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Abstract. We study p-Hecke correspondences on the µ-ordinary locus of the mod-p fiber of

a Shimura variety of Hodge type. We also study the p-adic monodromy over the µ-ordinary

locus using ideas of Chai and Hida. Applying these ideas to certain orthogonal Shimura

varieties attached to quadratic lattices, and using the Kuga-Satake period map, we conclude

that the moduli stack of primitively polarized K3 surfaces of any fixed degree is geometrically

irreducible in characteristic p > 0.

Introduction

Fix a positive integer d ≥ 1, and consider the moduli stack M◦2d over Z that parameterizes

primitively polarized K3 surfaces of degree 2d. In this note, we prove:

Theorem 1. For every prime p, the fiber M◦2d,Fp is geometrically irreducible.

When p is odd and p2 - d, this result was shown in [25]. The point here is to prove this

unconditionally, for which we follow the spirit of a paper of de Jong [5] and reduce to the

known cases, by relating the ordinary locus of M◦2d/p2 with that of M◦2d using p-ordinary Hecke

correspondences.

A Hodge theoretic analogue of the essential idea is easy to explain: Suppose that (X, ξ) is a

primitively polarized K3 surface over C of degree 2d. Then the Betti cohomology H2(X,Z) is

a pure Hodge structure of weight 2, and the Poincaré pairing endows it with the structure of a

quadratic space over Z that is isometric to U = H⊕3 ⊕E⊕2
8 . Here, H is the hyperbolic plane,

and E8 is the root lattice corresponding to its eponymous Dynkin type.

We will distinguish one hyperbolic plane H ⊂ U , and choose a hyperbolic basis e, f for it

satisfying e2 = f2 = 0, [e, f ] = 1. Let U ′ = H⊥ ⊂ U be its orthogonal complement, so that we

can write U as the orthogonal direct sum

U = H ⊥ U ′.

We can choose the isometry

H2(X,Z)
'−→ U

so that the Chern class of ξ maps to the element e + df ∈ H. Within H2(X,Q) we have a

lattice corresponding on the right hand side to the subspace

〈p−1e, pf〉 ⊥ U ′ ⊂ UQ.

The basic point is that this lattice corresponds to an ‘isogenous’ K3 surface X ′ equipped with

an isometry

H2(X ′,Z)
'−→ 〈pe, p−1f〉 ⊥ U ′,

and that it admits a canonical primitive polarization ξ′ of degree 2p2d, whose Chern class maps

under the above isometry to the element pe+ p2 · (p−1f).

If one does this carefully in families, one finds essentially a Hecke correspondence between

the moduli of primitively polarized K3 surfaces of degrees 2d and 2p2d, and this allows the

direct comparison between their connected components.
1
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In characteristic p of course, Hodge theoretic methods are no longer valid. However, an

analogue does work if we restrict to the ordinary locus. It gives us a p-adic Hecke correspondence

between the ordinary loci of the moduli spaces above. Roughly speaking, we obtain a morphism

M◦,ord
2p2d,Fp → M◦,ord

2d,Fp

between the ordinary loci, which factors as a purely inseparable map followed by a finite étale

cover obtained from the so-called Igusa tower over the ordinary locus. To finish, we show that

the monodromy of the Igusa tower can be sufficiently controlled so as to see that the finite étale

cover involved above induces a bijection on geometric connectec components.

This is of course an impressionistic sketch: none of this is possible in so direct a fashion.

Instead, we have to work with the associated GSpin Shimura varieties and their integral models,

considered in [24]. As always is the case with these spaces, the lack of a moduli interpretation

necessitates the use of more group theoretic methods, and appeals (implicitly) to the theory of

motives with absolute Hodge cycles and (explicitly) to integral p-adic Hodge theory.

The methods used here can also be used to prove irreducibility results for Noether-Lefschetz

loci in the moduli of polarized K3 surfaces or of cubic fourfolds. They will also be employed in

ongoing work of the author with B. Howard concerning the modularity of generating series of

higher codimension cycles on orthogonal Shimura varieties.

Also, since there is little additional effort to working more generally, we have chosen to

include a study of the µ-ordinary locus of a general Shimura variety of Hodge type at a place

of good reduction, as well as the Igusa tower over it. Among other things, this should find

applications towards the Blasius-Rogawski congruence conjecture, as in [27], [33].

Here is a brief summary of the contents of this paper. In § 1, we introduce in abstract form

ideas due to Chai and Hida concerning certain irreducibility results for an abstract version

of the Igusa towers arising in this theory. The methods are quite straightforward, and, in

applications, require only a good understanding of the set of connected components of the fibers

of the Shimura variety, as well as the existence of certain so-called hypersymmetric points.

In § 2, we lay out the study of the µ-ordinary locus of a Shimura variety of Hodge type at

a place of good reduction. This mainly involves collecting results of [18],[16],[34] and [32]. We

apply these results in § 3 to construct the Igusa tower over the µ-ordinary locus and to study its

relation with the p-adic tower over the generic fiber. In § 4, we look at the space of p-isogenies

over the ordinary locus, and show that it has the expected properties.

In the final section, we apply these general results to the case of GSpin Shimura varieties

to show that some the integral models constructed in [24] continue to have geometrically ir-

reducible special fibers at certain places of bad reduction. As mentioned above, this is done

by comparing the ordinary loci of such integral models with those with good reduction using

p-adic correspondences. We combine this with the integral period map constructed in [25] to

prove Theorem 1.
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Conventions

• We will fix a prime number p for the entirety of this paper.

• Given a set X and any Grothendieck site, we will write X for the locally constant sheaf

over the site associated with the constant presheaf sending every object to X.
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• Given a topos, a smooth Zp-group scheme D and an object S in the topos, an D(Zp)-
torsor π : P → S is an inverse system

{πn : Pn → S}n∈Z≥1
,

where πn is a torsor under D(Z/pnZ).

• For any finite set of primes T , we will set

ATf =

′∏
`/∈T

Q`,

the restricted product over all completions of Q at finite places not in T . If T = {`} is

a singleton, we will write A`f instead.

• For any local or global field F in characteristic 0, we will write OF for its ring of integers.

• Suppose that H is an algebraic group over a local or global field F with a model HOF

over OF . If R is an OF -algebra, we will abuse notation and write H(R) instead of

HOF (R) whenever the integral model is clear from context.

• We will on occasion use the geometric notation for change of scalars. If f : R → S

is a map of rings and M is an R-module, then we will denote the induced S-module

S ⊗f,RM by f∗M . If the map f is clear from context, then we will also write MS for

the same S-module.

• If ϕ : R → R is an endomorphism of R, then a ϕ-module over R is an R-module M

equipped with a map ϕ∗M →M of R-modules.

• Suppose that R is a ring and suppose that C is an R-linear tensor category that is a

faithful tensor sub-category of ModR, the category of R-modules. Suppose in addition

that C is closed under taking duals, symmetric and exterior powers in ModR. Then, for

any object D ∈ Obj(C), we will denote by D⊗ the direct sum of the tensor, symmetric

and exterior powers of D and its dual.

• In this paper, ‘abelian scheme’ will be used exclusively as short-hand for ‘abelian scheme

up to prime-to-p isogeny’ as defined in, for instance, [24, §3.7].

1. Group theoretic preliminaries

The purpose of this short section is to abstract some ideas due to Chai and Hida on a ‘pure

thought’ study of the monodromy of Igusa towers. All the key ideas can already be found in [11]

and [4].

The reader can return to consult it as necessary.

Proposition 1.1. Let H be a connected reductive group over Q such that HQp contains a

maximal torus that splits over a cyclic extension of Qp (this hypothesis holds in particular when

H is unramified at p). Then H satisfies weak approximation with respect to {p}; that is, H(Q)

is dense in H(Qp).

Proof. This is essentially contained in [30]. If H is semi-simple and simply connected, the result

follows directly from Theorem 7.8 of loc. cit. In general, let H̃ be the simply connected cover

of the derived group of H. Then we find from Proposition 2.11 of loc. cit. that there are

quasi-trivial1 tori T1 and T2 over Q, and an integer m ≥ 1 such that there is a central isogeny:

H̃m × T1 → Hm × T2. In fact, the proof of this result shows that we can choose T1 and T2 to

have the same splitting field as the maximal central torus of H. It is easy to see H satisfies

weak approximation with respect to {p} if and only if Hm × T2 does, so we can replace H by

the latter group and assume that it admits a central cover H1 → H where H1 is a product of

a semi-simple, simply connected group with a quasi-trivial torus.

1This means that the Galois representation attached to the character group is a permutation representation.
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Let F be the kernel of H1 → H: It is a central sub-group of H1, and so, by our hypothesis,

splits over a cyclic extension of Qp. The result now follows from Proposition 7.10 and Corollary

2 in Ch. 7 of loc. cit.. �

Corollary 1.2. With the hypotheses as above, for any integer n ≥ 1, the map

H(Z(p))→ H(Z/pnZ)

is surjective.

Proof. Let Pn = ker(H(Zp)→ H(Z/pnZ)). By (1.1), H(Q)Pn = H(Qp). We now have:

H(Zp) = H(Qp) ∩H(Zp) = H(Q)Pn ∩H(Zp) = H(Z(p))Pn.

The corollary now follows, since the map H(Zp)→ H(Z/pnZ) is surjective by the smoothness

of HZ(p)
. �

1.3. Keep the hypotheses of (1.1). Suppose that we have a finite set of primes T containing p,

a reductive group G over Q, and an H(Zp)-torsor P over a scheme S, such that the morphism

P → S is equivariant for an action of G(ATf ) that commutes with the H(Zp)-action on P. In

particular, for every n ≥ 1, the H(Z/pnZ)-torsor

Pn → S

is H(Z/pnZ)×G(ATf )-equivariant, with the first factor acting trivially on S.

Let Q ⊂ HZp be a closed Zp-subgroup scheme such that the quotient X = HZp/Q is repre-

sented by a scheme over Zp.
We will need, for every n ≥ 1, the contraction product

PX,n := Pn ×H(Z/pnZ) X(Z/pnZ).

We will be interested in the morphism of the sets of connected components

π0(PX,n)→ π0(S).(1.3.1)

1.4. With the notation as above, suppose now that we have anothe reductive group M over

Q with the following properties:

• There exists an embedding

ψ : MATf ↪→ GATf .

• There exists a smooth model MZ(p)
for M over Z(p), and an isomorphism

ϕ : MZ(p)
⊗Z(p)

Zp
'−→ HZ(p)

⊗Z(p)
Zp.

In particular, we have an embedding

Φ : M(Z(p))
m7→(ϕ(m),ψ(m))−−−−−−−−−−−→ H(Zp)×G(ATf ),

inducing for every n ≥ 1 a map

Φn : M(Z(p))
m7→(ϕn(m),ψ(m))−−−−−−−−−−−−→ H(Z/pnZ)×G(ATf ).

For any reductive group D over a field, let ρD : D̃ → D be the simply connected cover of

the derived subgroup of D. Let M̃Z(p)
(resp. H̃Zp) be the normalization of MZ(p)

in M̃ (resp.

H̃), and let Q̃ be the pre-image of Q in H̃Zp .

Let ZH,Zp ⊂ HZp be the Zariski closure of the center ZH ⊂ H.

Proposition 1.5. Suppose that the following conditions hold:

(1) ρG(G̃(Q`)) acts trivially on π0(S);

(2) For all ` /∈ T , GQ` is isotropic;
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(3) G(ATf ) acts transitively on π0(S);

(4) Φn(M(Z(p))) fixes a point $ ∈ π0(PX,n);

(5) Q contains ZH,Zp ;

(6) The Z(p)-group M̃Z(p)
and the Zp-group Q̃ are smooth with connected special fiber.

Then (1.3.1) is a bijection.

Proof. We will need the following consequence of the Kneser-Tits conjecture (see [30, Theorem

7.6]): For any simply connected isotropic group D over Q`, D(Q`) does not admit any finite

index sub-groups.

This, combined with hypotheses (1) and (2), implies that ρG(G̃(Q`)) acts trivially on π0(PX,n)

as well. Let $ be as in hypothesis (4), and let F$ ⊂ π0(PX,n) be the fiber over the image of $

in π0(S). By hypothesis (3), it is enough to show that F$ is a singleton: Any other fiber is a

translate of this by an element of G(ATf ).

Hypothesis (4) implies that the subgroup

H̃n := {φn(m) : m ∈M(Z(p)), ψ(m) ∈ ρG(G̃(ATf ))} ⊂ H(Z/pnZ)

fixes $.

It is now enough to show that H̃n acts transitively on the fiber F$ ⊂ π0(PX,n). For this, it

is enough to know that it surjects onto X(Z/pnZ) via the map induced by ϕn. Note, however

that H̃n contains ρM (M̃(Z(p))). Therefore, it is enough to show that the latter surjects onto

X(Z/pnZ).

First, note that the natural map

H̃Zp/Q̃→ HZp/Q

is an isomorphism of fppf sheaves over Zp. Indeed, it is a monomorphism by definition, and

hypothesis (5) implies that it is also surjective.

Now, hypothesis (6) ensures that H̃Zp and Q̃ are smooth over Zp with connected fibers.

Therefore, by Lang’s theorem, we have

X(Z/pnZ) = H̃(Z/pnZ)/Q̃(Z/pnZ).

It now follows from (1.2) that ρM (M̃(Z(p))) maps surjectively onto X(Z/pnZ) via ϕn. �

2. The µ-ordinary locus

Let (G,X) be a Shimura datum with reflex field E, and suppose that G is unramified2 at p.

This is equivalent to requiring that it admit a reductive model GZ(p)
over Z(p), which we now

fix for the remainder of this section. Set Kp = GZ(p)
(Zp): this is a hyperspecial compact open

sub-group in G(Qp). We will also assume that (G,X) is of Hodge type, so that it is equipped

with an embedding

(G,X) ↪→ (GSp(H),S±(H))

into a Siegel Shimura datum.

Further, we will fix a Z(p)-lattice H(p) ⊂ H such that the embedding G ↪→ GL(H) arises

from an embedding of Z(p)-group schemes GZ(p)
↪→ GL(H(p)).

3 There now exists a collection of

tensors {sα} ⊂ H⊗(p) such that GZ(p)
is their point-wise stabilizer in GL(H(p)); cf. [18, p. 1.3.2].

2Quasi-split and split over an unramified extension.
3This is always possible; cf. [16].
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2.1. Since GQp is unramified by hypothesis, and therefore quasi-split, we can find a Borel

subgroup of GQp , arising as the generic fiber a Borel sub-group scheme

B ⊂ GZp .

Fix a maximal torus T ⊂ B defined over Zp, and let X∗(T ) be the (unramified) Gal(Qp/Qp)-
module of cocharacters of T .

Let X∗(T )+ ⊂ X∗(T ) be the subset of dominant cocharacters: Here, a cocharacter λ :

Gm → T is dominant if the eigenvalues of λ(p) acting on (LieB)Qp have non-negative p-adic

valuations.

2.2. Fix a place v|p of E, a choice of algebraic closure Qp of Qp and an embedding Ev ↪→ Qp.
Let K ⊂ G(Af ) be a neat4 compact open sub-group of the form KpK

p = Kp × Kp ⊂
G(Qp)×G(Apf ). Attached to this is the Shimura variety ShK := ShK(G,X) over E along with

its smooth integral canonical model SK = SK(G,X)(v) over OE,(v). Using the representation

H(p), we obtain over SK an abelian scheme A, defined up to prime-to-p isogeny, and equipped

with a canonical class of quasi-polarizaitions [λ].

2.3. The representation H has several motivic incarnations: First, over ShK , we have the dual

Hp of the p-adic Tate module Tp(A): This is a lisse p-adic étale sheaf over ShK . Secondly,

we have the first relative de Rham cohomology HdR of A over SK : This is a vector bundle

over SK equipped with a Hodge filtration Fil1HdR ⊂ HdR, and the integrable Gauss-Manin

connection.

Next, over the special fiber SK,k(v), we have the contra-variant Dieudonné F -crystal Hcris

attached to ASK,k(v) : It is equipped with a Frobenius operator

F : Fr∗SK,k(v)Hcris →Hcris,

where FrSK,k(v) is the absolute Frobenius endomorphism of SK,k(v). The evaluation of this F -

crystal over the formal completion of SK along SK,k(v) is a vector bundle with topologically

nilpotent connection, which can be canonically identified with that obtained from HdR.

Further, over the analytic space Shan
K,C, we have the relative first Betti (or singular) coho-

mology HB with coefficients in Z(p): this can be viewed as a variation of Hodge structures over

Shan
K,C.

2.4. On the Betti side, we have a collection of Hodge tensors {sα,B} ⊂ H0
(
Shan

K,C,H
⊗
B

)
such

that the sheaf IB of isomorphisms H(p)
'−→HB carrying sα to sα,B is a torsor under the locally

constant sheaf GZ(p)
(Zp). This is because ShK(C) admits a uniformization:

ShK(C) = GZ(p)
(Z(p))\

(
X ×G(Apf )

)
/Kp.(2.4.1)

Under this uniformization, the local system HB is the one attached to the representation H(p)

of GZ(p)
(Z(p)).

This slightly modified uniformization can be deduced from the tautological uniformization:

ShK(C) = G(Q)\
(
X ×G(Af )

)
/K,

combined with weak approximation for connected reductive groups over Z(p) (cf. for exam-

ple [18, p. 2.2.6]), which shows that G(Q)Kp = G(Qp).

4cf. [29, p. 0.6]
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2.5. There exists a collection of tensors {sα,Apf } ⊂ H
0
(
SK ,H⊗Apf

)
with the following property:

Let Ip be the étale sheaf (over SK) of trivializations Apf ⊗H(p)
'−→ HApf carrying, for each α,

1 ⊗ sα to sα,Apf . Then Ip is a right torsor under the constant sheaf of groups G(Apf ). More

precisely, we have a canonical Kp-torsor over SK represented by the inverse limit

SKp = lim←−
Kp

1⊂Kp

SKpKp
1
,

where Kp
1 ⊂ Kp ranges over the finite-index subgroups of Kp, and Ip is obtained from this

torsor as a contraction product

Ip = SKp ×K
p

G(Apf ).

Therefore, Ip/Kp admits a canonical section [η] ∈ H0(SK , Ip/Kp), called a Kp-level struc-

ture.

In terms of the uniformization in (2.5), given a pair (h, gp) ∈ X×G(Apf ) mapping to a point

x ∈ ShK(C), the associated abelian scheme Ax with its Kp-level structure can be described

as follows: The map h : S → GR endows H(p) with the structure of a polarizable Z(p)-Hodge

structure of weight 1. This is exactly the cohomology of the abelian scheme Ax, which is now

equipped with an identification H(p)
'−→ HB,x. The level structure is now the Kp-coset of the

isomorphism

HApf
g−→
'
HApf

'−→ Apf ⊗HB,x = HApf ,x.

2.6. There also exists a collection of tensors

{sα,p} ⊂ H0
(
ShK ,H

⊗
p

)
such that the sheaf Ip of isomorphisms Zp ⊗ H(p)

'−→ Hp carrying 1 ⊗ sα to sα,p
5 is a torsor

under the locally constant sheaf G(Zp).
This torsor is actually independent of the choice of symplectic representation H, and can be

canonically described as the torsor represented by the tower

ShKp = {ShKn}n,

where ShKn → ShK is the finite cover associated with the sub-group

Kn = ker(Kp → G(Z/pnZ))×Kp ⊂ Kp ×Kp = K.

Under the canonical comparison isomorphism between Zp⊗HB and Han
p , 1⊗sα,B is carried

to sα,p, for each α.

2.7. There is also a collection of parallel tensors

{sα,dR} ⊂ H0
(
SK ,Fil0H⊗dR

)
.

For each α, the de Rham comparision isomorphism

OShan
K,C
⊗HB

'−→HdR|Shan
K,C
,

carries 1⊗ sα,B to sα,dR.

5We will term such isomorphisms G-structure preserving. We leave to the reader the task of formalizing

this notion, although we hope that its meaning will be clear from context in the remainder of the paper.
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2.8. We also have a collection of tensors {sα,cris} ⊂ H0
(
(SK,k(v)/W (k(v)))cris,H

⊗
cris

)
, whose

realizations along the formal completion of SK along SK,k(v) agree with {sα,dR} as sections of

HdR.

These tensors also have the following property: For every point x0 : Spec k → SK,k(v) valued

in a perfect field k, the evaluation of Hcris on the formal PD thickening Spec k ↪→ SpecW (k)

gives rise to an F -crystal Hcris,x0 over W (k). More precisely, if σ : W (k)→W (k) is the lift of

the Frobenius automorphsim of k, we obtain an operator

F : σ∗Hcris,x0
→Hcris,x0

.

This in turn induces an isomorphism

F : σ∗Hcris,x0 [p−1]⊗
'−→Hcris,x0 [p−1].

Now, for every α, the evaluation sα,cris,x0
∈ H⊗cris,x0

is F -invariant, when viewed as an

element of H⊗cris,x0

[
p−1
]
:

F (σ∗sα,cris,x0) = sα,cris,x0 .

Further, there exists an isomorphism

τ : W (k)⊗H(p)
'−→Hcris,x0

carrying, for each α, 1⊗ sα to sα,cris,x0
.

2.9. In particular, the Fr(W (k))-module Hcris,x0
[p−1] is an F -isocrystal with G-structure in

the language of [21]. Given a choice of isomorphism τ as above, there exists a unique b ∈
G(Fr(W (k))) such that the following diagram commutes:

W (k)⊗H(p)

σ∗τ
> σ∗Hcris,x0

W (k)⊗H(p)

bx0,τ

∨

τ
> Hcris,x0

.

F

∨

Let D be the diagonalizable group over Q with character group Q. Associated with this data

is the Newton cocharacter νx0,τ : D→ G, which splits the pull-back to W (k)⊗H(p) of the slope

filtration on Hcris,x0
.

If τ is replaced by τ ◦ g for g ∈ G(W (k)), then bx0,τ is in turn replaced by its σ-conjugate

g−1bx0,τσ(g), and νx0,τ is replaced by g−1νx0,τg.

2.10. The final point in this tensorial history is to do with the p-adic comparison isomorphism.

Suppose that we are given a point x0 : Spec k → SK,k(v) as above and a lift x : Spec OL → SK ,

where L/Fr(W (k)) is a finite extension. Choose a geometric point x : SpecL → ShK lying

above the restriction of x to SpecL. Then there exists a canonical crystalline comparison

isomorphism

Bcris ⊗Zp Hp,x
'−→ Bcris ⊗W (k) Hcris,x0 .

This isomorphism preserves G-structure, carrying, for each α, 1⊗ sα,p,x to 1⊗ sα,cris,x0
.
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2.11. Consider the conjugacy class {µX} of Shimura cocharacters of GC associated with the

datum X. By the very definition of the reflex field, this conjugacy class is defined over E. Since

GQp is quasi-split, Lemma 1.1.3 of [22] implies that this conjugacy class has a representative over

Ev. Furthermore, this representative can be chosen in such a way as to extend to a dominant

cocharacter

µX : Gm,OEv → TOEv .

Set µp = µ−1
X . Viewing this cocharacter as an element of the Galois module X∗(T ) fixed by

the subgroup

Gal(Qp/Ev) ⊂ Gal(Qp/Qp),

we form its ‘norm’

Nµp =
∑

σ∈Gal(Ev/Qp)

σµp ∈ X∗(T )Gal(Qp/Qp),

which is a cocharacter of T defined over Zp.
We will also need the ‘average’

νp =
1

[Ev : Qp]
Nµp ∈ X∗(T )

Gal(Qp/Qp)

Q .

Let MNµ ⊂ GZp be the centralizer of Nµp. Let LieUNµ (resp. LieU−µ ) be the direct sum

of the eigenspaces of LieGZp on which Nµp(p) acts via eigenvalues of positive (resp. negative)

p-adic valuation. These subspaces are the Lie algebras of unipotent subgroups UNµ and U−Nµ of

GZp , which are the radicals of opposite parabolic subgroups PNµ and P−Nµ with common Levi

subgroup MNµ.

2.12. Consider the reflex norm

rµ : T0 = ResOEv/Zp Gm
Res(µp)−−−−−→ ResOEv/Zp TOEv

Nm−−→ T

associated with µp.

Here, the map on the far right is the usual norm map on tori: over Zp it can be identified

with the homomorphism ∏
σ:Ev→Qp

TZp → TZp

(xσ) 7→
∏
σ

xσ.

Lemma 2.13. The homomorphism rµ has central image in MNµ.

Proof. Working over Qp, this amounts to the following claim: If α is a root for T (that is, a

character appearing in the eigenspace decomposition of LieGQp) such that 〈α, µp〉 > 0, then

〈α,Nµp〉 > 0.

To see this, note that we have

〈α,Nµp〉 =
∑

σ∈Gal(Ev/Qp)

〈σ−1α, µp〉.

The condition 〈α, µp〉 > 0 ensures that α is a positive root, appearing in LieBQp . Since B

is defined over Zp by hypothesis, the set of positive roots is Galois stable, and since µp is

dominant, we must have 〈σ−1α, µp〉 ≥ 0, for all σ ∈ Gal(Ev/Qp). This finishes the proof. �
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2.14. To be able to work with p-divisible groups over OEv uniformly, without making excep-

tions for the case p = 2, it will be useful to employ the theory of Breuil-Kisin modules from [17],

extended to the case p = 2 by, among others, W. Kim [15]. This can be summarized as follows:

Suppose that k is a perfect field of characteristic p. Consider Sk = W (k)[|u|], the power

series ring in over variable over W (k), and equip it with the Frobenius lift ϕ : Sk → Sk

restricting to the canonical Frobenius automorphism σ on W (k) and satisfying ϕ(u) = up. Set

E(u) = u+ p, and consider the category BT/Sk of pairs (M, FM) where:

• M is a finite free Sk-module;

• FM : ϕ∗M→M is an injective homomorphism whose cokernel is killed by E(u).

Such pairs are called Breuil-Kisin modules. Usually, FM will be omitted from the notation,

and we will refer to the entire Breuil-Kisin module by its first entry M.

Then there is a contravariant equivalence of categories between p-divisible groups over W (k)

and BT/Sk associating with a p-divisible group H a Breuil-Kisin module M(H). Moreover, this

equivalence has the following properties:

• If H0 is the reduction of H over k, then the (contravariant) Dieudonné F -crystal M(H0)

over W (k) can be recovered by base-change along the map Sk
u7→0−−−→ W (k) of the pair

(ϕ∗M(H), ϕ∗FH).

• The de Rham realization MdR(H) of H over W (k), along with its Hodge filtration

Fil1MdR(H), can be recovered as follows: We have

MdR(H) = Sk/E(u)Sk ⊗Sk ϕ
∗M(H),

and Fil1MdR(H) is the image in MdR(H) of the subspace

Fil1 ϕ∗M(H) = F−1
M(H)

(
E(u)M(H)

)
.

• If k′/k is an extension of perfect fields, and H′ = W (k′) ⊗W (k) H, then there is a

canonical isomorphism of Breuil-Kisin modules:

Sk′ ⊗Sk M(H)
'−→M(H′).

2.15. For future use, we note that BT/Sk is embedded in the larger tensor category BrK/Sk

of pairs (M, FM) where M is a finite free Sk-module and

FM : ϕ∗M[E(u)−1]
'−→M[E(u)−1]

is an isomorphism of Sk-modules.

In fact, it is shown in [18] that there is a covariant fully faithful tensor functor

M : Repcris(Γk)→ BrK/Sk

such that, for every p-divisible group H as above, we have a canonical isomorphism of Breuil-

Kisin modules:

M(H)
'−→M((TpH)∨),

Here, Γk = Gal(Fr(W (k))/Fr(W (k))) is the absolute Galois group of Fr(W (k)), and Repcris(Γk)

is the category of Γk-stable lattices in crystalline Qp-representations of Γk.

This functor is not exact. However, if OE is the p-adic completion of the localization(
Sk(v)

)
(p)

, and Modϕ/OE
is the category of finite free modules OE -modules M equipped with

an isomorphism

F : ϕ∗M
'−→M ,

then the functor

BrK/Sk

M7→OE⊗Sk
M

−−−−−−−−−→ Modϕ/OE
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is a fully faithful tensor functor, and the composition

M : Repcris(Γk)
D 7→M (M(D))−−−−−−−−−→ Modϕ/OE

is exact.

2.16. Set Hp = Zp ⊗H(p), and H0 = OEv ⊗Zp Hp. Equip H0 with the σ-linear map

F : σ∗H0 = OEv ⊗Zp Hp
σ(µp(p))−−−−−→ OEv ⊗Zp Hp = H0.

Since σ(µp) commutes with Nµp, there is an F -stable grading

(2.16.1) H0 =

d⊕
i=0

Hi
0

given by the eigenspaces for Nµp. Here, d = [Ev : Qp].
We also have an ascending slope filtration {SrH0}r∈Q by setting, for any r ∈ Q,

SrH0 =
⊕
i≤rd

Hi
0.

Now, H0 is the Dieudonné module associated with a canonical p-divisible group G0,k(v) over

k(v), endowed with a grading arising from (2.16.1). It is also equipped with a G-structure in

the sense that, for each index α, the tensor

sα,0 = 1⊗ sα ∈ OEv ⊗Zp H
⊗
p = H⊗0

is F -invariant.

2.17. We will now define a canonical lift of G0,k(v) to a p-divisible group G0 over OEv , equipped

with a grading

G0 =

d⊕
i=0

Gi0,

lifting the one on G0,k(v) arising from (2.16.1).

For this, we will use (2.14), and define the corresponding object H0 in BT/Sk(v) as follows:

We set H0 = Sk(v) ⊗Zp Hp, and the map FH0
will be given by the composition:

FH0
: ϕ∗H0 = Sk(v) ⊗Zp Hp

µp(E(u))−−−−−→ Sk(v) ⊗Zp Hp = H0.

This map clearly commutes with the grading

H0 =

d⊕
i=0

Hi0

given by the eigenspaces for Nµp acting on H0 = Sk(v) ⊗Zp Hp.

We now take G0 to be the p-divisible group such that M(G0) = H0. Since we can identify

ϕ∗H0/uϕ
∗H0 = H0

as F -crystals over W (k), G0 has all the desired properties. It is also equipped with a descending

slope filtration {SrG0}r∈Q given by setting

SrG0 =
⊕
i≥rd

Gi0.

Note also that, for each index α, the tensor

sα,H0
= 1⊗ sα ∈ Sk(v) ⊗Zp H

⊗
p = H⊗0 ,

is an F -invariant element. Here, H⊗0 is viewed as an ind-object over the tensor category

BrK/Sk(v) .



12 KEERTHI MADAPUSI PERA

Also, let Fil1(OEv ⊗Zp Hp) be the eigenspace on which µp(p) acts via multiplication by p;

then under the identification

MdR(G0) = ϕ∗H0/(u− p)ϕ∗H0 = Sk(v)/(u− p)Sk(v) ⊗Zp Hp = OEv ⊗Zp Hp

the Hodge filtration on MdR(G0) is carried to Fil1(OEv ⊗Zp Hp).

Using this, we can now check that the p-divisible group G0 is a G-adapted lift of G0,k(v) in

the terminology of [16, Defn. 3.3].

2.18. Let u ∈ O×Ev be such that

OEv = Zp[u].

Let T0 be the torus from (2.12), so that

u ∈ T0(Zp) = O×Ev .

Then the sub-group generated by u is Zariski dense in T0.

Now, set γ = rµ(u) ∈ T (Zp) ⊂ MNµ(Zp): this is a central element by (2.13). Since

it commutes with µp, we find that it induces an endomorphism (indeed, an automorphism)

of the Breuil-Kisin module H0, and hence of the p-divisible group G0. We will denote this

endomorphism by γ.

For any OEv -algebra A, set

Endγ(A⊗OEv G0) = {f ∈ End(A⊗OEv G0) : γf = fγ}.

Lemma 2.19. For any perfect extension k/k(v), the natural map

Endγ(W (k)⊗OEv G0)→ Endγ(k ⊗OEv G0)

is a bijection.

Proof. Using Dieudonné and Breuil-Kisin theory, it is enough to show the following linear

algebraic assertion: Suppose that we have an endomorphism f of W (k)⊗Zp Hp that commutes

with γ, and which satisfies

µp(p) ◦ σ∗f = f ◦ µp(p).(2.19.1)

Then the induced endomorphism 1⊗ f of

W (k)[|u|]⊗Zp Hp = W (k)[|u|]⊗W (k) W (k)⊗Zp Hp

satisfies

µp(E(u))ϕ∗(1⊗ f) = (1⊗ f) ◦ µp(E(u)).(2.19.2)

For this, note that the sub-group uZ ⊂ T0(Zp) is Zariski dense in T0. Therefore, for any

Zp-algebra R, any endomorphism of R ⊗Zp Hp that commutes with γ will also commute with

rµ(T0(R)), and so we must have

µp(p)fµp(p)
−1 = f ; µp(E(u))(1⊗ f)µp(E(u))−1 = 1⊗ f.

Combining the first of these identities with (2.19.1) shows that σ∗f = f , implying that f is

defined over Zp. This in turns shows that ϕ∗(1⊗ f) = 1⊗ f , and so the second of the identities

now implies the desired equality in (2.19.2). �
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2.20. Let AutF (H0) be the group scheme over Zp obtained as the group of units in the

algebra EndF (H0). Here, EndF (H0) is the algebra of endomorphisms of the F -crystal H0.

Write J0 ⊂ AutF (H0) for the largest closed sub-group that fixes the tensors {sα,0} ⊂H⊗0 .

From this description, one finds easily that J0(Zp) (resp. J0(Qp)) is the group of automor-

phisms (resp. self-quasi-isogenies) of the p-divisible group G0,k(v) whose crystalline realizations

are G-structure preserving automorphisms of H0 (resp. H0[p−1]).

Proposition 2.21. Then, for any Zp-algebra A, the map

GL
(
A⊗Zp Hp

)
→ GL

(
A⊗Zp H0

)
= GL

(
W ⊗Zp (A⊗Zp Hp)

)
m 7→ 1⊗m

carries MNµ(A) into J0(A), and induces an isomorphism of Zp-groups MNµ
'−→ J0.

In particular, every element of J0(Zp) preserves the grading and slope filtration on G0.

Proof. By Lemma 2.7 of [32] (see also (2.13)), µp, and hence σ(µp), is central in MNµ. From

this, it is easy to see that the map defined does indeed carry MNµ(A) into J0(A).

Any h ∈ J0(A) satisfies

h−1σ(µp)(p)σ(h) = σ(µp)(p).

Set d = [Ev : Qp], and consider the algebra

E = {f ∈W ⊗Zp End(Hp) : Nµp(p)σ
d(f)Nµp(p)

−1 = f}.

Choose m ∈ Hi
p, f ∈ E , and write f(1 ⊗m) =

∑
j aj ⊗mj with mj ∈ Hj

p and aj ∈ W . Then

we find: ∑
j

aj ⊗mj = f(m) = Nµp(p)σ
d(f)Nµp(p)

−1(m) =
∑
j

pj−iσd(aj)⊗mj .

Since σd(aj) and aj have the same p-adic valuations, we must have aj = 0 for i 6= j and

ai = σr(ai). This implies that E is simply the commutant of Nµp(p) in OEv ⊗Zp End(Hp).

It is easy to check that h ∈ E and that it therefore arises from an element of MNµ(A⊗ZpOEv ).

On the other hand, using the centrality of σ(µp) in MNµ, we have:

σ(h) = σ(µp)(p)
−1hσ(µp)(p) = h.

Therefore, we in fact have h ∈MNµ(A).

The last assertion follows because any element of MNµ(Zp) clearly preserves the grading and

hence the slope filtration on G0. �

Corollary 2.22. Suppose that k/k(v) is a perfect extension, and that f is a self-isogeny of

k ⊗OEv G0 , whose crystalline realization, viewed as an automorphism of W (k)⊗OEv H0[p−1],

fixes the tensors {1⊗ sα,0}. Then f lifts to a self-isogeny of W (k)⊗OEv G0.

Proof. By (2.19), it is enough to show that any such isogeny must commute with γ. However,

by (2.21), we know that any such isogeny must arise from an element of MNµ(Qp), and so

by (2.13) must commute with γ. �

2.23. Let U−µp ⊂ GOEv be the opposite unipotent associated with µp, so that LieU−µp ⊂
LieGOEv is the subspace on which µp(p) acts as p−1. Let ÛG be the formal scheme over

OEv obtained from the completion of U−µp along its identity section. Let H
(i)
0 be the eigenspace

on which µp(p) acts via pi, so that we have a direct sum decomposition

H0 = H
(0)
0 ⊕H(1)

0 .
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We have the unipotent subgroup U0 ⊂ GL(H0) with Lie algebra Hom(H
(1)
0 ,H

(0)
0 ). Let Û0 be

its completion along the identity section. Then we have a closed embedding of formallly smooth

formal OEv -schemes

ÛG ↪→ Û0.

Following Faltings [9], we can identify Û0 with the deformation space of the p-divisible group

G0,k(v) in such a way that the identity section in Û0(OEv ) corresponds to the canonical lift

G0. Furthermore, for any algebraic extension k/k(v), we can characterize the set ÛG(W (k)) as

consisting of the G-adapted lifts of G0,k; see [16, Prop. 3.4]. We will not need to know precisely

what this means, except to note, as we did in (2.17), that G0 is such a lift.

2.24. Fix an algebraic closure k of k(v). Suppose that we have a point x0 ∈ SK,k(v)(k). We

will say that x0 is µ-ordinary if, in the notation of (2.9), with x0 viewed as a kp-poin, the

trivialization τ can be chosen such that νx0,τ = νp.

By Proposition 7.2 of [34], being µ-ordinary is also equivalent to: There exists a choice of

trivialization τ such that bx0,τ = σ(µp)(p).

It now follows from the main result of [34] that there is an open subscheme Sord
K,k(v) ⊂ SK,k(v),

whose closed points are precisely the µ-ordinary points of SK,k(v). We will call it the µ-ordinary

locus, and will denote by Ŝord
K,k(v) the formal completion of SK along its µ-ordinary locus.

Let x0 ∈ SK,k(v)(k) be a µ-ordinary point. Let AutF (Hcris,x0) be the group scheme over Zp
obtained as the group of units in the algebra EndF (Hcris,x0) of F -equivariant endomorphisms

of Hcris,x0 , and let

Jx0 ⊂ AutF (Hcris,x0
)

be the stabilizer of the tensors {sα,cris,x0
}.

Proposition 2.25. Let x0 be a µ-ordinary point in SK(k). Then there is a canonical lift of x0

to a point x ∈ SK(W (k)) characterized by the following property: There exists an isomorphism

of p-divisible groups

W (k)⊗OEv G0
'−→ Ax[p∞]

such that, for every α, the associated isomorphism of crystalline realizations

W (k)⊗OEv H0
'−→Hcris,x0 = HdR,x

carries 1⊗ sα,0 to sα,cris,x0
.

In particular, the p-divisible group Gx0
= Ax0

[p∞] is equipped with a canonical grading

Gx0 =

r⊕
i=0

Gix0
,

and a slope filtration

SrGx0
=
⊕
i≥rd

Gix0
.

Moreover, there is an isomorphism of Zp-group schemes MNµ
'−→ Jx0

.

Proof. When p > 2, this is shown in [32]. The same proof more or less works when p = 2 as well.

We recall the details: Choose a trivialization τ such that bx0,τ = σ(µp)(p). This immediately

implies that there is an isomorphism of p-divisible groups

k ⊗OEv G0
'−→ Gx0

whose crystalline realization carries 1⊗ sα,0 to sα,cris,x0
, for every α.

Using this, we can identify the deformation space for the p-divisible group Gx0
withW (k)⊗OEv

Û0, where Û0 is as in (2.23).
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Moreover, by Prop. 3.4 and the proof of Prop. 4.6 of [16], Ûx0 is a closed formal subscheme

of Û0 that is identified with ÛG. Now, as observed in (2.17), the p-divisible group W (k)⊗OEv G0

is a G-adapted lift of Gx0 . Therefore, by the characterizing property of ÛG(W (k)), explained

in (2.23), we find that this p-divisible group corresponds to a unique point x ∈ SK(W (k)) lifting

x0.

The rest of the proposition is now immediate. �

Lemma 2.26. Suppose that Ev = Qp; or equivalently, that µp is defined over Qp. Then a point

x0 ∈ SK(k) is ordinary if and only if the abelian variety Ax0
is ordinary in the classical sense;

that is, if and only if Ax0
[p∞] is the extension of an étale p-divisible group by a multiplicative

one.

Proof. This result is certainly well-known, but since we could not find a convenient reference,

we provide a proof.

First, observe that in this situation G0 is an ordinary p-divisible group, isomorphic to

Hom(H0
p ,Qp/Zp)⊕Hom(H1

p , µp∞).

Indeed, this is immediate from the fact that µp = σ(µp) = Nµp.

Therefore, from (2.25) we see that, for any µ-ordinary point x0, Ax0 is an ordinary abelian

variety.

Conversely, suppose that Ax0 is an ordinary abelian variety. We want to show that x0 is

µ-ordinary. For this, we can assume that k is algebraically closed. The ordinariness of Ax0

implies that we have a canonical F -stable grading

Hcris,x0
= Hcris,x0

(0)⊕Hcris,x0
(1)

into its étale and multiplicative parts. On H⊗cris,x0
, this gives us an induced grading

H⊗cris,x0
=
⊕
i∈Z

H⊗cris,x0
(i).

The graded pieces can be described as follows: View F as a semi-linear endomorphism of

H⊗cris,x0
, and set

H
(n)
i = (p−iF )n(H⊗cris,x0

) ∩H⊗cris,x0
.

Then we have

H⊗cris,x0
(i) =

⋂
n∈Z≥1

H
(n)
i

In particular, since the tensors {sα,cris,x0} are F -invariant, we find that we must have

{sα,cris,x0
} ⊂H⊗cris,x0

(0).

Let µ0 : Gm → GL(Hcris,x0
) be the cocharacter corresponding to this decomposition, so that

µ0(p) acts trivially on Hcris,x0
(0) and via multiplication-by-p on Hcris,x0

(1). Then we see that

it fixes sα,cris,x0
, for each α.6 Therefore, if we choose a trivialization τ as in (2.9), then the

induced grading on W (k)⊗Zp Hp is split by a cocharacter of GW (k), which we denote by µ0,τ .

Let Acan be the canonical lift of the ordinary abelian variety Ax0
: The corresponding Hodge

filtration on Hcris,x0
is given by the subspace Hcris,x0

(1). We claim that Acan arises from a lift

x ∈ SK(W (k)) of x0. Indeed, it corresponds to the origin for the canonical Serre-Tate formal

group structure on the deformation scheme Û0 for the abelian variety Ax0
. Moreover, by the

main result of [28], the completion Ûx0
of SK at x0 is the translation by a torsion-point of a

formal sub-torus of Û0. Since there are no such non-trivial torsion points defined over W (k),

and since SK is smooth over Zp, it follows that the origin must lie within Ûx0
.

6This could also have been seen a bit more elegantly using a little Tannakian theory.
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Since µ0 splits the Hodge filtration on HdR,x, it follows that µ0,τ must be G-conjugate to

µp. Therefore, by changing τ by an element of G(W ) if necessary, we can assume that it

induces identifications W (k)⊗Zp H
i
p
'−→Hcris,x0

(i), for i = 0, 1. From this, one finds that m =

µp(p)
−1bx0,τ ∈ MNµ(W (k)). Write m = gσ(g)−1, for g ∈ MNµ(W (k)). Then bx0,τ◦g = µp(p),

showing that x0 is indeed µ-ordinary. �

2.27. Let Aut(Ax0) be the group scheme over Z(p) obtained as the group of units in the algebra

End(Ax0). Note that there is a natural map of Zp-groups:

Zp ⊗Aut(Ax0
)→ AutF (Hcris,x0

).

Suppose that x0 lies over a point x′0 ∈ SK(Fq) for a finite extension Fq/k(v) contained in k.

Then we obtain a Zq-structure on Hcris,x0 :

Hcris,x0
= W (k)⊗Zq Hcris,x′0

.

For each r ≥ 1, we now obtain a Zp-sub-group

AutF (Zqr ⊗Zq Hcris,x′0
) ⊂ AutF (Hcris,x0

).

Let Icris,x′0,q
r be the intersection of Jx0 with AutF (Zqr ⊗Zq Hcris,x′0

). One can check that

Icris,x′0,q
r = Icris,x′0,q

s for all r, s sufficiently divisible. Write Icris,x0
for this common sub-group

of Jx0
.

Let x ∈ SK(W (k)) be the canonical lift of x0. Associated with this is the Z(p)-group scheme

Aut(Ax), defined just as above. Let Ix0
⊂ Aut(Ax0

) (resp. Ix ⊂ Aut(Ax)) be the largest closed

sub-group that maps into Jx0
. Since every automorphism of Ax0

is defined over some finite

extension of Fq, we find that Ix0
maps into Icris,x0

via the crystalline realization map, and we

obtain canonical homomorphisms of groups

Ix → Ix0 ; Zp ⊗Z(p)
Ix0 → Icris,x0(2.27.1)

over Z(p) and Zp, respectively.

Proposition 2.28. The natural homomorphisms in (2.27.1) are all isomorphisms of Z(p)-group

schemes.

Proof. Choose an isomorphism W (k)⊗OEv G0
'−→ Ax[p∞] as in (2.25). Via such an isomorphism,

the automorphism γ of G0, which is central in J0(Zp), transfers to a canonical endomorphism

γx of Ax[p∞].

Suppose that x0 lies over a point x′0 ∈ SK(Fqr ) and that r ≥ 1 is large enough that all

endomorphisms of Ax0 are defined over Fqr . Let

Autγ(Ax) ⊂ Aut(Ax) ; Autγ(Ax0
) ⊂ Aut(Ax0

) ; Autγ,F (Hcris,x′0
) ⊂ AutF (Hcris,x′0

)

be the subgroups of automorphisms that commute with γx.

Then, by (2.19), the natural map

Autγ(Ax)→ Autγ(Ax0
)(2.28.1)

is an isomorphism.

Moreover, Tate’s theorem provides us an isomorphism of Zp-groups:

Zp ⊗Z(p)
Autγ(Ax0)

'−→ Autγ,F (Hcris,x′0
).(2.28.2)

By (2.22), we find that every element of Jx0
(Zp) lifts to an automorphism of Ax[p∞]. This,

combined with Serre-Tate deformation theory immediately implies that the canonical map

Ix → Ix0
is an isomorphism.

To show that the second map in (2.27.1) is an isomorphism, we will need a bit more work.

Fix a geometric point x : Spec Fr(W (k)) → ShK lying above x, so that we obtain tensors

{sα,p,x} ⊂H⊗p,x invariant under the absolute Galois group Γ = Gal
(
Fr(W (k))/Fr(W (k))

)
.
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Choose an embedding ι : Fr(W (k)) ↪→ C; then we obtain a natural G-structure preserving

isomorphism Zp ⊗HB,ι(x)
'−→ Hp,x. Let Autγ,Hdg(HB,ι(x)) be the group scheme of automor-

phisms of the Z(p)-Hodge structure HB,ι(x) that commute with γx0 , and let IB,ι(x) be its largest

Z(p)-sub-group that stabilizes the tensors {sα,B,ι(x)}.
There now exist canonical isomorphisms of Z(p)-groups:

Autγ,Hdg(HB,ι(x))
'−→ Autγ(Ax)

'−→ Autγ(Ax0
).(2.28.3)

Combining with (2.28.2) now provides an isomorphism of Zp-groups:

Zp ⊗Z(p)
Autγ,Hdg(HB,ι(x))

'−→ Autγ,F (Hcris,x′0
).(2.28.4)

Since the various comparison isomorphisms are allG-structure preserving, one finds that (2.28.3)

induces isomorphisms of Z(p)-groups

IB,ι(x)
'−→ Ix

'−→ Ix0

and that (2.28.4) induces an isomorphism of Zp-groups

Zp ⊗Z(p)
IB,ι(x)

'−→ Icris,x0 .

Combining these now finishes the proof of the proposition. �

Remark 2.29. Kisin has shown that (2.28) holds in general, without the ordinariness hypothe-

sis,7 if one works instead with the associated Qp-groups; see [19]. In [20], it is shown that the

result continues to hold without the unramifiedness hypothesis on GQp .

We could have of course appealed to these more general results, but found the direct proof

above appealing enough to present here.

Corollary 2.30. Fix a prime ` 6= p, and let H`,x0
be the `-adic realization of Ax0

: it is a

Q`-vector space equipped with a G(Q`)-orbit of isomorphisms Q` ⊗ H
'−→ H`,x0 , and thus a

canonical collection of tensors

{sα,`,x0
} ⊂H⊗`,x0

.

Then, for any Z(p)-algebra R, Ix0
(R) consists of the elements f ∈

(
R⊗Z(p)

End(Ax0
)
)×

, whose

`-adic realization f` ∈ (R⊗Z(p)
End(H`,x0))× fixes {sα,`,x0} pointwise.

Proof. This is obtained by using the Betti realization of the canonical lift, which shows that

the condition on f is independent of the prime `, and can in fact be checked for the p-adic

realization of the generic fiber of the canonical lift, where one can use the p-adic comparison

isomorphism to conclude. �

Corollary 2.31. With the notation as above, the following are equivalent:

(1) Icris,x0
= Jx0

.

(2) Zp ⊗ Ix0
= Jx0

.

(3) For some integer r ≥ 1, there exists an isomorphism ι′ : Fqr⊗OEv G0
'−→ Ax′0 [p∞] whose

base-change over k satisfies the conditions of (2.25).

�

Definition 2.32. We will say that x0 is hypersymmetric if it satisfies any of the equivalent

conditions in (2.31).8

7Note that all relevant definitions can still be made in the absence of this hypothesis.
8The definiton is originally due to Chai [4] in the case where G = GSp(H).
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Remark 2.33. (1) Suppose that Ax0 is hypersymmetric as an abelian variety; that is, sup-

pose that the natural map

Zp ⊗Z(p)
End(Ax0)→ EndF (Hcris,x0) = End(Ax0 [p∞]).

is an isomorphism. Then it is immediate that x0 is hypersymmetric as a point of SK . In

fact, it is enough to assume that Ax0
is isogenous to a hypersymmetric abelian variety:

any abelian variety isogenous to a hypersymmetric one is itself hypersymmetric.

(2) Any ordinary elliptic curve E is hypersymmetric in the above sense: The right hand side

is Zp×Zp, and so it is enough to know that End(E) has rank at least 2 as a Z(p)-module

(since the image of the map in question is saturated), which is clear, since Frobenius

does not act as a scalar.

(3) Suppose that ShK admits a modular curve as a sub-Shimura variety via a map of

Shimura data9

(GL2,H)→ (G,X).

Then the ordinary locus Sord
K,Fp contains many hypersymmetric points: Indeed, the

symplectic representation H, viewed as a representation of GL2, must be isomorphic

to a direct sum of the tautological representation, for weight reasons. Therefore, if x0

is a point of SK that is the reduction of a point on the modular curve, then Ax0 is

isogenous to a power of the elliptic curve associated with that point. In particular, if we

choose the point so that the associated elliptic curve is ordinary, then by the preceding

remarks, and by (2.26), we find that x0 is a hypersymmetric µ-ordinary point.

(4) We do not know a general criterion for when a hypersymmetric µ-ordinary point should

exist. See however [36] for the PEL case.

3. The canonical torsor over the µ-ordinary locus

The goal of this section is to define a canonical MNµ(Zp)-torsor over the µ-ordinary locus—

usually referred to as the Igusa tower—and to relate this to the G(Zp)-torsor Ip over the generic

fiber ShK .

As before, we fix an algebraic closure k for k(v).

Proposition 3.1. Let G = A[p∞]|Ŝord
K

. Then there exists a descending filtration {SrG}r∈Q of G
by p-divisible subgroups that specializes at every µ-ordinary geometric point x0 to the filtration

{SrGx0
}r∈Q.

Proof. Let x0 be a µ-ordinary point in SK(k), and let Rx0 be the complete local ring of SK at

x0. Set

GRx0 = A[p∞]|SpecRx0
.

Then, by Propositions 4.1 and 5.1 of [32], it follows that the slope filtration on Gx0
lifts to a

filtration {SrGRx0 }r∈Q of GRx0 . The statements there assume p > 2, but the proofs go through

even for p = 2: All they need is an explicit, group-theoretic description of the complete local

ring Rx0
, and this is available for p = 2 by the results of [16].

The content of the proposition is that these filtrations can be glued together as x0 varies.

For this, it is enough to show that, for every morphism

Spf A→ Ŝord
K

with A a p-adic, formally smooth, formally of finite type OEv -algebra, the p-divisible group

G|Spf A has a slope filtration inducing the canonical ones from the previous paragraph over

each complete local ring. Over Fp ⊗ A, this follows from [14, Thm. 2.4.2], which shows the

9This is only possible if Ev = Qp.
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statement on the level of Dieudonné F -crystals, and Main Theorem 1 of [6], which shows that

the Dieudonné functor is an equivalence of categories over Fp ⊗A.

We need to now show that the slope filtration lifts over A. First, note that the maximal

étale quotient

gr0
S

(
G|Spec(Fp⊗A)

)
lifts canonically to the maximal étale quotient

G|SpecA → gr0
S (G|SpecA) .

Let S>0G|SpecA be the kernel of this map. It is enough to show that the induced filtration on

S>0G|Spec(Fp⊗A) lifts. Now, we are dealing with a formal p-divisible group. Let H0 be a formal

p-divisible group over Fp ⊗ A, and let D(H0) be the evaluation of the covariant Dieudonné

F -crystal of H0 on the formal divided power thickening

Spec(Fp ⊗A) ↪→ Spf A.

It is a finite free A-module, and the Fp⊗A-module Fp⊗D(H0) has a canonical Hodge filtration

Fil1(Fp ⊗D(H0)). By [35, Corollary 97], there is an equivalence of categories between liftings

over A of H0, and liftings of the Hodge filtration to a direct summand of D(H0). Therefore,

given a lift H of H0, corresponding to a lift

Fil1D(H0) ⊂ D(H0),

a sub p-divisible group J0 ⊂ H0 lifts to a sub p-divisible group of H if and only if

Fil1D(H0) ∩D(J0)

is a direct summand lifting Fil1(Fp ⊗ D(J0)). This is a condition that can be checked by

verifying at it over the completions of A at every maximal ideal.

Now, apply this to the slope filtration on S>0G|Spec(Fp⊗A), and use the observation from the

first paragraph of the proof to conclude. �

3.2. Set

grr G = SrG/ ∪s>r SsG ; grG =
⊕
r∈Q

grr G.

Suppose that we have a formally of finite type p-adic OEv -algebra A10, and a morphism of

formal schemes

y : Spf A→ Ŝord
K .

For any integer n ≥ 0, an isomorphism of finite flat group schemes over A

η : A⊗OEv grG0[pn]
'−→ grGy[pn]

is said to preserve MNµ-structure if, for every point x0 of Spf A valued in k, there exists an

isomorphism

ι : k ⊗OEv G0[pn]
'−→ k ⊗A Gy[pn]

such that:

• For every index α, the induced isomorphism of crystalline realizations

η−1
cris :

(
W (k)⊗OEv H0

)
/pn

'−→
(
W (k)⊗AHcris,x0

)
/pn

carries 1⊗ sα,0 to 1⊗ sα,cris,x0 .

• We have

gr ι = ηx0
: k ⊗OEv grG0[pn]

'−→ k ⊗A grGy[pn].

10By this, we mean that A is p-adicaly complete and that Fp ⊗ A is a finite type k(v)-algebra. We will

topologize such algebras using the p-adic topology.
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An isomorphism of p-divisible groups

A⊗OEv grG0
'−→ grGy

preserves MNµ-structure if the induced isomorphism on pn-torsion preserves MNµ-structure

for every n ≥ 1.

Given n ≥ 1, let IMp,n be the functor on morphisms

y : Spf A→ Ŝord
K

as above that associates with y the set of MNµ-structure preserving isomorphisms

A⊗OEv grG0[pn]
'−→ grGy[pn].

Similarly, let IMp be the functor that associates with y the set of MNµ-structure preserving

isomorphisms

A⊗OEv grG0
'−→ grGy.

Proposition 3.3. The functor IMp,n is represented by an MNµ(Z/pnZ)-torsor over Ŝord
K . More-

over, we have

IMp = lim←−
n

IMp,n,

and so IMp is an MNµ(Zp)-torsor over Ŝord
K .

Proof. The second assertion is clear once the first has been shown.

For the first, simply observe that there is an obvious MNµ(Z/pnZ)-action on IMp,n via pre-

composition, and that, by (2.25), the fibers of IMp,n over any k-point of Sord
K are indeed torsors

for this action. �

3.4. Let Hp,Nµ be the dual of the Tate module

TpG0 = lim←−
n

G0[pn](Qp)

associated with the p-divisible group G0. This is a Γv = Gal(Qp/Ev)-module, and, by (2.21),

we have a canonical embedding

MNµ(Zp) ↪→ Aut(G0)→ AutΓv (Hp,Nµ).

Note that the grading G0 = ⊕iGi0 also endows Hp,Nµ with a Γv-invariant grading

Hp,Nµ =

d⊕
i=0

Hi
p,Nµ.

Let {sα,H0
} ⊂ H⊗0 be the F -invariant tensors from (2.17). By the full faithfulness of the

functor described in (2.15), they correspond to Γv-invariant tensors

{sα,p,Nµ} ⊂H⊗p,Nµ.

We can view Hp,Nµ as a pro-étale sheaf over SpecEv. Now, consider the pro-étale sheaf INµ
over SpecEv that associates with every Ev-scheme T , the set of Mν(Zp)-equivariant isomor-

phisms of sheaves

Hp,Nµ|T
'−→ Hp

that respect the grading on either side, and are also G-structure preserving, in the sense that

they carry {sα,p,Nµ} to {sα}.
The key result of this section is the following:

Proposition 3.5. INµ is non-empty, and thus a left Z(MNµ)(Zp)-torsor over Ev. Here,

Z(MNµ) ⊂MNµ is the center.



IRREDUCIBILITY OF THE MODULI OF K3S 21

Proof. It is clear that any two sections of INµ differ by a unique automorphism of Hp that

preserves G-structure and grading, and that commutes with MNµ(Zp). Therefore, INµ, if

non-empty, is a Z(MNµ)(Zp)-torsor.

It remains to show the non-emptiness. For this, let ILT be the T0(Zp) = O×Ev -torsor arising

from the Lubin-Tate tower over Ev associated with the uniformizer p. More explicitly, let GQ
be the Lubin-Tate formal OEv -module associated with the polynomial xqv + p; then

ILT,n = GQ[pn]\GQ[pn−1]

with the transition maps given by multiplication-by-p.

We will now show that INµ is the push-forward of this torsor along the map

T0(Zp)
t7→rµ(t)−1

−−−−−−−→ Z(MNµ)(Zp),

where rµ is as in (2.13).

Explicitly, this means the following: Let recLT : Γv → T0(Zp) be the Lubin-Tate character

associated with ILT, which describes the action of Γv on the Tate module of GQ. Then we have

to show that the Galois representation Hp,LT obtained from the composition

Γv
rec−1

LT−−−→ T0(Zp)
rµ−→ Z(MNµ)(Zp) ↪→ GL(Hp)

is isomorphic to Hp,Nµ.

Let RepZp(T0) be the category of algebraic representations of T0 on finite free Zp-modules.

Given ρ : T → GL(D) in this category, we obtain the associated Galois representation DLT

with underlying Zp-module D. As shown in [1, Prop. 3.5.2] (following an argument due to

Rapoport-Zink [31]), DLT is a Zp-lattice in a crystalline representation of Γv, and therefore, as

explained in (2.15), we can associate with it a Breuil-Kisin module MLT(D).

By the full faithfulness of the functor in (2.15), our proof will be completed by checking that

there is an isomorphism of Breuil-Kisin modules

MLT(Hp)
'−→ H0.

This is best done by considering the entire category RepZp(T0). Given ρ : T → GL(D) here,

we can associate with a Breuil-Kisin module Mnaive(D) in a more direct way: Note that we have

a distinguished cocharacter µ0 ∈ X∗(T0) determined by the choice of embedding Ev ↪→ Qp, so

that rµ ◦ µ0 = µp. This cocharacter is actually defined over OEv . Set

Mnaive(D) = Sk(v) ⊗Zp D,

with the Breuil-Kisin module structure given by

F : ϕ∗Mnaive(D) = Sk(v) ⊗Zp D
ρ(µ0(E(u)))−−−−−−−→ Sk(v) ⊗Zp D = Mnaive(D).

Observe that, by construction, we have an identification of Breuil-Kisin modules H0 =

Mnaive(D). Therefore, we will be done if we can show that, for every D as above, we have

an isomorphism of Breuil-Kisin modules

MLT(D)
'−→Mnaive(D).

If D is the tautological representation of T0 on Ev, then DLT is the dual of the Tate module

of GQ, and the desired isomorphism is given in [1, Prop. 2.2.1]. Since D generates the tensor

category RepZp(T0), if we knew that MLT is an exact functor (as Mnaive clearly is), then we

would be done. In general, however the functor from (2.15) is not exact. However, this is still

okay, since, as follows from the discussion in (2.15), the composite of both functors with the

fully faithful functor M is exact, and this is sufficient for us to conclude. �
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3.6. Let Ŝord,an
K be the rigid analytic space over Ev associated with the formal scheme Ŝord

K in

the sense of Berthelot; see the appendix to [6]. It admits an immersion

Ŝord,an
K → Shan

K

to the rigid analytic space associated with the Ev-scheme ShK . In particular, we can restrict

the G(Zp)-torsor Ip over Ŝord,an
K .

Lemma 3.7. The restriction of Ip over Ŝord,an
K admits a canonical reduction of structure group

to a P−Nµ(Zp)-torsor

IPp ↪→ Ip|Ŝord,an
K

.

Proof. Note that (3.1) gives us a filtration {SrG}r∈Q, which translates over the rigid analytic

space Ŝord,an
K to an ascending filtration of the p-adic sheaf Hp|Ŝord,an

K
:

{SrHp|Ŝord,an
K

}r∈Q.

On the other hand, we have an ascending filtration of the Zp-module Hp given by

SrHp =
⊕
i<rd

Hi
p,

whose stabilizer in GZp is precisely P−Nµ. The desired reduction of structure group is given by

the sheaf of G-admissible trivializations

Hp
'−→Hp|Ŝord,an

K

that carry {SrHp} onto {SrHp|Ŝord,an
K

}.
To check that this is indeed a torsor under P−Nµ(Zp), it is enough to do so over any classical

point x ∈ Ŝord,an
K arising from the canonical lift of a point x0 ∈ Sord

K,k(v)(k). Here, it is immediate

from (2.25) and (3.5). �

Proposition 3.8. Let

IMp = IPp ×
P−Nµ(Zp) MNµ(Zp)

be the induced MNµ(Zp)-torsor over Ŝord,an
K . By slight abuse of notation, write INµ for the

Z(MNµ)(Zp)-torsor over Ŝord,an
K obtained from the torsor over SpecEv in (3.4).

Then there is a canonical isomorphism of MNµ(Zp)-torsors:

IMp ×Z(MNµ)(Zp) INµ
'−→ IMp |Ŝord,an

K
.

Proof. First, observe that the contraction product on the left is indeed an MNµ(Zp)-torsor in

a natural way. Indeed, since Z(MNµ) is central in MNµ, the action of m ∈MNµ(Zp) given by

IMp × INµ
(η,β)7→(η◦m,β)−−−−−−−−−−→ IMp × INµ

descends to the quotient IMp ×Z(MNµ)(Zp) INµ, and gives it the structure of an IMp -torsor.

To finish, it suffices to construct a Z(MNµ)(Zp)×MNµ(Zp)-equivariant map

$ : IMp × INµ → IMp |Ŝord,an
K

.

The point is that the right-hand side can be identified with the MNµ(Zp)-torsor of isomorphisms

θ : grHp,Nµ
'−→ grHp,

such that, for each n ≥ 1, the induced isomorphism

θn : grHp,Nµ/p
n '−→ grHp/p

n
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can be lifted, étale locally, to a G-structure and slope fltration preserving isomorphism

θ̃n : Hp,Nµ/p
n '−→Hp/p

n.

A section α of IMp can be interpreted as an isomorphism α : grHp
'−→ grHp, and a section

β of Ip,Nµ can be seen as an MNµ(Zp)-equivariant isomorphism β : grHp,Nµ
'−→ grHp.

We now set

θ((α, β)) = α ◦ β : grHp,Nµ
'−→ grHp.

It can be checked that θ((α, β)) is a sction of IMp,Nµ and that θ has all the desired properties.

�

Remark 3.9. Though we will not need this, it is not hard to see that both the µ-ordinary locus

and the canonical torsor over it defined above are independent of the choice of the symplectic

representation H.

4. p-isogenies and p-Hecke correspondences

4.1. Suppose that D is a smooth affine group scheme over Zp, and that P is an D(Zp)-torsor

over an OEv -scheme S. The contraction product

P ×D(Zp) D(Qp) =
(
P ×D(Qp)

)
/D(Zp)

gives us an D(Qp)-equivariant pro-étale sheaf over S that we will refer to as the D(Qp)-torsor

associated with P. We obtain an D(Zp)-equivariant inclusion of sheaves

P ⊂ P ×D(Zp) D(Qp)

by taking the image of P × {1} in the right hand side.

4.2. Suppose that P1, P2 are two D(Zp)-torsors over S. An isogeny α : P1 99K P2 is a

D(Qp)-equivariant isomorphism of sheaves

α : P1 ×D(Zp) D(Qp)
'−→ P2 ×D(Zp) D(Qp).

Given such an isogeny, pro-étale locally on S, there exists h ∈ D(Qp) such that

α(P1)h = P2 ⊂ P2 ×D(Zp) D(Qp).

The class of h in D(Zp)\D(Qp)/D(Zp) is well-defined, and gives rise to a section

typ(α) ∈ H0(S,D(Zp)\D(Qp)/D(Zp)),

which we will call the type of the isogeny α.

When D is reductive, T ⊂ D is a maximal torus with a choice of Borel subgroup B ⊃ T of

D, we can use the Cartan decomposition to obtain an identification

D(Zp)\D(Qp)/D(Zp) = C+
D,

where C+
D is the set of coroots of T that are dominant with respect to B and defined over Zp. In

this situation, we will also use typ(α) to refer to the corresponding section of C+
D. In particular,

when typ(α) is constant on S and equals λ ∈ C+
D, we will say that α is of type λ.
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4.3. Suppose still that D is reductive, and let Q ⊂ D be a parabolic subgroup with Levi

quotient L. Suppose that we have two Q(Zp)-torsors P1,Q and P2,Q over S, and an isogeny

α : P1,Q 99K P2,Q. Then via change of structure group along the morphisms Q(Zp) → D(Zp)
and Q(Zp)→ L(Zp), respectively, we obtain an isogeny of D(Zp)-torsors

αD : P1,D 99K P2,D,

as well as an isogeny of L(Zp)-torsors

αL : P1,L 99K P2,L.

The dominant chamber in X∗(T ) for D determines one for L as well, and we can consider

the corresponding subspace C+
L as above. The next lemma is immediate from the definitions.

Lemma 4.4. Suppose that αD has type λ ∈ C+
D. Then αL has type ν, where ν ∈ C+

L is such

that the image of D(Zp)λ(p)D(Zp) ∩Q(Qp) in L(Qp) intersects L(Zp)ν(p)L(Zp) non-trivially.

�

4.5. Suppose that λ : Gm → D is a cocharacter defined over Zp. Let Mλ ⊂ D be the Levi

subgroup centralizing λ, and let U+
λ , U

−
λ ⊂ D be the unipotent subgroups whose Lie algebras

are the sum of the positive (resp. negative) valuation eigenspaces for λ(p). Let

P±λ = MλU
±
λ

be the parabolic subgroups associated with λ. We then have the projective Zp-scheme Parλ
associating with every Zp-algebra R the set of parabolic subgroups Q ⊂ DR that are fppf

locally on SpecR conjugate to P−λ . Note that conjugating P−λ by D induces an isomorphism

of homogeneous spaces

D/P−λ
'−→ Parλ

over OEv .

For any n ≥ 1, set

PParλ,n = P ×D(Zp) Parλ(Z/pnZ).

Also, set

Pλ = P/
(
D(Zp) ∩ λ(p)D(Zp)λ(p)−1).

These are both finite étale covers of S.

Lemma 4.6. For n sufficiently large, we have a D(Zp)-equivariant surjection:

Parλ(Z/pnZ)→ D(Zp)λ(p)D(Zp)/D(Zp).

Here, D(Zp) acts everywhere on the left. If λ is in addition miniscule then we have a D(Zp)-
equivariant isomorphism:

Parλ(Fp)
'−→ D(Zp)λ(p)D(Zp)/D(Zp).

In particular, we have, for n sufficiently large, a surjective map of finite étale S-schemes

PParλ,n → Pλ; and, if λ is minuscule, we have an isomorphism PParλ,1
'−→ Pλ.

Proof. Observe that the map m 7→ mλ(p)D(Zp) sets up an isomorphism:

D(Zp)/
(
D(Zp) ∩ λ(p)D(Zp)λ(p)−1

) '−→ D(Zp)λ(p)D(Zp)/D(Zp).

For n ≥ 1, set

UD(n) = ker(D(Zp)→ D(Z/pnZ)).

Then there are bijections

D(Zp)/UD(n)P−λ (Zp)
'−→ D(Z/pnZ)/P−λ (Z/pnZ)

g 7→gP−λ g
−1

−−−−−−−→ Parλ(Z/pnZ).
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Indeed, the first is because of the smoothness of D, and for the second, this follows from Lang’s

theorem, and the fact that a torsor under Pλ over Z/pnZ is trivial if and only if its base-change

to Fp is trivial.

It is now enough to show that that D(Zp) ∩ λ(p)−1D(Zp)λ(p) contains UD(n)Pλ(Zp) for n

large enough. Then we have:

UD(n) = (U+
λ (Zp) ∩ UD(n)) · (Mλ(Zp) ∩ UD(n)) · (U−λ (Zp) ∩ UD(n)),

so that

UD(n)P−λ (Zp) = (U+
λ (Zp) ∩ UD(n))P−λ (Zp).

Moreover, we have

P−λ (Zp) ⊂ λ(p)P−λ (Zp)λ(p)−1 ; λ(p)U+
λ (Zp)λ(p)−1 ⊂ U+

λ (Zp).

Therefore, everything comes down to the easily checked fact that, for n sufficiently large, we

have

UD(n) ∩ U+
λ (Zp) ⊂ λ(p)U+

λ (Zp)λ(p)−1.

Now, suppose that λ is minuscule. This means that LieU+
λ ⊂ LieD is the eigenspace on

which λ(p) acts via p under conjugation. Moreover, U+
λ is a commutative unipotent group

scheme over Zp, and is thus isomorphic to its Lie algebra. We have to show, under this

assumption, that

UD(1) ∩ U+
λ (Zp) = λ(p)U+

λ (Zp)λ(p)−1.

But it is easily seen that both sides are equal to U+
λ (Zp)p ⊂ U+

λ (Zp), the subgroup generated

by pth-powers. �

4.7. We now return to the notation of §3. Given two morphisms s1, s2 : S → ShK , a quasi-

isogeny of S-abelian schemes up to prime-to-p isogeny

ξ : As1 99K As2
is G-admissible if the associated map of Qp-sheaves

ξ∗ : Hp,s2 [p−1]
'−→Hp,s1 [p−1]

carries, for each α, sα,p,s2 to sα,p,s1 .

To any G-admissible quasi-isogeny ξ, we can attach a canonical isogeny

α(ξ) : Ip,s1 99K Ip,s2

of G(Zp)-torsors over S. Indeed, given a G-structure preserving trivialization η0 of Hp,s1 ,

(ξ∗)−1 ◦ η0 is a G-structure preserving trivialization of Hp,s2 [p−1]. In fact, it is a section of

Ip,s2×G(Zp)G(Qp), and we set typ(ξ) = typ(α(ξ)). If this is constant and is represented by λ(p),

for some λ ∈ C+
G, we will say that ξ has type λ.

Via comparison with the Betti realization, it follows that any G-admissible quasi-isogeny ξ

as above induces a G-structure preserving isomorphism of prime-to-p étale realizations

ξ∗Af : HApf ,s2
'−→HApf ,s1 .

Moreover, in the notation of (2.5), this gives us an isomorphism of G(Apf )-torsors s∗1I
p '−→ s∗2I

p

over S. The canonical Kp-level structure [η] over SK pulls back to sections

[ηsi ] ∈ H0(S, s∗i I
p/Kp),

for i = 1, 2. We will say that ξ preserves level structures if ξ∗Apf
carries [ηs2 ] to [ηs1 ]

The next lemma follows easily from the uniformization in (2.4), and its relation to the moduli

description of the points of ShK as described in (2.5).
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Lemma 4.8. If F is a field in characteristic 0, and x, y ∈ ShK(F ). If there exists a G-

admissible, level structure preserving isomorphism Ax
'−→ Ay, then x = y.

�

Definition 4.9. Fix λ ∈ C+
G, and let Isogλ be the functor on Ev-schemes associating with

T the set of triples (s1, s2, ξ), where s1, s2 ∈ ShK(T ), and ξ : As1 99K As2 is an admissible

quasi-isogeny of type λ that preserves level structures.

Lemma 4.10. Isogλ is represented by a scheme of finite type over E. Moreover, let

sλ : Isogλ
(s1,s2,ξ) 7→s1−−−−−−−−→ ShK ; tλ : Isogλ

(s1,s2,ξ)7→s2−−−−−−−−→ ShK

be the source and target morphisms, respectively. Then sλ (resp. tλ) is isomorphic to πλ : Ip,λ →
ShK (resp. π−λ : Ip,−λ → ShK), the finite étale covers obtained from Ip by the construction

in (4.5).

Proof. We will prove the assertion for sλ. The one for tλ is shown in completely analogous

fashion.

It is enough to construct a G(Zp)-equivariant isomorphism of étale sheaves

Isogλ ×sλ,ShK Ip
'−→ Ip ×ShK G(Zp)λ(p)G(Zp)/G(Zp),

where the action on the right is the diagonal one whose quotient gives Ip,λ, and the action on

the left is via that on Ip.

Suppose that we have a section ((s1, s2, ξ), ι) on the left hand side over some scheme S. This

gives us the Zp-lattice

ι−1(ξ∗Hp,s2) ⊂ Hp[p
−1].

This gives a section gG(Zp) of G(Zp)λ(p)G(Zp)/G(Zp) such that

gHp = ι−1(ξ∗Hp,s2).

It can now be checked that

((s1, s2, ξ), ι) 7→ (ι, gG(Zp))
is the desired isomorphism. �

4.11. As before, we fix an algebraic closure k/k(v). Suppose that we have two morphisms

x0, y0 : Spec k → Sord
K,k(v).

A quasi-isogeny

ξ : Ax0 99K Ay0
is G-admissible if, for every α, the associated map on crystalline realizations

ξ∗ : Hcris,x0
[p−1]

'−→Hcris,y0 [p−1]

carries sα,cris,x9
to sα,cris,y0 .

If S is any p-adic, formally of finite type, formal OEv -scheme11 with two morphisms s1, s2 :

S → Ŝord
K , a quasi-isogeny

ξ : As1 99K As2
is G-admissible if it is so over every point of S(k).

It follows from (4.12) below that any such quasi-isogeny induces a G-structure preserving

map of Apf -sheaves:

ξ∗Apf
: s∗1HAf

'−→ s∗2HApf .

11That is, a formal OEv -scheme that can be covered by affine formal schemes of the form Spf A, with A a

p-adic formally of finite type OEv -algebra.



IRREDUCIBILITY OF THE MODULI OF K3S 27

Therefore, just as in (4.7), it makes sense to require ξ to a be a level structure preserving

quasi-isogeny.

Lemma 4.12. If x0, y0 ∈ SK(k) are two µ-ordinary points , then any G-admissible isogeny12

ξ0 : Ax0
→ Ay0

lifts to an isogeny

ξ : Ax → Ay,
where x, y ∈ SK(W (k)) are the canonical lifts of x0, y0. Moreover, the induced isogeny of abelian

varieties over Fr(W (k)) is G-admissible in the sense of (4.7).

Proof. Immediate from (2.22) and (2.25). The last assertion follows from the fact that the

p-adic comparison isomorphism preserves G-structure; see (2.10). �

4.13. Suppose that we have a morphism s : S → Ŝord
K . Associated with this is the MNµ(Zp)-

torsor IMp parameterizing MNµ-structure preserving isomorphisms

grG0,S
'−→ grGs.

The associated MNµ(Qp)-torsor IMp,s ×MNµ(Zp) MNµ(Qp) can be described as the sheaf param-

eterizing MNµ-structure preserving quasi-isogenies

η : grG0,S 99K grGs,

where the quasi-isogeny η is said to preserve MNµ-structure if, for every k-point x0 factoring

through S, the crystalline realization of ηx0

η−1
cris,x0

: W (k)⊗OEv grH0[p−1]
'−→ grHcris,x0

[p−1]

is equal to gr η̃x0
, for some G-structure preserving isomorphism

η̃x0 : W (k)⊗OEv H0[p−1]
'−→Hcris,x0 [p−1].

4.14. As is easily seen from this description, any G-admissible quasi-isogeny

ξ : Ax1
99K Ax2

for x1, x2 : S → Ŝord
K gives rise to a canonical isogeny of MNµ(Zp)-torsors

β(ξ) : x∗1IMp 99K x∗2IMp
carrying a quasi-isogeny η : grG0,S 99K grGx1 to gr ξ[p∞] ◦ η.

We set typ(ξ) = typ(β(ξ)). If this section is constant and is represented by λ(p) for some

λ ∈ C+
MNµ

, then we say that ξ has type λ.

Remark 4.15. The type of an isogeny ξ as above can be computed as follows: Let us assume

that the type is constant. Fix a point x0 ∈ S(k). We then have two lattices

Hcris,x1
, ξ∗Hcris,x2

⊂Hcris,x1
[p−1].

Fix a trivialization

ι : W (k)⊗OEv H0
'−→Hcris,x1

as in (2.25). Then the type of ξ is the unique λ ∈ C+
MNµ

such that

ι−1(ξ∗Hcris,x2
) = mλ(p)(W (k)⊗OEv H0),

for some m ∈MNµ(Zp).

12That is, an isogeny that is admissible when viewed as a quasi-isogeny.
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In particular, suppose that we have a map s : S → Sord
K,k(v), and that Fr : S → S is the

absolute Frobenius. Then we have the canonical Frobenius isogeny:

Fs : As → AFr(s)

Then the explicit description of H0 in (2.17) shows that Fs has type σ(µp). In fact, since σ(µp)

is centralized by MNµ, we find that any other G-admissible isogeny of type σ(µp) must differ

from Fs by a G-admissible automorphism of As.

4.16. Fix a µ-ordinary point x0 ∈ SK(k). Let Isogord
x0

(k) be the set of pairs (y0, ξ), where

y0 ∈ SK,k(v)(k), and where ξ : Ax0 99K Ay0 is a G-admissible, level structure preserving

quasi-isogeny. Let x ∈ SK(W (k)) be the canonical lift of x0. By (2.25), we can a G-

structure preserving isomorphism η : W (k) ⊗OEv G0
'−→ Gx. There now exists a unique coset

mη(ξ)MNµ(Zp) ∈MNµ(Qp)/MNµ(Zp) such that

η∗cris(ξ
∗Hcris,y0) = mη(ξ)(W (k)⊗OEv H0).

This gives us a map:

mη : Isogord
x0

(k)→MNµ(Qp)/MNµ(Zp).(4.16.1)

For any cocharacter λ ∈ C+
M , let

Isogord
λ,x0

(k) ⊂ Isogord
x0

(k)

be the subset of pairs (y0, ξ), where ξ has type λ.

Proposition 4.17. The map (4.16.1) is a bijection. Moreover, it maps the subset Isogord
λ,x0

(k)

onto MNµ(Zp)λ(p)MNµ(Zp)/MNµ(Zp).

Proof. This can be deduced from the very general description of isogeny classes found in [19,

§1], but we give a direct proof here for the convenience of the reader.

Once the first assertion is known, the second is immediate from the definitions and (4.15).

To prove the bijectivity of (4.16.1), we will use the canonical lift.

First, suppose that we have two G-admissible quasi-isogenies

ξ1 : Ax0
99K Ay0 ; ξ2 : Ax0

99K Az0
with mη(ξ1)MNµ(Zp) = mη(ξ2)MNµ(Zp). Then one finds that the quasi-isogeny

ξ1 ◦ ξ−1
2 : Az0 99K Ay0

is in fact an honest isomorphism Az0
'−→ Ay0 . By (4.12), it lifts to an isomorphism

Az
'−→ Ay

of the canonical lifts that is aG-admissible, level structure preserving isomorphism over Fr(W (k)).

But then y = z, by (4.8), and hence y0 = z0. Therefore, to finish the proof of injectivity, it is

enough to know that Ax0
has no non-trivial G-admissible, level structure preserving automor-

phisms, but this is a consequence of the fact that SK is a scheme, because of the neatness of

K.13

13In more detail: The Z(p)-group Ix0 is compact-mod-scalars over R, and so the embedding

Ix0 (Z(p)) ↪→ Ix0 (Ap
f ) ↪→ G(Ap

f )

has discrete image. Here, the second embedding is obtained from the étale realization for Ix0 acting on x∗0HAp
f

,

which can be identified with HAp
f

in a G-structure preserving way. This embedding can be chosen so that the

level structure preserving elements of Ix0 (Z(p)) map into Kp, and thus form a finite subgroup of Kp. Since Kp

is neat by hypothesis, this finite subgroup has to be trivial.
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To prove surjectivity, we will first define a map

$ : G(Qp)/G(Zp)→ Isogord
x0

(k)

as follows: Fix an embedding ι : W (k) ↪→ C, and suppose that the canonical lift x, viewed as a

point ι(x) ∈ ShK(C) is the image of a pair (h, gp) under the uniformization (2.4.1). This means

that we have chosen a G-structure preserving trivialization α : H(p)
'−→ HB,ι(x) such that the

induced Hodge structure on H(p) corresponds to h ∈ X.

As observed in (2.4), given a coset gG(Zp), there exists γ ∈ G(Q)∩ gG(Zp). Now, the point

ỹ = [(γ−1h, γ−1g)] ∈ ShK(C) depends only on gG(Zp), as we find from the observation that, if

γ′ ∈ G(Q) is another choice satisfying γ′ ∈ gG(Zp), then γ−1γ′ ∈ G(Z(p)).

Notice now that the action of γ on H gives a natural map HB,ỹ → HB,ι(x), which is the

Betti realization of a G-admissible, level structure preserving isogeny

$̃(g) : Aι(x) → Aỹ.

This implies that the point ỹ arises from a point y defined over the algebraic closure Fr(W (k))

of Fr(W (k)) in C. In particular, if y0 ∈ SK(k) is the reduction of ỹ, then $̃(g) reduces to a

G-admissible, level structure preserving isogeny

$(g) : Ax0
→ Ay0 .

Indeed, this is immediate from the fact that the various comparison isomorphisms preserve

G-structure.

We claim that the composition mη ◦$(g) can be described as follows: Write x for the points

x viewed as a Fr(W (k))-valued point, and observe that in the notation of the proof of (3.4),

the trivialization η induces a G-structure preserving isomorphism

η∗p : Hp,x
'−→Hp,Nµ.

Choose g0 ∈ G(Zp) such that the composition

Hp
g0−→
'

Hp
αp−−→
'
Hp,x

η∗p−→
'
Hp,Nµ

is a section of the sheaf INµ from (3.4).

Using the Iwasawa decomposition

G(Qp) = U−Nµ(Qp)MNµ(Qp)G(Zp),

we can write g ∈ G(Qp) in the form n−(g)m(g)k(g), where the coset m(g)MNµ(Zp) is canoni-

cally determined.

It can now be checked from the definitions that, for all g ∈ G(Qp), we have

mη($(g))MNµ(Zp) = m(g−1
0 g)MNµ(Zp).

This finishes the proof of surjectivity and thus of the proposition.

�

4.18. We will say that λ ∈ C+
MNµ

is effective if λ(p) acts on Hp via eigenvalues of non-negative

p-adic valuation. In this case, any admissible quasi-isogeny of type λ is actually an honest

isogeny at all geometric points. This can be seen for instance from the description of the type

in (4.15) above.

Let Îsog
ord

λ be the functor on p-adically complete formally of finite type OEv -schemes S,

associating with S the set of triples (x1, x2, ξ), where

x1, x2 : S → Ŝord
K

and ξ : Ax1
→ Ax2

is a G-admissible, level structure preserving isogeny of type λ.
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We will write Isogord
λ for the reduction of Îsog

ord

λ mod p.

We have the source and target maps

sord
λ : Îsog

ord

λ

(x1,x2,ξ)7→x1−−−−−−−−−→ Ŝord
K ; tord

λ : Îsog
ord

λ

(x1,x2,ξ)7→x2−−−−−−−−−→ Ŝord
K .

4.19. Fix a G-structure preserving isogeny ξλ : G0 → G0 of type λ. For instance, such an

isogeny arises from the map

H0
h7→λ(p)h−−−−−−→H0.

In the notation of (2.23), let

ÛG,λ ⊂ ÛG × ÛG
be the closed formal subscheme consisting of lifts (x, y) where ξλ lifts to an isogeny ξ : Gx → Gy.

Suppose that we have a point (x0, y0, ξ0) ∈ Isogord
λ (k). Let Ûx0

(resp. Ûy0) be the completion

of SK at x0 (resp. y0). Then the completion Û(x0,y0,ξ0) is a closed formal subscheme of Ûx0
×Ûy0 .

As seen in the proof of (2.25), given a choice of G-structure preserving isomorphism

ηx0 : W (k)⊗OEv G0
'−→ Gx0 ,

we can identify Ûx0 with ÛG,W (k) = W (k)⊗OEv ÛG. Similarly, a choice of trivialization ηy0 for

Gy0 allows us to identify Ûy0 with ÛG,W (k). By the definition of the type of ξ0, we can choose

ηx0
and ηy0 such that

η−1
y0 ◦ ξ0 ◦ ηx0 = 1⊗ αλ : W (k)⊗OEv G0 →W (k)⊗OEv G0.

The following lemma is immediate.

Lemma 4.20. Under the isomorphisms Ûx0

'−→ ÛG,W (k) and Ûy0
'−→ ÛG,W (k) chosen above,

the subspace Û(x0,y0,ξ0) ⊂ Ûx0
× Ûy0 is mapped onto ÛG,λ,W (k).

�

Proposition 4.21.

(1) Îsog
ord

λ is represented by a formally of finite type, p-adically complete formal scheme

over OEv .

(2) The source and target maps factor as

sord
λ : Îsog

ord

λ
αλ−−→ IMp,λ

πord
λ−−−→ Ŝord

K ; tord
λ : Îsog

ord

λ
βλ−−→ IMp,−λ

πord
−λ−−−→ Ŝord

K ,

where the maps αλ and βλ are finite flat homeomorphisms, and

πord
λ : IMp,λ → Ŝord

K ; πord
−λ : IMp,−λ → Ŝord

K

are the finite étale covers obtained from IMp in (4.5).

Proof. The first assertion is standard: In fact, the morphism

(sλ, tλ) : Îsog
ord

λ → Ŝord
K × Ŝord

K

is locally of finite type and formally unramified. Indeed, it is formally unramified because

homomorphisms between abelian schemes have at most one lift over any nilpotent thickening;

see [13, Lemma 1.1.3], and it is locally of finite type over Ŝord
K × Ŝord

K , since that is the case for

the homomorphism scheme Hom(π∗1A, π∗2A), where, for i = 1, 2

πi : Ŝord
K × Ŝord

K → Ŝord
K

is the natural projection onto the ith-factor.

Moreover, by [10, Proposition 2.7], (sλ, tλ) satisfies the valuative criterion of properness,

and therefore Îsog
ord

λ is a union of finite, formally unramified formal schemes over Ŝord
K × Ŝord

K .
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By (4.17) (and (4.6)), both sλ and tλ have finite fibers, from which it follows that sord
λ and tord

λ

are both finite morphisms.

We now construct the morphisms αλ and βλ. This proceeds just as in (4.10). For instance,

for αλ, one needs to construct an MNµ(Zp)-equivariant isomorphism

Îsog
ord

λ ×sordλ ,Ŝord
K
IMp → IMp ×Ŝord

K
MNµ(Zp)λ(p)−1MNµ(Zp)/MNµ(Zp).

This is done as follows: Given a section ((x1, x2, ξ), η) on the left hand side over a connected

p-adic formal scheme S, we send it to (η,mMNµ(Zp)), where mMNµ(Zp) is the unique coset

mMNµ(Zp) ⊂MNµ(Zp)λ(p)−1MNµ(Zp)

such that, for every point t ∈ S(k) valued in an algebraically closed field k, we have

W (k)⊗OEv grH0 = m · ηcris,x1◦t(ξ
∗
tHcris,x2◦t) ⊂H0[p−1].

It now follows from (4.20) that the rank of the fibers of the finite morphisms αλ and βλ are

constant. Since IMp,λ and IMp,−λ are formally smooth over OEv , this immediately implies that αλ
and βλ are both also flat.

Since αλ and βλ are finite flat, to check that they are homeomorphisms it is enough to see

that they induce bijections on k-valued points for all algebraically closed fields k. But this is

immediate from (4.17). �

Corollary 4.22. Suppose that SK,k(v) has a hypersymmetric µ-ordinary point. Then both maps

sλ and tλ induce isomorphisms on the schemes of connected components.

Proof. By (4.21), this is equivalent to showing that the maps πord
λ and πord

−λ induce isomorphisms

on the schemes of connected components. This can be done using (4.6), the existence of the

hypersymmetric point, and results from § 1. We do not give the details since we will not need

this result, but see the proof of (5.25) below. �

4.23. Let Gm ⊂ T be the group of scalars, and let χ0 : Gm ↪→ T be the canonical inclusion.

For any λ ∈ C+
M , there exists i ∈ Z>0 such that λ(i) := i ·χ0 +λ is effective. We can now define

Îsog
ord

λ to be the moduli of tuples (x, y, ξ), where ξ is a quasi-isogeny from Ax to Ay such that

the tuple (s, t, [pi] ◦ ξ) is a section of Îsog
ord

λ(i). This definition does not depend on the choice of

i, as shown by:

Lemma 4.24. Suppose that λ is effective; then the map

Îsog
ord

λ → Îsog
ord

λ(1)

(s, t, ξ) 7→ (s, t, pξ)

is an isomorphism of functors.

Proof. This amounts to the following assertion, which is easily deduced from the definitions:

Suppose that x0, y0 ∈ Sord
K,k(v)(k) and that ξ : Ax0

→ Ay0 is a G-admissible p-isogeny of type

λ(1). Then ξ factors uniquely through the multiplication-by-p endomorphism of Ax0 . �

4.25. We now look at the relation between the two definitions of admissible quasi-isogenies,

one over ShK , and the other over Ŝord
K . Suppose that we have λ ∈ C+

G, and consider the

Ev-scheme Ev ⊗E Isogλ: It restricts to a finite morphism

Isogan
λ → Ŝ

ord,an
K × Ŝord,an

K .

Similarly, if we have ν ∈ C+
M , then we can restrict Îsog

ord

ν to obtain another finite morphism

Îsog
ord,an

ν → Ŝord,an
K × Ŝord,an

K .
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For every λ ∈ C+
G, let S(λ) ⊂ C+

M be the subset of cocharacters ν such that ν(p) can be lifted

to an element of P−Nµ(Qp) ∩G(Zp)λ(p)G(Zp).

Proposition 4.26. There exists a canonical identification⊔
λ∈C+

G

Isogan
λ
'−→

⊔
ν∈C+

M

Îsog
ord,an

ν

of spaces over Ŝord,an
K × Ŝord,an

K . It maps Isogan
λ into the disjoint union⊔

ν∈S(λ)

Îsog
ord,an

ν

Proof. After replacing λ by λ(i) for some integer i ∈ Z≥0, if necessary, we can and will assume

that it is an effective cocharacter.

Giving a point of Ŝord,an
K ×Ŝord,an

K valued in a smooth affinoid Qp-algebra R amounts to speci-

fying an open, bounded, integrally closed subring R◦ ⊂ R, and a pair of maps x◦, y◦ : Spf R◦ →
ŜK of formal OEv -schemes. Two such pieces of data, corresponding to tuples (R◦1, x

◦
1, y
◦
1) and

(R◦2, x
◦
2, y
◦
2), give the same point if there exists a bounded subring R◦ ⊂ R containing both

R◦1, R
◦
2 such that the maps x◦1, x

◦
2 and y◦1 , y

◦
2 agree when restricted to Spf R◦.

Now, suppose that we have an R-valued point t of Ŝord,an
K × Ŝord,an

K represented by a tuple

(R◦, x◦, y◦).

Giving a lift t to an R-valued point of Isogan
λ amounts to the following: We have abelian

schemes Ax◦ and Ay◦ over R◦, giving rise to abelian schemes Ax,Ay over R. Let X be the

affinoid rigid analytic space associated with R; then any classical point of X gives rise to a point

of ShK . Now, the lift to Isogan
λ is given by a level structure preserving isogeny ξ : Ax 99K Ay of

abelian schemes over R that is G-admissible of type λ at every classical point of X.

Suppose that we are given such a lift. By [10, Prop. I.2.7], ξ extends to an isogeny ξ◦ :

Ax◦ → Ay◦ of abelian schemes over R◦. Moreover, using the compatibility of the cohomological

realizations of {sα} with the p-adic comparison isomorphism (2.10), one finds that ξ◦is G-

admissible in the sense of (4.11).

Giving a lift to an R-valued point Îsog
ord,an

ν on the other hand, amounts to specifying a

possibly larger bounded subring R◦1 containing R◦, and a level structure preserving p-isogeny

ξ◦1 : Ax◦ |SpecR◦1
→ Ay◦ |SpecR◦1

of abelian schemes over R◦1 that is G-admissible of type ν in the sense of (4.11).

If we are given such a lift of t, then the restriction of ξ◦1 over SpecR is a G-admissible

p-isogeny ξ : Ax → Ay in the sense of (4.7).

The proposition can now be deduced from (3.8) and (4.4). �

4.27. It will be useful to make part of (4.20) more explicit in the situation where Ev = Qp.
In this case, we have Nµ = µp, and the eigenspace decomposition of Hp is Hp = H0

p ⊕H1
p .

A formal group T̂ over W (k) is diagonalizable if there exists a finite Zp-module M such

that, for any Artinian local W (k)-algebra B with maximal ideal mB , we have

T̂ (B) = Hom(M, 1 + mB).

In this situation, we will say that M is the character group for T̂ . In the situation where M

is finite free over Zp with dual module M∨, we also have T̂ (B) = M∨ ⊗Zp (1 + mB). In this

case, we will call T̂ a formal torus, and M∨ the cocharacter group for T̂ .

Let Û0 be the formal torus over W (k) with cocharacter group Hom(H1
p , H

0
p ). Fix λ ∈ C+

M .

Then we have two isogenies of formal tori

ψ1
λ, ψ

0
λ : Û0 → Û0
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whose induced maps on cocharacter groups are given by

Hom(H1
p , H

0
p )

α 7→α◦λ1(p)−−−−−−−→ Hom(H1
p , H

0
p ) ; Hom(H1

p , H
0
p )

α7→λ0(p)◦α−−−−−−−→ Hom(H1
p , H

0
p ),

respectively. Here, for i = 0, 1, λi(p) is the restriction of λ(p) to Hi
p. Set

Û0,λ = ker
(
Û0 × Û0

ψ1
λ×ψ

0
λ−−−−−→ Û0 × Û0

(u,v)7→u·v−1

−−−−−−−−→ Û0).

This is a diagonalizable formal subgrup of Û0.

As in (2.20), let U−µp ⊂ GZp be the opposite unipotent associated with µp. Then the action

of LieU−µp on Hp gives us an embedding of Zp-modules

LieU−µp ⊂ Hom(H1
p , H

0
p ).

Let ÛG ⊂ Û0 be the formal sub-torus with cocharacter group LieU−µp . Set

ÛG,λ = (ÛG × ÛG) ∩ Û0,λ.

This is a formal diagonalizable subgroup of ÛG × ÛG. The two natural projections give us

homomorphisms

p1
λ : ÛG,λ → ÛG ; p0

λ : ÛG,λ → ÛG,

whose kernels are isomorphic to kerψ1
λ|ÛG and ψ2

λ|ÛG , respectively.

Proposition 4.28. Suppose that x0, y0 are µ-ordinary points in SK(k). Let Ûx0
and Ûy0 be

the formal W (k)-schemes obtained by completing SK at x0 and y0, respectively, and let Ûξ be

the complete local ring of Isogord
λ at (x0, y0, ξ). Then there exist identifications Ûx0

'−→ ÛG and

Ûy0
'−→ ÛG such that Ûξ is identified with the formal subscheme ÛG,λ ⊂ ÛG × ÛG.

Proof. The p-divisible groups Gx0
,Gy0 are both extensions of an étale p-divisible group by a

multiplicative one. More precisely, as in (2.26), we have

G0
'−→ Hom(H1

p , µp∞)⊕Hom(H0
p ,Qp/Zp),

and we can choose G-structure preserving isomorphisms

ηx0 : k ⊗OEv G0
'−→ Gx0 ; ηy0 : k ⊗OEv G0

'−→ Gy0 .

For all the p-divisible groups above, we will denote their multiplicative and étale parts with a

superscript mult and ét, respectively.

The isogeny ξ0 induces maps

ξmult
0 : Gmult

x0
→ Gmult

y0 ; ξét
0 : G ét

x0
→ G ét

y0

By the definition of the type of ξ, we can find trivializations ηx0
and ηy0 such that ξmult

0 and

ξét
0 are identified with

Hom(H1
p , µp∞)

β 7→β◦λ1(p)−−−−−−−→ Hom(H1
p , µp∞) ; Hom(H0

p ,Qp/Zp)
γ 7→γ◦λ0(p)−−−−−−−→ Hom(H0

p ,Qp/Zp),

respectively. Denote these maps by βmult
λ : Gmult

0 → Gmult
0 and βét

λ : G ét
0 → G ét

0 , respectively.

Then we obtain an isogeny

βλ = βmult
λ ⊕ βét

λ : G0 → G0.

Now, for any Artin localW (k)-algebra (B,mB) with residue field k, and any pair of p-divisible

groups H1,H2 over B, write

Êxt
1
(H1,H2)

for the set of extensions of p-divisible groups of H1 by H2 over B, which reduce to the trivial

extension over k.
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Then we have:

Û0(B) = Hom(H1
p , H

0
p )⊗Zp (1 + mB) = Hom(H1

p , H
0
p )⊗ Êxt

1

B(Qp/Zp, µp∞)

= Êxt
1

B

(
Hom(H0

p ,Qp/Zp),Hom(H1
p , µp∞))

= Êxt
1

B

(
B ⊗OEv G

ét
0 , B ⊗OEv G

mult
0 ).

Therefore, we can identify Û0 with the deformation space over W (k) of the p-divisible group

k ⊗OEv G0. Note that the identity element of Û0(W (k)) corresponds to the canonical lift

W (k)⊗OEv G0 under this identification.

For each extension in Û0(B), we can obtain two new extensions by pushing out along the

homomorphism βmult
λ , and by pulling back along the homomorphism βét

λ . The first of these

corresponds to the endomorphism ψ1
λ and the second to the endomorphism ψ0

λ of Û0.

Moreover, suppose that we have two extensions Gx1
,Gx2

corresponding to points x1, x2 ∈
Û0(B). It is now clear that βλ lifts to a homomorphism between Gx1

and Gx2
if and only if we

have ψ1
λ(x1) = ψ0

λ(x2). Putting all this together we find that Û0,λ ⊂ Û0 × Û0 is precisely the

subspace parameterizing pairs (x1, x2) such that βλ lifts to an isogeny Gx1
→ Gx2

.

Using ηx0
and ηy0 we can now identify the deformation spaces of both Gx0

and Gy0 with Û0.

The formal schemes Ûx0 and Ûy0 can be identified with formal subschemes of the deformation

spaces for the p-divisible groups Gx0 and Gy0 , respectively, and thus with formal subschemes

of Û0. To finish, it is now enough to show that, under these identifications, both Ûx0
and Ûy0

map onto ÛG.

We will do this for Ûx0
, which will suffice by the symmetry of the situation. Consider the

logarithm map

` : Û0(W (k)) = Hom(H1
p , H

0
p )⊗ (1 + pW (k))

1⊗log−−−−→ Hom(H1
p , H

0
p )⊗ pW (k).

Here, in the first equality, we have identified the formal Ext group with 1 + pW (k) using

Kummer theory, and the last map is given by the usual p-adic logarithm.

We now claim that we have

`(Ûx0(W (k))) ⊂ `(ÛG(W (k))) = LieU−µp ⊗ (1 + pW (k)).

The second equality is immediate from the definition, so the inclusion of the left hand side in

the right is the main thing to check. Assume this has been done. Then we claim that the

proposition follows. Indeed, both ÛG and Ûx0 are smooth formal subschemes of Û0 of the same

dimension, and so, if we have

Ûx0
(W (k)) ⊂ ÛG(W (k)),

then it immediately implies Ûx0 = ÛG. If p 6= 2, then ` is injective, and we are done. If p = 2,

then the kernel of ` consists exactly of the 2-torsion points. But even in this case, we know

by [28, Theorem 3.7] that Ûx0 is a translate by a torsion point of a formal sub-torus of Û0; in

fact, since it contains the canonical lift, Ûx0
is itself a formal sub-torus of Û0. Let X1 (resp. X2)

be the character group of the formal torus Û0/ÛG (resp. Û0/Ûx0): these are direct summands

of Hom(H1
p , H

0
p ). Via the map `, we find that 2X1 = 2X2, and hence that X1 = X2. This

shows that the result remains valid also when p = 2.

It remains now to show the inclusion

`(Ûx0(W (k))) ⊂ LieU−µp ⊗ (1 + pW (k)).

For this, we will need the following interpretation of the map `: Given a lift x ∈ Û0(W (k)),

we obtain a p-divisible group Gx, whose de Rham realization is canonically identified with
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W (k)⊗Zp Hp. The Hodge filtration arising from this identification is of the form

Fil1x(W (k)⊗Zp Hp) = (1 + pNx)(W (k)⊗Zp H
1
p ),

for some Nx ∈ W (k) ⊗Zp Hom(H1
p , H

0
p ). It follows from a computation of Katz [7, A.3] that,

at least up to sign, we have

pNx = `(x) ∈ Hom(H1
p , H

0
p )⊗ pW (k).

Now, by Prop. 3.4 and the proof of Prop. 4.6 of [16], if x ∈ Û0(W (k)) lie in Ûx0(W (k)),

then the corresponding lift Gx is G-adapted. Among other things, this means that we have:

{1⊗ sα} ⊂ Fil0 •x(W (k)⊗Zp H
⊗
p ),

where Fil•x(W (k)⊗Zp H
⊗
p ) is the filtration induced from Fil1x. This implies that pNx = `(x) ∈

LieU−µp , and finishes the proof of the proposition. Indeed, the argument in [18, Lemma 1.5.6]

shows that we have

`(x) ∈ (LieG+ LiePµp) ∩Hom(H1
p , H

0
p ),

and this latter intersection is easily seen to be equal to LieU−µp . �

5. Degree lowering for special endomorphisms

In this section, we apply the above considerations to the special case of GSpin Shimura

varieties, and show that the certain irreducible special divisors in their generic fibers continue

to have irreducible reduction over Fp. Combined with the methods of [25], this yields a quick

proof of the irreducibility of the moduli of primitively polarized K3 surfaces of fixed degree in

any characteristic.

5.1. We begin by quickly presenting the required paraphernalia for a GSpin Shimura variety,

and direct the reader to [24] and [12] for more details.

The starting point is a quadratic space (V,Q) over Q with signature (n, 2) for some n ≥ 4.

The quadratic form Q gives rise to a symmetric pairing

[x, y]Q = Q(x+ y)−Q(x)−Q(y)

on V .

Associated with this is the reductive group G = GSpin(V,Q) over Q, as well as a Hermit-

ian symmetric domain X that parameterizes the space of oriented negative definite planes in

VR. The pair (G,X) is a Shimura datum of Hodge type with reflex field Q; a choice of sym-

plectic representation given by the Clifford algebra H := C(V,Q), on which G acts via left

multiplication.

We will fix a prime p and assume that the quadratic space has been chosen so that it admits a

self-dual lattice VZ(p) ⊂ VQp . This is a Z(p)-lattice on which the quadratic form is Zp-valued,

and is such that the associated bilinear form is non-degenerate. Note that when p = 2 this

forces n to be even.

In this situation, GQp is unramified and admits a reductive model

GZ(p)
= GSpin(VZ(p)

, Q).

Therefore, with Kp = GZ(p)
(Zp), and for any neat level subgroup of the form K = Kp ×Kp,

we have the associated Shimura variety ShK := ShK(G,X) over Q, and the integral canonical

model SK over Z(p).
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5.2. The lattice

HZ(p)
= C(VZ(p)

, Q) ⊂ C(V,Q)

gives us an abelian scheme A → SK up to prime-to-p isogeny, as in § 3.

The lattice VZ(p)
⊂ V gives rise to canonical sub-sheaves

V? ⊂ End
(
H?

)
for ? = B, p,dR, cris. For every morphism T → SK , we have a canonical Z(p)-submodule

V (T ) ⊂ End(AT )

whose cohomological realizations are sections of V? for appropriate values of ?. The space V (T )

has a canonical positive definite quadratic form

Q : V (T )→ Z(p)

characterized by the identity Q(f)idAT = f ◦ f ∈ End(AT ).

5.3. For every m ∈ Z>0
(p), we now have a morphism

Z(m)→ SK
parameterizing, for each T → SK , special endomorphisms f ∈ V (T )\pV (T ) with Q(f) = m.

For the properties of this map, we direct the reader to [12, §7.1]. Here, we simply summarize

its properties.

To begin, Z(m) is locally of finite type and formally unramified over SK , and also flat over

Z(p). Moreover, it is a local complete intersection.

Next, there is a canonical open subscheme

Zpr(m) ⊂ Z(m),

characterized by the property that the de Rham realization of the universal special endomor-

phism over Zpr(m) spans a local direct summand of VdR.

Let Z(m) → ShK be the generic fiber of Z(m). Then we have Z(m) ⊂ Zpr(m); cf. [24,

Lemma 6.16] and its proof.

Also, let Ẑord(m) → Ŝord
K be the restriction of Z(m) to the completion along the ordinary

locus, and let Zord(m) be its special fiber. Then Zord(m) is a smooth, dense open subscheme

of Zpr(m)Fp .14 In particular, Zpr(m) is regular in codimension 1 and, being a local complete

intersection, is also normal, by Serre’s criterion.

Warning 5.4. In the cited references, the condition that f not belong to pV (T ) is omitted. This

is an open condition, which is even closed over the generic fiber. It helps us pick out exactly the

components that will be useful in what follows. Note that, if p2 - m, then f can never belong to

pV (T ). In this case, the map Z(m)→ SK is a countable union of finite morphisms, and equals

Zpr(m).

5.5. Recall from (2.6) that we have a canonical étale G(Zp)-torsor Ip over ShK . Set Vp =

Zp ⊗Z(p)
VZ(p)

. Given m ∈ Z>0
(p), fix a unimodular element15 vm ∈ VZ(p)

such that vm ◦ vm = m.

Let Gvm ⊂ GZ(p)
be the stabilizer of vm: It is a smooth group scheme over Z(p); cf. [24, Prop.

2.9].16

Let Vm ⊂ V be the orthogonal complement of 〈vm〉, and let Vm,Z(p)
be the Z(p)-lattice in

Vm induced from VZ(p)
. The generic fiber of Gvm can now be identified with GSpin(Vm). If

14For smoothness, see also (5.19) below.
15This means that vm spans a direct summand of Vp.
16The proof there requires p 6= 2, but works just as well when p = 2 and the bilinear form associated with Q

is non-degenerate.
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Xm ⊂ X is the subspace of oriented negative definite planes contained in Vm, then the pair

(Gvm,Q, Xm) is once again a GSpin Shimura datum.

If γ ∈ G(Z(p)), then conjugation by γ gives us another map of Shimura data:

int(γ) : (Gvm , Xm)→ (G,X).

Given g ∈ G(Af ), set Km,g,γ = int(γ)−1(gKg−1) ⊂ Gvm(Af ). Then we obtain a finite

unramified map

ιm,γ,g : ShKm,γ,g := ShKm,γ,g (Gvm,Q, Xm)→ ShK

of GSpin Shimura varieties, which on the level of C-points is obtained from the map

Xm ×Gvm(Af )
(x,h)7→(γ·x,int(γ)(h)g)−−−−−−−−−−−−−−−→ X ×G(Af )

Taking the normalization of SK in ShKm,γ,g now gives us an integral model SKm,γ,g over Z(p).

Let Ssm
Km,γ,g

⊂ SKm be the complement of the singular locus in SKm,γ,g,Fp . Then the arguments

in [24, Lemmas 6.16,7.1] show that the natural map

Ssm
Km,γ,g → SK

lifts canonically to an open and closed embedding

Ssm
Km,γ,g → Z

pr(m).

Following [2, Prop. 2.7.4], one finds that the generic fiber Z(m) is the union of its open and

closed subschemes of the form ShKm,γ,g as γ and g vary. Therefore, since Zpr(m) is normal,

the Zariski closure

Spr
Km,γ,g

⊂ Zpr(m)

of Ssm
Km,γ,g

is an open and closed subscheme; moreover every connected component of Zpr(m)

is obtained as the connected component of Spr
Km,γ,g

, for some pair (γ, g).

5.6. Let f ∈ V
(
A|Z(m)

)
be the tautological special endomorphism. Consider the sub-sheaf

Ip,vm ⊂ Ip|Z(m)

of G-structure preserving trivializations ι : Hp
'−→ Hp such that ι(vm) = fp; here, fp is the p-

adic realization of f . Since f spans a direct summand of V (Z(m)), it follows that fp generates

a direct summand of Vp. Then, by [24, Lemma 2.8], Ip,vm is a Gvm(Zp) torsor over Z(m).17

Let IFp,vm be the induced Gvm(Fp)-torsor: it is finite étale over Z(m).

Lemma 5.7. Given a sub-group H ⊂ Gvm(Fp), the following statements are equivalent:

(1) The finite étale cover IFp,vm/H over Z(m) is relatively geometrically irreducible.

(2) The spinor norm ν : Gvm(Fp)→ F×p is surjective when restricted to H.

Here, we say that a finite étale cover is relatively geometrically irreducible if its restriction over

any geometrically irreducible component of the target is once again irreducible.

Proof. As discussed in (5.5), Z(m) is the union of Shimura varieties of the form ShKm,γ,g , and

so it suffices to prove the result over each of these varieties.

By construction the p-primary part Km,γ,g,p ⊂ Gvm(Qp) is equal to Gvm(Zp). One sees that

the finite étale cover IFp,vm/H is represented over ShKm,γ,g by the Shimura variety ShKp,HKp
m,γ,g

,

where Kp
m,γ,g ⊂ Gvm(Apf ) is the prime-to-p part of Km,γ,g, and Kp,H ⊂ Gvm(Zp) is the pre-

image of H under the map

int(γ) : Gvm(Zp)→ G(Zp)→ G(Fp)

17Once again, the proof of this result goes through even when p = 2.
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On the other hand, the description of the connected components of Shimura varieties in [8,

Thm. 2.4] shows that, for any compact open K ′ ⊂ Gvm(Af ), we have

π0(ShK′,Q) = A×f /Q>0ν(K ′),

where ν : Gvm → Gm is the spinor norm. Therefore, the map

π0(ShKp,HKp
m,Q)→ π0(ShK,Q)

is a bijection if and only if ν(H) = ν(Gvm(Fp)) ⊂ F×p . Since ν is a surjective map of group

schemes with connected kernel, the lemma follows. �

5.8. The (inverse) Shimura cocharacter µp determines an eigenspace decomposition of Vp:

Vp = V 1
p ⊕ V 0

p ⊕ V −1
p .

Here, V ±1
p are complementary isotropic lines and V 0

p ⊂ Vp is the subspace orthogonal to both.

Let U−µp ⊂ GZp be the opposite unipotent associated with µp. As observed more generally

in (4.27), we have a canonical inclusion

LieU−µp ⊂ Hom(H1
p , H

0
p ).(5.8.1)

This can be made explicit. Namely, let G0 = SO(Vp) be the special orthogonal quotient of

GZp . Then we can also identify U−µp with the unipotent subgroup of G0 associated with the

isotropic line V −1
p . That is, we have

LieU−µp = {(ϕ,ψ) ∈ Hom(V 0
p , V

−1
p )×Hom(V 1

p , V
0
p ) : ϕ∨ + ψ = 0} ⊂ End(Vp).

Here, we have used the non-degenerate bilinear form on Vp to identify V 0
p with its own dual,

and V 1
p with the dual of V −1

p , and hence the dual ϕ∨ of ϕ with a map ϕ∨ : V 1
p → V 0

p . In what

follows, we can and will identify LieU−µp with its image in Hom(V 0
p , V

−1
p ).

Fix generators v± of V ±1
p . Then, as explained in [24, §1], under the left multiplication action

of Vp on Hp, we have

H1
p = ker(v+) = im(v+) ; H0

p = ker(v−) = im(v−).

The embedding (5.8.1) can now be described as follows: Suppose that we have a map ϕ :

V 0
p → V −1

p in LieU−µp . There exists a unique v0
ϕ ∈ V 0

p such that, for all v ∈ V 0
p , we have

[v0
ϕ, v]Q · v− = ψ(v).

Now, one can check that, up to sign, under (5.8.1), (ϕ,ψ) maps to left multiplication by the

element v−v0
ϕ in the Clifford algebra.

5.9. The scheme of parabolic subgroups Parµp over Zp can be canonically identified with the

space of isotropic lines in Vp. Note that we have

Ip,µp ×ShK Z(m) = (Ip ×G(Zp) (G(Zp)µp(p)−1G(Zp))/G(Zp))×ShK Z(m)

= (Ip ×ShK Z(m))×G(Zp) Parµp(Fp)

= Ip,vm ×Gvm (Zp) Parµp(Fp).

Here, the second identification follows from (4.6), and the fact that µp is minuscule.

Let Par◦µp(vm) (resp. Par⊥µp(vm)) be the set of isotropic lines in VFp that are not orthogonal

to vm (resp. orthogonal to vm and linearly independent from vm). Under the action of Gvm(Fp),
Parµp(Fp) has the following orbit decomposition:

Parµp(Fp) =

{
{〈vm〉} t Par◦µp(vm) t Par⊥µp(vm), if vm is isotropic mod p;

Par◦µp(vm) t Par⊥µp(vm), otherwise.
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Indeed, each of the purported orbits is clearly preserved by the action of Gvm(Fp). Therefore,

it is enough to show that each is in fact an orbit. But this is an easy consequence of Witt’s

extension theorem [3, §4, Thm. 1].

Therefore, we obtain a finite étale cover

π◦µp : I◦p,µp := Ip,vm ×Gvm (Zp) Par◦µp(vm) ⊂ Ip,µp |Z(m) → Z(m).

Lemma 5.10. The map π◦µp is relatively geometrically irreducible.

Proof. By (5.7), it is enough to show that the stabilizer H ⊂ Gvm(Fp) of a line N ∈ Par◦µp(vm)

maps surjectively on F×p via the spinor norm.

Set

V ′ = (〈vm〉 ⊕N)⊥ ⊂ VFp .
Then clearly H contains the Fp-points of the subgroup G′ ⊂ GFp that fixes both vm and N

point-wise.

We claim that V ′ is a non-degenerate quadratic subspace of V , and therefore that G′ =

GSpin(V ′) maps surjectively onto Gm via the spinor norm. Combined with Lang’s theorem

and the connectedness of Spin(V ′)18, this will complete the proof of the lemma.

We claim that 〈vm〉 ⊕N is isometric to a hyperbolic plane over Fp. This will clearly suffice.

If vm is isotropic mod p, then N is a complementary isotropic line to vm, and the claim

follows.

If vm is non-isotropic mod p, choose a generator e for N . Set α = Q(vm), β = [e, vm]: these

are both in F×p . Set

f = −β−1αe+ vm.

Then we find that Q(f) = 0, and that e, f generate complementary isotropic lines, thus giving

us the desired hyperbolic plane. �

5.11. Fix m ∈ Z>0
(p). Define a functor Isogµp(m) on Q-schemes as follows: For any Q-scheme

T , Isogµp(m)(T ) consists of tuples (s, t, ξ, f) such that:

• (s, t, ξ) ∈ Isogµp(T ) (cf. (4.7));

• f ∈ V (s)\pV (s) is such that f ◦ f = m;

• ξfξ−1 ∈ p−1V (t)\V (t).

Note that the last condition is well-defined: Given anyG-admissible quasi-isogeny ξ : As 99K At,
the induced automorphism

End(As)[p−1]
f 7→ξfξ−1

−−−−−−→
'

End(At)[p−1]

will carry V (s)[p−1] onto V (t)[p−1]. Indeed, this can be checked on the level of cohomological

realizations, where it is immediate from the definitions.

We have the ‘source’ and ‘target’ maps

sµp(m) : Isogµp(m)
(s,t,ξ,f)7→(s,f)−−−−−−−−−−→ Z(m) ; tµp(m) : Isogµp(m)

(s,t,ξ,f) 7→(t,p(ξfξ−1))−−−−−−−−−−−−−−→ Z(p2m).

Proposition 5.12.

(1) The map sµp(m) is finite étale and relatively geometrically irreducible.

(2) The map tµp(m) is an isomorphism.

Proof. Consider the map

Isogµp(m)
(αµp ,(s,f))
−−−−−−−→ Ip,µp ×ShK Z(m),

18Recall that n ≥ 4.
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where αµp is the map from (4.10). To prove (1), given (5.10) and (4.10), it is enough to show

that the above map carries Isogµp(m) into I◦p,µp .

For this, we first note that the map can be defined by descent from a map

Isogµp(m)×Z(m) Ip,vm → Ip,vm ×Z(m) G(Zp)µp(p)G(Zp)/G(Zp) = Ip,vm ×Z(m) Parµp(Fp).

This is given as follows: Let V 1
p ⊂ Vp be the line on which µp(z) acts via z 7→ z. Given a

section ((s, t, ξ, f), ι) over a connected scheme T on the left-hand side, the right-hand side is

(η,N), where N ⊂ VFp is an isotropic line with the following property: There exists g ∈ G(Zp)
such that:

• Fp ⊗Zp gV
−1
p = N ;

• vm ∈ p−1gµp(p)Vp\gµp(p)Vp.
To complete the proof of (2), it is enough to see that the conditions together are equivalent to

saying that N ∈ Par◦µp(Fp). But we see that

gµp(p)Vp = p−1gV −1
p ⊕ gV 0

p ⊕ pgV 1
p .

Therefore, the second condition is equivalent to saying that the component of vm in gV 1
p is

non-zero mod p, which in turn is equivalent to N not being orthogonal to vm.

As for (2), proceeding just as above gives us a map

Isogµp(m)×Z(p2m) Ip,vp2m → Ip,vp2m ×Z(p2m) Parµp(Fp),

and we can finish by showing that the image of any tuple ((s, t, ξ), ι′) is (ι′, 〈vp2m〉). Indeed,

just as above, if (ι′, N ′) is in the image of the map, then there exists g ∈ G(Zp) such that:

• Fp ⊗ gV 1
p = N ′;

• vp2m ∈ pgµp(p)−1Vp.

Since

pgµp(p)
−1Vp = p2gV −1

p ⊕ pgV 0
p ⊕ gV 1

p ,

the second condition can hold if and only if vp2m generates N ′ mod p. �

5.13. Assume that V 0
p is isotropic: This is always the case as soon as n ≥ 3. Then there exists

a unique non-central co-character λ0 ∈ C+
M that is conjugate to µp under G(Zp). Concretely,

λ0 determines an eigenspace decomposition of the form V 0
p = V 0

p (−1) ⊕ V 0
p (0) ⊕ V 0

p (1), with

V 0
p (−1), V 0

p (1) isotropic lines in V 0
p .

Let the notation now be as in (4.27), so that we have an embedding of formal tori ÛG ⊂ Û0

over W (k) corresponding to the embedding of their cocharacter groups in (5.8.1).

The action of λ0 on Hi
p for i = 0, 1 breaks it up into eigenspaces

Hi
p = Hi

p(0)⊕Hi
p(1).

It also breaks up LieU−µp and Hom(H1
p , H

0
p ) compatibly into eigenspaces

LieU−µp =

1⊕
i=−1

LieU−µp(i) ; Hom(H1
p , H

0
p ) =

1⊕
i=−1

Hom(H1
p , H

0
p )(i),

where

LieU−µp(i) =


Hom(V 0

p (1), V −1
p ) if i = −1;

Hom(V 0
p (0), V −1

p ) if i = 0;

Hom(V 0
p (−1), V −1

p ) if i = 1.

,
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and

Hom(H1
p , H

0
p )(i) =


Hom(H1

p (1), H0
p (0)) if i = −1;

Hom(H1
p (0), H0

p (0))⊕Hom(H1
p (1), H0

p (1)) if i = 0;

Hom(H1
p (0), H0

p (1)) if i = 1.

This gives us decompositions of formal tori:

(5.13.1) ÛG = ÛG(−1)× ÛG(0)× ÛG(1) ; Û0 = Û0(−1)× Û0(0)× Û0(1).

5.14. As in (4.27), we have the formal diagonalizable subgroup

ÛG,λ0 ⊂ ÛG × ÛG.

We will now describe this subgroup more explicitly.

For this, we must recall the definition. We have two morphisms

ψ1
λ0
, ψ0

λ0
: ÛG → Û0,

and we have

ÛG,λ0
= {(x, y) ∈ ÛG × ÛG : ψ1

λ0
(x) = ψ0

λ0
(y)}.

On the level of cocharacter groups, the maps ψ1
λ0

and ψ0
λ0

correspond to the homomorphisms

LieU−µp
ϕ7→v−v0ϕλ(p)
−−−−−−−−→ Hom(H1

p , H
0
p ) ; LieU−µp

ϕ7→λ(p)v−v0ϕ−−−−−−−−→ Hom(H1
p , H

0
p ),

respectively. From this, one checks that, in terms of the decomposition (5.13.1), we have

ψ1
λ0
|ÛG(−1) = p · id ;ψ1

λ0
|ÛG(1) = id ; ψ0

λ0
|ÛG(−1) = id ;ψ1

λ0
|ÛG(1) = p · id;

ψ1
λ0
|ÛG(0) = ψ0

λ0
|ÛG(0).

Moreover, ψ1
λ0

(equivalently, ψ0
λ0

) maps ÛG(0) isomorphically onto its image in Û0. On the

level of cocharacter groups, this amounts to the fact that the composition

LieU−µp(0) = Hom(V 0
p (0), V −1

p )
ϕ7→v−v0ϕ−−−−−−→ Hom(H1

p (0), H0
p (0))⊕Hom(H1

p (1), H0
p (1))→

(id,p·id)−−−−−→ Hom(H1
p (0), H0

p (0))⊕Hom(H1
p (1), H0

p (1))

maps onto a direct sum of the target.

Therefore, we obtain a decomposition

ÛG,λ0 = ÛG,λ0(−1)× ÛG,λ0(0)× ÛG,λ0(1),

with

ÛG,λ0(i) =


{(x, xp) : x ∈ ÛG(−1)} if i = −1;

{(x, x) : x ∈ ÛG(0)} if i = 0;

{(xp, x) : x ∈ ÛG(1)} if i = 1.

(5.14.1)

We can also express this in terms of character groups. Indeed, we can identify the character

groups of both ÛG and ÛG,λ0 with

Hom(V −1
p , V 0

p )
f 7→f(v−)−−−−−−→
'

V 0
p .

Via this identification, the inclusion

ÛG,λ ↪→ ÛG × ÛG
corresponds to the map of character groups

V 0
p ⊕ V 0

p

(v,w)7→π1(v)+π2(w)−−−−−−−−−−−−−→ V 0
p ,
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where, in terms of the decomposition

V 0
p = V 0

p (−1)⊕ V 0
p (0)⊕ V 0

p (1),

we have

π1 = (p, 1, 1) ; π2 = (1, 1, p).

5.15. For every m ∈ Zp\{0}, choose v0
m ∈ V 0

p such that Q(v0
m) = m, and let Mv0m

⊂ Mµp be

the stabilizer of v0
m. Let Par◦λ0

(vm) ⊂ Parλ0
be the open subscheme parameterizing for each

Zp-algebra R, the set of isotropic lines N ⊂ R ⊗Zp V
0
p that are locally spanned by a generator

w satisfying

[w, v0
m]Q ∈ R×.

Fix a line N ∈ Par◦λ0
(vm)(Zp), and let Qv0m ⊂ Mv0m

be its stabilizer. We will consider

the spinor norm ν : Mv0m
→ Gm: this is a homomorphism of Zp-group schemes, and is the

restriction of the spinor norm on G. Let

M̃v0m
⊂Mv0m

; Q̃v0m ⊂ Qv0m
be the kernels of the spinor norm.

Lemma 5.16. With the notation as above:

(1) The group schemes M̃v0m
and Q̃v0m are smooth over Zp.

(2) M̃v0m
is the Zariski closure in Mv0m

of the derived subgroup of Mv0m,Qp , which is simply

connected.

(3) Mv0m
acts transitively on Par◦λ0

(vm).

Proof. First, we note that Mv0m
and Qv0m are smooth group schemes over Zp. For this, first

observe that the Levi subgroup Mµp can be identified with GSpin(V 0
p ). Therefore, just as

in (5.6), we can use [24, Prop. 2.9] to conclude that Mv0m
is smooth over Zp.

Now, for Qv0m , consider the rank 2 direct summand V ′ ⊂ V 0
p generated by N and v0

m. As

in the proof of (5.10), one can show that V ′ is isometric to a hyperbolic plane over Zp. Let

MV ′ ⊂Mµp be the pointwise stabilizer of V ′: This is isomorphic to GSpin(U ′), where U ′ ⊂ V 0
p

is the orthogonal complement to V ′, and is thus a reductive Zp-group scheme. We now have

an exact sequence

1→MV ′ → Qv0m
χ−→ Gm

of Zp-group schemes, where χ : Qv0m → Gm gives the action of Qv0m on N . Since Qv0m contains

the subgroup GSpin(V ′), we find that χ is surjective, which shows that Qv0m is smooth over Zp.
To prove the first assertion, it is now enough to observe that the spinor norm restricted to

Qvm0 is a submersion onto Gm since it clearly is one when restricted to GSpin(V ′). The second

assertion is also immediate, since M̃v0m
is flat and is isomorphic to the simply connected Spin

group associated with the orthogonal complement of 〈v0
m〉 in V 0

p .

Finally, the third assertion can be deduced from Witt’s extension theorem [3, §4, Thm.

1]. �

5.17. The restriction of the MNµ(Zp)-torsor IMp over Ẑord(m) admits a canonical reduction

of structure group to an Mv0m
(Zp)-torsor IMp,v0m . Here is how it is obtained: Suppose that we

have s : T → Ẑord(m), and a section η ∈ IMp (T ). For every point x0 : Spec k → T valued in an

algebraically closed field k, we get an induced isomorphism

η−1
cris,x0

: W (k)⊗OEv grH0
'−→ grHcris,s◦x0

.

This arises from a G-structure and slope filtration preserving isomorphism

η̃cris,x0 : W (k)⊗OEv H0
'−→Hcris,s◦x0 .
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This in turn induces an isomorphism

W (k)⊗Zp Vp
'−→ Vcris,s◦x0 .

Now, the slope filtration on Hcris,s◦x0 induces an increasing filtration S•Vcris,s◦x0 , and η̃cris,x0

now induces an isometry

W (k)⊗Zp V
0
p
'−→ grS0 Vcris,s◦x0

,(5.17.1)

which depends only on η−1
cris,x0

and not on the choice of lift η̃cris,x0
.

We now define a subsheaf

IMp,v0m(T ) ⊂ IMp (T )

consisting of sections η such that, for every point x0 : Spec k → T valued in an algebraically

closed field k, the induced isomorphism (5.17.1) carries 1 ⊗ v0
m ∈ W (k) ⊗Zp V

0
p to fcris,s◦x0 ∈

V 0
cris,s◦x0

. Here, fcris,s◦x0
is the crystalline realization of f at s ◦ x0.

To see that this does give a reduction of structure group, it suffices to check when T = Spec k,

and here it is immediate from [24, Lemma 2.8].

Set

I◦p,λ0
(m) = IMp |Ẑord(m) ×

Mv0m
(Zp)

Par◦λ0
(vm)(Fp).

This is a finite étale scheme over Zord(m).

5.18. Let the notation be as in (5.13). For every m ∈ Zp\{0}, we obtain two maps:

LieU−µp
ϕ7→v−v0ϕv

0
m−−−−−−−−→ Hom(H1

p , H
0
p ) ; LieU−µp

ϕ7→v0mv
−v0ϕ−−−−−−−−→ Hom(H1

p , H
0
p ),

which induce two morphisms of formal tori

sm, tm : ÛG → Û0.

Set

ÛG,v0m = ker(sm − tm : ÛG → Û0).

Note that the difference between the corresponding maps of cocharacter groups is just

LieU−µp
ϕ7→[v0ϕ,v

0
m]v−

−−−−−−−−−→ Hom(H1
p , H

0
p ).

From this, one finds that, if we identify the character group of ÛG with V 0
p as in (5.13), then

we obtain a corresponding identification of the character group of ÛG,v0m with V 0
p /〈v0

m〉. In

particular, ÛG,v0m is also a formal torus over W (k).

Lemma 5.19. Given a point (x0, f) ∈ Zord(m)(k) with k algebraically closed, there exists an

isomorphism Ûx0

'−→ ÛG as in (4.28) that identifies the completion of Z(m) at (x0, f) with

ÛG,v0m .

Proof. This is shown just as in (4.28), using Serre-Tate ordinary theory. �

5.20. Let Îsog
ord

λ0
be as in (4.18). Fix m ∈ Z>0

(p). Define a functor Îsog
ord

λ0
(m) on p-adically

complete formal schemes as follows: For any such formal scheme T , Îsog
ord

λ0
(m)(T ) consists of

tuples (s, t, ξ, f) such that:

• (s, t, ξ) ∈ Îsog
ord

λ0
(T );

• f ∈ V (s)\pV (s) is such that f ◦ f = m;

• ξfξ−1 ∈ p−1V (t)\V (t).
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Just as in (5.11), it is the G-admissibility of ξ that ensures that ξfξ−1 is an element of V (t)[p−1],

so that the last condition is indeed sensible.

As before, let Ẑord(m) be the restriction of Z(m) over Ŝord
K . Then we have the ‘source’ and

‘target’ morphisms

sord
λ0

(m) : Îsog
ord

λ0
(m)

(s,t,ξ,f)7→(s,f)−−−−−−−−−−→ Ẑord(m) ; tord
λ0

(m) : Îsog
ord

λ0
(m)

(s,t,ξ,f)7→(t,p(ξfξ−1))−−−−−−−−−−−−−−→ Ẑord(m).

Proposition 5.21.

(1) Îsog
ord

λ0
(m) is representable over Fp and is of finite type.

(2) The map sord
λ0

(m) has a factoring

Îsog
ord

λ0
(m)

αord
λ0

(m)
−−−−−→ I◦p,λ0

(m)
π◦λ0−−→ Ẑord(m),

where αord
λ0

(m) is a finite flat homeomorphism.

(3) The map tord
λ0

(m) is an isomorphism.

Proof. The map

Îsog
ord

λ0
(m)

(s,t,ξ,f)7→(s,f)×(s,t,ξ)−−−−−−−−−−−−−−−→ Ẑord(m)×Ŝord
K ,sordλ0

Îsog
ord

λ0
(5.21.1)

exhibits Îsog
ord

λ0
(m) as a sub-functor of the right hand side. On the other hand, the latter

functor is representable and finite over Ẑord(m); cf. (4.21). So, to show representability, it is

enough to show that Îsog
ord

λ0
(m) is an open sub-functor of the right hand side of (5.21.1).

Suppose that we are given an Fp-scheme T and a map(
(s, f), (s, t, ξ)

)
: T → Zord(m)×Sord

K,Fp ,s
ord
λ0

Îsog
ord

λ0
.

Now, ξfξ−1 belongs to p−nV (t), for some n ≥ 1. Therefore f ′ = pn(ξfξ−1) belongs to V (t).

The locus in T where ϕ factors through Îsog
ord

λ0
is now exactly the locus where f ′ does not

factor through the multiplication-by-pn map. This is also the locus over which the induced

endomorphism f ′[pn] of the pn-torsion At[pn] is non-zero, which shows that it must be open,

and completes the proof of (1).

We now move on to (2). By (4.21), we have a factoring:

sord
λ0

: Îsog
ord

λ0
(m)

(αord
λ0
,(s,f))

−−−−−−−→ IMp,λ0
×Ŝord

K
Ẑord(m)→ Ẑord(m).

Here, αλ0
is the map described in (4.21). There is was constructed by descent from the base-

change over IMp , but, since we are working over Ẑord(m), we can use the reduction of structure

group IMp,v0m instead. Therefore, exactly as in the proof of (5.12), it follows that the first map

in the above composition factors through a map

αord
λ0

(m) : Îsog
ord

λ0
(m)→ I◦p,λ0

(m)

that is a finite homeomorphism onto its image.

Similarly, in the factorization

tord
λ0

: Îsog
ord

λ0
(m)

(βord
λ0

,(t,p−1(ξfξ−1)))
−−−−−−−−−−−−−−→ IMp,−λ0

×Ŝord
K
Ẑord(p2m)→ Ẑord(p2m),

the first map factors through the section

Ẑord(p2m)→ IMp,−λ0
×Ŝord

K
Ẑord(p2m),

obtained from the Mv0m
(Fp)-equivariant inclusion

{〈vm〉} ⊂ Parλ0(Fp)
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via a map

βord
λ0

(m) : Îsog
ord

λ0
→ Ẑord(p2m)

that is again a finite homeomorphism onto its image.

To finish, it suffices to check that αord
λ0

is flat and surjective, and that βord
λ0

is an isomorphism.

Both these facts can be checked on the level of the complete local rings at any geometric point

of Îsog
ord

λ0
(m).

This can be done using information from (4.28), (5.13) and (5.19). Indeed, these together im-

ply the following: Suppose that (s0, t0, ξ0, f0) is a point of Îsog
ord

λ0
(m) valued in an algebraically

closed field k. Then there exists a decomposition

V 0
p = V 0

p (−1)⊕ V 0
p (0)⊕ V 0

p (1)

with V 0
p (±1) complementary isotropic lines, and V 0

p (0) their mutual orthogonal complement

with the following properties:

• In terms of this decomposition, the component v0
m(1) ∈ V 0

p (1) of v0
m, we have

v0
m(1) 6≡ 0 (mod p).(5.21.2)

• Consider the endomorphisms π1 = (p, 1, 1) and π2 = (1, 1, p) of V 0
p : We then have

p · π1(v0
m) = π2(v0

p2m).

• If ÛG is the formal torus over W (k) with character group V 0
p , the completions of SK

at s0 and t0 can be identified with ÛG, so that the following hold:

– The completions of Z(m) and Z(p2m) at (s0, f0) and (t0, p(ξ0f0ξ
−1
0 )), respec-

tively, can be identified with the formal tori with character groups V 0
p /〈v0

m〉 and

V 0
p /〈v0

p2m〉, respectively.

– The completion of Îsog
ord

λ0
at (s0, t0, ξ0) can be identified with the formal sub-torus

of ÛG × ÛG corresponding to the quotient

V 0
p ⊕ V 0

p
π1⊕π2−−−−→ V 0

p

on the level of character groups.

Putting this all together, we find that the completion of Îsog
ord

λ0
(m) at (s0, t0, ξ0, f0) is given

by the formal torus over W (k) with character group V 0
p /〈π1(v0

m)〉, and that the maps to the

completions of Ẑord(m) at (s0, f0) and of Ẑord(p2m) at (t0, p(ξ0f0ξ
−1
0 )) correspond to isogenies

of formal tori, given on the level of character groups by:

V 0
p /〈v0

m〉
π1−→ V 0

p /〈π1(v0
m)〉 ; V 0

p /〈v0
p2m〉

π2−→ V 0
p /〈π1(v0

m)〉,

respectively. It is now immediate from condition (5.21.2) and the definitions of π1 and π2 that

the first map of character groups maps onto a sub-group of index p and that the second is an

isomorphism.

Combining everything now, we find that αord
λ0

(m) is given by a finite flat morphism of degree

p, and that βord
λ0

(m) is an isomorphism, thus completing the proof of the proposition. �

5.22. Let Ẑord,an(m) be the associated rigid analytic space over Qp. From (5.12), we obtain a

map

sµp(m) ◦ tµp(m)−1 : Ẑord,an(p2m)→ Ẑord,an(m).

On the other hand, (5.21) gives us another map

sord
λ0

(m) ◦ tord
λ0

(m)−1 : Ẑord,an(p2m)→ Ẑord,an(m)

Corollary 5.23. These two maps agree.
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Proof. Suppose that T = Spf R, where R is a normal p-adically complete local ring, and that

we have a map of formal schemes f : T → Ẑord(p2m). It is enough to show that, for ever such

map, as R varies, we have

sµp(m) ◦ tµp(m)−1 ◦ fan = sord
λ0

(m) ◦ tord
λ0

(m)−1 ◦ fan.

This can be deduced from the following assertion: If (x, y, ξ, f) ∈ Isogµp(m)(R[p−1]), and if

x, y extend to maps

x̃, ỹ : T = Spf R→ Ŝord
K ,

Then ξ extends to a G-admissible isogeny over T of type λ0. Indeed (4.26) shows that ξ extends

to a G-admissible isogeny

ξ̃ : Ax̃ → Aỹ
of type either µp or λ0.

Moreover, f also extends to an element f̃ ∈ V (x̃) such that

ξ̃f̃ ξ̃−1 ∈ p−1V (ỹ)\V (ỹ).

However, if ξ̃ were of type µp, then, as observed in (4.15), it must be isomorphic to the

relative Frobenius map at every point. In fact, since it is level structure preserving, it has to

be the relative Frobenius at every point: the set Mµp(Zp)µp(p)Mµp(Zp)/Mµp(Zp) from (4.17)

is a singleton.

But this is not possible: If x0 is a µ-ordinary point in SK,Fp , f ∈ V (x0), and F : Ax0
→

A(p)
x0 = A

x
(p)
0

is the relative Frobenius, then we would have:

FfF−1 = f (p) ∈ V (x
(p)
0 ) ⊂ End

(
A
x
(p)
0

)
.

�

5.24. Write

π : sord
λ0

(m) ◦ tord
λ0

(m)−1 : Ẑord(p2m)→ Ẑord(m)

For any m ∈ Z>0
(p), we obtain a diagram:

π0

(
Zpr(p2m)Fp

) '
> π0

(
Zord(p2m)Fp

)
> π0

(
Z(p2m)Q

)
;

π0

(
Zpr(m)Fp

)
'
> π0

(
Zord(m)Fp

)
π∗

∨
> π0

(
Z(m)Q

)
.

' π∗

∨

(5.24.1)

The horizontal maps are the natural ones. The maps on the left are bijections because the

ordinary locus is dense in the special fiber of Zpr(m). The vertical map on the right hand side

is a bijection by (5.12) and (5.23).

Let P (m) be the assertion that the lower right horizontal arrow is bijective in the diagram

above, and let Q(m) be the assertion that the vertical arrow in the middle is bijective.

Proposition 5.25. P (m) is true whenever p2 - m.

Proof. As observed in (5.4), under this hypothesis, we have Zpr(m) = Z(m).

From (5.5), we find that Z(m) is a union of the normalizations of SK in smaller Shimura

subvarieties. Therefore [26, Corollary 4.1.11] shows that every connected component of its

special fiber is the specialization of a unique connected component of its generic fiber. More

precisely, the cited result shows that the proposition follows as long as we know that the special

fiber of Z(m) is geometrically reduced; but this is fine, since Z(m)Fp is generically smooth. �
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Proposition 5.26. P (m) implies Q(m).

Proof. By (5.21) and (5.23), Q(m) is equivalent to: The cover I◦p,λ0
(m)→ Zord(m) is relatively

geometrically irreducible. For this, let Spr
Km,γ,g

⊂ Zpr(m) be the open and closed subscheme

introduced in (5.5), associated with a pair (γ, g) ∈ G(Z(p)) × G(Af ). Write Sord
Km,γ,g

for the

intersection of this subscheme with Zord(m). The condition P (m) ensures that this is a union

of connected components of Zord(m).

Since Zpr(m) is a union of subschemes of the form Spr
Km,γ,g

, to finish it is enough to show

that the restriction

I◦p,λ0
(m)|Sord

Km,γ,g
→ Sord

Km,γ,g

is relatively geometrically irreducible.

Let Km,γ,g,p ⊂ Gvm(Qp) be the p-primary part of Km,γ,g, and consider the inverse limit

Shp = lim←−
K′,p

ShKm,γ,g,pK′,p ,

where K
′,p ranges over compact open subgroups of Gvm(Apf ). Then Shp is a pro-étale cover

of ShKm,γ,g , equipped with an action of Gvm(Apf ). Moreover, it extends to a pro-étale cover

Sp → Spr
Km,γ,g

once again equipped with an action of Gvm(Apf ). Let f be the tautological special

endomorphism of the restriction of A over Zpr(m), satisfying f ◦ f = m · id.

Over Sp, we have a canonical G-structure preserving isomorphism

ξApf : HApf
'−→HApf |Sp

carrying vm to the prime-to-p adélic realization of the tautological endomorphism f ; see [24,

Prop. 6.7].

Using (2.33), one can find a point x0 ∈ Spr
Km,γ,g

(k) that is hypersymmetric for SK . This

means that the natural map

(5.26.1) Zp ⊗Z(p)
Ix0 → Jx0

given by the action of Ix0 on Ax0 [p∞] is an isomorphism.

Let x be the canonical lift of x0, and fix a G-structure preserving isomorphism

τ : W (k)⊗OEv G0
'−→ Ax[p∞]

Note that Ax0
carries a special endomorphism fx0

. By modifying τ by an element of Mν(Zp) if

necessary, we can ensure that its inverse crystalline realization τ−1
cris carries v0

m to the crystalline

realization fcris,x0 of fx0 . That is, we can ensure that τ corresponds to a lift y0 ∈ IMp,v0m(k) of

x0.

Let Ix0(f) ⊂ Ix0 be the commutant of f . Then the isomorphism of (5.26.1), combined with

conjugation by τ−1 induces an isomorphism

ϕ : Zp ⊗Z(p)
Ix0

(f)
'−→Mv0m

.

We now apply (1.5). In the notation there, we take S to be the restriction of Sp over

Sord
Km,γ,g,Fp

, HZp = Mv0m
, P → S to be the Mv0m

-torsor obtained from IMp (v0
m), Q = Qv0m ,

T = {p}, G = Gvm and MZ(p)
= Ix0

(f).

The embedding ψ : Ix0
(f)Apf ↪→ Gvm,Apf is obtained as follows: By (2.30), given an Apf -

algebra R, an element of Ix0
(f)(R) is given by an element η ∈

(
R ⊗Z(p)

End(Ax0
)
)×

, whose

adélic realization ηApf preserves the tensors {sα,Apf ,x0
}. The map

Ix0
(f)Apf

η 7→ξ−1

Ap
f
,x0
◦ηAp

f
◦ξAp

f
,x0

−−−−−−−−−−−−−−→ GApf

is now the desired embedding.
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Note that, with this notation, and using the last assertion of (5.16), the étale cover PX,1 → S

considered in (1.5) is precisely the restriction over S of I◦p,λ0
(m). Therefore, to finish the proof

of the proposition, we need to verify that the hypotheses of (1.5) are valid.

Hypothesis (1) can be deduced from the assumption that P (m) holds, and the description

of the connected components of Shp as in the proof of (5.7). Hypothesis (2) holds since any

quadratic space over a local field of dimension greater than 4 is isotropic.

Hypothesis (3) follows from the validity of P (m) and the fact that Gvm(Apf ) acts transitively

on the connected components of ShpQ.

Hypothesis (5) is clear, and hypothesis (6) was shown in (5.16). It remains to check hypoth-

esis (4), which would follow from knowing that the diagonally embedded subgroup

Φ = (ϕ,ψ) : Ix0(f)(Z(p)) ↪→Mv0m
(Zp)×Gvm(Apf )

fixes y0 ∈ IMp,v0m(k). For any η ∈ Ix0
(f)(Z(p)), Φ(η)(y0) corresponds to the point with underlying

abelian variety Ax0 , but with the prime-to-p level structure ξApf ,x0
replaced by

ξApf ,x0
◦ ψ(η) = ξApf ,x0

◦ ξ−1
Apf ,x0

◦ ηApf ◦ ξApf ,x0
= ηApf ◦ ξApf ,x0

;

and the trivialization τ replaced with

τ ◦ ϕ(η) = τ ◦ τ−1 ◦ η[p∞] ◦ τ = η[p∞] ◦ τ.

Therefore, the isomorphism η : Ax0

'−→ AΦ(η)(x0) = Ax0
is G-admissible, level structure pre-

serving, and also carries the trivialization τ to the trivialization Φ(η)(τ). It also fixes the special

endomorphism fx0
. Combining this with (4.8) and the canonical lift shows that Φ(η)(y0) = y0,

and completes the proof of the proposition. �

Proposition 5.27. For any m ∈ Z>0
(p), there is a canonical bijection:

π0

(
Zpr(m)Fp

) '−→ π0

(
Zpr(m)Q

)
.

Proof. Using induction on ordp(m), this follows from (5.25), (5.26) and the following assertion,

which is clear from (5.24.1): P (m) and Q(m) together imply P (p2m). �

Proof of Theorem 1. Let M◦2d,Z(p)
be the moduli stack of primitively polarized K3 surfaces over

Z(p) of degree 2d (see [25, §3]).

Let N be the self-dual quadratic Z-lattice U⊕3 ⊕ E⊕2
8 , where U is the hyperbolic plane.

Choose a hyperbolic basis e, f for the first copy of U . Set

Ld = 〈e− df〉⊥ ⊂ N.

This is a quadratic space of signature (19, 2). We can choose our quadratic space V , and self-

dual Z(p)-lattice VZ(p)
such that V has signature (20, 2) and such that there exists an isometric

embedding as a direct summand

Ld,Z(p)
↪→ VZ(p)

.

Associated with the lattice VZ(p)
and a suitable neat level subgroup Kp ⊂ GSpin(V )(Apf ),

we have the integral model SK over Z(p).

Let Msm
2d,Z(p)

be the open smooth locus of M2d,Z(p)
: This is a fiber-by-fiber dense subspace.

In particular, it suffices to show that Msm
2d,Fp

is irreducible.

By the theory of [25, §5], extended to the case p = 2 in [16, Prop. A. 12] (see also the

erratum at [23]), there is a finite étale cover M̃sm
2d,K of Msm

2d,Z(p)
, and an étale period map19

M̃sm
2d,K → Zpr(2d)

19See erratum (??) in the appendix below
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that is in fact an open immersion, since it is one in the generic fiber; see [25, Cor. 5.15].

Combined with (5.27), this shows that every irreducible component of M̃sm
2d,K,Fp

is the special-

ization of a unique irreducible component of M̃sm
2d,K,Q. From this, we deduce the same assertion

for the fibers of Msm
2d,Z(p)

. However, it is well-known that the moduli stack is irreducible over C.

For instance, this follows from the Torelli theorem; see the proof of [25, Prop. 5.3]. �
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