?§d’an X S\?(rd,an represented by a tuple
(R, 2°%,y°).

Giving a lift ¢ to an R-valued point of Isog}" amounts to the following: We have abelian
schemes A,o and Ay over R°, giving rise to abelian schemes A,, A, over B. Let X be the
affinoid rigid analytic space associated with R; then any classical point of X gives rise to a point
of Shg. Now, the lift to Isog}” is given by a level structure preserving isogeny & : A, --» A, of
abelian schemes over R that is G-admissible of type A at every classical point of X.

Suppose that we are given such a lift. By [10, Prop. 1.2.7], £ extends to an isogeny &° :
Agzo — Ayo of abelian schemes over R°. Moreover, using the compatibility of the cohomological
realizations of {s,} with the p-adic comparison isomorphism 7 one finds that £°is G-
admissible in the sense of .

,an

— ord
Giving a lift to an R-valued point Isog(;r on the other hand, amounts to specifying a
possibly larger bounded subring R{ containing R°, and a level structure preserving p-isogeny

'gf s Ago |Spcc R — Ayo |Spcc RS
of abelian schemes over R} that is G-admissible of type v in the sense of (4.11]).
If we are given such a lift of ¢, then the restriction of £ over Spec R is a G-admissible
p-isogeny & : A, — A, in the sense of (4.7).
The proposition can now be deduced from (3.8]) and (4.4]). O

4.27. It will be useful to make part of more explicit in the situation where E, = Q,.
In this case, we have Nu = i, and the eigenspace decomposition of H), is H, = Hg @ H;.

A formal group T over W (k) is diagonalizable if there exists a finite Z,-module M such
that, for any Artinian local W (k)-algebra B with maximal ideal mp, we have

T(B) = Hom(M,1 + mp).

In this situation, we will say that M is the character group for T. In the situation where M
is finite free over Z, with dual module M"Y, we also have T(B) = MY ®z (1 + mpg). In this

case, we will call T a formal torus, and MV the cocharacter group for T.
Let Uy be the formal torus over W (k) with cocharacter group Hom(H,, H)). Fix A € Cir-

Then we have two isogenies of formal tori

1 ,,0.77 77
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whose induced maps on cocharacter groups are given by

arsaol! (p) a— A0 (p)oa
EE—

Hom(H,, H)) Hom(H,, H,) ; Hom(H,, H,) Hom(H,, H))),

respectively. Here, for i = 0,1, X(p) is the restriction of A(p) to H. Set

PIXYY A ~  (u)—suvTt
_—

[707/\ = keI‘(U() X [70 ——= Uy x Uy Uo)

This is a diagonalizable formal subgrup of Us.
As in (2.20), let U, C Gz, be the opposite unipotent associated with y,. Then the action
of LieU, on Hy gives us an embedding of Z;-modules

T 1 g0
LieU,, C Hom(H,, H)).
Let UG - (70 be the formal sub-torus with cocharacter group Lie U, R Set
UG7,\ = (UG X U(;) n Uo))\.
This is a formal diagonalizable subgroup of ﬁG X ﬁg. The two natural projections give us
homomorphisms

UGA_>UG7p,\ UGA—>UG;

whose kernels are isomorphic to ker ¢)\|ﬁc and 1 A‘ﬁc’ respectively.

Proposition 4.28. Suppose that xo,yo are p-ordinary points in Sk (k). Let ﬁxo and ﬁyo be
the formal W (k)-schemes obtained by completing Sk at x¢ and yo, respectively, and let (75 be
the complete local rmg of IsogA at (xo,y0,&). Then there exist zdentzﬁcatzons Uzo = UG and
Uy0 = UG such that Ug is identified with the formal subscheme UG A C UG X UG

Proof. The p-divisible groups G, Gy, are both extensions of an étale p-divisible group by a
multiplicative one. More precisely, as in (2.26)), we have

Go = Hom(H,, e~ ) & Hom(Hy), Q/Zyp),
and we can choose G-structure preserving isomorphisms

0 :k®ﬁEv gO i) g:l)() ; 77yo : k®ﬁEU gO i) gyo-

For all the p-divisible groups above, we will denote their multiplicative and étale parts with a
superscript mult and ét, respectively.
The isogeny &y induces maps

mult . ~omult mult . #ét . Hét ét
€0 : gﬂﬂo - gyo ) S0 - gIo - gyo

By the definition of the type of &, we can find trivializations 7, and 7, such that £nult and
&t are identified with

B—BoX! (p) =0’ (p)
)—p>}107m(H1,,U/poo) Hom( p’QP/Z ) u}@(HO,Qp/Zp)

Hom(H}, iy »

p

respectively. Denote these maps by ﬁm““ Guult —y gmult and ﬁé Gst — G§t, respectively.
Then we obtain an isogeny

By = Bt g S Gy — Go.

Now, for any Artin local W (k)-algebra (B, mp) with residue field k, and any pair of p-divisible
groups Hi, Ho over B, write

Ext (1, o)

for the set of extensions of p-divisible groups of H; by Ho over B, which reduce to the trivial
extension over k.
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Then we have:
~ —1
Uo(B) = Hom(H,,H)) ®z, (1+mp) = Hom(H,, H))) @ Ext5(Qp/Zy, pip~)
—1
= Ext g (Hom(H,),Q,/Z,), Hom(H,), fip~))

p

— Exty (B ®op, G5 B @0s, G5™).

Therefore, we can identify [70 with the deformation space over W (k) of the p-divisible group
k ®¢5, Go. Note that the identity element of Us(W (k)) corresponds to the canonical lift
W (k) @6y, Go under this identification.

For each extension in (?O(B), we can obtain two new extensions by pushing out along the
homomorphism A" and by pulling back along the homomorphism £§'. The first of these
corresponds to the endomorphism ¢}\ and the second to the endomorphism 1/19 of ﬁo.

Moreover, suppose that we have two extensions G, ,G,, corresponding to points z1,x2 €
ﬁo( B). Tt is now clear that g, lifts to a homomorphism between G,, and G,. 5 if and only if we
have ¥} (21) = ¢ (z2). Putting all this together we find that Uo x C Uy x Uy is precisely the
subspace parameterizing pairs (21, z2) such that gy lifts to an isogeny G, — G,.,.

Using 7, and 7,, we can now identify the deformation spaces of both G;, and G,, with Uo
The formal schemes Umo and Uy0 can be identified with formal subschemes of the deformation
spaces for the p-divisible groups G,, and G, respectively, and thus with formal subschemes
of (70. To finish, it is now enough to show that, under these identifications, both Uwo and ﬁyo
map onto (7(;.

We will do this for ﬁxo, which will suffice by the symmetry of the situation. Consider the
logarithm map

¢ To(W(k)) = Hom(H}, HO) ® (1 + pW (k) ~2% Hom (H, HY) ® pW (k).
Here, in the first equality, we have identified the formal Ext group with 1 + pW (k) using
Kummer theory, and the last map is given by the usual p-adic logarithm.
We now claim that we have

(U, (W(K))) C £(Uc(W (K))) = LieU, ® (1+pW (k).

The second equality is immediate from the definition, so the inclusion of the left hand side in
the right is the main thing to check. Assume this has been done. Then we claim that the
proposition follows. Indeed, both ﬁg and ﬁm are smooth formal subschemes of (70 of the same
dimension, and so, if we have

Uzo(W(k)) C Ua(W(K)),

then it immediately implies ﬁxo = (7@. If p # 2, then ¢ is injective, and we are done. If p = 2,
then the kernel of ¢ consists exactly of the 2-torsion points. But even in this case, we know
by [28, Theorem 3.7] that ﬁzo is a translate by a torsion point of a formal sub-torus of ﬁo; in
fact, since it contains the canonical lift, szo is itself a formal sub-torus of (70. Let X5 (resp. Xo)
be the character group of the formal torus Uo / Ug (resp. Us / (710): these are direct summands
of Hom(H;,Hg). Via the map ¢, we find that 2X; = 2X5, and hence that X; = X5. This
shows that the result remains valid also when p = 2.

It remains now to show the inclusion

U(Usy(W(K))) C LieU, & (1+pW (k).

For this, we will need the following interpretation of the map ¢: Given a lift z € ﬁO(W(k:)),
we obtain a p-divisible group G,, whose de Rham realization is canonically identified with
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W (k) ®z, Hp. The Hodge filtration arising from this identification is of the form
Fil, (W (k) @z, Hp) = (1+ pNa)(W (k) ®z, Hy),

for some N, € W (k) ®z, Hom(H}, H})). It follows from a computation of Katz |7, A.3] that,
at least up to sign, we have

pN, = l(x) € Hom(H;, HS) ® pW (k).

Now, by Prop. 3.4 and the proof of Prop. 4.6 of [16], if z € Up(W (k)) lie in Uy, (W (k)),
then the corresponding lift G, is G-adapted. Among other things, this means that we have:

{1®sa} CFil’ ou (W (k) ®z, HY),

where Fil3 (W (k) ®z, HY) is the filtration induced from Fill. This implies that pN, = £(z) €
LieU, , and finishes the proof of the proposition. Indeed, the argument in [18, Lemma 1.5.6]
shows that we have

((z) € (LieG + Lie P,,) N Hom(H,}, H),

and this latter intersection is easily seen to be equal to Lie U, i g

5. DEGREE LOWERING FOR SPECIAL ENDOMORPHISMS

In this section, we apply the above considerations to the special case of GSpin Shimura
varieties, and show that the certain irreducible special divisors in their generic fibers continue
to have irreducible reduction over F,. Combined with the methods of [25], this yields a quick
proof of the irreducibility of the moduli of primitively polarized K3 surfaces of fixed degree in
any characteristic.

5.1. We begin by quickly presenting the required paraphernalia for a GSpin Shimura variety,
and direct the reader to [24] and [12] for more details.

The starting point is a quadratic space (V, Q) over Q with signature (n,2) for some n > 4.
The quadratic form @ gives rise to a symmetric pairing

[z,9]q = Qxz +y) — Q(z) — Qy)

on V.

Associated with this is the reductive group G = GSpin(V, Q) over Q, as well as a Hermit-
ian symmetric domain X that parameterizes the space of oriented negative definite planes in
Vk. The pair (G, X) is a Shimura datum of Hodge type with reflex field Q; a choice of sym-
plectic representation given by the Clifford algebra H := C(V,Q), on which G acts via left
multiplication.

We will fix a prime p and assume that the quadratic space has been chosen so that it admits a
self-dual lattice V) C Va,- This is a Z,)-lattice on which the quadratic form is Z,-valued,
and is such that the associated bilinear form is non-degenerate. Note that when p = 2 this
forces n to be even.

In this situation, G, is unramified and admits a reductive model

Gz, = GSpin(VZ(p),Q).

Therefore, with K}, = Gz, (Z,), and for any neat level subgroup of the form K = K, x K?,
we have the associated Shimura variety Shx = Shk (G, X) over Q, and the integral canonical
model Sk over Lp)-
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5.2.  The lattice
Hy,, =C(Vz,,,Q) C C(V,Q)
gives us an abelian scheme A — Sg up to prime-to-p isogeny, as in § [3|
The lattice Vz,, C V gives rise to canonical sub-sheaves

V, C End(H7)
for 7 = B, p,dR, cris. For every morphism 7" — Sk, we have a canonical Z,)-submodule
V(T) C End(Ar)

whose cohomological realizations are sections of V7 for appropriate values of ?. The space V(T)
has a canonical positive definite quadratic form

Q : V(T) — Z(p)
characterized by the identity Q(f)ida, = fo f € End(Ar).

5.3. For every m € Z(>p0), we now have a morphism

Z(m) — Sk

parameterizing, for each T'— Sk, special endomorphisms f € V(T)\pV(T') with Q(f) = m.

For the properties of this map, we direct the reader to [12| §7.1]. Here, we simply summarize
its properties.

To begin, Z(m) is locally of finite type and formally unramified over Sk, and also flat over
Zp)- Moreover, it is a local complete intersection.

Next, there is a canonical open subscheme

ZP"(m) C Z(m),

characterized by the property that the de Rham realization of the universal special endomor-
phism over ZP*(m) spans a local direct summand of Vyg.

Let Z(m) — Shk be the generic fiber of Z(m). Then we have Z(m) C ZP*(m); cf. |24}
Lemma 6.16] and its proof.

Also, let Z°7(m) — gf(rd be the restriction of Z(m) to the completion along the ordinary
locus, and let Z°"4(m) be its special fiber. Then Z°*4(m) is a smooth, dense open subscheme
of Zpr(m)ppm In particular, ZP*(m) is regular in codimension 1 and, being a local complete
intersection, is also normal, by Serre’s criterion.

Warning 5.4. In the cited references, the condition that f not belong to pV (T') is omitted. This
is an open condition, which is even closed over the gemeric fiber. It helps us pick out exactly the
components that will be useful in what follows. Note that, if p> { m, then f can never belong to

pV(T). In this case, the map Z(m) — Sk is a countable union of finite morphisms, and equals
ZP*(m).

5.5. Recall from that we have a canonical étale G(Z,)-torsor I, over Shi. Set V, =
Ly, ®Z Vz(p). Given m € Z(>13’ fix a unimodular elemenﬂ Um € VZ(p) such that v,, o v,, = m.
Let G, C Gz, be the stabilizer of vy,: It is a smooth group scheme over Z,); cf. [24, Prop.
2.9][M

Let V,,, C V be the orthogonal complement of (v,,), and let Vm,Z(p) be the Z,-lattice in
Vin induced from Vz . The generic fiber of G,,, can now be identified with GSpin(V,,). If

Um

ldpor smoothness, see also (5.19) below.

15This means that vm spans a direct summand of V.

16The proof there requires p # 2, but works just as well when p = 2 and the bilinear form associated with @
is non-degenerate.
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X, C X is the subspace of oriented negative definite planes contained in V,,, then the pair
(Go,,.0s Xim) is once again a GSpin Shimura datum.
If v € G(Z(y)), then conjugation by v gives us another map of Shimura data:

int(7) : (Gu,., Xm) — (G, X).

V9

Given g € G(Ay), set Ky, 4~ = int(y) 1(gKg™') C G, (Af). Then we obtain a finite
unramified map
(va,Qme) — ShK

of GSpin Shimura varieties, which on the level of C-points is obtained from the map

tmoyg P Shr, = Shi

m,y,g

Xm % va (Af) (@,h)— (y-z,int(v)(h)g) X x G(Af)

Taking the normalization of Sk in Shg,, . now gives us an integral model Sk, . , over Z,).
Let S C Sk,, be the complement of the singular locus in Sk, ., r,. Then the arguments
in 24l Lemmas 6. 16,7.1] show that the natural map

m,y,g
lifts canonically to an open and closed embedding
Sk e — ZP(m).
Following |2, Prop. 2.7.4], one finds that the generic fiber Z(m) is the union of its open and
closed subschemes of the form Shg,, asy and g vary. Therefore, since ZP*(m) is normal,
the Zariski closure
Sy C ZP"(m)

Km,~,g
of S S is an open and closed subscheme; moreover every connected component of ZP*(m)
is obtained as the connected component of SE” e for some pair (v, g).

5.6. Let f € V(A|z(m)) be the tautological special endomorphism. Consider the sub-sheaf
Ipv, CIplzim)

of G-structure preserving trivializations ¢ : H,, = H, such that t(v,,) = f,; here, f, is the p-

adic realization of f. Since f spans a direct summand of V(Z(m)), it follows that f, generates

a direct summand of V,,. Then, by (24, Lemma 2.8], I, ,,. is a G, (Z;) torsor over Z(m)m
Let Iy, ,,, be the induced G,,, (IF,)-torsor: it is finite étale over Z(m).

Lemma 5.7. Given a sub-group H C G, (F,), the following statements are equivalent:

(1) The finite étale cover Iy, ., /H over Z(m) is relatively geometrically irreducible.
(2) The spinor norm v : G, (F,) — F) is surjective when restricted to H.

Here, we say that a finite étale cover is relatively geometrically irreducible if its restriction over
any geometrically irreducible component of the target is once again irreducible.

Proof. As discussed in , Z(m) is the union of Shimura varieties of the form Shy and
so it suffices to prove the result over each of these varieties.

By construction the p-primary part K, » 4. C Gy, (Qp) is equal to G, (Z,). One sees that
the finite étale cover Iy, ,,, /H is represented over Shg,, _ by the Shimura variety Sh Ky Koo o
where K, C G, (A ) is the prime-to-p part of Kmyg, and K, g C Gy, (Zy) is the pre-
image of H under the map

m,y,g?

int(y) : G, (Z,) = G(Zp) — G(Fp)

70Once again, the proof of this result goes through even when p = 2.
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On the other hand, the description of the connected components of Shimura varieties in [8|
Thm. 2.4] shows that, for any compact open K’ C G, (Af), we have

mo(Shy ) = A; /Qsov(K'),
where v : G,,, — G,, is the spinor norm. Therefore, the map
WO(Sth,HKﬁl,@) — Wo(ShK’@)
is a bijection if and only if v(H) = v(G,,, (F)) C F,;. Since v is a surjective map of group

schemes with connected kernel, the lemma follows. O

5.8. The (inverse) Shimura cocharacter y, determines an eigenspace decomposition of V,:
_ /1 0 -1
Vp=V, eV, eV, .

Here, V;,il are complementary isotropic lines and VpO C V, is the subspace orthogonal to both.
Let U wy C Gz, be the opposite unipotent associated with p,. As observed more generally
in (4.27)), we have a canonical inclusion

- 1 770
(5.8.1) LieU, C Hom(H,, H)).

This can be made explicit. Namely, let Gy = SO(V},) be the special orthogonal quotient of
Gz,. Then we can also identify U, o with the unipotent subgroup of Gy associated with the
isotropic line fol. That is, we have

LieU;, = {(ip.®) € Hom(V?, V; ") x Hom(V;, V%) : ¢ 44 = 0} C End(V}).

Here, we have used the non-degenerate bilinear form on V,, to identify VpO with its own dual,
and Vp1 with the dual of Vp_l, and hence the dual ¢ of ¢ with a map ¢ : Vp1 — Vpo. In what
follows, we can and will identify LieU,, with its image in Hom(V,), V™).

Fix generators v* of Vpﬂ. Then, as explained in |24, §1], under the left multiplication action
of V,, on Hp, we have

1_ Y — st - 70 — S T
H, =ker(v") =im(v") ; H, = ker(v™) =im(v™).
The embedding (5.8.1)) can now be described as follows: Suppose that we have a map ¢ :
V) — V, ! in Lie U, . There exists a unique vy € V) such that, for all v € V), we have
[vg, vl - v™ = ¥(v).
Now, one can check that, up to sign, under (5.8.1), (¢,%) maps to left multiplication by the

element v_vg in the Clifford algebra.

5.9. The scheme of parabolic subgroups Par,,, over Z, can be canonically identified with the
space of isotropic lines in V,,. Note that we have
Ly, Xty Z(m) = (I, X9 (G(Zy) 11 (p) T G(Z4)) G(Zy)) X0y Z(m)
= (Ip Xshx Z(m)) x G () Par,, (Fp)
= I, x%m &) Par, (F,).
Here, the second identification follows from (4.6]), and the fact that g, is minuscule.
Let Par), (vy,) (resp. Parﬁp (vm)) be the set of isotropic lines in Vi, that are not orthogonal

to v, (resp. orthogonal to vy, and linearly independent from v,,). Under the action of G,,, (F,),
Par,, (IF,) has the following orbit decomposition:

Um)} LU Par® (vm) U Par: (vs,), if vy, is isotropic mod p;
Hp Hp

Par, (F,) = {

Parzp (U U Parip (v ), otherwise.
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Indeed, each of the purported orbits is clearly preserved by the action of G,,, (Fp). Therefore,
it is enough to show that each is in fact an orbit. But this is an easy consequence of Witt’s
extension theorem (3], §4, Thm. 1].

Therefore, we obtain a finite étale cover

Tt Lo = Ipon, x Gom (Zp) Par;, (vm) C Ipu,lz(m) = Z(m).

Lemma 5.10. The map sz is relatively geometrically irreducible.

Proof. By (5.7), it is enough to show that the stabilizer H C G,,, (F,) of a line N € Par; (vm)
maps surjectively on FS via the spinor norm.

Set

V' = ((vm) & N)* C Vg,
Then clearly H contains the F,-points of the subgroup G’ C G, that fixes both vy, and N
point-wise.

We claim that V'’ is a non-degenerate quadratic subspace of V', and therefore that G’ =
GSpin(V”’) maps surjectively onto G,,, via the spinor norm. Combined with Lang’s theorem
and the connectedness of Spin(V’ )EL this will complete the proof of the lemma.

We claim that (v,,) @ N is isometric to a hyperbolic plane over IF,,. This will clearly suffice.

If v, is isotropic mod p, then N is a complementary isotropic line to v,,, and the claim
follows.

If vy, is non-isotropic mod p, choose a generator e for N. Set o = Q(vy,), 5 = [e, vy]: these
are both in F’. Set

f=—-p"tae+ vy.
Then we find that Q(f) = 0, and that e, f generate complementary isotropic lines, thus giving
us the desired hyperbolic plane. a

5.11. Fixm € Z>po. Define a functor Isog, (m) on Q-schemes as follows: For any Q-scheme
T, Isog,, (m)(T) cousists of tuples (s,t,&, f) such that:

e (s,t,§) € Isog,, (T) (cf. @7));

o feV(s)\pV(s) is such that fo f =m;

o T EpTIV\V(Y).
Note that the last condition is well-defined: Given any G-admissible quasi-isogeny & : As --+ Ay,
the induced automorphism

End(Ay)[p~] L2547 Bnd(A,) [pY

will carry V(s)[p~!] onto V(¢)[p~1]. Indeed, this can be checked on the level of cohomological
realizations, where it is immediate from the definitions.
We have the ‘source’ and ‘target’” maps

(3160 (5.) (306 (Ep(EFE™))
) ————— Z(m) ; ty,(m) : Isog,, (m) . Z(p*m).

S, (m) : Isog,, (m
Proposition 5.12.
(1) The map s,,(m) is finite étale and relatively geometrically irreducible.

(2) The map t,,(m) is an isomorphism.

Proof. Consider the map

1,

(@ (5:))
— S Ty, Xshg Z(m),

Isog,, (m)

18Recall that n > 4.
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where a,, is the map from (4.10). To prove (I), given (5.10) and (4.10), it is enough to show

o . o
that the above map carries Isog, (m) into I}, .

For this, we first note that the map can be defined by descent from a map

ISOgup (m) X Z(m) Iyv,, = Ipw,, X Z(m) G(Zp)ﬂp(p)G(Zp)/G(ZIJ =1, X Z(m) Parup (Fp)~

This is given as follows: Let V! C V, be the line on which f,(2) acts via z + 2. Given a
section ((s,t,&, f),t) over a connected scheme T on the left-hand side, the right-hand side is
(n,N), where N C Vg, is an isotropic line with the following property: There exists g € G(Z,)
such that:

o F),®z, ng_l =N;

* vm € P ghp(p)Vy\ghip(P) V-
To complete the proof of , it is enough to see that the conditions together are equivalent to
saying that N € Par, (IF,). But we see that

g(P)V, =p gV, @ gV @ pgV,).

Therefore, the second condition is equivalent to saying that the component of v,, in ngl is
non-zero mod p, which in turn is equivalent to N not being orthogonal to v,,.
As for , proceeding just as above gives us a map

Isog#p (M) X z(p2m) Ip’”;ﬂm — I, X z(p2m) Pary, (),

p2m
and we can finish by showing that the image of any tuple ((s,t,&),t") is (¢, (vp2p,)). Indeed,
just as above, if (¢/, N') is in the image of the map, then there exists g € G(Z,) such that:
o F,®gV,) =N/,
® Up2m € pgp(p) Ve
Since
paup(p) 'V, = p?gV, t @ pgV, @ gV,

the second condition can hold if and only if v,2,, generates N’ mod p. O

5.13. Assume that Vp0 is isotropic: This is always the case as soon as n > 3. Then there exists
a unique non-central co-character Ay € CL that is conjugate to p, under G(Z,). Concretely,
Ao determines an eigenspace decomposition of the form V) = V)(—=1) & V,2(0) @ V,)(1), with
V) (—-1), V(1) isotropic lines in V).

Let the notation now be as in , so that we have an embedding of formal tori (7@ C ﬁo
over W (k) corresponding to the embedding of their cocharacter groups in (5.8.1)).

The action of A\g on H; for ¢ = 0,1 breaks it up into eigenspaces

H, = H,(0)® H(1).
It also breaks up Lie U;p and Hom(HI}, HS) compatibly into eigenspaces

1 1
LieU, = P LieU, (i) ; Hom(H}, H)) = € Hom(H,, HY)(i),
i=—1 i=—1

where
Hom(Vy(1),V, ') ifi=—1;
LieU, (i) = { Hom(V,2(0),V, ") ifi=0; ,
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and
Hom(H} (1), H)(0)) ifi=-1;
Hom(H,, Hy)(i) = { Hom(H}(0), H)(0)) & Hom(H}(1), HI(1)) ifi = 0;
Hom(H}(0), H)(1)) if i = 1.
This gives us decompositions of formal tori:
(5.13.1) Ug = Ug(—1) x Ua(0) x Ug(1) ; Uy = Up(—1) x Up(0) x Up(1).

5.14. Asin (4.27), we have the formal diagonalizable subgroup
ﬁG,AO C UG X Ug.

We will now describe this subgroup more explicitly.
For this, we must recall the definition. We have two morphisms

V3, 88, : U = Do,
and we have
ﬁG,)\o = {(z,y) € Ug x Ug : ¥y, (@) =% (y)}-
On the level of cocharacter groups, the maps z/)}\o and wgo correspond to the homomorphisms

. _ cpr—w*vg)\(p) 1 oL T _ w—))\(p)v’vg 1 0
LieU, ——— Hom(H,, H,) ; Lie U, ——— Hom(H,, Hp),

respectively. From this, one checks that, in terms of the decomposition (5.13.1)), we have
1 c1 ol 1.0 i1l i
Uaoltg(-1y =P 1305 lgoy =145 U, lgg 1) = 15 9Alao ) =P id;
1 _ 0
Uoltg0) = YRol0a 0

Moreover, w}\o (equivalently, wgo) maps (7(;(0) isomorphically onto its image in Uy. On the
level of cocharacter groups, this amounts to the fact that the composition

Lie U, (0) = Hom(V,'(0),V, ) Q Hom(H,(0), H)(0)) & Hom(H) (1), H)(1)) —
L2220, Hom (HL(0), HO(0)) & Hom(H} (1), HY(1))

maps onto a direct sum of the target.
Therefore, we obtain a decomposition

ﬁG,)\O = qu;\o(—l) X ij,Ao (0) x ﬁG,/\O(l),
with
{(w,a?): z€Ua(-1)} ifi=—1;
(5.14.1) Uone (@) =4 {(z,2): x€Us(0)}  ifi=0;
{(@,2): zeUs(l)} ifi=1.

We can also express this in terms of character groups. Indeed, we can identify the character
groups of both Ug and Ug,y, with

Hom(fol,V;,o) —>fHJ;(v_) Vpo.
Via this identification, the inclusion
UG’)\ — UG X UG
corresponds to the map of character groups
0 0 (v W)=y (v)+m2(w) 0
Vo ®Vp Voo
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where, in terms of the decomposition
0 _ 1,0 0 0
V, =V, (=) @V, (0) &V, (1),
we have
™ = (pa 171) ; T = (1a lap)

5.15. For every m € Z,\{0}, choose v)), € V.2 such that Q(v9,) = m, and let M, C M, be
the stabilizer of v0,. Let Par§ (vy,) C Pary, be the open subscheme parameterizing for each
Zyp-algebra R, the set of isotropic lines N C R ®z, VpO that are locally spanned by a generator
w satisfying
[w,v) ] € R*.

Fix a line N € Par} (vn)(Zp), and let Qo C My be its stabilizer. We will consider
the spinor norm v : My — Gy,: this is a homomorphism of Z,-group schemes, and is the
restriction of the spinor norm on G. Let

Mv% - Mvgn ) évgl - Qu?n
be the kernels of the spinor norm.

Lemma 5.16. With the notation as above:
(1) The group schemes Mv% and év% are smooth over Z,.
(2) ]/\Z,g” is the Zariski closure in Mo of the derived subgroup of My q,, which is simply
connected.
(8) Myo acts transitively on Parl (vm).

Proof. First, we note that M, and Q.0 are smooth group schemes over Z,. For this, first
observe that the Levi subgroup M, can be identified with GSpin(Vpo). Therefore, just as
in , we can use |24, Prop. 2.9] to conclude that Mo is smooth over Zj.

Now, for Qo , consider the rank 2 direct summand V' C VpO generated by N and v0,. As
in the proof of , one can show that V’ is isometric to a hyperbolic plane over Z,. Let
My C M, be the pointwise stabilizer of V': This is isomorphic to GSpin(U’), where U’ C Vpo
is the orthogonal complement to V', and is thus a reductive Z,-group scheme. We now have
an exact sequence

1 — My *)Qvgn l>Gm
of Zp-group schemes, where x : Q,0 — Gy, gives the action of Q0 on N. Since Q0 contains
the subgroup GSpin(V"), we find that x is surjective, which shows that Q.o is smooth over Z,.

To prove the first assertion, it is now enough to observe that the spinor norm restricted to
Qupr is a submersion onto G, since it clearly is one when restricted to GSpin(V’). The second
assertion is also immediate, since Mv% is flat and is isomorphic to the simply connected Spin
group associated with the orthogonal complement of (v9,) in V.

Finally, the third assertion can be deduced from Witt’s extension theorem [3, §4, Thm.
1]. |
5.17. The restriction of the My, (Zy)-torsor ) over Z°1d (1) admits a canonical reduction
of structure group to an Mo (Zy)-torsor I%J?n E Here is how it is obtained: Suppose that we
have s : T — Z°'(m), and a section 1 € IM(T). For every point x¢ : Spec k — T valued in an

algebraically closed field k, we get an induced isomorphism

-1 : W(k’) ®6’EU gr HO i) ngcris,SOmo-

ncris,rg

This arises from a G-structure and slope filtration preserving isomorphism

ﬁcris,xo : W(k) ®ﬁEv H, E_) Hcris,soaco-
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This in turn induces an isomorphism
W(k) ®Zp ‘/;D E—) ‘/c:ris,soxo~

Now, the slope filtration on Hcyis,soq, induces an increasing filtration S Veris,sozo, and fleris,ag
now induces an isometry

(5.17.1) W (k) ®z, V) = 81§ Veris,soxo

which depends only on 77c_rils,x0 and not on the choice of lift feris o, -
We now define a subsheaf

) (T) c Z)(T)

P,
consisting of sections n such that, for every point xg : Speck — T valued in an algebraically
closed field k, the induced isomorphism carries 1 ® v?n € W(k) ®z, VpO to feris,somy €
Vi sony Here, feris sox, 18 the crystalline realization of f at s o .
To see that this does give a reduction of structure group, it suffices to check when T" = Spec k,
and here it is immediate from [24) Lemma 2.8].

Set

Mo (Z

70 (1) = T | ona gy %0 5 Par} (0 ().

This is a finite étale scheme over Z°™(m).

5.18. Let the notation be as in (5.13). For every m € Z,\{0}, we obtain two maps:

Lp»—m’vo 00 29 v 20

LieU~ 2 Hom(HY, HO) ; LieU: 22" ", Hom(H!, HO
ieU, ———— Hom(H,, »); Lie , ——— Hom(H,), )
which induce two morphisms of formal tori

Sy b - (7@ — [70.

Set
UG,UQ,L = ker(Sy — tm : Uo — (70).
Note that the difference between the corresponding maps of cocharacter groups is just
0 0] —

—[v),v

. _ ¥ prvm v 1 0
LieU, ——— Hom(H,,, H,).
From this, one finds that, if we identify the character group of (7@ with V;,O as in (5.13)), then
we obtain a corresponding identification of the character group of (7@71)9” with Vpo /(w8). In

particular, ﬁG,vgn is also a formal torus over W (k).

Lemma 5.19. Given a point (zo, f) € Z°7(m) (k) with k algebraically closed, there exists an
isomorphism Uy, — Ug as in ([&.28) that identifies the completion of Z(m) at (xo, f) with
Uguo -

m

Proof. This is shown just as in (4.28)), using Serre-Tate ordinary theory. ]

—ord —ord
5.20. Let Isog,, be as in (.18). Fix m € Z(>p[;. Define a functor Isogy (m) on p-adically

——ord
complete formal schemes as follows: For any such formal scheme T', Isogy  (m)(T') consists of
tuples (s,t,&, f) such that:

o (5.1.€) € Tog), (T);
o feV(s)\pV(s) is such that fo f=m;
o ST epTIV\V(Y).
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Just as in , it is the G-admissibility of ¢ that ensures that £ f¢~! is an element of V (¢)[p~!],
so that the last condition is indeed sensible.

As before, let ZAO‘d(m) be the restriction of Z(m) over §}’§d. Then we have the ‘source’ and
‘target’ morphisms

or ——ord (5::6,5)=(s.f) . Zor or ——ord (54,6, F)=(Ep(EFE™Y))  Sor
sAOd(m) : Isogy, (m) —/———"5 Z d(m) ; tAOd(m) s Isogy, (m) b Z d(m).

Proposition 5.21.
—ord
(1) Isog), (m) is representable over F), and is of finite type.
(2) The map s§*4(m) has a factoring

——ord (X?\rod (m)

Isogy, (m) o o (m) % 27 (m),

where a‘igd(m) is a finite flat homeomorphism.

(8) The map t;’\f}d(m) is an isomorphism.

Proof. The map

_—~—ord

Zord
Z°"%(m) Xg%d,s‘;gd Isog),

——ord s s s
(5.21.1) Isog(;\O (m) (o6, F)> (2.F) X (2:8:6)

_——ord
exhibits Isogiz (m) as a sub-functor of the right hand side. On the other hand, the latter
functor is representable and finite over Z°'4(m); cf. lj So, to show representability, it is

_—— ord
enough to show that Isogill; (m) is an open sub-functor of the right hand side of (5.21.1)).
Suppose that we are given an F,-scheme 7" and a map
——ord

((3, 1), (5,,8)) : T — Z°"Y(m) X sgrd sgrd Isog), -

Now, £f£~1 belongs to p~ "V (t), for some n > 1. Therefore f' = p™(£f¢~1) belongs to V(¢).
The locus in T where ¢ factors through Igo\g?\zd is now exactly the locus where f’ does not
factor through the multiplication-by-p™ map. This is also the locus over which the induced
endomorphism f/[p"] of the p™-torsion A;[p™] is non-zero, which shows that it must be open,
and completes the proof of .

We now move on to . By , we have a factoring:

ord
d —— ord (a7, (s,1))
s« Isogy, (m) -0 7

Here, o, is the map described in . There is was constructed by descent from the base-
change over IIJJW , but, since we are working over Zord (m), we can use the reduction of structure
group I%JBL instead. Therefore, exactly as in the proof of (5.12), it follows that the first map
in the above composition factors through a map

Iyh, X gpea Zord(m) — Z°(m).

—— ord o
a‘/{f}d(m) s Isogy, (m) — VASW (m)

that is a finite homeomorphism onto its image.
Similarly, in the factorization

_——ord Bt~ ()
t‘)’\’gd : Isogiz (m) 20

I;J\,Jf)\o X§?<rd 201'51 (me) N 201‘(;] (p2m)7
the first map factors through the section

é\ord(p2m) 4)]"1];\,/[—)\0 X§(}J{rd é\ord(p2m),
obtained from the Mo (I, )-equivariant inclusion

{{vm)} C Pary, (Fy)
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via a map
— ord ~
B354 (m) < Tsogs, — 2% (p*m)

that is again a finite homeomorphism onto its image.

To finish, it suffices to check that a‘if)d is flat and surjective, and that ﬁ;’\ﬁd is an isomorphism.
Both these facts can be checked on the level of the complete local rings at any geometric point

—— ord
of Isogiz (m).

This can be done using information from (4.28)), (5.13]) and (5.19). Indeed, these together im-

——ord
ply the following: Suppose that (so, to, &0, fo) is a point of Isog,  (m) valued in an algebraically
closed field k. Then there exists a decomposition
0_ 1,0 0 0
V=V (=) eV, (0)aV,(1)
with V;)(£1) complementary isotropic lines, and V,%(0) their mutual orthogonal complement
with the following properties:

e In terms of this decomposition, the component v9,(1) € V,)(1) of vy, we have
(5.21.2) 02 (1) #0 (mod p).
e Consider the endomorphisms 7 = (p,1,1) and 73 = (1,1, p) of Vpoz We then have
p-m(vh,) = ma(vle,,).

e If Ug is the formal torus over W (k) with character group Vpo, the completions of Sy
at sg and ty can be identified with Ug, so that the following hold:
— The completions of Z(m) and Z(p?m) at (so, fo) and (to,p(¢ofoéy ")), respec-
tively, can be identified with the formal tori with character groups V,)/(vy,) and
V) /(vp2,,), respectively.
— The completion of Is/ch(;\Zd at (so,t0,&o) can be identified with the formal sub-torus
of UG X UG corresponding to the quotient

0 0 m1®Hm2 0
Vp @V, ——=1V,
on the level of character groups.

—ord
Putting this all together, we find that the completion of Isog(;\0 (m) at (so,to0, &0, fo) is given
by the formal torus over W (k) with character group V;'/(m(v)),)), and that the maps to the

m

completions of gord(m) at (s, fo) and of Zord (p?m) at (to, p(&0foly ")) correspond to isogenies
of formal tori, given on the level of character groups by:

Vo' /o) =5 Vi [ (mi(on) s V) (vgem) =2 V) /(ma(vm,)),

respectively. It is now immediate from condition and the definitions of 71 and 9 that
the first map of character groups maps onto a sub-group of index p and that the second is an
isomorphism.

Combining everything now, we find that oz‘;gd(m) is given by a finite flat morphism of degree
p, and that B;’\f’d (m) is an isomorphism, thus completing the proof of the proposition. O

5.22. Let Z°7%a1 (1) be the associated rigid analytic space over Qp. From (j5.12)), we obtain a
map

Sp,(m) oty (m)~*: Zord’an(pzm) — Zord’an(m).
On the other hand, (5.21)) gives us another map

Sg\rod(m) Otg\rod(m)71 . Z{?ord}an(an,L) N éord,an(m)

Corollary 5.23. These two maps agree.
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Proof. Suppose that T' = Spf R, where R is a normal p-adically complete local ring, and that
we have a map of formal schemes f : T — Z°4(p?m). It is enough to show that, for ever such
map, as R varies, we have

Si1p (M) 0 1, (M) ™H o f27 = 5303 (m) o 135 (m) ™ o f2N

This can be deduced from the following assertion: If (z,y,¢, f) € Isog,, (m)(R[p~1]), and if
x,y extend to maps
#,9:T =Spf R — S¥4,
Then £ extends to a G-admissible isogeny over T of type Ag. Indeed (4.26)) shows that £ extends
to a G-admissible isogeny
of type either p, or Ag.
Moreover, f also extends to an element f € V(%) such that
EfE ep V@V (@),

However, if §~ were of type pp, then, as observed in (4.15)), it must be isomorphic to the
relative Frobenius map at every point. In fact, since it is level structure preserving, it has to
be the relative Frobenius at every point: the set M, (Zy,)u,(p)M,, (Zy)/M,,(Zy) from (4.17)
is a singleton.

But this is not possible: If zy is a p-ordinary point in Sk r,, f € V(zg), and F : A, —

50’;) = Am(p) is the relative Frobenius, then we would have:
0

FfF' = {0 e V(a{") C End(A ).
0

5.24. Write
T sif)d(m) o t‘)’\f)d(m)_l : Zord(me) — Zord(m)

For any m € Zag, we obtain a diagram:
mo (2P (p*m)g,) — mo (27 (p*m)g,) — mo(Z(p*m)g);

(5.24.1) s ~ | T,

o (Zpr(m)ﬁp) ? o (Zord(m)?p) — Wo(Z(m)@)

The horizontal maps are the natural ones. The maps on the left are bijections because the
ordinary locus is dense in the special fiber of ZP"(m). The vertical map on the right hand side
is a bijection by and .

Let P(m) be the assertion that the lower right horizontal arrow is bijective in the diagram
above, and let Q(m) be the assertion that the vertical arrow in the middle is bijective.

Proposition 5.25. P(m) is true whenever p> { m.

Proof. As observed in (5.4), under this hypothesis, we have ZP*(m) = Z(m).

From (5.5), we find that Z(m) is a union of the normalizations of Sk in smaller Shimura
subvarieties. Therefore [26, Corollary 4.1.11] shows that every connected component of its
special fiber is the specialization of a unique connected component of its generic fiber. More
precisely, the cited result shows that the proposition follows as long as we know that the special

fiber of Z(m) is geometrically reduced; but this is fine, since Z(m)g, is generically smooth. [
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Proposition 5.26. P(m) implies Q(m).

Proof. By and @I), Q(m) is equivalent to: The cover Zp \ (m) — Zord(1m) is relatively
geometrically irreducible. For this, let S;}rmmg C ZP*(m) be the open and closed subscheme
introduced in (5.5)), associated with a pair (v,9) € G(Z,)) x G(Ay). Write S?{imq for the
intersection of this subscheme with Z°"(m). The condition P(m) ensures that this is a union
of connected components of Z°*(m).

Since ZP"(m) is a union of subschemes of the form S%nmg, to finish it is enough to show

that the restriction

d
T,z (M) sora — Sy

Km,v,g 9

is relatively geometrically irreducible.
Let Ky vy gp C Go,, (Qp) be the p-primary part of K,, 4, and consider the inverse limit

Sh? = m SthwygﬁpK/"p’
K'p
where K'P ranges over compact open subgroups of G,, (N}). Then Sh? is a pro-étale cover
of Shg,, ., equipped with an action of G,,, (A?). Moreover, it extends to a pro-étale cover
SP — S}’(rmmg once again equipped with an action of G,,, (Ai’c). Let f be the tautological special
endomorphism of the restriction of A over ZP"(m), satisfying f o f = m -id.
Over 8P, we have a canonical G-structure preserving isomorphism

ar o Hyp — Hyrlsr

carrying vy, to the prime-to-p adélic realization of the tautological endomorphism f; see |24}
Prop. 6.7].

Using (2.33)), one can find a point zq € S}’(rmmg(k:) that is hypersymmetric for Si. This
means that the natural map

(5.26.1) Zy 2, Loy = Iy

given by the action of I, on A,,[p>°] is an isomorphism.
Let x be the canonical lift of zy, and fix a G-structure preserving isomorphism

7: W(k) @65, Go = A p™]

Note that A, carries a special endomorphism f,,. By modifying 7 by an element of M, (Z,) if
necessary, we can ensure that its inverse crystalline realization Tc_rﬁs carries v0, to the crystalline
realization foris z, of fz,. That is, we can ensure that 7 corresponds to a lift yg € I%)(Jm(k’) of
Zo-

Let I, (f) C I, be the commutant of f. Then the isomorphism of ([5.26.1]), combined with

conjugation by 77! induces an isomorphism
Ly RZp) Lo () = Mv?n'

We now apply (1.5). In the notation there, we take S to be the restriction of SP over

S}’;d 7 Hz, = My, P — S to be the M,o -torsor obtained from Ié”(v?n), Q = Qu,
m,v,g: ' p mn m m

T ={p}, G=G,, and Mz, = I;(f).
The embedding ¢ : I, (f)Az}» — va,Nf’ is obtained as follows: By (2.30)), given an AZ}—

algebra R, an element of I, (f)(R) is given by an element n € (R ®z,,, End(.AxO))X, whose
adélic realization Mar preserves the tensors {s,, A?,m} The map

—1
"Hf,g;,zo omp OEA?W

Ixo (f)Ap

Gyr
% A

f
is now the desired embedding.
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Note that, with this notation, and using the last assertion of , the étale cover Px 1 — S
considered in is precisely the restriction over S of Z? y (m). Therefore, to finish the proof
of the proposition, we need to verify that the hypotheses of are valid.

Hypothesis can be deduced from the assumption that P(m) holds, and the description
of the connected components of Sh” as in the proof of . Hypothesis holds since any
quadratic space over a local field of dimension greater than 4 is isotropic.

Hypothesis (3) follows from the validity of P(m) and the fact that G,,, (A%) acts transitively
on the connected components of ShZ.

Hypothesis is clear, and hypothesis @ was shown in . It remains to check hypoth-
esis , which would follow from knowing that the diagonally embedded subgroup

® = (Soa 'Q[J) : Ia:o (f)(Z(p)) — Mvgn (ZP) X va (AI;)
fixes yo € ZM

oo (k). Forany n € Lo, (f)(Z)), (n)(yo) corresponds to the point with underlying
abelian variety Ay,, but with the prime-to-p level structure &4» =z Teplaced by
f’

-1
§ar .z © V(N) = Ear zy © Eup o © M7 © €47 2o = Maz © Ear g
and the trivialization 7 replaced with

*lor.

Top(n) =Tor tonp™lor =np
Therefore, the isomorphism 7 : A,, — As(n)(zo) = Az, is G-admissible, level structure pre-
serving, and also carries the trivialization 7 to the trivialization ®(n)(7). It also fixes the special
endomorphism f,,. Combining this with (4.8) and the canonical lift shows that ®(n)(yo) = o,

and completes the proof of the proposition. O

Proposition 5.27. For any m € pr‘g, there is a canonical bijection:

M) (Zpr (m)ﬁp) i ™0 (Zpr(m)@) .

Proof. Using induction on ord,(m), this follows from (5.25)), (5.26)) and the following assertion,
which is clear from (5.24.1): P(m) and Q(m) together imply P(p*m). O

Proof of Theorem[1 Let M3 4.2 be the moduli stack of primitively polarized K3 surfaces over
Z(yy of degree 2d (see (25} §3]).

Let N be the self-dual quadratic Z-lattice U®? @ E§92, where U is the hyperbolic plane.
Choose a hyperbolic basis e, f for the first copy of U. Set

Lq= (e —df)y* C N.

This is a quadratic space of signature (19,2). We can choose our quadratic space V', and self-
dual Z,)-lattice Vz , such that V' has signature (20, 2) and such that there exists an isometric
embedding as a direct summand

Lazg, = Vg,

Associated with the lattice V7, and a suitable neat level subgroup K? C GSpin(V)(A’}),
we have the integral model Sk over Z ).

Let M;‘C‘;,Z(p) be the open smooth locus of Maqz, : This is a fiber-by-fiber dense subspace.
In particular, it suffices to show that M?;F is irreducible.

Hp

By the theory of |25, §5], extended to the case p = 2 in |16, Prop. A. 12] (see also the

. . / \ 1sm. 3 7 . 19
erratum at [23]), there is a finite étale cover M5 - of I\/I;‘iz(p), and an étale period ma

V5S¢ — ZP(2d)

19See erratum (?7) in the appendix below
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that is in fact an open immersion, since it is one in the generic fiber; see |25, Cor. 5.15].

Combined with ([5.27)), this shows that every irreducible component of M;r; KF, is the special-

ization of a unique irreducible component of |\~/|;‘;;1 P From this, we deduce the same assertion
for the fibers of M;‘;Z(p). However, it is well-known that the moduli stack is irreducible over C.
For instance, this follows from the Torelli theorem; see the proof of [25, Prop. 5.3]. g
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