PERFECT F-GAUGES AND FINITE FLAT GROUP SCHEMES

KEERTHI MADAPUSI AND SHUBHODIP MONDAL

ABsTrACT. We show an equivalence of categories, over general p-adic bases, between finite locally p™-torsion com-
mutative group schemes and Z/p™Z-modules in perfect F-gauges of Tor amplitude [—1, 0] with Hodge-Tate weights
0,1. By relating fppf cohomology of group schemes and syntomic cohomology of F-gauges, we deduce some con-
sequences: These include the representability of relative fppf cohomology of finite flat group schemes under proper
smooth maps of p-adic formal schemes, as well as a reproof of a purity result of Cesnavicius-Scholze. We also give
a general criterion for a classification in terms of objects closely related to Zink’s windows over frames and Lau’s
divided Dieudonné crystals, and we use this to recover several known classifications, and also give some new ones.
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1. INTRODUCTION

The goal of this article is to give a classification of finite flat group schemes over general p-adic formal bases, as
well as to give some applications of this classification.

1.1. Classification by perfect F-gauges. To state our first main result, we need the p-adic cohomological stacks
that arose in recent work of Bhatt-Lurie and Drinfeld [19]. These authors have shown that one can
associate with every p-adic formal scheme X a p-adic formal stack| X", its syntomification, whose coherent
cohomology computes the p-adic syntomic cohomology of X. If X = Spf R is affine, we will also denote this by
Rsynﬂ Perfect complexes on this stack and its mod-p™ fibers—which are examples of objects known as F-gauges
over X—have a naturally defined subset of integers associated with them, which are called the Hodge-Tate weights.
We prove:

Theorem A (Theorem [7.1.1). Suppose that X is a p-adic formal scheme. Let FFG(X) be the category of finite

locally free p-power torsion commutative group schemes over X, and let Ps{%nl}(X) be the category of perfect || F-

gauges over X with Hodge-Tate weights in {0,1}, with Tor amplitude in [—1,0], and with cohomology sheaves killed

IThis is actually a derived formal stack that is in general not a classical object. We will attempt to ignore this fact in this introduction.
2We have adopted this notation from the lecture notes of Bhatt and it is also employed in 4
3Here perfect means dualizable object in the category of F-gauges.
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by a power of pﬂ Then there is a canonical (covariant) exact equivalence of categories

G : Pi,(X) = FFG(X)

compatible with Cartier dualityﬂ

Remark 1.1.1. The category P%Ijl}(X ) admits an alternate description that does not require the introduction of
the syntomification of p-adic formal schemes, but only the absolute prismatization as described in [10], or even just
the absolute prismatic cohomology of semiperfectoid rings. The reader interested mainly in this and more concrete
classifications can skip ahead to §[I.2] and §[L.3] below, where they will also find a discussion of some already known

classifications and their connection with the work here.

Remark 1.1.2. The compatibility with Cartier duality takes the following shape (cf. |43l Proposition 3.87]): There
is a canonical object O%Y*{1}, called the Breuil-Kisin twist, that is a line bundle F-gauge over X. By our conventions
in the current paper, the Hodge-Tate weight of O%"{1} is 1. We can tensor O®"{1} with any perfect complex
M over X®™ to obtain the twist M{1}. If M belongs to P?éf’l}(XL then so does MY [1]{1}, and we now have a
canonical isomorphism of finite flat group schemes

GMYL{1}) = GM)",
where the right hand side is the Cartier dual of G(M).

syn

Remark 1.1.3. The functor G is given by truncated syntomic cohomology: Given M € P (0 1}(X ) and any map
Spec R — X with R p-nilpotent, the values of G(M) on R are given by 7SCRT(R", M|gsyn). As such, it is
completely canonical, compatible with arbitrary base-change and satisfies quasisyntomic (and in fact fpqc) descent.

Remark 1.1.4. When X is p-quasisyntomic, the inverse of the functor G is given by the functor that sends
G € FFG(X) to M(G*) {1}, where the F-gauge M is constructed using Nygaard filtered prismatic cohomology of
the (higher) classifying stack B?G as in [43]. Note that M is equivalent to the classical contravariant Dieudonné
module of G over a perfect field (cf. [42]). While we do not give an explicit description of the inverse of G over
a general base X, it could be seen as a moduli theoretic extension of the functor M (see the discussion before
Theorem .

Remark 1.1.5. The theorem above generalizes and refines our previous results in [23] and [|43], in different direc-
tions. The first cited reference proves Theorem [A] but only for n-truncated Barsotti-Tate groups (for some n > 1)

over X, matching them up with mod-p™ vector bundle F-gauges in P%nl}(X )°| In the second reference, one finds

an equivalence of FFG(X) with a certain full subcategory of P?E)nl}(X ), but only for X that are p-quasisyntomic.
We also show that the classification in Theorem [A]is compatible with various cohomological realizations on either
side. As a particular instance, we have

Theorem B (Syntomic cohomology and fppf cohomology, Proposition l . Suppose that we have M € P%nl}(X )

with G = G(M). Then there is a canonical isomorphism
RTtppt (X, G) = RT(X™ M).

A variant of the above theorem for cohomology of G in the quasisyntomic topology was proven in [43| Propo-
sition 3.84]. As a consequence of Theorem and general representability results from [23| for the cohomology
of F-gauges with Hodge-Tate weights bounded by 1, we obtain the following generalization of a result of Bragg-
Olsson [12, Theorem 1.8]:

43ee §7]in the body of the paper for the precise definition of this category.

5In the body of the paper, we only state results for p-adic formal affine schemes X = Spf R. However, since our constructions and
statements will satisfy fpqc and in particular Zariski descent, they globalize immediately to the case of p-adic formal schemes, and in
fact to p-adic formal algebraic stacks.

6The exactness of the equivalence was not addressed in loc. cit. however. This is the content of §of this article.
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Theorem C (Representability of relative fppf cohomology, Theorem [8.2.1)). Let w : X — S be a proper smooth
map of p-adic formal algebraic spaces, and that G € FFG(X). If prpfw*G is represented by a flat formal algebraic
space over S for all i <n, then Ri, (m.G is also represented by a finitely presented formal algebraic space over S.

Remark 1.1.6. Suppose that G = ju,. In this special case, the cited result of Bragg-Olsson already proves the
theorem when X and S are schemes of finite type over a field. But in the generality here, even this case appears to
be new. Here, it says that R'm,p, is represented by a finitely presented formal algebraic space over S (which can
also be deduced from the theory of the Picard scheme), and that, when this algebraic space is also flat over S, then
R%*m, jup is also representable.

We can also use Theorem [Bfand an idea of Bhatt-Lurie in |10, Corollary 8.5.7] to recover the following (special
case of a) result of Cesnavi¢ius-Scholze [15, Theorem 7.1.2]:

Theorem D (Cesnaviéius—Scholze purity theorem, Corollary i . Let X be a qcqs scheme and let Z C X(,—q) be
a constructible closed subset such that, for all z € Z, Ox . is a local complete intersection ring of dimension > d.
Then, if G is a finite locally free p-power torsion group scheme over X, the map

ngpf(Xv G) - Hflppf(X\Zﬂ G)
is injective for i < d and an isomorphism for i < d — 1.

1.2. Classification by divided Dieudonné complexes. The classification in terms of F-gauges, while powerful
in its generality, might appear somewhat abstract. In Section [J] we deduce several more explicit classifications that
recover known ones and also yield some new examples.

First, under some weak finiteness conditions, we extract from Theorem [A]a somewhat less abstract classification
that is very close to those found in [2]| and [33]. To explain this, let _ o be the sheaf of rings S — H°( §)sep
on the site Rysyn of quasisyntomic semiperfectoid R-algebras S, equipped with the quasisyntomic topology. This
assigns to each S the classically complete quotient of the classical truncation of its initial prism. For instance, if
S is a semiperfect Fj,-algebra, then g is simply the classical p-adically completed divided power envelope of the
surjection W (S”) — S, usually denoted Acrys(S). There is a natural map _ o — O, where O is the structure sheaf
S +— S. There is also a lift of the mod-p Frobenius ¢ : _ o — _ . Moreover, _ . admits a canonical generalized
Cartier divisor I_ g — _ ¢ arising from the prism structure with (derived) quotient 7,7C1. The precomposition of
the quotient map with the Frobenius lift factors through a map O — _

The following objects can be used to classify p-divisible groups under some conditions:

Definition 1.2.1 (Prismatic divided Dieudonné modules). Let DDC[OC’]O] (R) be the category of tuples

(M= 2% 0" M Fildy, M C M, £)
where:

(1) M_ is a (quasicoherent) vector bundle over _  of finite rank;

(2) M is the finite locally free R-module corresponding to the base-change of M_ along _ . — O and
Fil%dg M C M is a local direct summand;

(3) Upg : M_ — ¢*M_ is a map of _ g-modules whose cofiber is equipped with an isomorphism ¢ to
_a®r grﬁ}ig M where grﬁcllg M=M/ Fﬂ%dg M.

Remark 1.2.2. One can alternately define the category DDC[OC’IO] (R) using the approach taken in [33], as a category
of windows over a sheaf theoretic frame with underlying sheaf of rings _ ;. The reader can extrapolate this from
Remark We have chosen the presentation here because it is the one that generalizes most easily when one
wants to classify finite flat group schemes.

Remark 1.2.3. The usual convention would have been to consider effective objects equipped with ¢-semilinear
endomorphisms rather than a map ¥, as above. The reason for our choice here is that it is the sort of structure
that arises naturally when considering F-gauges of Hodge-Tate weights 0,1. It might also be worth emphasizing
once again here that the equivalences of categories we construct in this paper are naturally covariant.
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To classify finite flat group schemes, we need to consider perfect complexes.

Definition 1.2.4 (Prismatic divided Dieudonné complexes). Let Modz/an(DDC[:ll’O] (R)) be the category of tuples

(M 225 " M Filfy, M — M,€)

where:
(1) M_ is a (quasicoherent) perfect complex over _ o with Tor amplitude [—1,0] and with cohomology killed
by p™;
(2) M is the perfect complex over R corresponding to the base-change of M_ along _ 4 — O and Fil%dg M —
M is a map of perfect complexes with Tor amplitude in [—1,0] and whose cofiber grﬁég M also has Tor
amplitude in [—1, 0];
(3) Upg: M_ — ¢*M_ is a map of complexes over _ o whose cofiber is equipped with an isomorphism £ to
—cl ®R grﬁég M.
Theorem E (Classification in terms of divided Dieudonné complexes, Theorem [9.9.7)). Suppose that one of the
following holds:
(1) R is p-quasisyntomic.
(2) R/pR is F-finite and F-nilpotent [33].
Then there is a canonical exact equivalence of categories
FFG,(R) =+ Mody ., (DDC"I(R))

and also an equivalence of categories
BT(R) = DDC"Y(R).

Remark 1.2.5. Via the translation to the language of windows and frames, as explained in Remark the
presentation can be brought closer to that found in [33] or [2]. Indeed, in case (1), the second assertion of the
theorem is simply a reinterpretation of the main result of |2|; see Remark In case (2), we are obtaining a
generalization of the main result of [33], which deals with the case where R is an IF,-algebra.

Remark 1.2.6. The proof of the theorem involves first proving a more general version that works for all R but
uses the untruncated derived absolute prismatic cohomology sheaf _, in the guise of the (derived) prismatization
R . We then make crucial use of a construction of Lau from [33] to show that the classical prismatization already
does the job under further finiteness hypotheses.

1.3. Some concrete classifications. A substantial chunk of this paper is devoted to the proof of results leading
up to Theorem [E] as well as some more explicit classifications. To give some further instances of the latter, we need
another definition. This expands on the notion of Breuil windows, which was introduced in [46], following the work
of Breuil [13] and Kisin [31].
Definition 1.3.1 (A generalization of Breuil windows, Definition [9.5.7). Suppose that (A,I’) is a p-torsion-free
prism with R = A/I'. Set I = ¢*I' and A = A/I. For each n > 1, let BK4,(R) be the category of tuples
(N, Fn, V) where N is a p"-torsion A-module of projective dimension 1 and

Fy:o'N—=N; VWw:I'®sN— ©*N
are A-module maps such that Vi o (1 ® Fy) and Fy o Vy are the canonical maps I’ ® ¢*N — o*N and I' @ 4 N — N,
respectively.
Remark 1.3.2. In this situation, there is a canonical functor FFG,,(R) — BKa »(R). See Remark [9.5.10

Definition 1.3.3 (Nilpotence conditions). Suppose that ¢ C B dgin (R/pR)req is a finitely generated ideal. An

object (N, Fy, Vn) in BK4 ,(R) is c-nilpotent if Fy- : ¢*N* — N*|Z| is nilpotent after base-change to B/c. Write
BKZ?LIP(R) for the subcategory of BK 4 ,,(R) spanned by such objects.

7Here7 * denotes Cartier duality; see Remark[9.5.8
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Theorem F (Classification of connected group schemes, Corollary . Suppose that B is c-adically derived
complete. Then the functor from Remark[1.3.9 restricts to an exact equivalence of categories

FFGS "™ (R) = BKZ}?P(R)

where the left hand side is the subcategory of FFG, (R) spanned by the objects whose restriction to Spec B/c is
connected.

Remark 1.3.4. When R is an Fp-algebra (so that I’ = pA), this is essentially due to Zink and Lau; see Re-
mark [9.6.10} The special case where R is a regular complete local ring is also already known by work of Lau [34].

Remark 1.3.5. The methods used for the proof here also recover the classification, due to Zink and Lau, of
connected group schemes in terms of Witt vector displays; see Remark

Theorem G (Classification for semiperfectoid rings, Corollary Remark. Suppose that R is semiper-
fectoid with R/pR F-nilpotent and that Ry — R is a surjection from a perfectoid ring. Set K = ker(Aine(Ro) — A),
and suppose that the semilinear operator & on K/K? induced from the §-structures on Aine(Ro) and A is topologically
locally nilpotent. Then the functor from Remark[1.3.9is an exact equivalence.

Remark 1.3.6. This theorem recovers the following already known classifications:

(1) (Gabber, Lau) Over perfect rings R in terms of p-power torsion Dieudonné modules over W(R) (Re-

mark [9.5.13)).

(2) (Scholze-Weinstein, Anschiitz-LeBras, Lau) Over perfectoid rings R in terms of p-power torsion Breuil-Kisin
modules over Aj,¢(R) (Example [0.5.11).

(3) (Lau) Over F-nilpotent semiperfect rings, in terms of torsion Dieudonné modules |32, §10.3]. Lau’s result
applies more generally, however.

We also obtain the following generalization of the main Theorem from [18], where it is shown when the residue

field is perfect (Example[9.11.13]).

Theorem H (Classification over complete local F,-algebras, Remark . Suppose that R is a complete local
Noetherian ring with mazimal ideal m whose residue field admits a finite p-basis. Suppose also that the divided
Frobenius operator ‘dp/p’ on ﬁi‘ induces a nilpotent endomorphism of Q}{/FP /mQ}{/]F, and that a certain operator
va on ap(R) ={a € R: a? = 0} is nilpotent mod-m. Then the functor from Remark is an exact equivalence.

Remark 1.3.7. Some of the results flowing into the proof of Theorem [H] can also be used to recover results of Lau
from [34] for regular local rings, which have their antecedents in [31] and related works. See Example [9.10.11

1.4. Strategy of the proof of Theorem Starting from the recent work in [2], [23] and [43], the basic idea
behind the proof of Theorem [A] is quite simple, and one that appears quite often in the subject: Reduce the
classification of finite flat group schemes to that of p-divisible groups using Raynaud’s theorem |6, Théoréme 3.1.1],
which tells us that every such group scheme is Zariski locally the kernel of an isogeny of p-divisible groups. However,
there are subtleties arising from the lack of functoriality of these choices of p-divisible groups. Using our functor G
partially resolves this issue. Indeed, using Raynaud’s theorem and |23, Theorem A], one finds that our functor G is
Zariski locally essentially surjective. But, in order to see that it is fully faithful and (hence) essentially surjective
on the nose, we find ourself needing to a priori show an F-gauge analogue of Raynaud’s theorem (as well as certain
exactness properties of our constructions):

Theorem I (Raynaud for F-gauges, Theorem . Given M € P%’jl}(R), there exists an affine p-completely
pro-étale cover Spf R’ — Spf R, and a cofiber sequence of perfect F-gauges over R’
Vl — VQ — MlR/,syn
where V1 and Vo are vector bundle F-gauges over R’ of Hodge-Tate weights {0,1}
In the process of proving Theorem [[} we also obtain the following linear algebraic reinterpretation of a classical
fact about p-divisible groups.
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Theorem J (Bartling-Hoff for F-gauges, Corollary . Suppose that V is a vector bundle F-gauge over R with
Hodge-Tate weights 0,1. Consider the formal prestack Xy (n) over Spf R parameterizing maps f :V — V' of vector
bundle F'-gauges such that there exists f V' — VYV with f Of and fo f both equal to multiplication by p™. Then
Xv(n) is represented by a finitely presented formal scheme over Spf R.

Remark 1.4.1. Via Theorem [A}-or more directly, its antecedent in [23] for truncated Barsotti-Tate groups—V
corresponds to a p-divisible group G over R, and the above theorem translates to the assertion that isogenies G — G’
of degree < p™ are represented by a finitely presented formal scheme. This is of course a consequence of the fact
that finite flat subgroups of G[p"] are parameterized by a projective formal scheme over Spf R. The point here
is that we are able to give a ‘linear algebraic’ proof of this in the setting of F-gauges, which generalizes to other
contexts where such a translation is not possible. This is partly inspired by a result of Bartling and Hoff [5], who
did the same, but in the context of the Witt vector displays of Lau and Zink.

With Theorem [[]in hand, the remaining key point for establishing full faithfulness turns out to be the exactness
of the equivalence established in [23|. For quasisyntomic rings, this exactness is shown in [43]|. Our strategy is to
reduce to this case (see Remark by proving the next result, which was anticipated by Grothendieck [24]. This
is combined with the F-gauge analogue of this smoothness, shown in 23], to complete the reduction.

Theorem K (Smoothness of Ext stacks, Theorem . Suppose that we are given two n-truncated Barsotti-Tate
group schemes G(n), H(n) over Spf R with p"~1-torsion subgroups G(n — 1), H(n — 1). Then the formal prestack
Ext(G(n), H(n)) over Spf R parameterizing n-truncated Barsotti-Tate groups exhibited as extensions of G(n) by
H(n) is p-completely smooth over Spf R. Moreover, the natural map

Ext(G(n), H(n)) — Ext(G(n — 1), H(n — 1))

18 smooth and surjective.

ACKNOWLEDGMENTS

K. M. was partially supported by NSF grant DMS-2200804. S.M. was supported by the Institute for Advanced
Study, University of British Columbia and a start up grant from Purdue University.

We thank Luc Illusie for sharing with us Grothendieck’s letter [24]. We also thank Bhargav Bhatt, Kestutis
Cesnavicius, Brian Conrad, Hai Long Dao, Eike Lau and Shizhang Li for helpful comments and conversations.

2. CONVENTIONS

Our conventions and notational choices will be as in [23]. In particular, we will freely use co-categories and all our
constructions will be derived unless otherwise noted. Since we will be working mainly with (derived) p-complete
objects, all tensor products and cotangent complexes appearing here are the p-complete versions, again, unless
otherwise noted.

3. COHOMOLOGICAL STACKS AND F-GAUGES

We will be using the formal stacks defined by Drinfeld and Bhatt-Lurie |10, |11, |8, [19] geometrizing p-adic
cohomology theories. For a quick summary and a refresher on the notation, the reader is referred to |23, §6]. Here,
we recall what is needed in this paper.

3.1. Prismatization. In this subsection, we review the story of the prismatization of p-complete animated com-
mutative rings from [11]. Most of this material will not be used until Section @ Unless otherwise specified, R
will always denote a derived p-complete animated commutative ring. We assume that the reader is familiar with
animated d-rings and prisms; see for instance |11}, §2] or |23, §5.3]. We will also assume familiarity with the theory
of absolute prismatic cohomology from [10].

Definition 3.1.1 (Cartier-Witt divisors). A Cartier-Witt divisor on R is a surjective map 7 : W(R) - W (R)
of animated commutative rings such that two properties hold:
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o [ = fib(m) is a locally free W (R)-module of rank 1;

e The map mo([) =~ I @ (r) W(mo(R)) — W(mo(R)) is a Cartier-Witt divisor in the sense of |10, §3.1.1].
The second condition means that, Zariski-locally on Spec R, we have a W (m(R))-linear isomorphism mo(I) =~
W (mo(R)) such that the composition W (mg(R)) ~ 7o (I) — W (mo(R)) is given by multiplication by a distinguished
element d € Wy (mo(R)), given in Witt coordinates by (do,d1,...) with dy € mo(R) nilpotent mod-p and with
dy € mp(R)*. We will usually denote the Cartier-Witt divisor by the map I — W (R).

Definition 3.1.2 (Prismatizations). The p-adic formal prestack Z, (also known as the Cartier-Witt stack
WCart) is the fpqc sheaf on p-complete animated commutative rings whose values on R are given by the oco-
groupoid of Cartier-Witt divisors on R. Over Z,, we have the ring stack G, associating with any Cartier-Witt divisor

I — W(R) the quotient W(R). For any p-complete animated commutative ring C, we can now use the process of
transmutation to get its prismatization C' , which is the formal (derived) prestack over Z, parameterizing maps

C — W(R) = G,(R) of p-complete animated commutative rings.

Remark 3.1.3. The prismatization of Z, is the Cartier-Witt stack. We have G, = (Zp[z])) .

Remark 3.1.4. The assignment Spf C — C' is an étale sheaf that preserves all limits and takes p-completely étale
maps to p-completely étale maps of formal p-adic stacks. In particular, one can extend it to a functor X — X on
p-adic formal (derived) algebraic spaces such that (SpfC) =C .

Remark 3.1.5 (d-structure on C' ). There is a canonical endomorphism ¢ : ¢ — C lifting the Frobenius
endomorphism of the Fp-stack C' ® F,,: This takes a Cartier-Witt divisor I — W (R) to its pullback F*I — W (R)

under the endomorphism F' : W(R) — W(R) and replaces C' — W(R) with its composition with the map W(R) —
W(R)/“F*I induced by F.

Definition 3.1.6 (The Hodge-Tate locus). The Hodge-Tate locus ZgT — Z, is the locus where the map

I ®wry R — R vanishes. For any R, we set RAT =R Xz, Z?T, and refer to it as the Hodge-Tate locus of R .

Remark 3.1.7. There is a canonical map SpfZ, — ZII;IT given by the Cartier-Witt divisor W (Z,) V—(l)é

This presents ZI™ as the classifying stack BG,. See [10, Theorem 3.4.13].

W(Z,).

Construction 3.1.8 (The de Rham point). There is a canonical map x4g : Spf C — C' obtained as follows: The
underlying Cartier-Witt divisor is W(C) £ W (C), and the map C' — W(C)/“p is obtained as the one canonically

factoring the composition W (C) EiN W(C) — W(C)/“p.

Remark 3.1.9 (Prisms and the prismatization). Suppose that we have (A, I, R — A) in the (animated) absolute
prismatic site for R. Endow A with the (p, I')-adic topology. As in |11, Construction 3.10], we find a canonical map
ta,n) - Spf A — R classifying the Cartier-Witt divisor I ® 4 W(A) — W (A) obtained from the prism structure on
A, along with the structure map

R5A A0, W(R)=W(R)/“I®4s W(R)).
The next result follows from |11, Corollary 7.18]. See also [27, Theorem 3.3.7].

Theorem 3.1.10 (Prismatizations via prismatic cohomology I). Suppose that R is semiperfectoid. Then the
absolute prismatic cohomology g underlies the initial (animated) prism ( g, Ir, R — r) for R, and the associated
map Spf r — R is an isomorphism.

Definition 3.1.11. A map R — S in CRing”“™? is quasisyntomic if it is p-completely flat (that is, S/p is
flat over R/“p), and if Lg/r has p-complete Tor amplitude [—1,0]: that is, ]LS/R/Lp has Tor amplitude [—1, 0] over
S/%p. The map R — S is a quasisyntomic cover if it is quasisyntomic and S/“p is faithfully flat over R/“p.

Proposition 3.1.12 (Prismatizations via prismatic cohomology II). For any R € CRing? ™ let R — R, be
a quasisyntomic cover with Ro, semiperfectoid. Then the map Spf g ~ R., — R s a flat cover. If R is also
semiperfectoid, then the map is in fact (p, I)-completely faithfully flat.
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Proof. See |11, Lemma 6.3] for the first statement and |23, Corollary 6.12.7] for the second. O

Remark 3.1.13 (Relative affineness of prismatizations and base-change for prisms). Suppose that S is an R-algebra
such that S — R is relatively formally affine. If we have (A, I, R — A) in the absolute prismatic site for R, then
the base-change

SpfAxg § =S
is of the form Spf B for some (p,I)-complete A-algebra B. Moreover, B is in fact a(n animated) d-ring: The
Frobenius lift is obtained from that on A and the endomorphism ¢ of S . Therefore, B underlies a prism (B, J)
over (A, I) equipped with a map S — B.

Remark 3.1.14 (Semiperfectoid base-change for prisms). If S is a semiperfectoid R-algebra, then S — R is
relatively formally affine, and so Remark applies. Indeed, it suffices to check this after p-completely faithfully
flat base-change. Here, we can choose a quasisyntomic cover R — R, such that R, is semiperfectoid. In this case,
R., — R is a flat cover by Proposition and

R xr S ~8pf g_xp Spf ¢ =S
is affine by |10, Corollary 3.2.9].

Remark 3.1.15 (Flat covers of prisms from quasisyntomic maps). Choose a quasisyntomic cover R — R, with
RZr™ semiperfectoid for all m > 1. Then by Remark [3.1.14] we have

Spf A xp (RZF*T!) ~ Spf(ALY)

for a cosimplicial prism (A((;), Lg;)) such that A((;n) ~ A%*(mﬂ). Here we have set (Ao, Io) defn (AS;?, 15,2)); this is
a prism over ( r_,Ir. ). Moreover Spf Ao, — Spf A is (p, I)-completely faithfully flat. All these assertions follow
from Proposition [3.1.12}

Remark 3.1.16 (Base-change for prisms along closed immersions). Suppose that R — S is a surjective map. Then
S — R is relatively formally affine and so Remark [3.1.13| applies. To see this, we can use Proposition |3.1.12| to
reduce to the case where R, and therefore S, are semiperfectoid, and here the result is clear from Theorem [3.1.10

3.2. Syntomification. Here, we review some facts about the Nygaard filtered prismatization and syntomification
of p-complete rings. Since we will not need many details about these stacks in what follows, we will be somewhat
terse, and direct the reader to the references given above for precise definitions and explanation of the notation
used.

Remark 3.2.1 (Filtered prismatization of Z,). To begin we have the filtered prismatization Zﬁf , which is a
p-adic formal prestack over A'/G,, x Z,,. For its definition on classical inputs, see [8, §5.3] and for its values on
animated inputs, see |23 Definition 6.4.4]. Over this prestack we have a filtered Cartier-Witt divisor, which is
a map M 9 W of W-module schemes that is the fiber of a map W — W/ M of animated W-algebras (these are
all sheaves in the flat topology over ZQ/ ). This map sits in a commutative diagram of W-modules with exact rows

L®GH M F.M
(3.2.1.1) ¢t d F.d’
Gt w—" s Fmw

where t : L — G, is the tautological line bundle with cosection over A!/G,, and M’ — W is obtained by sheafifying
the tautological Cartier-Witt divisor over Z,, into a map of W-modules.

Remark 3.2.2 (The de Rham and Hodge-Tate embeddings). There are two physically disjoint open immersions
Jar, JuT © Ly — ZQ/. The first is the pre-image of the open substack G,,/G,, C A'/G,,, and is the locus where

the right square in (3.2.1.1)) is Cartesian. The second is the locus where M L W is obtained from a Cartier-Witt
divisor and d’' = F*d.
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Definition 3.2.3 (Filtered prismatization of p-complete rings). The sheaf of animated commutative rings W/ M is
represented by a ring stack G{l\/ — ZI/}[ . We can therefore use transmutation to associate with each C' € CRingP “°™P
its filtered prismatization CV — Zﬁf which parameterizes maps of p-complete animated commutative rings
C = GN(R).

Construction 3.2.4 (The filtered de Rham point). There is a canonical map 235 : A'/G,,, x Spf C' — CV whose
restriction over the open G,,/G,, x SpfC is the de Rham point xqg from Construction The underlying
filtered Cartier-Witt divisor associates with every cosection ¢ : L — R over a p-nilpotent C-algebra R the map

(V,canot?)
—_—

FWa (LeGH)

where can : G! = W[F] — W is the canonical map. The quotient by this map is also a quotient of G, and so its
R-points are naturally equipped with the structure of a C-algebra.

w

Definition 3.2.5 (Syntomification of p-complete rings). The de Rham and Hodge-Tate embeddings for 7N pullback
to disjoint open immersions jgr, jur : C — CN. The syntomification C*" is the coequalizer in p-adic formal
stacks. of these open immersions.

Remark 3.2.6 (Nygaard filtered absolute prismatic cohomology). In |10, §5.5], Bhatt and Lurie construct the
Nygaard filtration Fil}, g on absolute prismatic cohomology. When R is quasiregular semiperfectoid (qrsp), we
have

Fil\y r={r€ gr: o) cFil}, r},
where Fil}R r is the Ip-adic filtration. When R is perfectoid, then Fil}, g has the structure of a (p, Ir)-complete
filtered animated commutative ring; see |23 Lemma 6.11.6]. In general, for any semiperfectoid ring R, the Frobenius
lift p: r — g lifts to a map

D : FIU\/ R — Fll;R R

of (p, Ir)-complete filtered animated commutative rings.

Remark 3.2.7 (Rees stacks). We refer the reader to |23, §4.3, 5.2] for the conventions on filtered animated
commutative rings and Rees stacks used here. For semiperfectoid R, associated with Fil}, g is the Rees stack
R(Fily, r). This is a formal stack over A!/G,,, and is equipped with two open immersions
o,7: R ~Spf p— R(Fi\ &)
where 7 is the pullback of G,,/G,,, — A'/G,,, while o is obtained as the composition
Spf g S R(FilS, L p) o R(FI, r) —b R(FilY g).
Here, Fﬂ;R,i R is the two-sided Ig-adic filtration on g given by Fil?"l’%i R= I%m for all integers m.

Remark 3.2.8. Quasicoherent sheaves over R(Fil}, g) are equivalent as a symmetric monoidal co-category to
that of (p, Ir)-complete filtered complexes over Fil}, g. Pullback along 7 amounts to forgetting the filtration, and
pullback along o amounts to filtered base-change to Fil;Ri r followed by taking Fil’. Symbolically one can write
this as

Fil* M = M, = > T-®"p" Fil" M.

Theorem 3.2.9 (Filtered prismatization of semiperfectoid rings). Suppose that R is a semiperfectoid ring. Then
there is an isomorphism of A'/G,,-stacks
R(Fily r) = RV
identifying T with jqr and o with jgr
Proof. See |23, Theorem 6.11.7]. O

Proposition 3.2.10. If R — S is a quasisyntomic cover, then SN — RN is surjective in the p-completely flat topol-
ogy. In fact, if R and S are semiperfectoid, then this map is faithfully flat. Moreover, there exists a quasisyntomic
cover R — Ry such that RZR™ is semiperfectoid for all m.
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Proof. See |23, Corollaries 6.12.3, 6.12.5]. O
3.3. F-gauges.

Definition 3.3.1. An F-gauge over R is a quasicoherent sheaf M over R®™ (over R®™ ® Z/p"Z). It is perfect
(resp. a vector bundle F-gauge) if it is a perfect complex (resp. a vector bundle) over R®". One obtains
corresponding notions for F-gauges of level n by replacing R" with R%™ ® Z/p"Z in the definitions.

Remark 3.3.2. When R = & is a perfect field, this notion is an instance of the Frobenius gauges or @-gauges
introduced by Fontaine and Jannsen [22|. The general definition here was introduced by Bhatt-Lurie under the
term prismatic F-gauges [8, Definition 6.1.1]. For economy of language, we have dropped the adjective ‘prismatic’
here.

Construction 3.3.3. Given an F-gauge M over R, its pullback along the map xé\% from Construction yields
a quasicoherent sheaf over A'/G,, x Spf R, which is equivalent to a p-complete filtered complex Filfq, M over R.

Example 3.3.4 (Breuil-Kisin twist). Over Z™ we have a canonical line bundle, the Breuil-Kisin twist O{1};
see |23, §6.6] for a quick summary of its construction and properties. We will denote its pullback over R®™ by the
same symbol. For any F-gauge M over R, we will set M{1} = M @ O{1}.

Definition 3.3.5. The Hodge-Tate weights of an F-gauge M are the integers m such that grﬁgng is not
nullhomotopic.

Remark 3.3.6. With this convention, the Breuil-Kisin twist has Hodge-Tate weight 1.

Remark 3.3.7 (F-gauges over a semiperfectoid ring). Using Theorem and Remark |3.2.8] we see that giving
an F-gauge over a semiperfectoid ring R is equivalent to giving a (p, Ir)-complete filtered complex Fil®* M over
Fily; g equipped with an isomorphism M, ~ M.

Remark 3.3.8 (Quasisyntomic descent). By Proposition [3.2.10] F-gauges satisfy quasisyntomic descent, and one
can use this descent to reduce many questions to the situation of semiperfectoid rings, which is addressed by the
previous remark.

Remark 3.3.9 (Cohomology in the quasisyntomic site). The assignment
Fily, _:Cw—Fil}y ¢

is a sheaf of animated filtered commutative rings over the site Rysyn formed by semiperfectoid algebras C' that are
quasisyntomic over R, equipped with the p-quasisyntomic topology. An F-gauge M can be viewed as a sheaf of
filtered modules

Fil* M_ : C — Fil* M¢
over this sheaf. Moreover the structure of an F-gauge on M yields maps
ei FilM_ - T%®  M_

where 7 is the sheafification of the assignment C' +— I- on semiperfectoid R-algebras C'. Unwinding definitions, one
now finds a canonical isomorphism

(po—can

RI(R", M) =5 fib (BT qoyn (Spf R, Fil” M) BT goyn(Spf R, ML) )

where can : Fil° M_ — colim,,,_ o Fil® M_ ~ M_ is the natural map.

4. REPRESENTABILITY AND DIEUDONNE THEORY

The purpose of this section is to recall some results from [23| regarding the representability of stacks associated
with perfect F-gauges and the classification of truncated Barsotti-Tate group schemes in terms of F-gauges.
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4.1. Stacks of perfect F-gauges of Hodge-Tate weights 0,1. For integers a < b, consider the p-adic formal

syn,|a,b a,b n
i 60 (B © Z/p"T)~ of

perfect F-gauges of level n over R with Hodge-Tate weights 0,1 and with Tor amplitude in [a, b].
Over this prestack we have a canonical filtered perfect complex Fil;ldg M, aut obtained via Construction m

prestack Perf This associates with every R € CRing?™ the oo-groupoid Perf

Theorem 4.1.1. The prestack Perffly?b[al’f] 1s represented by a p-adic formal locally finitely presented derived Artin

stack over Z, with cotangent complex (grﬁég Miaut) ®Fil%dg Miaut. Moreover, if (C' — C\ ) is a nilpotent divided
power thickening of p-complete algebras, then we have a Cartesian square

Perf> 114 (C") Perfl") (A1 /Gy, x Spec C’ /Lp")

Perf21147(C) — Perf("] (A /Gy x Spec C/5p™) X pygtann (0t pmy Pertl™?(C7 /1pm),

Proof. This follows from |23, Theorem 8.13.1] and its proof. Here, Perf%bl]}(Al/Gm x Spec B) is the oo-groupoid of

filtered perfect complexes over B with Tor amplitude in [a, b], and with their associated graded complexes supported
in graded degrees 0, —1. O

4.2. Sections of F-gauges of Hodge-Tate weights < 1.

Theorem 4.2.1. Let M be a perfect F-gauge of level n over R € CRing? “°"" with Hodge-Tate weights bounded

by 1; then the p-adic formal prestack given on CRing%—/"ﬂp given by

C+— =Rl (C" ® Z/p"Z, M

(C'syn ®Z/p"Z)
is represented by a finitely presented derived p-adic formal Artin stack T'syn (M) over Spf R. Moreover, if (C' — C,7)

is a nilpotent divided power thickening of in CRingZI’%—/wmp , then we have a Cartesian square

Toyn(M)(C") ————— ' ®g Filjg, M,

Lsyn(M)(C) — (C @ Filigg Mn) Xconn, (C' ®r My).

Here, Filf{dg M, is the filtered perfect complex over R obtained by viewing M as a perfect complex over R¥™ and
pulling back along xé\%R. In particular, T'syn(M) admits o perfect tangent complex over R given by the pullback of

grﬁég M, [-1].
Proof. See |23, Theorem 8.12.1]. O
Corollary 4.2.2 (Deformation theory for syntomic cohomology). With the notation as above, let i, : R¥™ ®

Z/p"7Z — R™™ be the tautological closed immersion, and set I = fib(C' — C). Then we have a canonical fiber
sequence

RP(C/’Syn, Ln’*M|C/,syn) — RF(Csyn7 Ln,*M|CSy“) =1 @R gr;lég M”

Proof. Apply the theorem to MJj| for j > 1 to get canonical fiber sequences of (—j)-connective animated abelian
groups
TSIRT(C™™ 1y o M|t yn) — TSI RT(CP™ 1,y M

Now, one finishes by taking the colimit over j. 0

< oo—1
cown) > T @p T gryag M-
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Remark 4.2.3 (Shape of stacks given by syntomic cohomology). The proof of Theorem in [23] yields more
information. When R is an Fp-algebra and n = 1, then we have a Cartesian diagram (see the proof of |23 Corollary

8.7.6))
I—‘syn(]:) — I—‘FZip(F)

Urzip(F) — Sl
where the other objects involved are as follows:
(1) Trzip(M) is the F-zip cohomology associated with an F-zip as defined in [44]. Explicitly, its values on an
R-algebra C are given by

T rzip (F)(C) =~ 7<° fib (o R (Fﬂgm‘j F xp Fillyy, F) — C ®g grs™ F)

where Fil;ldg F and FilgOnj F are filtered perfect complexes over R with the same underlying perfect complex
F.

(2) S,y is a derived Artin stack over I'pz;,(F), whose classical truncation is in the category of (classical)
I rzip (F)a-stacks obtained by taking the subcategory spanned by height 1 finite flat p-torsion group schemes
and their iterated classifying stacks, and then closing this up under pullbacks; see the proof of |23 Theorem
7.1.5]. This stack was first systematically considered by Bragg-Olsson [12]. Explicitly, it is the cofiber of a
map

NorZ' - NegpH',
where N is a perfect complex over R, H' is the quasisyntomic sheaf of R-modules C + L¢ /K, and Z Lis
another quasisyntomic sheaf of R-modules sitting in a fiber sequence

fib(G, & G,) — 2 — H'.

Remark 4.2.4 (Fpqc descent for syntomic cohomology). The stack I'syn(F) satisfies p-complete fpqe descent. To
see this, one can reduce using derived descent to the case of F,-algebras, and then by dévissage to the case where
n = 1. Here, the description in Remark shows that it suffices to establish fpqc descent for I'pzip(F) and for
S(n,¢)[1] separately. Given the explicit descriptions of these sheaves in the remark, we are reduced to checking that
perfect complexes and the cotangent complex satisfy fpqc descent, and this is well-known.

Alternatively, one can also follow the proof of |10, Proposition 7.4.7] and prove the more general result that
Igyn (F) satisfies p-complete fpqc descent for any F-gauge F, with bounded above Hodge-Tate weights. To do this,
one uses the description of syntomic cohomology given in Remark but shows in addition that one can use
the Nygaard completed sheaves instead. With this, the desired descent statement can be ultimately reduced as in
the argument of Bhatt-Lurie to the fact that the p-complete cotangent complex of an animated commutative ring
tensored with a module satisfies p-complete fpqc descent (see |39, Proposition 3.2]).

4.3. Dieudonné theory and F-gauges. The following theorem is a generalization of work of Anschiitz-Le Bras [2]:
Theorem 4.3.1. Suppose that R is a classical p-complete ring in CRing? “°™P. Set

Vect(o,1y (RY" © Z/p"Z) = Perf (] (R @ Z/p"Z).

Then the functor M — T'syn(M) yields a canonical equivalence of (co-)categories
Vect (o1} (R™™ ® Z/p"Z) = BT, (R),

where the right hand side is category of n-truncated Barsotti-Tate groups over R. This equivalence is compatible
with arbitrary base-change and satisfies fpgc descent. Moreover, it is compatible with Cartier duality: There is a
canonical non-degenerate pairing

Poyn(MY{1}) x Tgyn(M) = pipn
yielding an isomorphism Dyyn(MY{1}) = Teyn(M)*.
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Proof. This is |23, Theorem 11.1.4]. The only point to be explained perhaps is the compatibility with arbitrary
base-change and fpqc descent. This is a by-product of the fact that the equivalence is obtained via an isomorphism
of p-adic formal (smooth) algebraic stacks Vectff:?o’l} = BT iyﬁr{](’)[’ol’f ) from
Theorem [L.1.1] with a different name, and where the target is the stack of n-truncated Barsotti-Tate group schemes.

O

where the source is the stack Perf

no

We now present some complements to the theorem, beginning with the observation that fppf cohomology of
n-truncated Barsotti-Tate group schemes can be computed using syntomic cohomology.

Proposition 4.3.2 (Syntomic cohomology and fppf cohomology). Suppose that R is p-nilpotent. If G is an n-
truncated Barsotti-Tate group scheme over R presented as G = T'gyn(M) for M € Vectyo13(R¥" @ Z/p"Z), then
there is a canonical isomorphism

RTtypt(Spec R, G) =» RT(R™™,1,, . M) ~ RU(RY™ @ Z/p"Z, M).
In fact, for every m > 1 there is a canonical isomorphism of smooth Artin m-stacks
(4.3.2.1) B™G =5 Tgyn(M[m]).
Proof. The second assertion implies the first: Indeed, evaluating both sides of on R and shifting gives

isomorphisms
7S Rl gppt (Spec R, G) = 7™ RT(R™™, 1,, . M)

whose colimit over m yields the isomorphism in the first assertion.

Now, note that B™G is smooth over R (by the flatness of G), and the description of the tangent complex of
G =Tsyn(M) in Theoremshows that the tangent complex of B™@ is given by the pullback of grﬁ(lig M[—m+1],
a perfect complex with Tor amplitude in [—m, —m + 1]. The same theorem also shows that Iy, (M][m]) is a locally
finitely presented derived algebraic stack with the same tangent complex. In particular, this implies that Igy,, (M[m])
is in fact a smooth (and hence classical) Artin m-stack over R.

Now, B™G is the fppf sheafification of the Mody,.;-valued presheaf

Cw— G(C)m] ~ (TSORF(CSW’,M)) [m],

on R-algebras. The canonical map

(7=°RL(C™™, M)) [m] = (7= RT(C™™", M))[m]
sheafifies to a natural map of smooth Artin stacks B™G — T'syn(M][m]), which the description of tangent complexes
above shows is actually an étale map. To finish, it is enough to know that, when C' = k is an algebraically closed
field, H'(k®™, M) vanishes for i > 0. By dévissage, we can reduce what remains to be shown to the case n = 1.
Now, giving M is equivalent to giving maps of finite dimensional x-vector spaces

MY o MmE m
such that the sequence is exact in the middle. Furthermore, we have
RD(k", M) ~ fib(M =275 " M).

Therefore, we have to know the surjectivity of V' — ¢*, which reduces to the classical fact that, for any -semilinear
endomorphism 7T : k" — k", the map

T —id: kM — K"
is surjective. O

Remark 4.3.3. By [23] Remark 6.8.2], every vector bundle F-gauge over R®™ ® Z/p™Z gives rise to a crystal
of vector bundles D(M) over the mod-p™ crystalline site of Spf R relative to Z, with its p-adic divided powers.
Moreover, this crystal is filtered in the sense that its evaluation D(M)(C”) on any (animated) divided power
thickening of p-nilpotent R-algebras C’ — C admits a canonical Hodge filtration Filfjq, D(M)(C’) compatible with
the (animated) divided power filtration on C’. Concretely, this is obtained via quasisyntomic descent from the
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universal divided power thickening A.ys(C) ~ ¢ — C of semiperfect R-algebras C, where the filtration arises
from the filtered Fily, ¢-module underlying the restriction of M to C*¥™ ® Z/p"Z. On the other hand, if M is
associated with an n-truncated Barsotti-Tate group scheme G by Theorem then we also have the Dieudonné
crystal D(G*) defined in |6, §3.1, Théoréme 3.3.10], given as the internal Ext sheaf Ext'(G*,O°Y®) in the big
crystalline topos of Spf R equipped with the fppf topology with O°¥® its structure sheaf. This has a filtration by a
subsheaf ml(G*,I‘”ys), where Z°Y® C O°¥" is the tautological divided power ideal sheaf in the crystalline topos,
whose evaluation on C’ — C' gives a canonical submodule Fil%dg D(G*)(C") c D(G*)(C").

Proposition 4.3.4 (The filtered Dieudonné crystal via F-gauges). In the above set up, there is a canonical iso-
morphism of crystals

D(M) = D(GY).
mapping Fil%dg D(M)(C") isomorphicaly onto Fil%dg D(G*)(C") for all divided power thickenings C' — C of p-
nilpotent R-algebras. In particular, if Lie(G) defn e*]Lé/R is the Lie complex of G over R (where e € G(R) is the
identity section), then there is a canonical isomorphism of perfect complexes

grﬁ}ig M, = Lie(G)[1].

Proof. This follows from the argument used for |23, Proposition 11.7.4], and reduces in the end to the comparison
between prismatic and crystalline Dieudonné theory appearing in |2} §4.3] or [43] (cf. Remark [1.1.4]). O

The next result—which is immediate from Propositions [£.3.2 and [£:3.4] and Corollary [£.2.2}—should be compared
with |15, Theorem 5.2.8]. In loc. cit., one finds the statement for arbitrary finite locally free commutative group
schemes, but only for square-zero extensions. The proof there is via the Bégueri resolution by smooth affine
commutative group schemes. We will recover the more general assertion in Corollary B.1.6] below using our main
classification theorem.

Corollary 4.3.5 (The Mazur-Roberts carpet). Suppose that (C' — C,~) is a nilpotent divided power extension of
discrete p-nilpotent R-algebras with I = ker(C' — C). Then we have a canonical fiber sequence

RTppe(Spec €, G) — RTgppe(Spec C, G) — Lie(G) @p I[1]
Remark 4.3.6 (Etale realization of F-gauges). Via [8, Constructions 6.3.1, 6.3.2], we find a canonical functor
Tet : Perf(RY™) — Df .. (Spf(R)2, Zp)

where the right hand side is the bounded derived category of lisse Zj,-sheaves on the adic generic fiber of Spf R.
Since both sides satisy quasisyntomic descent, it suffices to specify the equivalence for semiperfectoid R. This is
given as
Tee(M) = (M[1/I5]") 7™

Here, we are viewing M as a perfect complex of g-modules, where (g, Ir) is the initial prism for R, and M[1/Iz]"
is the p-adic completion of M[1/I]. The F-gauge structure on M yields a canonical ¢-semilinear isomorphism
M/IR)N = M[1/Ig])", and Tg (M) is the module of invariants for this operator. Note that the p-adic completion
is not required if M has cohomology sheaves supported along the p = 0 locus.

Proposition 4.3.7 (Compatibility with étale realization). With the notation of Proposition suppose that R
is instead p-complete. Then there is a canonical isomorphism Ty (M) ~ G%d, where G;‘;d is the adic generic fiber of
G, viewed as a perfect complex of lisse Zy-sheaves over Spf(R)f]d.

Proof. Tt is enough to consider the case where R is quasisyntomic (since the moduli stack of n-truncated BTs is
p-completely smooth), where this follows from [43, Proposition 3.99]. O

Remark 4.3.8 (Compatibility with étale cohomology). The assignment
M_[1/I]: C— M¢[1/Ic]
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is a sheaf on Rysyn. We now have a canonical isomorphism [43, Remark 3.100]
RT qeyn (Spf R, M_[1/T])¥=' =5 RT«(Spf(R)2, Ga9).

Note that the p-adic completion is unnecessary here since we are dealing with Z/p"Z-modules.

5. EXACTNESS

5.1. From extensions of F'-gauges to extensions of BTs. Our goal for this section is to prove the following
result:

Theorem 5.1.1 (Exactness). The functor M +— Ty, (M) from Theorem is an exact equivalence. More
precisely, a sequence

M1 — M2 — Mg
in Vectiy?o 1}(R) is a fiber sequence if and only if

0 — Dgyn(M1) = Dgyn(Mz) = Tgyn(Ms) = 0
is an exact sequence of n-truncated Barsotti-Tate group schemes over R.

Remark 5.1.2. Suppose that M; — My — M3 is a fiber sequence: It corresponds to a map M3z — M;[1], which
gives rise via Proposition [£.3.2] to a map

Doyn(M3) = Tyyn(M[1]) <= BTgyn(M;)
classifying the exact sequence
0= Tgyn(M1) = Tgyn(Ma) = Tyyn(M3) = 0
of fppf sheaves. The difficult part of the theorem now is to show that exactness of syntomic cohomology implies
that the original sequence is a fiber sequence.

Remark 5.1.3 (The case of qrsp rings). If R = « is an algebraically closed (or even perfect) field, then the theorem
holds. More generally, when R is a qrsp ring, we have an explicit inverse to I'syy,, described in [43| §3] (see also [23|
§11.5]), which carries exact sequences to fiber sequences [43, Remark 3.83]. Therefore, the theorem holds in this case
as well. Our plan of action now is to reduce to this situation by studying the geometry of the stack of extensions
of truncated Barsotti-Tate groups.

Remark 5.1.4 (Translation to a geometric statement). Set N'= MY ® M,[1]: this is a perfect F-gauge over R
with Hodge-Tate weights bounded by 1. Therefore, by Theorem Lsyn(N) is represented by a p-adic formal
locally finitely presented derived Artin stack over R with tangent complex grﬁ(llg N, [—1]. Since N[—1] is a vector

bundle over R®" @ Z/p™Z, we see that the tangent complex is in fact connective, and so I'syn(N) is a smooth, hence

p-nilp, f

R/ , maps of vector bundles

classical, formal Artin stack over R. It parameterizes, for each C' € CRing

Ms

Giving such a map is precisely equivalent to giving a fiber sequence of vector bundles
M1 Covn QL p L

On the other hand, set G; = I'syn(M;). Then we also have the classical formal algebraic stack Ext(Gs, G1) over
R parameterizing extensions of G3 by G in fppf sheaves of Z/p"Z-modules. Remark can be interpreted as
giving a map of formal classical algebraic stacks

(5.1.4.1) Lsyn(N)a — Ext(G3,G1).

comgz/prz — Mi[l|lcsmgz/pmz.

CsYnRZ/p T — ./\/lz — ./\/13

Theorem [5.1.1] would follow if we knew that this is an isomorphism.
By taking Spf R to be a formal affine cover of the smooth formal stack Vectfgq] . X Vectfgri] ,,» We can assume
that R is p-completely smooth. Further, Remark [5.1.3] combined with quasisyntomic descent, tells us that

Layn(N)(C) — Ext(Gs, G1)(C)
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is an isomorphism for p-quasisyntomic R-algebras C. If we knew that Ext(Gs,G1) is also smooth, then it would

follow that (5.1.4.1}) is an isomorphism.

5.2. Smoothness of the stack of extensions.

Remark 5.2.1 (Truncating extensions of BT group schemes). Suppose that G(n) and H(n) are n-truncated
Barsotti-Tate groups, and suppose that we have a short exact sequence 0 — H(n) — T(n) — G(n) — 0 of fppf
sheaves of Z/p™Z-modules over R. Then one has the following observations:
(1) T(n) is an n-truncated Barsotti-Tate group.
(2) If n > k > 1 and we use (k) to denote the p*-torsion subgroups, then the sequence 0 — H (k) — T(k) —
G(k) — 0 is a short exact sequence of k-truncated Barsotti-Tate groups.

See |6l Lemme 3.3.9].
By Remark the following theorem implies Theorem [5.1.1

Theorem 5.2.2. Suppose that G(n), H(n) are two n-truncated Barsotti-Tate group schemes over R. Then:
(1) Ext(G(n), H(n)) is p-completely smooth over Spf R.
(2) If n > 2, the natural map

Ext(G(n), H(n)) 222020,

is smooth and surjective.

Ext(G(n— 1), H(n — 1))

Remark 5.2.3. The statement of the above theorem was anticipated by Grothendieck a long time ago: See the
discussion on p. 10 of [30], which references p. 15 of Grothendieck’s letter [24]. The method of proof we follow here
is essentially Grothendieck’s as explained in [29]: It was used there to prove (among other things) the smoothness
of the stack of truncated Barsotti-Tate groups. The key point is to set up the obstruction theory correctly, which
we do in Proposition below.

Lemma 5.2.4 (Surjectivity on geometric points). For any algebraically closed field x over R the map

Ext(G(n), H(n))(x) —02Tn20,

Ext(G(n — 1), H(n — 1))(+)
18 surjective

Proof. Without loss of generality we can assume R = k. By the discussion in Remark [5.1.4] this would follow from
the following assertion: Suppose that Q is a vector bundle F-gauge of level n over x; then the map

Layn(Q])(K) = Tsyn(Q] ®2z/pnz Z/p" ™ Z) (k)
is surjective. This reduces to knowing that we have
Hl(K/syn, Q[l} ®Z/p"Z Z/pZ) = HZ(Kszn7 Q ®Z/p"Z Z/pZ) = Oa
which is clear since RI'(k*¥", Q®z/,n7Z/pZ) is computed by a two-term complex whose terms are in degrees 0,1. [

Proposition 5.2.5 (Ext against coherent sheaves). Suppose that M is an R-module and that p*R = 0. Viewing
M as a quasicoherent fppf sheaf over Spec R:

(1) There is a canonical isomorphism
ME(G(H), M) — @Z/p"'Z(G(n)’ M),
(2) We havfﬂ
Exty/,nz(G(n), M) = 0.
(8) The natural map

is an isomorphism.

8This is the internal Ext sheaf computed in the category of fppf Z/p™Z-modules over Spec R.
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Proof. This follows from [29, Proposition 2.2.4]. O
Notation 5.2.6. For any finite flat group scheme H over a base R set
ty = H°(Lie(H)) ; vy = H'(Lie(H)).
Lemma 5.2.7 (Tangent complexes of BTs). Consider the tangent complex Lie(H(n)) over R, and let m > 1 be
such that p™ =0 € R with n > m. Then:
(1) Lie(H(n)) is perfect with Tor amplitude in [0,1]. In fact, tg ) and vy(,) are both finite locally free over R
and the canonical fiber sequence
tH(n) — Lle(H(n)) — UH(n) [71]
is split.
(2) Form <n' <n (resp. m <n' <n—m), the map tgmy — tram) (Tesp. Vam:) — VH(n)) induced from the
inclusion H(n') C H(n) as the p" -torsion subgroup is an isomorphism (resp. identically zero).

(3) Form <n’ <n (resp. m <n' <n—m) the map Vi) = Vam) (Tesp. tam) — tam:)) induced by the

’
n—m

multiplication-by-p map H(n) — H(n') is an isomorphism (resp. identically zero).

Proof. See |29, Proposition 2.2.1]. O

Lemma 5.2.8. Suppose that we have a surjection of rings R — Ry with kernel I, and suppose that n > m. Then
for A=7,7/p"Z, we have canonical short exact sequences
0 — Exty(G(n),I ®p tam)) — Exty(G(n),I ®g Lie(H(n))) — Homa(G(n),I @ vg ) — 0
0 — Ext}(G(n), I ®p ty(m)) — Ext3(G(n),I @ Lie(H(n))) — Exty (G(n),I ®r vim)) — 0.
Moreover, for M(n) = I Qg tpm) or M(n) =1 Qg Vi), the following hold:
(1) EXt%(G(n% M) i) HomZ/p"Z(G(n)ﬂ M)7
(2) Exté/an(G(n),M) =0;
(3) Ext3,n7(G(n), M) = Extz(G(n), M).
Proof. The first part is clear from (1) of Lemma For the numbered assertions, first note that Hom 4, (G(n), M) ~
ta(n)- ®r M is a quasicoherent sheaf over Spec R; see |29, (2.1.6.1)]. The lemma now follow from Propositionm

by taking global sections and observing that the quasicoherent sheaf @Q (G(n),M) for A=Z,Z/p"Z and i = 0,1
has no higher cohomology. O

Proposition 5.2.9 (Obstruction theory for extensions of BTs). Suppose that R is an Fp-algebra and that w :
R — Ry is a square zero extension with kernel I. Use a subscript O to denote base-change of objects from R to
Ry. Suppose that we have Ty(n) € Ext(Go(n), Ho(n))(Ro) corresponding to a map fo(n) : Go(n) — Ho(n)[1] of
complezes of fppf sheaves over Ry. Then there exists a canonical class

ob(fo(n)) € Ext3 nz(Go(n), I @ trn)) ~ Ext3(Go(n), I ®g tym))

with the following properties:

(1) To(n) lifts to T'(n) € Ext(G(n), H(n))(R) if and only if ob(fo(n)) vanishes.
(2) The class ob(fo(n)) maps to ob(fo(n — 1)) under the restriction map

EXt%(Go(n),I(@R tH(n)) — EXt%(Go(n — 1),I®R tH(n)) & EXt%(Go(n - 1)71 R tH(nfl))

induced by the inclusion Go(n) C Go(n—1). Here, we are using the following observation from Lemmal[5.2.7
The map tg(n—1) = ta(n) nduced from the inclusion H(n — 1) C H(n) is an isomorphism.
(3) If ob(fo(n)) vanishes, then the groupoid of lifts T'(n) is a torsor under

(5.2.9.1) Exty,,nz(Go(n), I @ Lie(H(n))) ~ Homgz pnz(Go (1), vy(n))
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and the map from the space of lifts of To(n) to those of To(n — 1) is equivariant for the isomorphism

(5292) HomZ/an(GO(n), I ®r UHo(n)) i} HOmZ/pnflz Go(n) ®]IZ‘/an Z/pn_lz7 I ®g UHo(n))

(
E—> HomZ/pnflz(Go(" - 1)a I'®r UHo(n—l))
induced by the multiplication-by-p map Ho(n) — Ho(n —1).

Proof. Let v : (Spec Ro)eppt — (Spec R)spps be the map of fppf sites associated with w. From Corollary or
directly from [15, Theorem 5.2.8], one finds a fiber sequence of complexes of fppf sheaves

H(n) = Ru.Ho(n) = Ru.(I @ Lie(H(n))[1]),

where we are treating I ® g Lie(H (n))[1] as a complex of quasi-coherent sheaves over (Spec Ro)ppi-
Applying RHomg,/,nz(G(n), __) to this fiber sequence, using the standard adjunction between ¢* and Ru,, and
taking cohomology yields an exact sequence

Ext%/an(G(n),H(n)) — Ext%/an(Go(n), Hy(n)) — Ext%/an(Go(n),I ®g Lie(H(n)))

The class ob(fo(n)) that we seek is exactly where the class of Ty(n) in Ext}(Go(n), Ho(n)) ends up on the right
hand side via the isomorphism

Ext3,nz(Go(n), I ®p Lie(H(n))) < Ext7),n7(Go(n), I @R ti(n))

obtained from Lemma, It is clear that this class has property (1), and it’s also not hard to check that it has
property (2).

As for property (3), first note that is a consequence of Lemma Moreover, the first isomorphism
in follows from (3) of Lemma|[5.2.7] and the second from the flatness of G(n) over Z/p"Z. Now, we use the
exact sequence

Hom(G(n), H(n)) — Hom(Go(n), Hyo(n)) — Ext%/an(Go(n), I ®p Lie(H(n))) — ---

s+ = Bxty g (G(n), H(n)) — Exty),nz(Go(n), Ho(n)).
Assuming the vanishing of the obstruction class, this shows that the set of isomorphism classes of lifts of Ty(n) is a
torsor under the image of Ext,(Go(n), I ®g Lie(H(n))), and one now upgrades to the statement about the groupoid

of lifts in a standard way. For the stated equivariance, note that, for any lift 7'(n), multiplication-by-p yields a
commutative diagram with exact rows where the top right and the bottom left squares are Cartesian:

0 H(n) T(n) G(n) 0
0 H(n) T'(n) —> Gn—1) —— 0

0——Hn-1)—-Tnh-1) —=Gn-1) ——0

O

Remark 5.2.10 (Construction of obstruction classes using higher stacks). There is an alternative to the use of
the Mazur-Roberts carpet that proceeds by looking at the deformation theory of maps of higher classifying stacks.
Here is a sketch:

(1) We begin by assuming that we have p-divisible groups G, H over R such that G[p"] = G(n) and H[p"] =
H(n), and that we have an extension Ty € Ext(G, H)(Ry) such that Ty[p"] ~ To(n) € Ext(G(n), H(n))(Ro).
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(2) We now note that the obstruction to lifting the map of fppf sheaves of animated abelian groups fo(n) :
Go(n) — Hy(n)[1] classifying Tp vanishes if and only if the obstruction to lifting the map B™Gy(n) —
B™*t1Hy(n) of higher classifying stacks vanishes for m > 1.

(3) By standard deformation theory this latter obstruction class lives in

Ext o () (f0 (1) Lt 1 o (n)/ Re» OBmGom) ® T) = H™ 2 (B™Go(n), I ©p Lie(H(n))).

(4) Using classical facts about the cohomology of Eilenberg-MacLane spaces |20], one sees that there is a short
exact sequence

(5.2.10.1)
0 — Ext2(Go(n), [®gLie(H(n))) — H™2(B™Gy(n), [@pLie(H(n))) — Homg(My®@5Go(n), [QgLie(H (n))) — 0,

where My = m2(Z ®s Z)ﬂ is a finite abelian group. Moreover, we have
Ext}(Go(n), I @ Lie(H(n))) ~ H™ 1 (B™Go(n), I ®r Lie(H(n))).

(5) Since My is perfect with Tor amplitude in [—1,0] as a Z-module with perfect dual My with Tor amplitude
[0, 1], the right hand side of (5.2.10.1)) can be rewritten using Lemma as

Homg (Go(n), I ®g Lie(H(n)) ®z My') = Homgz(Go(n), I @r ta(n) @z My).

(6) Now, one uses the functoriality of the obstruction class and the invariance of () under passing to the
pF-torsion subgroups H(k) C H(n) to show that the image of the obstruction class in Homgz(Go(n), I ®r
tr(n) ®z My )vanishes, and so it actually lives in Ext3(Go(n), I ®p Lie(H(n))). See the argument in the
proof of Theorem [5.2.2] below.

(7) A similar functoriality argument also shows that the image of the resulting class under the map

Ext?(Go(n),I ®g Lie(H(n))) — Ext}(Go(n),I ®r v (n))
vanishes, finally yielding the obstruction class in

EXt%(Go(n), I Or tH(n)) = EXt%/p"Z(GO (TL), I QR tH(n))

Proof of Theorem[5.2.9. Given Lemma standard arguments reduce us to showing the following statement:
Suppose that we are in the situation of Remark Then, for all n > 2, To(n—1) can be lifted to a BT extension
T(n—1) of H(n—1) by G(n—1), and every such lift can further be lifted to a BT extension T'(n) of H(n) by G(n).
By Proposition for all n > 1, we have the obstruction class

ob(fo(n)) € Ext7 s (Go(n), I @R tr(n))-

Given (3) of Proposition it is enough now to show that ob(fo(n)) = 0 for all n > 1. This follows from (2) of
Proposition [5.2.9] and the fact that the map

EXt%(Go(n),I@)R tH(n)) — EXt%(Go(n — 1),] ®RrR tH(n))

induced via restriction along Go(n — 1) C Go(n) is identically zero; see |29, Corollaire 2.2.7]. O
Proof of Theorem[5.1.1l Follows from Theorem (see Remark and Remark [5.1.3). O

6. AN ANALOGUE OF A RESULT OF RAYNAUD

6.1. Isogenies. For any stable Z-linear oo-category C, write Mod, /an(C) for the stable oco-category of Z/p"Z-
module objects in C. Effectively, we are looking at the oo-category of objects M € C equipped with a nullhomotopy
for the endomorphism p™ : M — M given by multiplication by p™. The following observation will be useful:

Lemma 6.1.1. Suppose that we have a map f : My — My in C. Then the following are equivalent:
(1) Giving cofib(f) the structure of an object in Mody,,n7(C).
(2) Giving a map f : My — My equipped with an isomorphism fo f ~ p™ (resp. fo f ~p™) as endomorphisms
of My (resp. of M ).

9This is a smash product of spectra over the sphere spectrum.
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Definition 6.1.2. With C as above, a height-n isogeny is the data of a pair of maps M; ER Mo ER Ms along
with homotopies fo f ~ p™ and f o f ~ p™. We will denote such an object simply by the pair (f, f), and refer to
it as a height-n isogeny between M; and Ms.

6.2. Raynaud’s theorem for F-gauges. For any R € CRing?™P, let Psy?o 1}(R) be the oo-subcategory of
Mody,/,nz(Perfyo 1) (R¥")) spanned by the objects F with Tor amphtude in [—1,0]. Our goal in this section is to
prove the following syntomic analogue of a theorem of Raynaud [6, Théoréme 3.1.1]:

Theorem 6.2.1. Suppose that R is discrete and that we have M € Piyr{lo 1}(R). Then there exist an ind-étale cover
R — R, vector bundle F-gauges
VLV € Vect g1y (RY™),

of Hodge-Tate weights 0,1, a map f: V™' — V°, and an equivalence

M| fyn = cofib(V=1 Ly V0)

of perfect complezes over RSY™.

Remark 6.2.2. Raynaud’s theorem in the context of finite flat group schemes actually allows one to restrict to
Zariski localization to achieve the analogous result. A posteriori, combined with Theorem below, this implies
that Zariski localization is sufficient in Theorem [6.2.1] as well. However, our methods, which are moduli theoretic,
cannot yield this stronger assertion directly.

Remark 6.2.3. It might be possible to give a more streamlined proof of the theorem using the results of § [0
However, the more scenic route taken here yields additional information about the moduli of F-gauges, such as
Corollary [6.4.4] below, and also illustrates principles that will prove useful in other contexts beyond that of this

paper.
The proof will take some preparation. For now, here are some useful corollaries.

Corollary 6.2.4. Suppose that R is discrete and that M € Pwl{l0 1}(R). Then, pro-étale locally on Spec R, there
exist Vi, Wy, € Vect?”"!

{0, 1}(R) and cofiber sequences of perfect F-gauges
M=V, - M M =W, =M

with M' in the image of P>} {0, 1}(R)

Proof. We can assume that we have a cofiber sequence

VL0 M

with V=1,V in Vect?énl}(R). Then by Lemma we have f : V=1 — V0 with fo f and f o f homotopic to

multiplication by p™. It is now easy to see that we now have cofiber sequences

cofib(f) = VO/Xp™ — M ; M — V7H/Ep™ — cofib(f)

]
Corollary 6.2.5 (Discreteness of the categories). Suppose that R is discrete. Then:
(1) P:lyf{lo 1}( ) is a classical category and the forgetful functor
P o1y (R) = Perfl 10 (RY™)
18 fully faithful.
(2) Piyr{lo 1}( ) has the structure of an ezact additive category where the exact sequences are given by fiber
sequences of perfect complexes. Moreover, Vectyg 13 (R¥" ® Z/p"7Z) is a thick subcategorﬂ of P 10, 1}(R)

10By this, we mean that it has the ‘two-out-of-three’ property for exact sequences of objects.
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syn, [

Proof. Assertion (1) will follow from knowing that the full subcategory of Perf (0.1} 1’O](R) spanned by the image
of Pflyl{lo 1}(R) has discrete mapping spaces between objects.
By pro-étale descent, and Theorem [6.2.1] we can assume that we have cofiber sequences

VLS Mt B o
We want to know that the mapping space Map(M, N) is O-truncated. For this, it is enough to know that the spaces
Map(V?, N) are O-truncated for i = 0, —1. This in turn would follow if we knew that the cofiber of
Map(V', W) — Map(V, W?)
is O-truncated. Since multiplication by p™ factors through h, we see that there is a sequence of maps
Map(V!, W) = Map(V', W°) — Map(V!, W™1)

whose composition is p”.

It is now enough to know that Map(V!, W7) is a flat Zy-module for j = 0,—1. This can be checked ‘linear
algebraically’, but it is also immediate from Theorem[4.3.1] and the analogous assertion for homomorphisms between
p-divisible groups.

As for the second assertion, the only part that requires proof is that the subcategory Vectn {0, 1}(R) has the
two-out-of-three property. Suppose that we have a fiber sequence

M1—>M2—>M3

Pflyr{lo 1y (). If My and M3 are vector bundles over R ® Z/p"Z, then it is clear that so is My. Similarly clear

is the case where My and M3 are vector bundles. The remaining case now follows from Cartier duality. O
6.3. Preparations for the proof. We can now begin preparations for our proof of the theorem. R will always be
discrete in what follows.

Lemma 6.3.1 (The case of a geometric point). The theorem holds when R = k is an algebraically closed field.

Proof. By [8, Remarks 3.4.6, 4.2.8], giving a perfect F-gauge of Hodge-Tate weights 0,1 amounts to giving maps
MO = M1 of perfect complexes over W (k) with wot = p-idyo and t ou = p - idy-1, as well as a homotopy
t

equivalence ¢*M? = M~!. The lemma follows easily from this explicit description. O

Remark 6.3.2 (F-gauges over perfect rings). In fact, the description of perfect F-gauges of Hodge-Tate weights
0, 1 used in the proof above is valid with x replaced by any perfect [F-algebra R. We will see a similar, but somewhat
more involved, description that holds for any R in Section [J] below.

Lemma 6.3.3. Suppose that M € PTSI?} L(R), and let M,, € Perfsyf{l0 1; 0](R) be its image. Suppose that we have

a height n isogeny (f, f) between two vector bundle F-gauges V! and V° over R such that the image of cofib(f)
n Perfsy?0[1; 0l (R) is isomorphic to M,,. Then there is an isomorphism cofib(f) = M of perfect complexes over

R,
Proof. Set M’ = cofib(f) and let M/, be its image in Perfsyf{lO 1}1 0](R). By hypothesis, we have an isomorphism
M, S M,

Now, observe that the Z/p™Z-module structures on M’ and M (the former arising from Lemma and our
hypothesis) yield isomorphisms

M, S MaeoMI]; M, = Mo M[l]
of perfect complexes over R¥Y™. Therefore, we obtain an isomorphism

M oM =S Mo M)
syn

of objects in Perf{O 1 —2.0] (R). We claim that the resulting map M’[1] — M, which is the top-right corner of a
‘matrix’ representation of the isomorphism, is nullhomotopic. This would then imply that the ‘diagonal’ entries

M’ — M and M'[1] = M([1] are both isomorphisms in Perf%nl’[fl’ol (R).
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It remains to prove the claim. For this, it is enough to know that any map V°[1] — M is nullhomotopic. Write
F =VOV[—1] ® M: this is a perfect F-gauge of Hodge-Tate weights —1,0,1 and Tor amplitude [0,1]. For m > 1,
let F,, be the image of F in Perfiifl{’([)?il?r] (R).

By Theorem its space of sections

Pan () = im Togn(F)

m

is a quasisyntomic sheaf, and for every square zero extension C’ — C of discrete R-algebras with kernel I, we have
Pon(F)C) = 750 6ib (Toyn(F)(€) = I @r g, FI-1])

where grﬁégF is a perfect complex over R with Tor amplitude [0,1]. In particular, this shows that we have
Lsyn(F)(C") ~ 0 whenever gy (F)(C) ~ 0.

To finish, we need to know that I'syn, (F)(R) ~ 0. By the deformation theory explained in the previous paragraph,
we can reduce to the case where R is an [F)-algebra. Then, by quasisyntomic descent, we can reduce to the case
where R is semiperfect. By considering the direct limit perfection R — Rperf, which is a nilpotent thickening, we
can use deformation theory once again to reduce to the case where R is perfect.

Here, RY" is a classical stack, and the desired claim follows because H1(M) = 0, as can be seen for instance
from the explicit description of the objects involved provided by Remark O

Next, we prove the following m-truncated version of the theorem

Lemma 6.3.4 (m-truncated analogue of Raynaud). Suppose that we have M € Pfly?o 1}(R), and, form > 1, let

Mo, defn M/Epm e Perfzn{’([)_ll}’o] (R) be its image. Then there exists an integer h > 1 such that, for any m > 1,
there exist:
e An étale cover R — R;

o Vector bundles
VoLV e Vectjfl'fl{o’l}(R)
of rank h;
e and a map f: V.1 = VO of vector bundle F-gauges
such that there is an equivalence

-1 f. 30
Revngzpmz == cofib(Vm = V).

M,
Proof. By Theorem the assignment
7170 Syn m
X,  R— Perf[{o,l}](R QL") ~
is represented by a locally finitely presented derived p-adic formal Artin stack over Z,. Similarly, by Theorem @,

we have a derived Artin stack )Y, over Z, assigning to R the oco-groupoid of maps V! ER VO of objects in
Vect{0, 1}(R™™ ® Z/p™Z). We have the obvious ‘forgetful’ map V,, — X, which remembers only the cofiber of
the map f.

Let Yim,n C Vi, be the open and closed substack where the source and target of f both have rank h. The lemma
now comes down to the assertion that there exists h > 1 such that, for every m > 1, M,, € X,,,(R) is étale locally
in the image of Vp, »,

We will see this as follows:

e Some geometry: The map V,, — X, is smooth.
e Given the previous point, it is now enough to check the lemma under the additional assumption that R is
an algebraically closed field, where Lemma [6.3.1] does the trick.

To show that )V, is smooth over A),, let us set up some notation. Write Y for the algebraic stack over Z,
parameterizing maps of vector bundles V! — V% and X for the (derived) algebraic stack over Z,, parameterizing
perfect complexes of Tor amplitude [—1,0]. Over Y (resp. X), we have the algebraic stack Y~ (resp. X7)
parameterizing maps of filtered vector bundles Fil®* V! — Fil®* V', whose associated gradeds are supported in
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degrees 0, —1 (resp. filtered perfect complexes Fil®* M whose associated gradeds are nullhomotopic outside of degrees
0,—1). If Z isany one of VY~ X, X~ let Z,, be the derived Weil restriction

Zm 2 C v Z(C/Mp™).

This is also a derived Artin stack over Z,.

Pullback along xé\{{ gives canonical maps V,, — Y, and &, — X, and a quick analysis of the deformation
theory explained in Theorems and now shows that, for any square zero thickening C’ — C, we have
canonical Cartesian squares

Im(C) ——= ¥, (C) X (C') ——— X, (C)
Yin(C) — Y, (C) xy,,() Ym(C') X (C) —> X(C) xx,,(0) Xm(C)
which can be combined to obtain a Cartesian square
Y (C) Y, (C")

Vi(C) X, (c) Xm(C") — Y (C) Xy, () ) Ym(C') xx,,(cry X (C)).

Therefore, the smoothness of the map YV,, — &), reduces to that of the map Y, — Y, xx, X, , which in turn
reduces to that of the map Y~ — Y xx X~

X X (C) X'

Explicitly, this means the following: Suppose that Fil® v ~! Fil* o pype V0 is a map of filtered vector bundles

over C' (with associated gradeds supported in degrees —1,0). Suppose also that the following conditions hold:

e The underlying map of vector bundles admits a lift o' : Vil 5 V0 g map of vector bundles over C’;
e M’ = cofib(a’) admits a lift to a filtered perfect complex Fil®* M’ over C’ whose base-change over C' is
equipped with an isomorphism to cofib(Fil® o).

Then there exists a filtered lift Fil® o’ : Fil* V=1 — Fil®* V"0 of o that is also a lift of Fil® a.
The condition on the filtration allows us to simplify this even further. The map Fil® « is given simply by a
commuting square

10
Fild -1 e S pyopo

Vvle—— VO,
a=Fil"! a

Viewed in this way, it is enough to know that, for any vector bundle Fil® v'o lifting Fil* V°, we can fit it into a
commuting diagram
Fil’ V"0 —s Fil° M’

V’,O - s M
lifting the one over C. This reduces to the fact that sections of the perfect complex

F° V'O @ (V0 x o Fil® M),
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which has Tor amplitude in [—1, 0], are parameterized by a smooth Artin stack over C’.
O

Proposition 6.3.5 (Lifting truncated isogenies). Fiz integers h,n > 1. Then there exists an integer M (h,n) > n
with the following property: Given:

o A discrete Z/p"Z-algebra R;
e A vector bundle F-gauge over R, V € Vect?%?l}(R) of rank h;

o An integer N > M(h,n) +r and a height-n isogeny (fn, fn) between Vi defo V/EpN and another mod-pN

vector bundle F-gauge Wy ;

there exists a height-n isogeny (f, f) between V and a vector bundle F-gauge W of height h, and an isomorphism
between the mod-p™ —M )=+ reductions of (f, f) and (fn, fn).

Remark 6.3.6. This proposition is a special case of some finite presentation results that can be found in [38], and
is related to similar results appearing in the work of Bartling-Hoff [5] in the context of Witt vector displays. It
admits a translation into the setting of truncated Barsotti-Tate groups via Theorem and one can prove this
translated result directly, yielding another proof of the proposition. However, since this seems to offer no substantial
simplification, we have chosen to stick with the linear algebraic perspective here.

The proof will be given in the next subsection. For now, let us return to the main result of this section.

Proof of Theorem[6.2-1 Suppose that R is a Z/p"Z-algebra. Let h > 1 be as in Lemma and let M (h,n) be
as in Proposition [6.3.5]

Choose m > M(h,n) +r+ n, and use Lemma to find, after an étale localization, a map f,,, : V,,} — V9 of
mod-p™ vector bundle F-gauges of rank h such that cofib(f,,) ~ M,,. By Lemma we can complete f,, to a
height-n isogeny (fm, fm) between V-1 and V9,

After a further pro-étale localization, we can assume that V! lifts to a vector bundle F-gauge V=1 € Vect(R*™).

Proposition now tells us that the reduction-mod-p™=MBm)=r+1 of (£ £ Y lifts to a height-n isogeny (f, f)
between V™! and V°, and Lemma m tells us that there is an isomorphism cofib(f) = M.

6.4. Lifting isogenies. Here, we will give a proof of Proposition [6.3.5]

Construction 6.4.1 (Some local models). Suppose that we have a filtered vector bundle Fil® V' over a ring R such
that the underlying vector bundle V' has rank h € Z>;. Suppose also that the filtration is supported in degrees
—1,0 with gr=*V of rank d € Z>o.

For any n > 1, we will define X (n) — Spec R to be the (derived) stack parameterizing height-n isogenies

Fil*V tf, Fil®* W of filtered vector bundles with
f

d ifi =—1
rankgr' W =< h—d ifi=0
0 otherwise.

We will define Xy (n) — Spec R to be the (derived) stack parameterizing height-n isogenies V' ’—i, W with W of
!

rank h.
For m > 1, we will also need the Weil restricted versions of these stacks:
X,mite v (n) : C v Xpye v (0)(C/5p™) 5 Xonv (0) : C = Xy (n)(C/4p™)
Construction 6.4.2 (More local models). Suppose that we have R € CRing? ™' and a vector bundle F-gauge V
over R of rank h and Hodge-Tate weights 0,1. For m > 1, write V,, for the image of V in Vectizn{o 1}(R).
For n > 1, write Xy, (n) — Spec R for the prestack parameterizing height-n isogenies V é W of vector bundle
f

F-gauges with Hodge-Tate weights in {0, 1}.
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Given another integer m > 1, write X, p(n) — Spec R for the prestack parameterizing height-n isogenies

)2 ’f——m, Wi, of vector bundle F-gauges of level m with Hodge-Tate weights in {0,1}.

m

Reduction mod-p™ yields a canonical map of prestacks Xy (n) — &, p(n). Pullback along xﬁ% yields a filtered
vector bundle Fil® V' over R with associated graded supported in degrees —1,0, as well as canonical maps

Xv(n) = Xppe () 5 Xy (n) = X pie v (n).
Proposition [6.3.5] will be implied by the following more refined assertion:
Proposition 6.4.3. There exists M(h,n) > n, depending only on h and n, such that, for any discrete R-algebra C
with p* =0€ C, any N > M(h,n)+s, and any m < N — M(h,n) — s+ 1 we have a canonical commuting diagram
Xy(n)(C) — Xn,y(n)(C) — Xy (n)(C)

(6.4.3.1)

X, (n)(C)

where the composition of the horizontal arrows is the identity. Moreover, Xy (n)(C) is discrete for any such C.

Corollary 6.4.4. The p-adic formal prestack Xy(n), a priori an inverse limit of finitely presented formal schemes
over Spf R is in fact itself a finitely presented formal scheme over Spf R.

Remark 6.4.5. As observed in the introduction, the corollary is related to results appearing in the proof of the
main result of |5]. From the optic of p-divisible groups, this finite presentation can be easily deduced from that of
the scheme parameterizing finite flat subgroups of the p™-torsion of a fixed p-divisible group.

The rest of this section is devoted to the proof of Proposition [6.4.3

Proposition 6.4.6 (Reduction to the case of perfect rings). It suffices to find M(h,n) > n, depending only on
h and n, such that Proposition holds for perfect R-algebras C (with s = 1). In particular, we can assume
without loss of generality that R is perfect.

Proof. We will prove this using deformation theory.

First, let us reduce to the case s = 1. Suppose that we have a discrete R/p®R-algebra C and integers N >
M(h,n)+s, m < N—M/(h,n)—s+1 such that X, (n)(C) is discrete and that we have the commuting diagram
where the composition of the horizontal arrows is the identity.

Using Lemma below, we find that, for any square-zero extension C’ — C' of discrete R-algebras, we have
for any k > 1,

Xy(n)(C") = Xy(n)(C) x y-

Fil®

(6.4.6.1) Fev(M)(C7) = X v (n)(C) xx VNPT g iy X (O o) AT QUG

_ "
VMO = e Xy (M(C) Ko v (0)(CY);

The first isomorphism tells us that the fibers of Xy (n)(C’) — Ay (n)(C) are discrete, and therefore, Xy (n)(C’)
is itself discrete.
Suppose now that €' is a Z/p* Z-algebra, and that we have 1 < m < N — M(h,n) — s’ + 1. Then, since
N >N —m > s, the map
C'aC'] = rpN = O epm
factors through the natural surjection C’ @ C’[1] = C’. Therefore, the isomorphisms from (6.4.6.1)) now tell us that
the assumed factoring
Ay (C) = Xp(C) — X v(C)

lifts to a similar factoring over C’.
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Therefore, via induction on s, we are reduced to the case of R/pR-algebras. We need to find the integer M (h,n)
such that, for any N > M (h,n) + 1, we have a canonical retraction Xn y(C) — Xp(C) on discrete R/pR-algebras
C. For this, using quasisyntomic descent, we can reduce to the case where C' is semiperfect.

Consider the map C' — Cpers to the direct limit perfection of C: this is surjective with locally nilpotent kernel
J. Using [9] Corollary 1.5] (and also the first part of Lemma[6.4.7 below), we find that we have

Next, the deformation argument above shows that, if I C C is a square zero ideal, then, given the desired
retraction over C//I, we can lift it canonically to a retraction over C. Repeated application of this principle tells us
that the conclusion is valid even if I is only assumed to be nilpotent.

Combining the last three paragraphs now completes the reduction to the case of perfect R-algebras. O

Lemma 6.4.7 (Application of Grothendieck-Messing). For each m > 1, X,, y(n) is represented by a finitely
presented derived Artin stack over C. Moreover, suppose that (C' — C,~) is a nilpotent divided power thickening
m CRingR/. Then we have canonical Cartesian squares

Xy (n)(C") ————— X (n)(C)

Xy (n)(C) —> Xpgoy (0)(C) X x— 0y X7 (M)(C)

X p(n)(C') ———— X, e v (R)(C)

Xp,v(n)(C) — X File v(n)(C) X - L ()(C) X;,v(”)(cl)

m,

Proof. This follows from Theorems and O

Remark 6.4.8 (Explication of problem in the perfect case). We can use Remark to make the problem in the
perfect case quite explicit. The data of the F-gauge V is equivalent to that of maps V° ’% V=1 of finite locally

free W(R)-modules of rank h with w o ¢ and t o u both equal to multiplication-by-p, along with an isomorphism

£: VO = V1. In other words, we are in the classical remit of Zink’s theory of displays. Here, the height-n
isogeny (fn, fy) amounts to giving:

’ t/ ’
e Maps V" == V™' of finite locally free Wy (R)-modules of rank h with )y o thy = thy o uly = p;
uly

/ ~ ’_
o An isomorphism £y : ¢*Vy 0= Vy !
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Q)
e Height-n isogenies Vi/pNVi = V}, Pl W} of finite locally free W (R)-modules for i = 0, —1 such that

£ ()
N

we have commuting diagrams

_ d N _ a4V _ d pN
VJ(\)/' ty=t(mod p™) V1\71 un=u(mod p™) V]?f <,0*V]8 §n=§(mod p™) VJ\71

(0) (=1) (0) * £(0) (=1)
N N JN ® fN IN

0 tn ' -1 uly 0 w1/,0 En f1
Vy ————=Vy =V ¢Vy ————=Vy
#(0 F(—1 #(0 * (0 2(—1
@ = 7 o7 =
t _ u 3 _
0 N 1 N 0 #7170 N 1
. > >
Vv Vy Vi @'V Vy

The problem we are now concerned with is the following: Find an integer M (h,n) > 1 such that, for N >
M(h,n)+ 1, we can find a canonical lift (up to isomorphism) of the mod-p™ =™ (") reduction of the above data to
a commuting diagrams of locally free W (R)-modules:

VO t > V—l u > VO (p*Vo £ > V—l
f(O) f(—l) f(O) go*f(o) f(—l)
3

’ t' ’ ’ / 4 ’
V"O ;V,—l ;V’O;(p*V’O ;V’_l

f(O) f(—l) f(O) go*f(o) f(—l)

VO —t> V—l é VO (vao *5> V_l.
such that, in the first diagram, the composition along all columns is multiplication-by-p™, while that along all the
rows is multiplication-by-p.

The problem was addressed by Bartling-Hoff [5| in the more general context of Zink displays over arbitrary
p-nilpotent rings, but these authors impose a nilpotency hypothesis in their arguments, and so we cannot use their
results directly. For now, note that such commuting diagrams have no non-trivial automorphisms that restrict to
the identity on V°. This already shows that Xy (n)(R) is discrete when R is perfect.

Remark 6.4.9 (Banal F-gauges). We will say that the F-gauge V (resp. Vy) is banal if VO (resp. VI:,’O) is free
over W(R) (resp. over Wy (R)). In this case, we can assume that we have bases

WR" SV WR SV Wa(R S V0 Wa(R)P S vy

p-lp_gq O

such that with respect to these bases t,t, are given by the matrix J; = ( 0 1 ), while u, v}y are given by
d

the matrix Jo = (lho_d » 01 ) The identification ¢*V° = V=1 is now given by an element g € GL;,(W (R)),
14
while cp*VJ;,’O = V]/\;_1 is given by an element gjy € GL;(Wy(R)). The maps f](\ﬁ),f](\?) are given by matrices

AW BY € Maty,n(Wy (R)) satistying AV BY = BY AW = pn . 1. Moreover, if gy € GL,(Wx(R)) is the image
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of g, we have the identities
AV Jo = 1 AGY s AP = ATV B e = BBYY  1BY = BV
AYVgn = ghvo(AV) s BY Vgl = anve(BY)).

Remark 6.4.10 (Reduction to a matrix problem). Now, lifting the mod-p™¥ =" reduction of (fn, fn) to an isogeny
(f, f) out of V becomes equivalent to finding matrices A®, B e Maty, (W (R)) and ¢’ € GL,(W (R)) with the
following properties:

(1) ADBE) = B0 A@) = prp, .

(2) AOJy = J,ACD . JJAO = AV g BO, = ,BEY B0 = B

(3) AVg =g'o(A”) ; BEDg' = go(BO);

(4) (ACD, BED, A0, BO, g) = (AT, BV, A0, BY giv) (mod p¥=).
Note that, since J; and .J; are invertible after inverting p and W (R) is p-torsion free, A(—1) determines the remaining
three matrices, and, therefore, A1) and g together determine ¢’ as well.

Remark 6.4.11. In the situation of the previous remark, if (fl(i), B, J’) is another tuple with the same properties,
then it gives an isomorphic lift if there exists (a necessarily unique) o € GLy, (W (R)) with the following properties:

o Jhadyt = J ey € GLL(W(R));
e a=1I; (mod pN ™),

o ACD = gAY,

[ )

i =atg'o(laldyt).

Construction 6.4.12 (A scheme of matrices). The previous remarks make it clear that it will be profitable to study
the geometry of the scheme M(h,n) over Z, parameterizing pairs of h x h-matrices (A, B) with AB = BA = p"I},.
This is an affine scheme; let S(h,n) be the Z,-algebra such that M(h,n) = SpecS(h,n). The scheme also has an
action of GLj given by

9-(A,B) = (gA,Bg™").

Over Q,, projection onto the first coordinate gives a GLj-equivariant isomorphism M(h,n)q, = GLp,g,. Consider
the group action map

(9:(A,B))=((A,B),(9A,Bg™ "))

GLj xM(h,n) M(h,n) x M(h,n).

If GLy = Spec T, then this corresponds to a map S(h,n) ®z, S(h,n) — T ®z, S(h,n) that is an isomorphism after
inverting p. In particular, there exists an integer t(h,n) > 0 such that we have

P @, S(hm)) € imn(S(hn) @z, S(h,n)).

Lemma 6.4.13. Suppose that S is o flat Z,-algebra, and that we are given (A1, Bi), (A2, B2) € M(h,n)(S),
m > t(h,n), and g € GLy(S) such that

(gA1, Big™ ') = (A, By)  (mod p™).
Then there exists (a necesarily unique) § € GLy(S) such that (§A1, B1g~') = (Aa, Ba).

Proof. We can interpret ((Ay, Bi1), (A2, B2)) as a map of Zy-algebras v : S(h,n) ®z, S(h,n) — S, and we want
to know that this map can be extended to a map T'®z, S(h,n) — S. More precisely, we want to know that the
composition

7' (T @z, S(h,n)[1/p] = (S(h,n) @z, S(h,n))[1/p] = S[1/p]

carries T'®z, S(h,n) into S. By the definition of t(h,n), for any element = € T ®z, S(h,n), we have 7/ (p'""z) € S.
Therefore, it is enough to know that we have 4/(p!*™z) € p!»™ S for all such x. But, by our hypothesis of the
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existence of g, there exists a map 0 : T'®z, S(h,n) — S/p™S such that we have a commuting diagram

S(h,n) ®z, S(h,n) ——> S

T ®gz, S(h,n) ——=> S/p™S.

This tells us that we have
7 (") = 8(p ) = pt () (mod p™).

Since m > t(h,n), this completes the proof. O

Construction 6.4.14 (Controlling p-torsion in the automorphism groups). For any pair (4, B) € M(h,n)(C),
let Z(A, B) — SpecC be the affine group scheme obtained as the stabilizer in GLj, ¢ of (A, B): this organizes
into a relative group scheme Z — M(h,n) whose restriction over the generic fiber is the trivial group scheme.
Suppose that Z = Spec D, and let D — S(h,n) be the augmentation map associated with the identity section. Set
J = ker(D — S(h,n)); then, since J[1/p] = 0, there exists an integer c¢(h,n) > 1 such that p¢(*™).J =0

Lemma 6.4.15. Let m(h,n) = max{t(h,n),c(h,n)}. Let the hypotheses and notation be as in Lemma but
assume in addition that m > m(h,n) + 1. Then there exists § € GLy(S) such that (GA1, Big™') = (Az, B2), and
moreover we have

g=g (mod pmfm(h’")).

Proof. The existence of § is clear since m(h,n) > t(h,n). The element g~!§ belongs to Z(4, B)(S/p™S), and so is
associated with a Z,-algebra map D — S/p™S. Since p°»™J = 0, this map must map J into p™ (™) §/p™S.
Therefore, the composition D — S/p™S — S/ p—m(hn) kills J, and hence factors through the augmentation map.
In other words, g~'§ is congruent to the identity mod-p™—M".n) O

Lemma 6.4.16. Suppose that S is a p-complete flat Z,-algebra and that, for m > n+1, we have A, B € Matxp(S)
such that AB = p"Ij, (mod m). Then there exists (A’, B") € M(h,n)(S) such that

(A,B)= (4",B") (mod p™™ ")

Proof. By hypothesis, there exists an h x h-matrix C' such that AB = p"(I, + p™ "C). Now, A’ = A and
B’ = B(Ij, + p™"C)~! does the job. O

Proof of Proposition[6.4.3 Let m(h,n) be as in Lemma [6.4.15] and set M (h,n) = n+ 2m(h,n). We will show that
this does the job.

By Proposition[6.4.6] we can assume that R is perfect. Suppose that we are in the banal situation of Remark [6.4.9]
If N > M(h,n)+1, then by Lemma the reduction (AS\;BW B](Vilzl) of (Ag;l), B](\fl)) mod-p™V =" can be lifted
to a pair (AD, BEDY € M(h,n)(W(R)).

Suppose that, with respect to the direct sum decomposition W (R)" = W (R)"~¢ @& W (R)?, we have

= (480 40) - (2 )
ANs AN Bys Byu

Then the identities Ag\?)Jg = JQASV_I) and BJ(\(,))JQ = JQBJ(\,_I) tell us that AES) and B](\(,)) are essentially determined
by Ag{l) and B](\fl), except that there is an ambiguity up to p-torsion in the choice of A§3?2 and BJ(\(,)’)2 such that
pASS?Q = Agv_,;) and pBJ(\[,)?2 = Bj(v_zl ) Tn particular, all such choices agree mod-p™ 1.
This shows that we have

AO = 1, A g7 BO) = 1, B 15 € Maty, 0 (W (R)),

and also that their images mod-p™¥~—" agree with those of AS\(,)) and BJ(\(,)).
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Now, consider the pairs
(ACY, BED), (p(AD), o(B®)) € M(h,n)(W(R)).
If gy € GLp(W(R)) is a lift of g, then we have
(AT, BED () ™) = (9(A9),0(B?) - (mod p™T).

Therefore, Lemma gives us a unique ¢’ € GLy (W (R)) such that
e g = f];\/ (mod prn*m(h’”));
o (¢AUYD, BED(g)7h) = (p(A), o(BD)).
By Remark we find that we have constructed a lift (f, f) of the reduction of (fy, fn) mod-pN—n—m(hn),
If (121(_1)7 BG1), A(f’),B(O),g’) is another such lifting datum, then applying Lemma once again gives us
unique elements o=, a(®) € GL, (W (R)) such that, for i = 1,2,
o (aWAW B0 (q(M)~1) = (ji(i)’é(i));
e o) =1 (mod pN—MMn)),
The uniqueness ensures that a(®) = J,al=YJ; ! and so we see, using Remark that o = a(~Y gives us the

unique isomorphism between the lifts determined by these data, lifting the identity mod-p™—M(h.n),
Let

X3 (n)(R) C Xy (n)(R) 3 X5 (n)(R) C Xy (n)(R)
be the subgroupoids spanned by the banal objects. Then in the preceding paragraphs we have constructed a

canonical commuting diagram

X3 (n) (R) —— X% (n)(R) —— Ap™ (n)(R)

XZ}\Dfai]M(n,h) v (n)(R)

where the composition of the horizontal arrows is the identity.
Since every F-gauge is banal Zariski locally on Spec R, we can now complete the proof using Zariski descent. [

7. CLASSIFYING FINITE FLAT GROUP SCHEMES
p-comp

In this section, R will be a discrete object in CRing

7.1. The main theorem. Let FFG(R) be the category of finite locally free commutative p-power torsion group

schemes over R, and let FFG,,(R) be the subcategory spanned by the p™-torsion objects. These are exact additive
categories. Also, write P?(l)i} (R) for the co-subcategory of Perf P{_o,lf?] (R®Y™) spanned by the objects that can be lifted
to Z/p"Z-modules for some n > 1: By Corollary this is a discrete exact additive subcategory that is a union
of its subcategories P*Y 1{10 1}(R). Here, we will prove the main theorem of this paper:

Theorem 7.1.1. There is a natural exact equivalence of categories

G: P, (R) = FFG(R)

carrying Piy?o 1}(R) onto FFG,,(R), functorial in R € CRingt; “*"™", compatible with arbitrary base-change, satisfy-
ing fpgc descent, and compatible also with the equivalence in Theorem [[.5]] for n-truncated Barsotti-Tate groups.
For each M € P%nl}(R) there exists a canonical Cartier duality isomorphisw{j

GMY{1}[1])) = G(M)*

L The dual on the left hand side is in the category of perfect complexes over RSY™.
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Remark 7.1.2 (Local finite presentation of P?(’)nl}). The theorem implies that the classical truncation of the formal

prestack R — P?&’l}(R) is represented by a locally finitely presented p-adic formal Artin stack. Independently
of the theorem, one can show directly that, even as a derived prestack, it is represented by a locally finitely
presented quasi-smooth derived formal Artin stack over Spf Z,: It admits as cotangent complex the perfect complex
(grﬁég Mtamt)Vé@Fil(})Idg My aut, which has Tor amplitude in [—1, 1]. Moreover, by Theorem it is a filtered colimit
of the stacks Pi}:f{log}a which are themselves inverse limits of the locally finitely presented derived formal algebraic
stacks

syn,(m) | [=1,0] / psyn m
Pn}:{o,l} . O — Modz/pnz(Perf{071} (R Y ® Z/p Z)).

The key point now is to establish the local finite presentation of these inverse limits. For this, one proves an
analogue of Proposition [6.4.3] showing that for any n,s > 1 there exist integers N > m such that, for any discrete
7 /p*Z-algebra C, we have a canonical commuting diagram

syn n,(N syn
P oy () — Py (C) — P, 1, (€)

Prp (©)

The line of argument is very similar to that of the proposition (though one category level higher) and involves the
use of deformation theory to reduce to the case of perfect rings where one can work concretely with Witt vectors.

The rest of this section is devoted to the proof of the theorem.

7.2. The functor G. We can assume that R is p-nilpotent. The functor is defined using syntomic cohomology:

Given M € Piyr{lo 13 (R), we take I'syn (M) to be the functor on CRingp, given by

Cyyn(M) : O+ 7°RL (C™, M
This is a quasisyntomic sheaf over R, and to check that it is represented by a finite flat group scheme, we can
work pro-étale locally. Therefore, by Theorem [6.2.1] we can assume that M is the cofiber of a map of vector bundle

F-gauges V7! i> VY. Now, Theorem gives us p-divisible groups H~! and H° associated with V~! and V° and
amap a: H™ ! — HO.

Con) -

Lemma 7.2.1. « is an isogeny of p-divisible groups and the classical truncation G(M) of Tsyn(M) is represented
by the finite flat group scheme ker(«).

Proof. Note that we have a map f V0 =5 V1 with fo f and f o f both equal to multiplication by p™. This yields
amap & : H® — H ™! with a0 & and & o a equal to multiplication by p™. In particular, « is surjective.

It remains to verify that ker « is finite flat over R and that it is isomorphic to G(M). The first actually follows
from the existence of the map &, since it shows that ker v is a quotient of the finite flat group scheme Ho[p"]Hbut
we can give a simultaneous proof of both facts by studying G(M).

Theorem tells us that I'syn (M) is an inverse limit of the locally finitely presented derived algebraic stacks

Laynon(M) S Tyya (M © Z/p7Z).
Moreover, if Filfj, M is the perfect complex over R with Tor amplitude in [~1, 0] obtained by pulling M back
along x{i\%, rs I'syn(M) admits a tangent complex over R given by the pullback of grﬁ(lig M[—1], which of course is
perfect with Tor amplitude in [0, 1], and also has virtual rank 0.

12This fact doesn’t seem to have a ready reference in the literature, but here is an argument conveyed to us by Alex Youcis: Suppose
that G; — G2 is a map of finitely presented affine group schemes that is a quotient map for the fppf topology, with G; finite flat over
the base. We want to know that Ga is also finite flat. We reduce to the case of a Noetherian base. Then the fiber-by-fiber criterion for
flatness tells us that G is faithfully flat, and hence finite flat, over Go. This, combined with the finite flatness of G; over the base, then
finishes the proof.
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Now, since M is isomorphic to a direct summand of M ® Z/p"Z, we see that I'syn (M) is also locally finitely
presented.

Combining the three previous paragraphs now shows that I'sy, (M) is represented by a quasi-smooth derived
algebraic stack over R of virtual codimension 0.

On the other hand, for every m > 1, we have an isomorphism

Caynm(M)a — cofib(H ™ [p™] — H[p™)),

and taking inverse limits yields an isomorphism G(M) = ker F.

This shows that the classical truncation of I'syn (M) takes discrete values; thus I'sy, (M) is a quasi-smooth derived
algebraic space over R of virtual rank 0. It also shows that, on algebraically closed fields, it takes finite values.
Therefore, by |23 Lemma 11.3.4], it is in fact a quasi-finite flat lci scheme over R, and, since it is a closed subscheme
of Gy [p¥] for k sufficiently large, it is in fact finite flat.

This verifies all the assertions of the lemma. O

Remark 7.2.2 (Cartier duality pairing). We have a canonical pairing
Py (MY [I{1}) X Dayn(M) = Doy (MY © MI{1}) = Doy (O {1} 1]

Here, O®" is the structure sheaf of R*¥", and we have used the tautological pairing MY ® M — O%". By
Proposition and [23| Proposition 11.4.1], we have a canonical isomorphism of formal stacks

Fsyrl(osyn{l}[l]) i> I&H B/ILme )

where the transition maps are induced by the p-power map pi,n+1 — fupn. If M is in PZ?OJ}(R), then this factors

canonically through the fiber of the p™-power map
ﬁba&l B pipm = lﬂlB/ﬂp’") = l'&llﬂp’" ®% Z/p"L = Hpm -

Explicitly, the inverse to the composition of these isomorphisms takes a section = € i, (C) to the compatible family

m—n

of puym—n-torsors (for m > n) parameterizing sections x,, € ppm (C) such that 22 = = .
In sum, for M € PZ}:?OJ}(R) we have a canonical pairing
(7.2.2.1) GMY[1{1}) x GM) = ppn.

7.3. Full faithfulness and essential surjectivity. Next, we show:
Lemma 7.3.1. The functor G is fully faithful.
Proof. We want to show that the map

Hom(My, Ms) — Hom(G(M;),G(Mz))

is an isomorphism for M, My € Piy?o L (R).

By pro-étale descent and Theorem 1] we can assume that we have, for i = 1, 2, cofiber sequences
VRSN VIRV

with 1} vector bundle F-gauges over R.
Theorem gives us maps of p-divisible groups H; 1 HY for i = 1,2 associated functorially with f;.
Set G; = G(M;). We first claim that there are canonical isomorphisms

Hom(My, Vi[1]) = Hom(Gy, Hs)
for 7= —-1,0.
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For this, note that we have a diagram with exact rows

0 —— Hom(V{, V;) — Hom(V;",V;) — Hom(M,,V;[1]) — Hom(V}, V;[1]) — Hom(Vi, Vi[1])

0 — Hom(H?,H}) — Hom(H; ', H}) — Hom(Gy, H)) — Ext(H?, H3) — Ext(H ', H3).

The vertical maps are all obtained via the functor I'sy,, and the three vertical arrows on the right also use
Proposition[4.3.2] All arrows except the middle one are known to be isomorphisms: the first two from Theorem[4.3.T
and the last two from Theorem [5.1.1] From this and the five lemma it follows that the middle arrow is also an
isomorphism.

Now, consider another diagram

0 —— Hom(My, Ms) — Hom(My, VI[1]) — Hom(Ml,Vgl[l])

0 —— Hom(G1,Go) —— Hom(Gy, HY) —— Hom(Gy, Hy ')

Once again, the maps here are induced by I'sy,. The bottom row is exact, and we have just seen that the right two
vertical arrows are isomorphisms. It is now enough to know that the top row is also exact, which certainly would
follow if we knew Hom(M;,V, ') = 0. This can be checked just as in the proof of Lemma, m This is the space
of sections of F = MY ® V, ', which is a perfect F-gauge of Hodge-Tate weights {0,1} and Tor amplitude [0, 1].
We reduce to the case where R is a perfect [Fp-algebra, where the conclusion follows since V, !is a vector bundle
over the Z,-flat stack R*™. g

Let us now verify essential surjectivity. By the full faithfulness shown above, it suffices to check that any finite
flat group scheme is étale locally in the image of the functor. By Raynaud’s theorem [6, Théoréme 3.1.1], we can
assume that the group scheme is the kernel of an isogeny between p-divisible groups. But now we can simply invoke
Theorem [£:3.1] and combine it with Lemma to see that such a group scheme is in the image of G.

7.4. Exactness. Let us turn to the exactness of the equivalence. As in the proof of Theorem for any M7, Mo
in P2, 1y (R) with G; = G(M;) for i = 1,2, we have a canonical map

(7401) Hom(./\/ll, Mg[l]) — EXt(Gl, GQ)

and it remains to prove:

Lemma 7.4.1. The map (7.4.0.1)) is a bijection.

Proof. By étale descent and Corollary , we can assume that there exist V, W € Vecti“y,?071}(R) and fiber
sequences
Mo =V — My My —W — Msy

in szf[lo,l}(R)' Set H =G(V) and G5 = G(M}). Then we get the following commuting diagram with exact rows:

Hom(M;,V) — Hom(My, M5) — Hom(M;y, M5[1]) — Hom(M;, V[1]) — Hom(M;, M5[1])

Hom(Gl,H) — Hom(Gl,G’Q) E— EXt(Gl,GQ) E— EXt(Gl,H) e EXt(Gl,G/Q).

The two vertical maps on the left are isomorphisms. Suppose that we knew that the fourth vertical arrow is an
isomorphism. This would tell us that the third arrow is injective. If we knew further that the fifth arrow is also
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injective, then we could also conclude that the third arrow is in fact an isomorphism. This injectivity would however
be implied by the same argument applied with the fiber sequence M5 — W — My, In summary, it is enough to
know that (7.4.0.1) is an isomorphism when My € Vecti}:f{lo)l}(R).

A similar argument in the other variable reduces us to the case where M, is also in Vectiyr{lo 1}(R)E|, and so we
are now done by Theorem [5.1.1] O

At this point, we have essentially completed the proof of Theorem [7.1.1] The remaining assertions to be checked
are the compatibility with Cartier duality, arbitrary base-change and fpqc descent. By construction, the equivalence
is compatible with quasisyntomic descent. Therefore, we can use Theorem (and Remark to reduce the
verification to the case of truncated Barsotti-Tate group schemes, where it is already known by Theorem [1.31]

8. SOME COHOMOLOGICAL COMPLEMENTS

In this section, we record the relationship between the cohomological realizations of an object in FFG,,(R) with
those of its associated F-gauge. We follow this up with a couple of applications to the fppf cohomology of such
group schemes, including a strengthening of a result of Bragg-Olsson on the representability of the relative fppf
cohomology of a finite flat group scheme in proper smooth families and a proof (following Bhatt-Lurie) of the
p-primary part of purity results of Cesnavi¢ius-Scholze.

8.1. Cohomological realizations. Suppose that R is p-complete and discrete and that we have G € FFG(R)

corresponding to M € P?(’)nl} (R). The results of this subsection are immediate from the proof of Theorem and

the corresponding facts for truncated BT groups.
Proposition 8.1.1 (Flat cohomology via syntomic cohomology). There is a canonical isomorphism
RTgpp¢(Spec R, G) = RT(R™™, M).
In fact, for every m > 1 there is a canonical isomorphism of smooth Artin m-stacks
B™G =5 Dyygn(M([m]).

Remark 8.1.2 (Fppf cohomology over animated commutative rings). For G € FFG(R), one can define the fppf
cohomology RIg,,¢(SpecC, G) for any p-nilpotent animated commutative R-algebra C'; see |15, §5.2]. For any
n > 0, the values of 7=" Rt (Spec C, G)[n] are canonically isomorphic to (B"G)(C). Therefore, the conclusion of
Proposition [8:1.1] shows that we have a canonical isomorphism

RT't,p¢(Spec O, G) = RL(C™™, M).

Remark 8.1.3 (Crystalline realizations). The notation here will be as in Remark By [6, Definition 3.1.5],
we have the Dieudonné complez A(G*), given as the truncated internal RHom sheaf 7<!RHom(G*, O°'¥%) in the
big crystalline topos of Spf R equipped with the fppf topology. This is a perfect complex of crystals with Tor

amplitude in [0,1] and admits a map from the complex Fil%dg A(G™) defe 7<'RHom(G*,Z°%%). For any divided
power thickening C’ — C' of p-nilpotent R-algebras, this gives us a map of perfect complexes

Fil’ A(G*)(C") — A(G™)(C").
When evaluated on the trivial thickening R d, R, we obtain a cofiber sequence (see |6, Proposition 3.2.10])
Lie(G*)V[~1] ~ (Fil” A(G"))(R) — A(G*)(R) — Lie(G).
On the other hand, just as in Remark associated with M we have a perfect complex of crystals A(M)
equipped with a filtration Filfj4, A(M).

130ne can also obtain this reduction via Cartier duality.
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Proposition 8.1.4 (Comparison with crystalline realization). There is a canonical isomorphism of maps of perfect
complezes of sheaves in the crystalline site

(Filjag A(M) = A(M)) = (Filjg, AG)[1] = AGH)[L]).

In particular, if Fil;{dg M s the filtered perfect complex over R obtained from M wvia pullback along xé\%, then there
s a canomnical isomorphism
grﬁég M = Lie(G)[1]

Remark 8.1.5 (Grothendieck-Messing for finite flat group schemes). Combining Proposition with Theo-
rem [L.1.] yields a Grothendieck-Messing theory for finite flat group schemes. More precisely, the groupoid of
lifts of G € FFG(R) along a nilpotent divided power thickening R’ — R are in canonical equivalence with the
groupoid of filtered perfect complex structures on the perfect complex A(G)(R’) lifting the Hodge-filtered complex
Filfq, A(G)(R). This is a special case of a result of Faltings [21, Theorem 17].

Corollary 8.1.6 (The Mazur-Roberts carpet). Suppose that (C" — C, ) is a nilpotent divided power extension of
p-nilpotent animated commutative R-algebras with I = ker(C' — C'). Then we have a canonical fiber sequence

R t,p6(Spec €7, G) — RTgppe(Spec C, G) — Lie(G) @p I[1]

Remark 8.1.7. Suppose that C is a derived p-complete animated commutative R-algebra. By a standard limiting
argument, using the integrability of the iterated classifying stacks B™G, we have

RT(Spec C, G) = lim RT(Spec C/“p™, G).

If p > 2, then we can combine this with Corollary [8.1.6] applied via a limit argument to the pro-nilpotent divided
power extension R — R/"“p to obtain a canonical fiber sequence

RT¢yp(Spec C, G) — RT'g,p¢(Spec C/=p, G) — Lie(G)[1].

Concretely, if C' is p-completely flat over Z,, then the map H*(SpecC,G) — H'(Spec C/pC, G) is an isomorphism
for i > 2, and we have a long exact sequence

0= te — G(C) = G(C/pC) = va — Hy, ¢ (Spec C,G) — Hy +(Spec C/pC,G) — 0.

Proposition 8.1.8 (Etale comparison). There is a canonical isomorphism Ts (M) = G%d as well as a comparison
isomorphism

RT qeyn (Spf R, M_[1/T])¥7' =5 RT«(Spf(R)2, Ga9).
The notation here is as in Remark[].3.8

8.2. Representability of smooth proper pushforwards. The main theorem of this subsection generalizes a
result of Bragg-Olsson |12, Theorem 1.8], which, in the formulation here, deals with the special case where X and
S are algebraic spaces over a field of characteristic p and G is a height 1 finite flat p-torsion group scheme. In loc.
cit., the authors are also able to prove some weaker results, but also under weaker hypotheses: They assume 7 to
be projective, but not necessarily smooth, and they prove representability generically over the base.

Theorem 8.2.1. Let m: X — & be a proper smooth map of p-adic formal algebraic spaces. Suppose that we have
G € FFG(X). Then:

(1) For allm >0, the fppf sheaf R e (15" Rm.G)[n] is represented by a finitely presented Artin n-stack over
6.

(2) If R is flat over & for all i < n, then the fppf sheaf g I R"m,.G is represented by a formally finitely
presented formal algebraic space over & and the natural map R™ — H" is faithfully flat.

Proof. By étale descent, we can assume that & = Spec R for some R € CRing%_nﬂp. Let M € PZ}:?OJ}(I{SV“) be
the F-gauge associated with G via Theorem [7.1.1]

Now, by Proposition below, for some m > 1, F = Rry”"M is an Z/p™Z-module in perfect F-gauges
over R of Hodge-Tate weights < 1 and Tor amplitude [—1,d]. In particular, for every n > 0, Theorem m
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tells us that sy, (F[n]/“p™) is represented by a finitely presented derived Artin (n + 1)-stack over &. Since
Fn]/“p™ ~ F[n] & Fln + 1], one deduces from this that Iy, (F[n]) is also represented by a finitely presented
derived Artin n-stack over &.

By Proposition [8.1.1] we have, for any classical R-algebra C,

(Rm.G)(C) ~ RT (C™, Flcam) .

In particular, we find that, for all n > 0, R™ is the classical truncation of Lsyn(F[n]) and so is a locally finitely
presented Artin n-stack over &.
The second part of the theorem follows from [12, Theorem 5.2]. O

Remark 8.2.2 (Shape of the stack). Suppose that R is an F,-algebra with the resolution property (so that every
perfect complex can be represented as a complex of vector bundles). Then one can use Remark to see that,
when the theorem shows that R"7,G is representable, it also shows that it is contained in the category of stacks over
S obtained by taking the smallest Serre subcategory of the category of fppf sheaves of abelian groups containing
by vector bundles and height 1 finite flat p-torsion group schemes over S.

Corollary 8.2.3. Letm: X — S be a proper smooth map of algebraic spaces and suppose that we have G € FFG(S).
Suppose also that the fppf sheaf R 7w, m*G is represented by a finitely presented algebraic space that is flat over SE
Then the fppf sheaf R*m, m*G is also represented by a finitely presented algebraic space over S.

Proof. By Noetherian approximation and étale descent, we can assume that S is an affine scheme of finite type over
Z.

Set H! = Rim,n*G and R = (75Rm.7*G)[i]. We want to show that H? is represented by a finitely presented
algebraic space over S.

Quite generally, the restriction of H® over S[1/p] is represented by an étale algebraic space: Indeed, it is a
constructible sheaf by [4, Exp. XVI, Théoréme 1], and so we conclude using [4, Exp. IX, Proposition 2.7].

Now, since 7 is proper smooth, one finds that H° = 7,7*G is once again finite flat over S: It is the Weil restriction
of G from the finite étale scheme over S corresponding to the quasicoherent sheaf m,&x. This, combined with our
hypothesis and (2) of Theorem tells us that the p-adic formal completion $2 of #? (that is, its restriction to
p-nilpotent schemes over S) is represented by a formally finitely presented formal algebraic space over the p-adic
completion & of S.

Let ﬁ%’ad be the adic generic fiber of 2. We claim that the natural map from ﬁ%’ad to the adic space 7—[2[1/p]ad
associated with #2[1/p] is étale: this is because both source and target are étale as adic algebraic spaces over
S[L/p]™.

By |1, Theorem 2.25], we now find that there exists a unique algebraic space H? over S restricting to H2[1/p]
over S[1/p] and to $H? over & with gluing data given by the étale map from the previous paragraph.

To finish, we must know that H2 does indeed represent #2. By results of Cesnavicius-Scholze (see Proposi-
tion below), for any affine scheme Spec R — S over S with bounded p-power torsion, and with R the classical
p-completion of R, the following square is Cartesiarﬁ

H2(R) — H2(R) ~ H*(R)

H2(R[1/p] —> H2(R[1/p)).

Therefore, the full faitthulness part of |1, Theorem 2.25] applied to the algebraic spaces Spec R and H? now shows
that we have H?(R) ~ H?*(R). O

141y fact, the representability is automatic. It is the flatness that has to be taken as a hypothesis.
150ne also needs a Mittag-Leffler argument for the identification of H2 (R) with $2(R): This uses the fact that H! is of finite type
over S.
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Remark 8.2.4 (Derived algebraization). In fact, if one uses the Artin-Lurie representability theorem [40, Theorem
7.1.6], then it is possible to show that the complex (71" Rr,7*G)[n] is represented by an Artin n-stack over S.

Remark 8.2.5 (Cohomology of the multiplicative group). When n = 1, the corollary tells us that R'm, j,m is
represented by a finitely presented algebraic space over S, and when this algebraic space is flat over S, we find
that R?m, jupm is also represented by a finitely presented algebraic space over S. For instance, this is the case when
S = Spec k is the spectrum of a field.

In general, however, it is only the complex (T[l’z]Rﬂ'* #pm)[2] that can be expected to have good representability
properties.

Proposition 8.2.6. Let m: X — & be a proper smooth map of p-adic formal algebraic spaces of relative dimension
syn

d. If M is a perfect F-gauge over X of Hodge-Tate weights in [n,m] and Tor amplitude [a,b], then Rny" M is a
perfect F-gauge over & with Hodge-Tate weights in [n — d, m| and Tor amplitude [a, b+ 2d].

Proof. This can be deduced from results of Guo-Li [25]. However, since these are not stated in the generality we
require, we sketch a proof here for the convenience of the reader.

It is of course enough to prove it after replacing ‘syn’ with ‘A””. One can reduce to the case where & = Spec R
is in CRing?™™. Now, by quasisyntomic descent we can assume that R is semiperfectoid. In particular, RV is
canonically isomorphic to the formal Rees stack R(Fil}, g). This means that perfect complexes over RN are
equivalent to filtered perfect complexes over the filtered animated commutative ring Fil}, RE

Suppose that Spec A — X is an affine quasisyntomic cover with A semiperfectoid, and consider the corresponding
simplicial scheme Spec A(®) where

Spec AW = Spec S x x Spec S X - -+ X x Spec S'.

i-times
Then AV — XV is a flat cover, and we have

A(l)ngAN )(X/\/ANX"'XxNAN.

i-times

This shows that Rﬂi\/ M corresponds to the filtered complex Tot (Fﬂf\‘/ M(')), where Filf\'/ M®) is the filtered

perfect complex over Fil}:‘/ A®). To show that this is perfect with Tor amplitude in [a,b + 2d], it is enough to
know that the associated graded Tot (gr}ff ./\/l(')) is a graded perfect complex over gr/’:} r with Tor amplitude in
la,b+ 2d].

Let grgdg M be the graded perfect complex over X obtained by pulling M back along the de Rham point, and let
grg ag M (*) be the cosimplicial graded perfect complex over A(®) obtained by via restriction along Spec A®) — X.

Then gr}:} M(®) admits a canonical finite ‘weight’ filtration whose i-th graded piece admits a canonical isomor-
phism

grh g M)~ grpg, M @40 grN a0 (i),

where (i) denotes an i-shift in gradingm

This shows that Tot (grf\‘/ M(')) inherits a finite filtration with associated graded pieces

Tot (grildg M(.) ® Ao gr/’:} Al®) (Z))

Now, the condition on Hodge-Tate weights implies that these pieces are non-zero only i € [—m, —n]. This reduces
us to the following

16wWe are using the fact that such objects are automatically derived (p, Ir)-complete.
I7Recall our convention that the i-th associated graded piece of a filtered module is in graded degree —i.
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Lemma 8.2.7. For any perfect complex M over ¥ restricting to a graded perfect complex M®) over A®) with Tor
amplitude in [a,b], the graded complex

Tot (M(.) & A0 grf/ A('>>

1s graded perfect over grx/ r with Tor amplitude [a,b + 2d], and its graded base-change along grf/ r — R, where
R is trivially graded, is supported in graded degrees [0,d).

Proof. Choose a map Ry — R with Ry perfectoid along with a generator £ € Fil}\[ R,- For i > 0, this yields
isomorphisms
gy aw — 8 0" awry — FIEY T 40 s
and we have gré®™ CA@ Ry = Ny gy [
Therefore, Tot M® @ () grf/ A(.>) corresponds to a decreasingly filtered complex over Fil‘;f“j 7A<°>/Ro7 and

considering associated gradeds reduces us to knowing that the graded complex
Tot (M(') ® 4o gTR 7A(‘>/Ro) ~ RU(X, M @gy N¥Lx/r,[—%])

is graded perfect over grc*onj 73/ R, With Tor amplitude in [a,b + 2d], and that its graded base-change over R is
supported in graded degrees [0, d].

Now, /\iLx/RO is canonically filtered with graded pieces isomorphic to /\kng/R ® /\lLR/RO, for k+1=1.

One can upgrade this to knowing that A*Ly, g, [—%], as a complex over X = X Xgpec i Spec(grf,?nj " R/Ro)/Gm,
is filtered with graded pieces isomorphic to AFLy /RI—k] ®r Ox(—k). Now we finally use our assumption that X is
smooth over R of relative dimension d, which tells us that each of these graded pieces is a shifted vector bundle in
degree k and vanishes if k& > d.

Therefore, we are now reduced to knowing that the relative cohomology over Spec(grf:nj 73/ Ro)/Gm of the

restriction of a perfect complex M of Tor amplitude [a,b] over the product X Xgpec g Spec(gry 73/ Ry)/Gm is
represented by a graded perfect complex with Tor amplitude in [a,b + d]. This is of course a standard fact about
the coherent cohomology of proper morphisms of relative dimension d. O

O

8.3. Purity of fppf cohomology.

Definition 8.3.1. Let X be a scheme and Z C X a constructible closed subset with complement U = X\Z. For
any fppf sheaf of abelian groups G over X, we set

er(X, G) = ﬁb(RFfppf(X, G) — RFfppf(U, G))

Proposition 8.3.2 (Excision). Suppose that R is a discrete, not necessarily p-complete, ring with derived p-
completion R, and that we have G € FFG(R). Then the square

RUgp¢(Spec R, G) ——— RI'g,p¢(Spec R, Q)

RT4(Spec R[1/p], G) — RT¢(Spec R[1/p], G)
is Cartesian and moreover the natural map
RTgpp(Spec R, G) — RTpype(Spf R, G)

s an isomorphism.
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Proof. The last assertion about algebraic vs. formal fppf cohomology was already observed in Remark [8.1.7]
Using étale descent for fppf cohomology, we can reduce to the case where R is p-Henselian, where the result follows
from results in [15]. Indeed, with the p-Henselian condition, the bottom arrow in the diagram is an isomorphism
by [15, Remark 2.2.6]. Therefore, we have to check that the top arrow is an isomorphism, which follows from the
first paragraph and |15, Theorem 5.3.5]. O

Corollary 8.3.3. In the situation of Proposition let M € P?(')fll}(]:?) be the perfect F'-gauge over R associated
with G via Theorem[7.1.1l Then we have a Cartesian square

RTgpp(Spec R, G) ———— RT(R™™, M)

RTet(Spec R[1/p], G) — RTqsyn (Spf 16, M_[1/Z])#=.

Proof. This follows from Propositions [B-1.1] [8:1.8 and [8-3-2] combined with the isomorphism

RF(Spf(]A%):d, Gf,d) = RT¢(Spec ]:Z[l/p], Q).
This isomorphism follows from |28, Corollary 3.2.2] and finite Galois descent. O

Remark 8.3.4 (Fpqc descent for fppf cohomology). One can now give a slightly streamlined proof of fpgc descent
for fppf cohomology |15, Theorem 5.5.2|. Instead of reducing to the case of perfect Fp-algebras, we can directly
appeal to Remark [£.2.4] and Proposition instead.

Definition 8.3.5. A derived scheme Y over F, is quasisyntomic if Ly r, has Tor amplitude in [~1,0] as an
object of D(Y). A scheme X is p-quasisyntomic if its structure sheaf has bounded p-power torsion and if its
derived base-change over F,, is quasisyntomic. This implies that X be covered by affine opens Spec R such that the
the derived p-completion R of R is in fact the classical p-completion and such the p-completed absolute cotangent
complex Lz has Tor amplitude in [-1,0] as an object in D(R).

The next result is a direct generalization of |10, Corollary 8.5.7] (from which we borrow the terminology and
notation) and implies Theorem @

Theorem 8.3.6 (Purity). Let X be a p-quasisyntomic geqs scheme, and let Z C X be a constructible closed subset
contained in X ,—gy. Suppose that there exists an integer d > 0 such that, for every affine open V- C X, we have
RU 7y (V, Oy) € D22, Then, for any p-power torsion commutative finite locally free commutative group scheme G

over X, we have RUz(X,G) € D=4,

Proof. Tt is enough to consider the case where X = Spec R is affine. Since U = X\ Z is a quasicompact open with
U[1/p] = Spec R[1/p], using Zariski descent, we find from Corollary a Cartesian square

RU4pp (U, G) ————= RT(U»", M)

RT '« (Spec R[1/p], G) — RTqeyn(U, M_[1/Z])#=1.



40 KEERTHI MADAPUSI AND SHUBHODIP MONDAL

Here U is the (classical) p-adic formal scheme obtained by taking the completion of U along U(,—¢). Therefore, we
see that RT'z(X, G) is the total limit of the diagram

RT(R¥", M) RT(U", M)

RTqeyn (Spf R, M_[1/I])%?='4 — RTqeyn (U, M_[1/Z])#=1.
By Remark one now finds that R’z (X, G) is obtained by applying the functor
RTU2(Spf R, _) = fib(RTqeyn(Spf R, _) — RTqeyn (U, _))

to the diagram of quasisyntomic sheaves

@o—can

Fil° M_ M_

(Fil® M_)[1/Z] —— M[1/1]

and then taking the total limit.

Now, following the argument in |10, Corollary 8.5.7], we can reduce to the case where R is a classically p-complete
algebra over Ry = Zp[(pe];, and all sheaves above can be viewed as modules over the initial (perfect) prism (A, I)
for Ry. Here, in the notation of loc. cit., we have I = ([p],) where [p], = (¢ — 1) (mod p), and we finally find an
isomorphism

@wo—can

RTz(X,G) = fib (RFZ(Spf R, RT(,_1)(Fil® M_)) £==5 RI'(Spf R, Rr(q_l)(M,)))
Now, we have
griae M[—1] ~ fib(Fil® M_ <5 M),

where we are viewing grﬁég M[—1] as a perfect complex over Spf R with Tor amplitude in [0, 1] and with cohomology
killed by a power of p. Our hypothesis shows that RT'z(Spf R, grﬁég M[~—1]) is in D=

The rest of the proof is essentially the same as that of |10, Corollary 8.5.7]: it only remains to know that
RT z(Spf R, RT(4_1)(M_)) is in D=¢. Using the fiber sequence

M M

it suffices to know that RTz(Spf R, M_[—1]) is in D=?. As in the proof of Proposition this latter object
admits an exhaustive increasing filtration with associated gradeds of the form

RT'z(Spf R, N ®g A'Lg/g,[—1])

where N is a perfect complex over Spf R with Tor amplitude [0, 1] and cohomology killed by a power of p. Since R
is p-quasisyntomic, N Qg /\iILR/RO [—i] is a p-power torsion object in DZ°(R), and so the theorem follows. O

Corollary 8.3.7. Theorem[D| holds.

Proof. Via étale localization [15, Lemma 7.1.1], we can reduce to the case where X is lci of dimension < d. This
means that it is p-quasisyntomic and the vanishing condition for local cohomology in Theorem holds with d
as given here. 0



PERFECT F-GAUGES AND FINITE FLAT GROUP SCHEMES 41

9. FRAMES AND DIVIDED DIEUDONNE COMPLEXES

Here we show that our classification of finite flat p-power torsion commutative group schemes can be translated
into terms very close to those appearing in [2] but over quite general frames. We then apply this to recover various
known classifications of such group schemes, and also give some extensions of such results.

9.1. Frames.

Definition 9.1.1. An (animated) frame for R € CRing?” “™? is a tuple A = (4 - A, A — R, ¢, %), where:
(1) A — Ais a surjective map of animated commutative rings with fiber I — A given by a generalized Cartier
divisor such that A is derived (p, I)-complete;
(2) A — R is a surjection of animated commutative rings with fiber Fil' A;
(3) ¢ : A — Ais a ‘naive’ Frobenius lift in the sense that it is an endomorphism of animated commutative
rings such that the induced endomorphism of my(A)/pmo(A) is Frobenius;
(4) B: R — A is map of animated commutative rings;

along with a commutative diagram

A— 2%

(9.1.1.1)

<e—m

\%

R—¢>Z.

We will write ¢; : Fil' A — I for the @-linear map induced on the fibers of the vertical arrows.

Remark 9.1.2 (Maps between frames). Frames organize into an oo-category in a natural way where maps
frA= A=A > A A > R.¢.7)

are maps between the corresponding commutative diagrams such that the induced map A’ ®4 A — A s

an equivalence (so that A’ @4 I = I').

Remark 9.1.3. The notion of a frame was introduced by Zink [48|, but the one we use here is different: Even
when A is discrete, we do not require that I be generated by p, nor do we require Fil' A to be endowed with divided
powers. Our notion is very closely related to that of a generalized frame as defined by Lau [34} §11].

Remark 9.1.4. In |23, §5], one finds a somewhat different definition of an animated frame, which is a generalization
of the notion of a higher frame due to Lau [35]. Every frame in the sense of [23| gives rise to a frame in the sense
employed here. This more refined notion will show up briefly in §[9.8

Definition 9.1.5 (Prismatic frames). A frame A is prismatic if the following conditions hold:
(1) The pair (A, I) is a(n animated) prismﬁ
(2) The endomorphism ¢ : A — A is the one obtained from the underlying animated d-ring structure on A: In
particular, it is a lift of the Frobenius endomorphism of A/“p.

Remark 9.1.6 (Etale lifts for frames). If A is a frame for R and f : R — R’ is a p-completely étale map, then
there is a canonical frame A’ for R’ and a map A — A’ lifting f such that the underlying map A — A’ is (p, I)-
completely étale. If A is prismatic, then so is A’, and we have an underlying map of prisms (4,1) — (A’,I"). For
an explanation, see for instance the discussion in |23} Proposition 5.4.25].

Example 9.1.7 (p-adic frames). Suppose that A is an animated d-ring; then A is equipped with a canonical
crystalline prism structure where I — A is isomorphic to A £ A. We will call a prismatic frame p-adic if its
underlying prism is of this form.

183ee |11}, §2].
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Example 9.1.8 (Prismatic frames for semiperfectoid rings). Suppose that R € CRing?”“*™P is semiperfectoid.
Then its absolute prismatic cohomology (g, Ir)—which is the initial prism for R—underlies a prismatic frame for
R with g its absolute Hodge-Tate cohomology. This frame is p-adic if and only if R is an F,-algebra.

Example 9.1.9 (The Witt frame). Suppose that we have R € CRing?“°™P. Then the animated ring of Witt vectors

W (R) underlies a p-adic frame for R with W (R) = W (R)/“p with the map R — W (R) classifying zqr : Spf R — R :

That is, it is the canonical map through which the composition W (R) EiN W(R) — W(R) factors.

Definition 9.1.10 (Laminations). A lamination for a prismatic frame A for R is an extension of the canonical
map of d-rings A — W(R) lifting A — R to a map of frames A — W(R). Giving such an extension is equivalent
to giving an isomorphism of Cartier-Witt divisors

(I®aW(R) = W(R) = (W(R) = W(R))
as points of R (R). If A is equipped with a lamination, then we we will say that it is laminated.
Remark 9.1.11. If A — A’ is a map of prismatic frames, then any lamination for A induces one for A’.

Remark 9.1.12. Suppose that A is a prismatic frame for R and that we have an isomorphism of R-algebras
A@a W(R) =~ W(R)/*(I@a W(R) = W(R)/*p
Then the left hand side is in particular an Fp-algebra, and we immediately obtain a canonical isomorphism of

Cartier-Witt divisors (W(R) 2 W(R)) ~ (I ® 4 W(R) — W(R)); see |8, Example 5.1.9]. From this, we find that
an isomorphism as above equips A with a lamination.

Remark 9.1.13 (Laminations and the prismatization). Suppose that we have a prism (A4,1,% : R — A) in the
absolute prismatic site for R. Extending this to the datum of a prismatic frame A for R amounts to giving a
factoring of A %> A — A through © via a surjective map A — R. Remark gives us a map Spf A — R , and
we can consider the composition

SpfR — SpfA — R

which classifies the Cartier-Witt divisor (I ® 4 W(R) — W(R)) equipped with the structure map
RS A A, W(R)

When A is laminated, then this map is isomorphic to the canonical map R — W(R) classifying the de Rham
point x4r : Spf R — R . Conversely, if we have such an isomorphism of maps, then we obtain an isomorphism of
R-algebras

W(R)/M(I @4 W(R)) = W(R)/"p.
which endows A with a lamination by Remark

Remark 9.1.14 (Laminations for frames for semiperfectoids). If R is semiperfectoid, then Remark admits
the following interpretation: Given (A,1,%: R — A), since ( g, Ir) is the initial prism for R, we obtain a canonical
map ( g, Ir) = (A, I). Extending the given tuple to the datum of a laminated prismatic frame A is now equivalent
to giving a map of frames _, — A lifting the map ( gr,Ir, R — gr) — (4,I,R — A). In particular, we see that
the category of laminated prismatic frames for R admits an initial object, _p, and a final object, W (R).

Example 9.1.15 (Frames for polynomial algebras). Suppose that A is a laminated prismatic frame for R. If
S = R[zy,...,2,]) is a p-completed polynomial algebra over R, then B = Alxi,...,x,]),, equipped with any
Frobenius lift extending that on A, is uniquely endowed with the structure of a laminated prismatic frame B for .S
equipped with a map of laminated frames A — B lifting R — S. This applies in particular to the situation where
R is semiperfectoid and A = _p.

Remark 9.1.16 (Base-change for laminated frames). Suppose that A is a laminated prismatic frame for R and
that S is a p-complete R-algebra such that S — R is relatively formally affine. By Remark [3.1.13] we have an
object (B,J,S — B) in the absolute prismatic site for S such that Spf B — S is isomorphic to Spf A xp S .
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Since A is laminated, the de Rham point Spf R — R factors through Spf A, and hence the corresponding point for
S factors as
SpfS = SpfRxp S ~SpfB— S ,

implying that we have a map B — S extending A — R. We now claim that the map B % B — B factors through
B — S and lifts (4,I,R — A) — (B,J,S — B) to a map of frames A — B. The claim comes down to two
observations:
e For any B-algebra C, since I @4 W(C) — W(C) is in the Hodge-Tate locus, its base-change under F :
W (C) — W(C) is canonically isomorphic to W (C) £ W (C) |10, Proposition 3.6.6].
e In this situation, the map
W(C)/*(I @4 W(C)) = W(C)/*p
induced by F factors through the quotient W (C') — C. Therefore, the structure map S — W (C)/“(I ®a
W(C)) — W(C)/%p factors through a map S — C.

Lemma 9.1.17. Suppose that we have (A, I, R — A) in the prismatic site for R, and suppose that we have R — Roo
as in Remark[3.1.15. Then in the notation of loc. cit., the following data are equivalent:
(1) A cosimplicial prismatic frame A(():)) for REFCTY with, underlying prism (A((;)), L(,?)) such that the map

( R?;R('+1)7IR§R(’+1)) — (AR, 1)

of cosimplicial prisms in the prismatic site for R?;R(.—H) lifts to a map _pBR(s+1) = Ag;) of cosimplicial
frames for RER(HD),
(2) The datum of a laminated frame A for R with underlying tuple (A, I, R — A).

Proof. The implication (1)=-(2) is immediate from Remark [9.1.14] and p-completely faithfully flat descent, while
the other implication follows from Remark [9.1.16 O

9.2. Divided Dieudonné complexes. From now on, all our frames will be prismatic unless otherwise noted.

Definition 9.2.1 (Divided Dieudonné complexes). Let A be a frame for R. A divided Dieudonné complex
over R with respect to A is a tuple M = (M, Fil° M — M, M Tu, ©*M, £) such that:
1) M € Perf(A) is a perfect complex over A;

2) Fil' M — M <" R ®4 M is a map of perfect complexes over R;
3) ¥y : M — ¢p*M is a map of perfect complexes over A;
4) ¢ is an isomorphism of perfect complexes over A sitting in a diagram

A~~~

©*M ——— cofib(¥y)

d
"

Z ®¢R gr_l M.
Here, gr—* M = M/ Fil’ M and the diagonal map is obtained as the composition
oM = AQ4 "M = A@sr M — A®z R gr 1 M.

These can be organized into a stable co-category in a natural way, which we denote by DDC 4 (R).
A divided Dieudonné complex has Tor amplitude in [a,b] if M is in Perfl®*(4) and if Fil° M, gr—! M are both
in Perf@’(R). Write DDCEAG’b] (R) for the subcategory spanned by the objects with Tor amplitude in [a, b].

Remark 9.2.2. One can give a rigorous definition of the oo-category DDC4(R) as follows: For any stable oo-
category A, there are three canonical functors

sa,ta,ca : Fun([1],4) — A
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of stable oco-categories. Here, [1] is the category consisting of two objects with one non-identity arrow between
them, and Fun([1],.A) denotes the oco-category of arrows in 4. The functor s4 carries an arrow to its source, t4
carries it to its target, and c4 carries it to its cofiber. If A = Perf(C) for some animated commutative ring C, we
will write C' for the subscript instead of Perf(C').

Consider the stable co-categories

C = Fun([1], Perf(A)) x Fun([1], Perf(R)) ; D = Perf(A) x Perf(A) x Perf(A) x Perf(A) x Perf(R) x Perf(R);
E = Perf(A) x Perf(A) x Perf(R).

There are functors of stable co-categories
T =(sa0Ppry,ta0pry,ca0pry, P ocRoPry, LR O Pry, g o pry) : € — D;

a = (¢* opry,pry, Ay o pry, Ag o pry).
Here A4 (resp. Apg) is the diagonal for Perf(A) (resp. Perf(R)). Also, we have written $* for the composition of

pullback along @ : R — A composed with the forgetful functor from Perf(A) to Perf(A).
We now have a Cartesian diagram of stable co-categories
C

DDCA(R) —_—
Remark 9.2.3 (Functoriality). Suppose that f : A — A’ is a map of frames. Then there is a canonical base-change
functor f* : DDCy4(R) — DDC 4/ (R’) lifting the natural base-change functors from Perf(A) to Perf(A’) and Perf(R)
to Perf(R/).

E— >

Remark 9.2.4 (Alternative description). In the situation of Definition there is a canonical map
om: I ®4 "M = M

sitting in a diagram B
I®40*M —— oM ———= ARy p*M

M BN ©*M %Z®¢,R er M

where the rows are fiber sequences. In particular, note that we have an equivalence

(9.2.4.1) cofib(om) = A @5 g Fil° M

Now, set N = M{—1}. We then have a canonical isomorphism I ® 4 ¢*M{—1} = ©*N, and so om{—1} yields a
map

by :p*N = N
equipped with an isomorphism cofib(®y) = A @5 g Fil' N, where Fil' N et pip0 g {—1}. One can alternatively
define divided Dieudonné complexes in terms of these data instead.

Remark 9.2.5 (Breuil-Kisin twist). Since A is assumed to be prismatic, we have a canonical invertible A-module
A{1}, the Breuil-Kisin twist, equipped with a canonical isomorphism v : I=' @4 A{1} = ¢*A{1}. For any
A-module M and n € Z, we set M{n} N VEN A{1}®an,

Definition 9.2.6 (Cartier duality). Suppose that M is in DDC4(R). Then the (unnormalized) Cartier dual M*
is given by the tuple with
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o M* = MV{1};
o Fil' M* = (M/Fil° M)V{1} - M* = MV{1}, so that gr—' M* ~ (Fil® M)V {1};
e Uy given by the composition

om{l}

M = MY{1} 25 oMY @4 (7 @4 A{1}) =25 "M @4 9" A{1} = "M;

e The isomorphism £* is obtained after twisting from (9.2.4.1)).

Remark 9.2.7 (Rank one divided complexes). We have the canonical divided complex given by the tuple (A, R u,
R, A , A,0), which we will denote by 1. Its Cartier dual 1* is given by the tuple

(A{1},0 — R{1}, A{1} = "' @ A{1} % P A{1},£")
where £* is the composition
ITVA@AA{1Y ST 00 A{1} S Aes 9" A{1} = A®r R{1}.
Remark 9.2.8 (Maps from 1). If M is a divided Dieudonné complex over A, set Fil”M = fib(M — gr~* M). Then
we obtain a map vy : ¢* Fil"M — M sitting in a diagram
¢*Fil'M —= ¢o*M ——= (A®,4 R) @rgr™ ' M
UM

M — M ———> Az pegr ' M
where both rows are fiber sequences. Unwinding definitions, RHom4 (1, M) (computed in the stable oo-category
DDC4(R)) is given by

RHom 4 (1, M) = fib(Fil M <2297, ),
where can : Fil M — M is the natural map.
Example 9.2.9 (Maps from 1 to 1*). Let us specialize the previous remark to the case M = 1*. Here, the map
vm © ™ is the composition

(Fil! A){1} 2 T o4 o A1) =~ A1)

where the first map is the Breuil-Kisin twist of the semilinear divided Frobenius map ¢y : Fil' A —» I. We will
denote this composition by ¢1{1} as well. Then we find:

RHom 4 (1, 1*) ~ fib((Fil* A){1} <=7 401y,

Remark 9.2.10 (Windows over frames). Suppose that A and R are discrete and (I — A) ~ (A LN A) for some
element 6 € A. Suppose that M is in DDC , 0]( R): this means that M is finite locally free over A and that gr— M
and Fil® M are finite locally free over R. Let the pair (N, ®y) be as in Remark and set N' = Fil" M{~1}, so
that N! C N is a submodule with N/N! finite locally free over R. The map vy from Remark yields a map
®p : p*N' — M. Our hypotheses imply (see [33, Remark 5.2]) that there is a normal decomposition N = L& T with

N'=Lo(Fil'A@, T)CcLaT=N,

and also that the assignment
(11— (2 (1), Pn (1))

LD T LeT
is an isomorphism of A-modules. Therefore, if write F : N — N and F; : N! — N for the ¢-semilinear maps
underlying ®y and @, then we find that, in the terminology of [34, §2], (N,N!, F, F}) is a window over the frame
(A,Fil1 A R, ¢, ¢1). It is not difficult to show that this is in fact giving us an equivalence of categories between
DDCEX’O] (R) and the relevant category of windows.
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Example 9.2.11 (Displays). When A = W (R) is the Witt vector frame from Example then DDCEAO’O] (R) is
just the category of 3n-displays as defined by Zink [47]; see [34, p. 4, Example].

Remark 9.2.12 (Comparison with Anschiitz-Le Bras). If in the situation of Remark 0 is a non-zero divisor
and Fil' A = ¢~ 1(#A), then the datum of the pair (N, F), along with certain admissibility conditions, determines
the rest of the tuple; see the discussion in |23, Proposition 5.7.6], and also |14, Lemma 2.1.16]. This applies in
particular when A = g for R qrsp, and so we see that, in this case, ppclY (R) is the category of admissible
prismatic Dieudonné modules appearing in Anschiitz-Le Bras [2]. -

9.3. Descent for divided Dieudonné complexes. In this subsection, we enumerate various useful descent
properties enjoyed by the categories of divided Dieudonné complexes. As a consequence, we obtain a certain
integrability property (Proposition [9.3.6)) that will prove helpful for the classification results obtained later in the
section.

Remark 9.3.1 (Etale descent for divided Dieudonné complexes). Suppose that R — R’ is a p-completely étale and
faithfully flat map. Then Remark tells us that the corresponding cosimplicial R-algebra R -®r(*+1) (the tensor
product here is p-completed) lifts to a cosimplicial frame Al’(”l) with 4"(m) (p, I)-completely étale and faithfully
ﬂa over A for all m > 1. In fact, one sees that AHm) = A/"X’Am, where we are using (p, I)-completed tensor
products. Using this and (p, I)-complete faithfully flat descent for perfect complexes, one finds that the natural
functor

DDC4(R) — Tot (DDCA/@A(.H)(R/’®R('+1)))

is an equivalence of stable oco-categories.

Remark 9.3.2 (Quasisyntomic descent for divided Dieudonné complexes). Completely analogously, in the situation
of Lemma [9.1.17] the natural functor

DDC(R) = Tot (DDC 4o 4o s (RE* 1))

is an equivalence of stable co-categories.

Remark 9.3.3. Suppose that we have a map Z,[z])) 224 R, and that S = R/“(t). By Remarks |3.1.16| and |9.1.16L
base-change along S — R of A yields a map of frames A — B lifting R — 5, and we obtain in this way a
cosimplicial frame B(®) for $®r(*+1) with B(m) = B®a(m+1) and a functor

(9.3.3.1) DDC_4(R) — Tot (DDCEM (5®R<'+1>))

Lemma 9.3.4 (Derived descent for divided Dieudonné complexes). Suppose that R is (t)-adically derived complete.
Then the functor (9.3.3.1) is an equivalence.

Proof. Tt is enough to know that the functors
Perf(A) — Tot (Perf(B<°>)) . Perf(R) — Tot (Perf(s®ﬁ<°+1>))

are equivalences.
Since R is (t)-complete, that the second is an equivalence follows from |26, Proposition 3.1.5, Corollary 3.1.4].
The same reasoning shows that the functors

Perf(A) — Tot (Perf<Z®A(-+1))> . Perf(B™) s Tot (Perf@(m),@]g(m)(.ﬂ)))
are equivalences. Therefore, to finish it is enough to know that, for each k& > 0, the functor
Perf(Z®A(kH)) s Tot (Perf(ﬁ(')’®3(°>(k+1)))
g0+, pop(kt1)

is an equivalence. In other words, we want to know that the map A B of p-complete rings satisfies
descent for perfect complexes.

1976 see the faithful flatness, note that mo(A/“(p, I)) is a nilpotent thickening of o (R/%(p, I)).
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Via the map Spf R 5N G, yielding R L, G,, we obtain a map Spf A -+ R — G,. Unwinding definitions, we

a’

have
Spf A%~ Spf A g GHT xg x -+ xg GHT = Spf A xg_GHTX(+D
k+1
and
Spf§®3(k+1) ~ Spf A x¢_ ZET Xg, Xt Xg, ZET — Spf A xg, Z}})IT,x(kH)

k+1
where we are using the map ZET — GHT — G, induced by the zero section of G,. We are also using the superscript
x (k4 1) to denote the (k + 1)-fold self-fiber product over G, .
Now, by |11, Example 9.1], we have a map GI'T — G, equipped with a section G, — GI7T arising from the
d-structure on G, given by the Frobenius lift « — 2P, and yielding an isomorphism of G,-stacks

GET = B(G! x Gf)) xsprz, Ga.
On the other hand, we know from Remark [3.1.7] that we have a canonical isomorphism
Z)'" = BGH,.
Via these isomorphisms the map ZET — GHT given by the zero section is just the composition
ZHT ~ BGE, — GET xg, 0 SpfZ, ~ B(G% % GY,) — B(GE x GE,) xspez, Ga = GET.

where the first map is from the obvious homomorphism of group schemes and the second map is from the zero
section of G.
Since the first map is p-completely faithfully flat, it is enough to know that

>><(k+1

(9.3.4.1) Spf A xg, (GET g, SpfZ, ) s Spf A xg GgT,x(k+1)

satisfies descent for perfect complexes. Unwinding definitions, one sees that the composition
Spf A~ Spf A xg_ Gi'" = Gi" — G,
—®a(k+1)

corresponds to the image u = p(t) of t under p: R — A. If, for j=1,...,k+1,u; € A
by u in the j-th coordinates and 1s elsewhere, then one sees that the map (9.3.4.1)) is given by

is the section given

—®a(k+1 —®a(k+1
SpE(AZA Y Ly ugg)) — SpE(ATAETY)Y,
This satisfies descent for perfect complexes by [26] again since Z®A(k+l) i

A4 g g nilpotent thickening of A, it is enough to know that A is (u)-complete. This follows from our

hypothesis on R and the fact that the Frobenius endomorphism of A/p factors through R/“p. g

s (u1,...,ups1)-complete. Indeed, since

Remark 9.3.5. In the setting of Remark for k > 1, set Sy, = R/%(t*). Then we obtain an inverse system of
frames

A_)..._)Ek+1_>§k_>..._>§1:§
lifting R — -+ — Sgy1 — Sk — --- = S1 = 5. This gives us a functor

k

Proposition 9.3.6 (Integrability for divided Dieudonné complexes). Suppose that R is (t)-adically derived complete.
Then the functor (9.3.5.1)) is an equivalence.

Proof. This can be deduced from Lemma in somewhat standard fashion: The lemma reduces us to the case
where R/“(t™) ~ R @ R[1] for all m sufficiently large and so the maps B,,,; — B,, factor through A — B,, for
all such m. The proposition follows easily from this. O
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9.4. From F-gauges to divided Dieudonné complexes. For the rest of this section, R will be discrete. The
next result follows from |23 Proposition 5.7.3] and Theorem

Proposition 9.4.1. For any semiperfectoid R, there are canonical exact equivalences

Modz,/pnz, (DDC[:R“” (R)) & P L (R) 5 FFGL(R)

that are compatible with Cartier duality in that the composition carries M*[1] to the Cartier dual of the image of M.

Remark 9.4.2. Within Modz,nz (DDC[:RLO] (R)) we have the subcategory spanned by objects where the underly-

ing perfect complex M arises from a vector bundle over R ®Z/p"Z, and where gr—! M and Fil® M are also obtained
from vector bundles over Spec R/“p™. This maps isomorphically onto the subcategory BT, (R) C FFG,,(R) via the
equivalence above.

We can globalize our definitions now as follows.

Definition 9.4.3 (Prismatic divided Dieudonné complexes). For any R, a prismatic divided Dieudonné com-
plex for R is a tuple
M = (M, Fildy, M — M, M 225 5" M, ¢)
such that:
(1) M € Perf(R ) is a perfect complex over R ;
(2) Fil%dg M — M En z%r pM is a map of perfect complexes over Spf R;
(3) ¥pq: M — ©*M is a map of perfect complexes over R ;
(4) £ is an isomorphism of perfect complexes sitting in a diagram

©*M ——— cofib(¥ r)

12
m

HT—x —1
Lo P 8lhag M.

Here, grﬁég M =M/ Fil%dg M and the diagonal map is obtained as the composition
"M — HT T A = BTG 71T grﬁég M.
Here, [T : RET — R is the closed immersion from the Hodge-Tate locus.
These objects organize into an co-category DDC (R), and we can define the subcategories pDCl*! (R) as above.

Corollary 9.4.4. There are canonical exact equivalences

Modz, s (DDCHo]( R)) & PYE 1 (R) S FFG,(R).

Proof. Combine Proposition with quasisyntomic descent (Remark [9.3.2]). O

Remark 9.4.5 (Relationship with the absolute prismatic site). Following |11}, Proposition 8.15] and its proof, one
sees that giving a perfect complex over R is the same as giving a perfect complex of prismatic F-crystals with
respect to the animated absolute prismatic site of R. In some cases, one is able to replace the prismatization R
by its classical truncation, and hence the category appearing on the left of the equivalence in Corollary [9.4.4] can
be described in terms of the classical absolute prismatic site of R. When R/pR is an F-finite and F-nilpotent
F,-algebra, we verify this in T heorem below, and we recover in this way the classification of p-divisible groups
by Lau in terms of divided Dieudonné crystals over such F,-algebras [|33].

Corollary 9.4.6. Suppose that A is a laminated prismatic frame for R. Then we have canonical functors

FFGo(R) < P35 (R) = Mody . (DDCY (R))
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Remark 9.4.7. From Remark we see that the subcategory BT, (R) gets mapped to the subcategory of
Mody,/,nz, (DDC[A_LO] (R)) spanned by the objects M where M is a finite locally free module over A/%p", and where

gr=' M and Fil® M are finite locally free over R/Mp".
Remark 9.4.8 (Compatibility with descent). The resulting functor

FFG,(R) — Mody,.7 (DDC[ATLO](R))
is compatible with p-completely étale (see Remark [9.3.1) and quasisyntomic descent (see Remark [9.3.2).

9.5. Breuil-Kisin frames. We now specialize to a particular kind of frame that finds its origins in the classification
theorems of Breuil and Kisin for finite flat group schemes over p-adic rings of integers.

Remark 9.5.1 (Frames from prisms). Suppose that (A4,I’) is a prism. Then we obtain a frame A for R = A/%T’
as follows: We set (Fil' A — A) = (I’ — A) and take I = ¢*I’ — A. The map @ is the associated map of ‘quotient’
animated commutative rings obtained from the Frobenius lift ¢ : A — A.

Definition 9.5.2 (Breuil-Kisin frames). A Breui-Kisin frame for R is a frame A obtained from a prism (A, I’)
such that A is p-completely flat, so that I’ C A is an ideal and R = A/I’ is discrete. By construction, such a frame
is automatically prismatic.

Remark 9.5.3 (Laminations for Breuil-Kisin frames). As explained in |23, Example 5.4.16], each Breuil-Kisin
frame admits a canonical lamination that is functorial for maps between such frames.

Example 9.5.4 (Lifts). Any p-completely flat §-ring A yields a p-adic Breuil-Kisin frame for R = A/pA. This is
what Lau simply calls a lift of R in |32, §1.2].

Example 9.5.5 (The original Breuil-Kisin frame). The seminal example is & = W (x)[|u|], where £ is a perfect field,
equipped with the Frobenius lift satisfying ¢(u) = u?, and I’ = (E(u)) for an Eisenstein polynomial E(u) € W (k)[u.
More generally, as in |46} |34], we can take & = W (x)[|u1, ..., unm|] equipped with the Frobenius lift u; — u!, and
E € & is a power series such that I’ = (E) equips & with the structure of a transversal prism. In this situation,
R = G/(E) is always regular local.

Remark 9.5.6 (Sections of the Breuil-Kisin twist). Specializing Remark to the Breuil-Kisin case, one sees
that we have
RHomy (1,1%) ~ fib(I'{1} =% A{1}),
where u : I'{1} — A{1} is the semilinear map underlying the isomorphism
P = ' T @4 " A{1} 2 T 04 9" A{1} = A{1}.
If A is p-adic, then this further simplifes to
RHomy(1,1%) ~ fib(A 2% A).

Definition 9.5.7 (Breuil-Kisin windows). A p™-torsion Breuil-Kisin window over a Breuil-Kisin frame A is a
triple (N, F, Vy) where:

(1) Nis a p"-torsion A-module of projective dimension 1;

(2) Fn:¢*N— Nand Vy: I’ ®4 N — ¢*N are A-linear maps such that the compositions

Wo(l®@FN):I'®a@"N—@*N; FnoWy:I'®4aN— N
are the maps induced by the inclusion I’ C A.

Write BK 4 ,,(R) for the category of such triples.
Remark 9.5.8. There is a Cartier duality involution on BKy4 ,,(R) determined as follows. View N as a perfect
complex with Tor amplitude [—1,0] and set N* = H°(NV[—1]{1}), where NV is the A-linear derived dual. Since A
is p-torsion free, we see that N* is once again a p”-torsion A-module of projective dimension 1. Moreover, we can

take
Fiee = HOORY1{1)) s e = HOCRY[1{1)).
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Proposition 9.5.9. If A is of Breuil-Kisin type, then there is a canonical exact equivalence
Mody /7 (DDCY " (R)) =5 BK A w(R)
compatible with Cartier duality.

Proof. Let J be the Breuil-Kisin twist associated with the prism structure (A,I") so that we have a canonical
isomorphism I’ ® 4 ©*J =5 J, or equivalently an isomorphism I’ ® 4 JY =» o*JV.

Since A is p-completely flat, the oo-category of perfect complexes over A with Tor amplitude in [—1,0] and with
cohomology killed by a power of p is equivalent via the functor M — H®(M) to the (discrete) category of p-power
torsion A-modules of projective dimension 1. This equivalence is compatible with arbitrary base-change along maps
to p-completely flat rings. In particular, we see that if N is a p-power torsion A-module of projective dimension 1,
then the derived base-change ¢*N is once again a p-power torsion A-module of projective dimension 1.

With this in hand, suppose that we have M in ModZ/an(DDC[A_l’O](R)). The fiber sequence

M= @M= A@pgr ' M
shows that there is an equivalence M = p* Fil° M giving us isomorphisms

(9.5.9.1) I'@a(JY@aM) = (I'@a JY) @4 9" Fi'M = o*(JY @4 Fil° M),

Observe now that Fil’ M is perfect with Tor amplitude in [—1, 0] with cohomology killed by p™: This follows by
contemplating the diagram

I/®AM M M

Fil® M M gr ' M
of perfect complexes over A where both rows are exact, and observing that the cofiber of the left vertical map is
Fil® M, which has Tor amplitude [—2,0] as a complex over A.
Set N= H(JV®a Fil° M): This is a p™-torsion A-module of projective dimension 1 that is equipped via (9.5.9.1)
with an isomorphism
I'©4 HO(JY @4 M) = o*N.
In particular, the tautological map Fil®M — M yields a map Vi : I’ ®4 N — ¢*N, and the map I’ @4 M — Fil°M
appearing in the left vertical column in the diagram above yields a map Fy : ¢*N — N.
One now checks that (N, Fy, W) is an object in BK4 ,,(R) giving us the functor asserted by the proposition.
The construction of the inverse can be obtained by tracing the path backwards via the equivalence from the second

paragraph of the proof. The main additional observation is that, given such a tuple in BK 4 ,(R), we have fiber
sequences

cofib(Vy) = R ®4 N — cofib(Fy) ; cofib(Fn) — R®4 ¢"N — cofib(Wy),

which show that cofib(Vy) and cofib(Fy), which a priori have Tor amplitude in [—2,0] over R, are actually perfect
over R with Tor amplitude in [—1,0].
We leave the verification of compatibility with exact sequences and duality to the reader. O

Remark 9.5.10. Corollary [0.4.6] combined with Remark and Proposition [0.5.9] gives us functors

FFG(R) <= Py 1y (R) = BKau(R).

The subcategory BT,,(R) is mapped to the subcategory of BK 4 ,,(R) spanned by the objects where the underlying
module N is finite locally free over A/p™A.
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Example 9.5.11 (Classification over perfectoid rings). If (A, I') is a perfect prism—equivalently, if R is perfectoid—
then A = g is the prismatic cohomology of R, and so Propositions [0.4.1] and [0.5.9] together give us equivalences

FFG,(R) < P 1y (R) = BK_ .(R).

This recovers the equivalence of |2, Theorem 5.4] (see also [32, Theorem 10.12] for the case p > 3).

Applying Proposition and Remark [9.5.10| to the case I' = (p) yields the following result, which can also be
deduced using crystalline Dieudonné theory; see |32} §3].

Proposition 9.5.12. Suppose that A is a p-completely flat §-ring such that R = A/pA. Then there is a canonical
functor

FFG,(R) — BK4 »(R),

where the right hand side is equivalent to the category of triples (N, Fy, Vn) where N = N(G) is a p™-torsion R-
module of projective dimension 1 and Fy : ¢*N — N and Vy : N = ©*N are A-linear maps such that Fy o Vy and
VN o F are both equal to multiplication-by-p.

Remark 9.5.13. If R is perfect, so that A = W(R) = g, then this assignment is an equivalence by Example(9.5.11
and we recover the classification by Dieudonné-Manin (when R a field), Berthelot (when R is a valuation ring),
Gabber and Lau (for general perfect R); see |37, §6].

On the other end of the crystalline situation in Proposition we have the following transversal situation:

Proposition 9.5.14. Suppose that R is p-completely flat—equivalently that I' is locally generated by an element
that is a non-zero divisor mod-p. Then BK 4 ,(R) is equivalent to the category of pairs (N, Fy) where:

(1) N is a p-power torsion A-module of projective dimension 1;
(2) Fn:@*N — N is an injective map whose cokernel is killed by I'.

In particular, we can functorially associate with every finite flat group scheme G over R a pair (N(G), on(a)) with
these properties.

Proof. Suppose that N is a p™-torsion A-module of projective dimension 1. By exhibiting N as the cokernel of a
map Q' — Q between finite flat A-modules, one sees that it can be seen as a submodule of Q'/p™Q’. This shows
that N is I’-torsionfree, and so we have I’ ® 4 N = I’N.

Now, given a tuple (N, Fy, W) in BK 4 ,(R), as observed in the proof of Proposition cofib(Fy) is perfect
over R with Tor amplitude in [—1, 0], and its cohomology is of course p™-torsion. Since R is p-completely flat, we see
that it is quasi-isomorphic to its zeroth cohomology. Therefore, Fy is injective with cokernel killed by I’. Moreover,
we have inclusions

I ®a N ~J'NC im(FN) ~ (p*N C N,

the first of which is isomorphic to the map V. Conversely, given such an injective map Fy, Vy is determined by
the inclusion I’'N C im(Fy). This shows the desired equivalence. O

Remark 9.5.15. The pairs (N, Fyy) in Proposition [9.5.14] are a general version of the notion of a Breuil window
introduced by Vasiu-Zink in |46].

Example 9.5.16 (Equivalence for p-completely flat perfectoid rings). If R is a p-completely flat perfectoid ring,
then combining Example(9.5.11| with Proposition [9.5.14] tells us that FFG,,(R) is equivalent to the category of pairs
(N, Fy) over g as given in the proposition above.

9.6. Nilpotent divided complexes and connected finite flat group schemes. It has long been known to
experts that essentially any frame can be used to classify connected finite flat group schemes; see for instance |34,
§10] for some instances of this phenomenon. In particular, as observed in Zink’s seminal work |47], one can use the
Witt frame for this purpose. We codify the underlying principle in this subsection.
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Construction 9.6.1 (A canonical operator). Suppose that M is a divided Dieudonné complex over a frame A for
R. Then in the notation of Remarks [0.2.4] and [9.2.8] we have a commuting diagram

To4 @ FI°M 2% 1, M

[&4p*"M —— > M
oM

This yields a ¢-semilinear map of A-modules I ® 4 gr—! M — M/“I, which gives a (-semilinear operator
g M{=1}/*(p, I) = M{=1}/%(p, ) = g™ M{~1}/*(p,])

of R/™(p, I)-modules. If B dgfn (R/pR)red, then, in turn, we obtain a p-semilinear operator of perfect complexes
over B

v BRpgrt M{-1} - Boregr ' M{-1}.
Here, we are using the fact that the image of I in R/pR is killed by Frobenius, so that the map R — B factors
through R/%(p, I).

Example 9.6.2. If M = 1, then gr—' M = 0 and the operator also vanishes. On the other hand, if M = 1*, then
M = gr~* M = R{1}, and 11~ : B — B is simply the Frobenius endomorphism of B.

Definition 9.6.3 (Nilpotent divided complexes). Let ¢ C B be a finitely generated radical ideal. We will say
that M is c-nilpotent if the base change of the operator ny- over B/¢ is nilpotent Write DDCZ”IP(R) for the

oo-subcategory of DDC 4 (R) spanned by such objects. If ¢ = 0, we will simply write DDC“AHP(R) instead.

Remark 9.6.4 (Nilpotence in the Breuil-Kisin case). In the situation of Proposition the triple (N, Fy, V) is
associated with a c-nilpotent divided Dieudonné complex precisely when the map Fy« : @*N* — N* corresponds to

a -semilinear endomorphism of N* whose base-change over B/¢ is nilpotent. Write BKZ?LIP(R) for the subcategory

of BK 4 ,,(R) spanned by such objects. Once again, if ¢ = 0, we will just write BKZ}E(R) instead.

Remark 9.6.5 (Connectedness and nilpotence). Suppose that M is a prismatic divided Dieudonné complex over
R. Then, via quasisyntomic descent and Construction [9.6.1] applied with A = _g for semiperfectoid R-algebras S,
we obtain a canonical p-semilinear operator 7+ on BQg grﬁég M*{-1}. If M is associated with G € FFG,,(R) via
Corollary then this operator is c¢-nilpotent precisely when the restriction of G over B/¢ is connected. Indeed,
it is enough to see this when R = k is an algebraically closed field, where this translates into the usual criterion in
contravariant Dieudonné theory involving the nilpotence of the semilinear operator F' on the Dieudonné module.

The next result follows from the methods of [23] §5.9].

Proposition 9.6.6 (Unique lifting principle using nilpotence). Suppose that A" — A is a surjectivﬂ map of
prismatic frames for R. Then the natural functor DDCIX}p(R) — DDCIXIP(R) is an equivalence of stable oco-
categories. o B

Remark 9.6.7 (Grothendieck-Messing for divided Dieudonné complexes: the nilpotent case). To prove the propo-
sition using the ideas in 23| §5.9], one first needs to formulate a more general assertion. First, observe that, for
any frame A for R, we have a canonical functor

DDCy4(R) — Perf(A'/G,, x Spf R)
carrying M to M with its two-step filtration 0 — Fil° M — M. Now, suppose that we have a map R’ — R in
CRing?““™Pand a sequence of surjective maps of prismatic frames
A5 A — A

20The use of Cartier duality here is to ensure Remark is valid.
21By this, we mean that the underlying map A’ — A is surjective.
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satisfying the following conditions:

o A" — A, is a map of frames for R’;
e Ais a frame for R and A; — A lifts R’ — R;
o (A1, ;) — (A, I) is an isomorphism of prisms.

Then we have a canonical diagram

DDCy/ (R') —————> Perf(Al/G,, x Spf R')
(9.6.7.1)

DDC4(R) — Perf(A' /G, x Spf R) Xpes(r) Perf(R')

Here, DDC4(R) — Perf(R’) is obtained via the functor Perf(A) ~ Perf(A4;) — Perf(R').

Then the more refined claim is that, in this situation, is Cartesian when restricted to the subcategories
of nilpotent divided Dieudonné complexes. The idea is to use deformation theory, the nilpotence hypothesis, and
various integrability properties of the stack of perfect complexes to reduce first to the case where A’ and A are
discrete, and next, by replacing A’ successively with quotients of the form A’/K™ where K = ker(A’ — A), to the
case where A’ — A is the identity, where it becomes trivial to prove.

Notation 9.6.8. Suppose that B is c-adically derived complete. Let FFG, “°*"(R) be the subcategory of FFG,,(R)
spanned by the objects whose restriction over Spec B/c¢ is connected. If ¢ = 0, we will simply write FFG; ™" (R)
instead.

Corollary 9.6.9. Suppose that B is c-adically derived complete. For any laminated prismatic frame A for R, the
functor in Corollary[9.7.6 yields an exact equivalence

FFGS(R) 55 Mody s, (DDC[A‘LO]’C‘““p(R)) .
In particular, if A is a Breuil-Kisin frame for R, then we obtain an exact equivalence
FFG{ ™ (R) = BKGP(R).

Proof. First consider the case where ¢ C B is nilpotent. Here, we can use quasisyntomic descent to reduce to the
case of R semiperfectoid. We can then apply Proposition W to the surjective maps of frames _p — W(R) and
A — W(R), and then appeal to Proposition and Remark

For the general case, choose a map Zy[t,. .. ’tm]z/: — R such that the images of ¢,...,t,, in B generate ¢. For
all k> 1, set Ry, defe R/M(t, ... k). By Remarks |9.1.16| and |3.1.16|, we obtain canonical maps of frames A — A,
lifting R — Ry,. The argument from the first paragraph shows that we have a canonical equivalence

Mody,nz (DDC:i’O]’“”p(Rk)) = Modg,z (DDC[AT:’O]’“HP(Rk)) .

Taking the limit over k gives us equivalences:

=

FFG*" (R) = Modg . (DDCT () )

1

S

Jim Mody . (DDC[_l’O]’n”p(Rk))

=, lim Mody, . (DDC[;LO]’HHP(R,C)) .
Ap

E

Here, the first equivalence is from Remark while the second is from Proposition and the equivalence

Pi}:?o,l} (R) — I&H Pi}:?(),l} (Rk)7
k
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which holds by the derived (ti,...,t,)-completeness of R and the fact that it is true if we replace Ry with mo(R})
instead. Indeed, in the latter case, we are simply saying that the category of finite locally free p-power torsion group
schemes over R is obtained as the inverse limit over k of that over mo(Ry).
To finish, it is enough to know that the natural functor
DDCA(R) — %1 DDCAk (Rk)
is an equivalence. By induction on m, we can reduce to the case m = 1, where this follows from Proposition[9.3.6] O

Remark 9.6.10. When R is an F,-algebra and A is a p-adic Breuil-Kisin frame for R (referred to as a lift of R
in [32, §1.2]), the last result above is already known by work of Zink and Lau; see Remark 3.2 and the proof of

Corollary 10.4 in [32]. In the general Breuil-Kisin case, it appears to be new, though a particular instance of it can
be found in |34, §10.5].

Remark 9.6.11. A particular consequence of the corollary is an equivalence of categories between connected
p-divisible groups and nilpotent displays over R. This is a theorem of Lau [37, Theorem CJ.

Example 9.6.12 (Classification of connected group schemes over fields). If « is any characteristic p field and O is
a Cohen ring for k equipped with a Frobenius lift ¢ : O — O, this gives a p-adic Breuil-Kisin frame O for k and we
obtain an equivalence

FFG{™ (k) = BKy b (k).

Example 9.6.13 (Classification of group schemes with connected special fibers over complete local rings). If R is
a complete local ring with maximal ideal m and A is any frame for R, we obtain an equivalence

FFGI™" (R) = Mody, (DDCE’OL““““P(R))
In particular, if A is a Breuil-Kisin frame, then we have an equivalence
FFG°™(R) = BK} "'P(R).

When R is an Fp-algebra, one can use this to recover a result of de Jong |18, Theorem 9.3]. When R is regular of
mized characteristic, this recovers a classification due to Lau [34, Theorem 10.7]; see also |14} §2.7].

Example 9.6.14 (A non-regular example). Note that the previous example has no regularity constraints what-
soever. For instance, if k is a perfect field, and Ok is a totally ramified extension of W (k) generated by a
uniformizer with Eisenstein polynomial F(u) € W (k)[u], then we can take R = Ok|[|x,y|]/(z?, xy, y?) with the
frame A associated with the prism (4,1') = (W (k)[|u, x,y|]/(2?, vy, y?), (E(u))) equipped with the Frobenius lift
u+— uP z — xP y — yP. In fact, one can also replace R with its quotients by powers of m by also modifying A
appropriately by taking quotients by powers of u.

Example 9.6.15 (Classification of connected group schemes over polynomial rings with semiperfectoid coeflicients).
If R = Rolx1,..., 2], with Ry semiperfectoid, then Example combines with Corollary to give us an
equivalence

FFGE™ (R) =5 Modg,,..z (DDCL ™ (R))

A

where A is a frame for R with underlying ring A = g,[z1,..., 2]}

9.7. A nilpotence criterion for equivalence. One can improve Proposition[9.6.6] to be valid for the full category
of divided complexes by moving the locus of nilpotence from the modules to the map of frames. We will explore
this phenomenon in this subsection. R will be discrete here.
Construction 9.7.1. Suppose that A" — A is a map of prismatic frames for R. If we set

K =fib(A" — A) ~ fib(Fil' A’ — Fil* A),
then the twisted divided Frobenius maps (Fil' 4){1} — A’{1} and (Fil' A){1} — A{1} (see Example[9.2.9) induce
a semilinear endomorphism ¢ : K{1} — K{1}.
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Remark 9.7.2 (Sections of the Breuil-Kisin twist). Following Example we see that we have
fib (RHom  (1,1*) — RHom4(1,1%)) = fib(K {1} 2% K{1}).
Therefore when id — ¢ is an equivalence, we find that the map
RHom 4/(1,1") — RHomy4(1,1%)
is an equivalence.

The methods of [23] §5.9] allow one to generalize the above remark, yielding the following analogue of Propo-
sition It can be viewed as an animated refinement of a classical result of Zink and Lau; see especially [34]
Theorem 3.2] or |33, Proposition 5.6].

Proposition 9.7.3 (Unique lifting principle using nilpotence of divided Frobenius). Suppose that A" — A is a
surjective map of prismatic frames for R such that the endomorphism ¢1 : K{1} — K{1} is topologically locally
nilpotent with respect to the (p,I)-adic topology. Then the natural functor DDC4/(R) — DDC4(R) is an exact
equivalence.

Remark 9.7.4 (Grothendieck-Messing for divided Dieudonné complexes). The methods used actually show that,
in the context of Remark if we take the endomorphism ¢; : K{1} — K{1} obtained from the map A — A,,
then the diagram ((9.6.7.1]) is Cartesian whenever ¢ is topologically locally nilpotent.

Remark 9.7.5 (Grothendieck-Messing for nilpotent divided power extensions). One situation in which some of the
conditions of Remark hold is when (R’ — R,7) is a nilpotent divided power extension of semiperfectoid rings
and we take A" = 5 and A = _5. The divided powers yield a lift A — R’ giving us the intermediate frame A,
for R’, and the associated endomorphism ¢; : K{1} — K{1} is topologically locally nilpotent; see |23 Proposition
6.13.1]. Indeed, this is essentially how the deformation theoretic content of Theorem is shown. We should
note however that the map g — g is not in general surjective, so Proposition [9.7.3] does not directly apply.

Construction 9.7.6. Suppose that A is a laminated prismatic frame for a semiperfectoid ring R. Then we have
a canonical map of frames _p — A for R, and so Construction @ gives a canonical operator

pit s KA1} — K41},
where K4 = fib( g — A).

Corollary 9.7.7. Suppose that R is semiperfectoid and A is a laminated prismatic frame for R such that the map
r — A is surjective and such that the endomorphism gblé 1s topologically locally nilpotent. Then we have an exact
equivalence

FFG,,(R) = Mody,,.,(DDC; " (R)).
Proof. Immediate from Propositions and [0.7.3 a
We will now globalize Corollary From now on R will be an arbitrary p-complete discrete ring.

Lemma 9.7.8. Let A be a laminated prismatic frame for R. Then the following are equivalent:
(1) For some quasisyntomic cover R — Roo asin Construction the map of cosimplicial frames _pe pet1) —

Ag;) from Lemma is surjective.

(2) For any quasisyntomic cover R — Ry, asin Construction the map of cosimplicial frames _ o pe+1) —

AS;) from Lemma 18 surjective.

(3) The associated map Spf A — R is a closed immersion.

Proof. The equivalence of the first two assertions comes down to the following assertion: If A is a laminated
prismatic frame for R, and, if R — R’ is a quasisyntomic cover of semiperfectoid rings such that the base—changﬂ
r — Rr ® . Ais surjective, then the map r — A is surjective. This follows from the fact that the map

22The tensor products are derived and (p, I)-completed.
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r — r is (p, I)-completely faithfully flat; see Proposition [3.1.12} The equivalence of these with the last assertion
is now clear from quasisyntomic descent for closed immersions. 0

Remark 9.7.9 (Surjectivity criterion). Suppose that A is a frame for R such that the natural map A — A/%(p, I)
factors through a map R — A/%(p, I). Then, for any map of frames A" — A for R, the composition A’ — A/™(p, I)
is surjective, and hence, by (p, I)-completeness, the map A" — A is automatically surjective. This condition holds
for Breuil-Kisin frames, and also for any frame that is obtained via quasisyntomic base-change from a Breuil-Kisin
frame via Remark [0.1.16] In particular, the equivalent conditions of Lemma [9.7.8] are always valid when A4 is a
Breuil-Kisin frame.

Construction 9.7.10. Suppose that A is a laminated prismatic frame for R. For each map R — S with S
semlperfectmd we obtain the base-change Ag of A from Remark 6l and a map of frames _¢ — Ag, along with
an operator <p1 c K4{1} — K&{1}, where K& = fib( s — Ag). In this way, we obtain quasisyntomic sheaves
A_, K4 of _-modules over Spf R, along with an operator gblé s KA{1} — K4{1}, whose values on semiperfectoid
quasisyntomic R-algebras S are given as just described.

Remark 9.7.11. Suppose that we have an ideal ¢ C B dgfn (R/pR)rea- We obtain a map of quasisyntomic sheaves
(of derived rings) _ — € whose values on semiperfectoid S is given by the composition

s—S—S®grB/c

Corollary 9 7.12. Suppose that A is a laminated prismatic frame for R satisfying the equivalent conditions of
Lemma[9.7.8 Suppose also that there is some finitely generated ideal ¢ C B such that B is derived c-complete and
such that the base-change of <p1 along _ — O°F is locally nilpotent. Then we have an exact equivalence

FFG,,(R) = Mody/,u7(DDCa(R)).
In particular, if A is of Breuil-Kisin type, we obtain an equivalence
FFG,(R) = BK4,.(R).

Proof. First, suppose that ¢ is nilpotent. Then the result follows from Corollary and quasisyntomic descent.
In general, we can argue as in the proof of Corollary 0.6.9] to reduce to this case. O

Remark 9.7.13. The proof of the corollary shows something stronger: Combined with Proposition [4.3.2] it im-
plies that the fppf cohomology of any G € FFG,(R) associated with M € Mody 7 (DDC4(R)) is isomorphic to
RHomy4 (1, M).

Remark 9.7.14 (Classification via Grothendieck-Messing). Suppose that R’ — R is nilpotent divided power
extension. In this case, there is extension zqr g : Spf R’ — R of zqr that is obtained from the divided power
structure; see |23 Lemma 6.8.1]. Suppose that A is a laminated prismatic frame for R equipped with a lift A — R’
such that the associated composition Spf R’ — Spf A — R is isomorphic to z4g, R/ Suppose also that A satisfies
the hypotheses of Corollary|9. Write DDCE4 tlo(r)]s( R) for the subcategory of DDC CL0 (R) spanned by the Z/p"Z-
module objects for all n > 1. T en from Theorem [413] and Corollaries [9.4:4] and [0.7.12] we obtain a canonical
Cartesian dlagranﬂ
FFG(R') —————— Perf(A'/G,, x Spf R')

DDCY M (R) — Perf(A' /Gy x SPf R) X pert(ry Perf(R).

A,tors

23Strictly speaking, we only obtain a Cartesian diagram of the underlying groupoids in this way, but one can upgrade it to a Cartesian
diagram of categories with little difficulty.
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Remark 9.7.15. Suppose that O is a complete mixed characteristic DVR of absolute ramification index e < p—1,
uniformizer 7 and residue field k. Then, for each n > 1, and any p-complete O-algebra S, S/(x™) — S/(x) is a
nilpotent divided power extension. If A is a frame for S/(r) satisfying the hypotheses of Remark we get a
Cartesian diagram as above for each n with R’ = S/(n") and R = S/(w). Taking the limit over n now gives us a
Cartesian diagram

FFG(S) Perf(A!/G,, x Spf 5)

DDCY 0 (S/(m)) — Perf(A /Gy x Spec S/(m)) Xpert(sy(xy) Perf(S).

Example 9.7.16 (Honda systems). Let us apply Remark [9.7.15(to the case where S = O and where & is perfect.
Here, we can take A = _, , and so we obtain a Cartesian diagram

FFG(O) — > Perf(A!/G,, x Spf O)

BK_iors(k) — Perf(A!/G,, x Spec k) X pert () Perf(O).

Here, BK__tors(%) is the ‘union’ of the categories BK__ ,,(x) for n > 1. In this way, we obtain a description
of FFG(O) in terms of a triple (M, Fiy, Viu) with M a p-power torsion W (k)-module, along with a filtration on
O ®w(x) M satisfying some additional compatibilities. A full unwinding of this yields the notion of a finite Honda
system as given in |16, Definition 2.6], and the Cartesian diagram recovers the first part of Theorem 3.6 of loc. cit.
It is actually possible to recover the full theorem from the methods here: One has to observe that in Remark
if one drops the nilpotence hypothesis on the divided powers, the diagram there is still Cartesian when restricted

to FFG®""(R’) and to the subcategory of nilpotent objects in DDCZ;&%(R’ ).

9.8. Specializing to the Breuil-Kisin case. In this subsection, A will be a Breuil-Kisin frame for a discrete ring
R. Here, by Remark [0.7.9] the equivalent conditions of Lemma [9.7.8] always hold. Therefore, the only obstruction
to the functor from Remark being an equivalence is the nilpotence condition on gbIA from Corollary
We will see that this can be understood in somewhat more concrete terms via the cotangent complex.

Remark 9.8.1 (The Rees stack associated with a Breuil-Kisin frame). Just as in Remark we have the
(p, I')-complete formal Rees stack R(Fil}, A) associated with the I’-adic filtration on A, and the Frobenius lift on
A extends to a map of Rees stacks R(Fily A) — R(Fil}, A).. We obtain two maps 7,0 : Spf A — R(Fil}, A), where
7 is the pullback of G,,/G,, — Al/G,, and o is obtained from the filtered Frobenius lift and the isomorphism

Spf A = R(Fil] .. A).

Note also that we have a canonical map x4 : A'/G,, x Spf R — R(Fil® A) associated with the map Fil® A — Filf;, R
of filtered rings. Here, Fil?;, R is the trivial filtration on R supported in graded degree 0.

Proposition 9.8.2 (Mapping the Rees stack to the filtered prismatization). There is a canonical map of formal
stacks L‘X : R(Fil* A) — RN such that

N : LN _ . . N _ N
LA OT = JdR O LA T) i Ly ©0 =JHT O l(AT) ; LA OTA = TgRr-

Proof. See |23 Example 6.10.5]. O

Remark 9.8.3 (Base-change of filtered frames). Combining Proposition with Proposition [3.2.10[ shows that
for a quasisyntomic cover R — S, the base-change R(Fil® A) x g SV is of the form R(Fil® Ag) for a (p, I)-complete
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filtered animated commutative ring Fil®* Ag with underlying ring Ag. In fact, R(Fil®* Ag) is (p, I)-completely flat
over R(Fil* A) and is therefore is a classical formal stack. Moreover, the associated graded stack

R(Fil® Ag)(i—0) = Spf | D er ™ As | /G

m<0

is p-completely flat over

R(Fil* A)4—q) = Spf | P 1"/ | /Gy,
m<0
and is hence also classical. All of this means that Fil®* Ag is in fact a classical filtered ring: the modules Fil™ Ag
are submodules of Ag. Moreover, Fil' Ag C Ag agrees with the submodule given by the frame structure Ag on Ag.

Remark 9.8.4 (Factoring ¢1). With the notation as above, the Frobenius lift on Ag extends to a map of filtered
rings Fil®* Ag — Fil} Ag that in filtered degree 1 is the divided Frobenius map ¢ : Fil' Ag — I'Ag. This is deduced
easily from the construction and the fact that it is true with Fil®* Ag replaced with Fil®* A or Fili, s. This means
that the composition

Fil' As{1} £ Ag{1} - As{1}/~ (0, 1)
factors through gr' Ag{1}, and similarly the corresponding composition for Fil}, g factors through gr}, . This
implies that the composition

Ks{l} Ks{l}*Ks{l}/L(PJS)
factors through gr! KZ{1} where
gr! K& = fib(gry, 5 — gr' As).
Using this, one finds that the base-change over B of gblés ) gblés factors through a ¢-semilinear map

(9.8.4.1) Boper' K§{1} - Bergr' Ki{1}.

In particular, n;'?lA satisfies the condition in Corollary [9.7.12| for the ideal ¢ if and only the base-change of ((9.8.4.1]
over B/c is nilpotent for a quasisyntomic cover R — S.

Remark 9.8.5 (Relationship with the cotangent complex). Suppose that S is a p-complete R-algebra. Then, by |10,
Corollary 5.5.18], we have a canonical isomorphism of S-modules gri, s{1} — Lg[~1]. This is obtained via a
comparison map between Nygaard filtered abslute prismatic cohomology and Hodge filtered p-completed derived
de Rham cohomology. In particular, we see that we have

RT eyn (Spf R, gr' K4) S5 fib(grk, g — gr' A) ~ fib(Lg[—1] — I'/1 ?).

Unwinding definitions shows that the map on the right is up to sign obtained from the rotation of the canonical
fiber sequence
')/ 5 R®,La — Lg.

In other words, we have a canonical isomorphism
(9.85.1) R qoyn(Spf R, g K2) 5 (R LA>[ 1

Remark 9.8.6 (The key operator via the cotangent complex). Via , the operator (9.8.6.1]), viewed as a
map of quasisyntomic sheaves over Spf R, yields by taking global sectlons a gp sermhnear endomorphism

(9861) B®a ]LA[—l] — B®a ]LA[—I].

This can be described quite easily. Note that the differential dy : Ly — L4 of the Frobenius lift of A admits a

canonical factorization

L -2, 21,

Now (9.8.6.1) is just the base-change of ‘dp/p’.
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Remark 9.8.7 (The semiperfectoid case). Suppose that R is semiperfectoid. Then combining Remarks|9.8.4]
and shows that gblé is topologically locally nilpotent if and only if the divided Frobenius endomorphism of L 4
is topologically locally nilpotent.

Remark 9.8.8 (Frames for non-discrete R). All of the preceding discussion—except for the last two sentences of
Remark is still valid if we assume that A is a p-adic prismatic frame with A discrete and (Fil' A — A) ~
(A LN A) without requiring that A be p-torsion free. In this case, A is a frame for the not necessarily discrete
F,-algebra A/Lp.

Proposition 9.8.9. Suppose that R is semiperfectoid, and suppose that the operator (9.8.6.1) is locally nilpotent.
Then the functor FFG,,(R) — BK4 ,(R) is an equivalence.

Proof. Follows from Corollary 0.7.7] and Remark [0.8:7] O

Remark 9.8.10 (Nilpotence in terms of d-structure: degree 0). If R is semiperfectoid and we choose a surjection
Ry — R with Ry perfectoid, then we have Ly = L, , , and so, if K = ker( r, — A), then HO(La[-1]) =
720L4[~1] = K/K?. The operator on H°(Ls[-1]) = K/K? is inherited from the endomorphism § of K/K?
induced by the function § : K — K arising from the compatibility of the map r, — A with §-structures.
Therefore, the nilpotence condition in cohomological degree 0 reduces to asking for this operator to be topologically
locally nilpotent. We will see in Corollary below that this is already sufficient to yield the equivalence in
Proposition [9.8.9| under some finiteness conditions.

9.9. The classical prismatization suffices. In this subsection, we will see that the classical prismatization—and
hence the classical absolute prismatic site—is sufficient for classifying finite flat group schemes in many cases. This
amounts to a reinterpretation of results of Lau [32} |33|, which we recover here via a slightly different argument.

Definition 9.9.1 (Classical prismatic divided Dieudonné complexes). A classical prismatic divided Dieudonné
complex for R is a tuple M, satisfying the same conditions as that of a prismatic divided Dieudonné complex
(Definition [9.4.3)), except that we replace R with its classical truncation R,. Write DDC _ (R) for the oo-category
of such tuples.

Remark 9.9.2 (The semiperfectoid case). When R is semiperfectoid, we have
DDC _(R) ~ DDC,R,CJ(R)’
where _p ) is the frame obtained by taking the classical truncation of _gz: More precisely, we replace g with its

(p, Ir)-adically completed classical truncatioﬂ
rel =mmo( r)/(p, Ir)"7o( &),

and g with r® , ga. Note that, since mo( g) is (p, Ir)-adically derived complete, g is also its maximal
separated quotient; see [45] Proposition 091T].

Remark 9.9.3 (Description via quasisyntomic descent). Via quasisyntomic descent, one finds that DDC _ (R) can
also be described in terms seen in the introduction. Namely, it is equivalent to the co-category of tuples

(M- T2 " M_Filfly, M — M,€)

where:

(1) M_ is a perfect complex over _ . with cohomology killed by p™;
(2) M is the perfect complex over R corresponding to the base-change of M_ along _ 4 — O and Fil%dg M —
M is a map of perfect complexes;
(3) Wpq: M_ — p*M_ is a map of complexes over _ o whose cofiber is equipped with an isomorphism & to
—cl ®R grﬁég M.

24Here, we are taking the underived usual inverse limit giving the classical (p, Ir)-adic completion.
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Remark 9.9.4 (Comparison with divided Dieudonné crystals). When R is an F,-algebra, a classical prismatic
divided Dieudonné complex where the underlying perfect complex M is a vector bundle over R is the same as a
divided Dieudonné crystal as defined in |33]. This follows from Remarks and [9.2.10

We will need the following definitions appearing in [33].

Definition 9.9.5 (F-finiteness and F-nilpotence). An Fp-algebra R is F-finite if the Frobenius endomorphism
¢ : R — R is of finite type (equivalently, is finite). It is F-nilpotent if ker ¢ is a nilpotent ideal.

Remark 9.9.6 (F-nilpotence for semiperfect rings). Suppose that R is semiperfect with inverse perfection R> =
@w R, and set J = ker(R” — R). Then R is F-nilpotent if and only if there exists r > 1 such that J?" C ¢(J).

Theorem 9.9.7. Suppose that one of the following holds:
(1) R is p-quasisyntomic;
(2) R/pR is F-finite and F-nilpotent.
Then the functor
FFG,.(R) — Mody .7 (DDC[‘C}’O](R))

18 an exact equivalence.

Proof. When R is p-quasisyntomic, R is already classical |11, Corollary 8.13], so the result follows trivially from
Corollary This refines the main result of [43].

So we will assume from here on that R/pR is F-finite and F-nilpotent. To begin, via Lemma we can reduce
to the case where R is p-nilpotent.

Next, using quasisyntomic descent, we reduce to the case where R is semiperfectoid with R/pR F-nilpotent.
Here, we are using the fact that any F-finite and F-nilpotent [F)-algebra admits a quasisyntomic cover R — Ro
obtained by adjoining all p-power roots of a finite set of elements of R so that RZr™ is F-nilpotent for all m:
See [33, Lemma 2.6]. We can now conclude using Proposition below. O

Remark 9.9.8. Case (2) of the theorem yields in particular an equivalence

BT(R) = DDC"Y(R)
in the situation where R/pR is F-finite and F-nilpotent. When R is an F,-algebra, Remark shows that this
simply a rephrasing of the main result of [33].

Proposition 9.9.9. Suppose that R is semiperfectoid and that R/pR is F-nilpotent. Then the map of frames
(R _Rr = _p.a satisfies the conditions of Corollary[9.7.7

The rest of this subsection will be devoted to the proof of this proposition, but first we make a few observations
beginning with the following corollary.

Corollary 9.9.10. Suppose that R is semiperfectoid with R/pR F-nilpotent, and that A is a Breuil-Kisin frame for
R. Suppose that the divided Frobenius endomorphism of Lo induces a topologically locally nilpotent endomorphism
of H-1(IL4). Then we have an exact equivalence

FFG,(R) = BK4,.(R).

Proof. By Propositions and it is enough to know that the operator <,b%d on K4{1} = ker( ra — A){1}
is topologically locally nilpotent. Since g is the classical (p, Ir)-adic completion of H°( g), K, g‘ is the classical

(p, Ir)-adic completion of H?(K#). Therefore, it is enough to know that Ho(gblé) is locally nilpotent mod-(p, Ig).
We now conclude using Remark [0.877] O

Remark 9.9.11. Proposition actually yields a partial answer to a question raised in [23, Remark 8.7.6]. It
shows that, in the notation of loc. cit., for discrete inputs R such that R/pR is F-nilpotent and F-finite, the
oo-groupoid I'sy, (X)(R) can be computed using only the classical truncation of R®™. In particular, it implies that
the values on such inputs of the smooth formal Artin stacks BTS # from Section 9 of loc. cit. can also be computed
via the classical syntomification.
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Remark 9.9.12 (Reduction to the case of semiperfect algebras). By the discussion in Remark [9.7.5] if R’ — R is
a square-zero extension equipped with trivial divided powers, then (g/ satisfies these conditions whenever (g does
so. This allows us to reduce the proof of Proposition to the case where R is itself a semiperfect F-nilpotent
F,-algebra.

The key for the proof of Proposition [9.9.9]is a construction due to Lau:

Lemma 9.9.13. Suppose that R’ is a perfect Fy-algebra and J C R’ an ideal. For each m >0, let K,, C W(R?)

be the subset consisting of elements of the form (ag,as,...) in Witt coordinates with a; € JPT . Set Ry =R/ J.

Suppose that R dgfn Ry is F-nilpotent. Then, for each m > 0:

(1) K, is a p-adically closed §-ideal in W (R");
(2) The d-ring Ay = W(R)/K,, underlies a laminated p-adic prismatic frame A, for Ry, with Fil' A, = pAp,;
(3) Am1 underlies a laminated p-adic prismatic frame A, for Ry, with

Fil' A = (K +pW(R"))/Kmi1 C A

(4) The ideal Fil* A1 C Ay is equipped with divided powers compatible with the canonical divided power
structure on pA,,+1, and restricting to the trivial divided power structure on the ideal K, /K11.

Proof. All of this follows from |33l §6]. We give some details here for the benefit of the reader. We will prove (1)

for K < Ky; the proof for general m is the same. First, note that K C W(Rb) is indeed a p-adically closed ideal

and that F(K) C K; see [32, Lemma 7.6]. Also, if 2 € W(R®) is such that V(z) € K then in fact 2 € K. We will
make repeated use of this.
Let us now make note of the following identities in W (R”) for x € W(R’) and k > 1:
o VF(z)P = VF(pFP=gP): This follows by repeatedly using the identity V*(x)y = VF(xF¥(y)).
e For any 2 € W(R’) and any k > 1, we have

SV (@) = VE (@) = pH DIV E(?).
This follows from the previous identity and the equalities
VE(@)? + ps(VF(2)) = F(VF(z)) = pV*(2)
If ap € JP" for k > 1, then y = VE([ax]) € K and we have
3(y) = V* () = p* = TVE(af]) = (L= p*PD)VE ([an])
Since V*~1([ax]) € K, we see that d(y) belongs to K. .

Now, by Remark there exists » > 1 such that JP" C ¢(J). Suppose that a € K Np "W (R); then the
hypothesis J?" C o(J) implies that J? " C ¢*(J) for all s > 0, and so we see that a = V" F(b) for some b € K. In
particular, we have

8(a) = V"HF (b)) — p" P UTIVI(F(WP)) € K.

Since every element of K can be written in the form [ag] + V]a1] + - -+ V]a,_1] + a for aj, a as above, assertion

(1) now follows.

Let’s move on to (2): Knowing that A,, underlies a p-adic prismatic frame for R,,, with Fil' A,,, = pA,, amounts
to seeing that ¢(A,[p]) = 0, where A,,[p] C A, is the p-torsion. This follows from [32, Lemma 7.6]. That the

frame is laminated amounts to the observation that the composition W (R?) RN W(R") — W(R,,) factors through

A — Ry — W(Rp,).
Assertions (3) and (4) are shown during the proof of |33, Proposition 6.4]. O

Remark 9.9.14. With the notation of Lemma [9.9.13 A4 <" W(R)/ Ky underlies what Lau calls a straight weak

lift of R |32, Definition 7.3], meaning in our terminology that it underlies the p-adic prismatic frame A for R. Note
that A need not be of Breuil-Kisin type, since it might have p-torsion.
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Proof of Proposition[9.9.9 By Remark we can assume that R is semiperfect. Let A = W(R®)/Ky be the
straight weak lift of R from Remark [9.9.14] This underlies two laminated p-adic prismatic frames: We have the
frame A for R from the remark, but we also have the frame A for R = A/Fp with A = R and @ the Frobenius
endomorphism of R. On the other hand, via the map g — A — R, we can also equip g with the structure of a
frame ;R for R. In fact, this arises via a divided power structure on the map R—R (see Remark , which we
will explain below in more detail.

All of this gives us the following diagram of frames:

R —R —Rycl
A A

KCI? = ﬁb( Ryl — A) = ker( R,cl — A),

‘»1 < :‘Uz

- >

If

then the associated semilinear operator on K g‘{l} is topologically nilpotent by [33, Proposition 6.3].
To complete the proof now, it is sufficient to know the following things:

(1) The frame A satisfies the conditions of Corollary [9.7.7]
(2) The semilinear operator on fib( 5 — g){1} induced by the top left map of frames is topologically locally
nilpotent.

Let us consider (2) first. By Remark[9.7.5] this would follow if we knew that it is associated with a nilpotent divided
power structure on R = A/p — A/pA = R. This is a consequence of Lemma below. When p = 2, we also
need the additional observation that ¢? = ¢(c) = 0 for all ¢ € A[2] (part of the condition of being a weak lift).

For (1), we will use the §-rings A,, constructed in Lemma and consider the associated laminated prismatic
frames Am for R, = A /Ep.

By Remarks and <,b‘14"" is topologically locally nilpotent if and only if the divided Frobenius endomor-
phism of L4, is topologically locally nilpotent.

By (3) and (4) of loc. cit., and by repeated application of Remark along with Remark again, we find
that the divided Frobenius endomorphism induces a nilpotent operator on fib(LL 4, — La)/“p.

Since JP" C (J), the map A, — A factors through the Frobenius lift of A. In particular, La_/*p — La/%p is
nullhomotopic. i

Combining the last three paragraphs now shows that <,'0‘14’" is topologically nilpotent for all m > 0 and completes
the proof of the proposition. O

Lemma 9.9.15. Suppose that A is a discrete ring, and if p = 2 suppose also that there exists m > 1 such that, for all
c € A[2], we have " = 0. Then the divided power structure on the square-zero extension A/"p — A/pA—obtained
from the canonical p-adic divided power structures on A — A/*p and A — A/pA—is nilpotent.

Proof. When p > 2 this is of course immediate since the canonical divided power structure on Z, — F, is pro-
nilpotent. In general, we can view A[p][1] as the space associated with the groupoid pA/A via the nerve construction.
Here, A acts on pA via pt-a = p(t+ a). From this optic, the divided power operator +,, corresponds to the functor

m—1 m  tt gm—t
1 i=1 4T (m=a)1

carrying pt to v, (pt) = L——pt™ and an arrow pt 2 p(t + a) to ym(pt)
p > 2, the operator v, is already nullhomotopic with the nullhomotopy given by

Ym (p(t + a)). When

pA—pAx A

/ pp_l
t' = pt = (9p(pt), —Ttp)
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via the observation that the second entry is independent of the choice of ¢ € A such that ¢ = pt. When p = 2, then
our additional hypothesis tells us that we can provide a nullhomotopy for vyom via

2A —-2Ax A

om _1

t' =2t > (yom (2t), — 2.

O

Remark 9.9.16 (Classification in terms of weak lifts). The argument above actually shows the following: Let R
be a semiperfect F,-algebra. Suppose that A is a d-ring such that A/pA = R and such that the Frobenius lift
¢ : A — Akills Ap] (in other words, A is a weak lift of R). If A is the corresponding frame for R with Fil' A = pA,
and if the divided Frobenius on IL 4 is topologically locally nilpotent, then we have an exact equivalence of categories

FFG,(R) = Mody,,.,,(DDC "(R)).
9.10. Group schemes with constant étale rank. Let us fix a Breuil-Kisin frame A for R.

Construction 9.10.1. As in Construction[9.7.10} the assignment S — K écl on Rqeyn yields a quasisyntomic sheaf
K fd of modules over _ ., the sheafification of S +— g, and a semilinear endomorphism

LA
P+ Kf,cl{l} - Kf,cl{l}'
Set

A BA
O = fib(RTquyn (Spf R, K4) 2770 RT o (Spf R, K4)):;

id—p
C4 = fib( BT qyn(Spf R, K2 1) —=% RT 4oun(Spf R, K2 ).

—,cl

Remark 9.10.2. Note that the map
fib( - = _.a) — fib(KA — K2 )

is an isomorphism. Write N_ for the target. If R/pR is F-finite and F-nilpotent, then the quasisyntomic site over
R admits a basis consisting of semiperfectoids S with S/pS F-nilpotent |33 Lemma 2.6], and Propositiontells
us that the endomorphism gb%N : N_{1} — N_{1} induced from gblA and 9‘.’14701 is topologically locally nilpotent.
This shows that the natural map C4 — CC‘? is an isomorphism.

Remark 9.10.3 (Homomorphisms and extensions between Z/pZ and p,). By Remark we have

RHom 4 (1,17 /%p) =~ fib(I' /pI' {1} =% A/pA{1})
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In particular, we have Extié(l,l* /¥p) = 0 for i # 0,1. Combining Proposition Proposition and
Remark [9.7.2] with quasisyntomic descent, we now obtain a long exact sequence

0 —— H(C#/"p) ———— pp(R) ————— Homyu(1,1%/%p)

H'(CA/“p) —— HL ¢(Spec R, p,) — Ext(1,1%/“p)

H2(CATp) —— Hfzppf(Spec R, pp) — 0

By Remark [9.10.2] if R/pR is F-finite and F-nilpotent, we can replace C with CC‘? here.

Definition 9.10.4. Suppose that « is an algebraically closed field in characteristic p and that ' : M — M is a
p-semilinear operator on a finite dimensional k-vector space M. The stable rank of F' is the common rank of F™
for all m sufficiently large.

Definition 9.10.5. An object N in BK,4,(R) has constant étale rank along a constructible closed subset
Z C Spec R/pR if the operator Fy+ : ¢*N* — N* has locally constant stable rank along Z in the following sense:
For every connected component Z° C Z, there exists 7 > 0 such that for any algebraically closed point z € Z°(k),
the base-change of Fy- over x along x has stable rank r. If Z = V(c) for a finitely generated ideal ¢ C (R/pR)red,
write
BKZ’[{““(R) C BK4 n(R)
for the subcategory spanned by such objects.
Lemma 9.10.6. Suppose that ¢ C B = (R/pR)iea is a finitely generated ideal such that B is c-adically derived

complete. Then every object N in BKZ?ﬁ“St(R) sits in a canonical short exact sequence

0— NP 5 NN =0
where N™P g c-nilpotent, and where N¢ s étale in the sense that Fyeo« is an isomorphism.
Proof. This follows from standard arguments; see for instance |17}, (4.2.3)]. O

Proposition 9.10.7. Suppose that ¢ C B = (R/pR)red s a finitely generated ideal such that B is c-adically derived
complete. Let

FFGS ™" R) C FFG,(R)
be the full subcategory spanned by the objects with locally constant étale rank along V(¢) C Spec R/pR. Suppose
that C* is nullhomotopic or that R/pR is F-nilpotent and F-finite with C’ﬁ nullhomotopic. Then the functor from
Remark[9.5.10] induces an equivalence of categories

FFG ™" (R) = BK$""(R)

Proof. By reducing to the case where R = k is an algebraically closed field, one sees that the functor maps
FFG;“""(R) to BKG%™ (R). It remains to see that this is an equivalence.

Using Remarklm finite étale descent and dévissage, one finds that the functor is an equivalence on ‘ordinary’
objects: On the right hand side, these are objects that are finite étale locally isomorphic to extensions of 1/%p™ by
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1*/“p™ for m,n > 0, and on the left they are extensions of étale group schemes by multiplicative ones. Corollary
also tells us that, for all n > 1, it restricts to an equivalence

FFGSM™(R) — BKZ}?‘)(R).

To finish the proof, one can directly follow the argument in the proof of |18 Theorem 10.2]; see also the argument
in [17, §4.2] in the case of a field with finite p-basis. This uses Lemma as input. It also needs the observation
that a finite flat group scheme with locally constant étale rank is an extension of an étale group scheme by one with
connected fibers, which is a result of Messing |41, Lemma I1.4.8]. Finally, the vanishing of the p-power torsion in
the Brauer group used in de Jong’s proof is obtained here via the use of the tail of the long exact sequence from
Remark and the vanishing of H2(C4/%p). O

Remark 9.10.8. Arguing as in Remark we find that C4 is nullhomotopic whenever the divided Frobenius
operator on L4 is topologically locally nilpotent. If R/pR is F-nilpotent and F-finite, then one can argue as in
Corollary to see that Cé‘} (and hence C4) is nullhomotopic whenever the induced operator on 72°L 4 is
topologically locally nilpotent.

Corollary 9.10.9. Suppose that R is a complete local Noetherian ring (resp. whose residue field has finite p-basis)
and that C* (resp. C’é‘l‘) is nullhomotopic. Then there is an exact equivalence

FFG,(R) = BK4,.(R).

Proof. If Z C Spec R/pR is the closed point, then every object in BK 4 ,,(R) (resp. in FFG,,(R)) has constant étale
rank along Z. Moreover, if the residue field has finite p-basis then R/pR is F-finite and F-nilpotent. g

Remark 9.10.10 (Complete local rings with perfect residue field). Suppose that R is a complete local Noetherian
ring whose residue field x admits a finite p-basis. Then we see from Remark that C4 is nullhomotopic
whenever the divided Frobenius operator on 72 'L, is topologically locally nilpotent. If R is Artin local, it is
enough to check that the induced operator on H'(k ® 4 IL4) is nilpotent for i = —1,0.

Example 9.10.11 (Regular complete local rings with perfect residue field). Suppose that R is a regular Noetherian
complete local ring of dimension m with perfect residue field k. Then there exists a Breuil-Kisin frame A with A =
W(&)[|z1,...,Zm|] with J = (z1,...,2,,) a d-ideal. In this case, Corollary combined with Remark
can be used to recover the results of Lau from [36, §6], and in particular, gives a different approach to Kisin’s
classification of finite flat group schemes over complete discrete valuation rings in mixed characteristic with perfect
residue field |31} §2.3] in terms of certain ¢-modules over & = W (x)[|u|]. Indeed, if m C R is the maximal ideal, then,
for all t > 1, A, dgfn A/JY is a Breuil-Kisin frame for R/m!. By Remark C“4¢ is nullhomotopic whenever
the divided Frobenius operator on H*(k ®4, L a,) is nilpotent for i = —1,0. Furthermore, we have C4 = @t CAt,
Now, observe that we have

727y, ~ cofib(Jt/J? 4 Ay @ L),

where 6}4 is the p-completion of the module of differentials for A. For ¢ > 2, one can use this to show that
72 Yk ®a, La,) ~ cofib(m’/m*1 % m/m?).

Moreover the endomorphisms divided Frobenius operators on H!(k ®4, La,) = m!/m!™! and H(k ®4, L4,) =
m/m? for i = —1,0 can be identified up to sign with those arising from the §-structure maps § : J* — J* and
8 : J — J. Therefore, we are reduced to knowing that this operator on m/m? is nilpotent. This holds for instance
for the usual lift z; — z¥ where the operator is in fact trivial.

9.11. The characteristic p case. We now specialize to the case where R is an Fp-algebra, so that A is a p-adic
Breuil-Kisin frame, where we will see that the criterion of Corollary can be considerably simplified, yielding
a generalization of a result of de Jong [18]. We first recall results of Bhatt-Lurie [10] and Bragg-Olsson [12|. The
notation here is from |23, §7].
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Remark 9.11.1. Let Z' and H' be the sheaves on Rysyn given by the assignment

78 il g, x— ] Filiq, syr,; H' 1S — Lgp, [—1].

/F

There are two maps ¢i,¢2 : Z' — H'! from the restrictions of the maps

Fﬂiom 7S/]Fp — gl‘iom 75/[5‘? i) LS/]FP [—1} X Fllll{dg 75/[5‘1) — gr%—ldg 75/]14‘11 i) ]LS/]FP [—1]
respectively.
Remark 9.11.2. Since the restriction of the canonical map g/, — S to Filgo™ ™
endomorphism of S, we obtain isomorphisms

fib(q1)(S) ~ Fil§g™ ~ /g, X—

s/F, =~ S is the Frobenius

. Filig, s/r, = fib(S 5 S) =~ o, (9).

In particular, we have R gsyn(Spec R, fib(¢1)) =~ RT'tppe(Spec R, o), and we obtain a canonical fiber sequence

(911.2.1)  RDypps(Spec R, ay) = Fili™ “rym, x= - Fillyg, rye, S, BE yeym (Spec R, HY) ~ Ly e [~ 1]
and a canonical map

RI'(q2)

(9.11.2.2) RDgope(Spec R, o) —— Rl qeyn(Spec R, H') ~ Lp/r, [—1]

Remark 9.11.3 (Splitting the conjugate filtration). The existence of the frame A gives a splitting of the canonical
fiber sequence |7, Proposition 3.17]

Fﬂgon‘j 7R/]Fp — Fﬂionj 7R/]:Fp — grionj 7R/]Fp ~ LR/]FP [— 1} .

In fact, the mod-p? reduction of (A, ¢) is already sufficient to obtain this splitting. In turn, this gives us a splitting
of the fiber sequence (9.11.2.1f) and so a decomposition

(9.11.3.1) il g n x— . Filia, ry¥, = Rlgppe(Spec R, avp) @ L yw, [—1].

The restriction of g2 to the second summand is the endomorphism f4 of Lg,r,[~1] induced by the operator ‘dy/p’
on L4, while the restriction of ¢; is of course the identity.

Remark 9.11.4. Much more non-trivially, for any S in Rqgeyn, there is a canonical isomorphism fib(g1 — ¢2)(S) ~
1p(S). It suffices of course to exhibit an isomorphism cofib(g1 — ¢2)(S) ~ By, (S) for all Fp-algebras S. This is a
special case of a theorem of Bragg-Olsson |12, Theorem 4.8]. The point is that both sides of the purported isomor-
phism are now left Kan extended from smooth IF,-algebras and so it suffices to establish a canonical isomorphism
for such inputs. This can be done in two ways:

z—dlog(z
g(x) Ql

e By directly showing that the natural map S* /(S*)P s/w, on smooth Fp-algebras sheafifies to

an isomorphism B, (S) = Q;’;]IFP where the target is the space of closed forms. This is a special case of a
classical result of Artin-Milne [3, Proposition 2.4].

o Using quasisyntomic descent to reduce to the case of a qrsp Fj-algebra S. Here, if S? — S is the inverse
perfection of S with kernel J, using the interpretation of g as a divided power envelope, Bhatt and Lurie
write down a logarithm map |10, p. 168, (36)]

Bp(S) = (1+0)/(L+¢(])) =% Z'(S) C Filly, s
mapping the source isomorphically onto ker(q; — ¢2). Here the first isomorphism carries z € u,(S) to the
image of 2P for any lift Z € S” of 2.
Therefore, we obtain a canonical fiber sequence

.jconj — . - RI" -
(911.4.1)  RTyppe(Spec R, ) = Fili™ “rys, x= - Fill, nye, L@ 2%), BT n(Spec R, HY) ~ Lz [—1]
and a canonical map

(9.11.4.2) RTgppe(Spec B, i) -2y BT g (Spec R, H') ~ Ly ¢ [~1]
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Remark 9.11.5. For S in Ry, the restrictions of go to e, (S) and ju,(S) admit the following concrete interpreta-
tion: If J = ker(S* — §), then we have isomorphisms
ap(S) = J/o(J) 5 pp(S) = (L+ )/ (1 + @(J)) s H(Ligys, [-1]) = J/J%.

Via these isomorphisms, the map a,(S) - H O(ILS/]FP [—1]) induced by ¢a corresponds to the natural surjection
J/o(J) = J/J?, while the map pu,(S) — H°(Lgr,[—1]) corresponds to the composition

(L+ D)L+ (D) = (1+D)/(1+J?) 2% g/ 2,
Remark 9.11.6. Note that we have isomorphisms
J2/() Z> Ker(ag(S) = HO(Lgye, [-11)) 5 (14 J2)/(1+ 9(])) Z> ker(puy(S) = HO(Lsys, [-1)).
By the argument in |10, p. 169], the restriction of the map j,(S) — Z1(S) to (1 + J2)/(1 + ¢(J)) factors through

an isomorphism

L+ T2/ L+ () = T [o(J) C ay(S).
Explicitly, this isomorphism is given as follows: Given an element of J? of the form = = uv for u,v € J, the class
of 1 — x on the left hand side is carried to — ZZ; %.

Remark 9.11.7. Remark [9.11.5{ can be globalized. Choose a surjection R — R such that LR/M ~ Q%:/F is flat

over R and such that a,(R) = 0; for instance R can be a polynomial algebra over F,,. If J = ker(R — R), we have
isomorphisms

(J N@(R)/o(J) = ap(R) 5 (L+ ) N p(R))/(1+¢(])) = pip(R) ;

HO(Lpw, [-1]) = ker(J/J? 2255 R@g QF ).

Via these isomorphisms, the map from a,(R) (resp. pup(R)) to H(Lg/r, [—1]) is obtained from the natural map

142~z

J)o(J) — J/J? (vesp. (14 J)/(1+ p(J)) — J/J?).
Remark 9.11.8. Combining Remarks [0.11.3] and [0.11.4] we obtain a map
(9.11.8.1) RT ¢yt (Spec R, jip) — RTgppe(Spec R, avy).

Moreover, by Remark [0.5.6] and the Artin-Schreier sequence, the right hand side is canonically isomorphic to
fib(R % R) ~ RHoma(1,1%/p).
One checks that the resulting map
RTtppt(Spec R, ) — RHoma (1,1 /5p)
is precisely the one giving rise to the long exact sequence in Remark
Remark 9.11.9 (Direct relationship with cotangent complex). Let M be the sheaf on Rqsyy given by
M (8) = 1ib(q1)(5) X 71(s) fib(g2)(5)-

Then the natural map M — Z' factors through both ip and e,. In turn, these factorings give a commuting
diagram whose rows are fiber sequences

RT
RFqsyn(SpeC R, M ) — RFfppf(SPeC R, /,L‘p) &; ]LR/]Fp [*1%

EI181) id—fa

R qeyn(Spec R, M ) —> RTgpe(Spec R, ) 220 Ly, e [~1).
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Here, f4 is the divided Frobenius map as in Remark [9.11.3] In fact, one can say more. Let N be the sheaf on
Rysyn given by

N (S) = ker(py(S) — H"(Lgyr, [-1]))-
Then Remark shows that there is a canonical identification

N (S) = ker(ay(S) — H°(Lsr, [-1])),

and a commuting diagram whose rows are again fiber sequences:

RFQSyn(SpeC RvN ) — erppf(spec R7 Mp) ﬂ; >0]LR/IF [_1]7
(9.11.9.1) PITsD) id—r20f,

R gepn (Spec R, N ) —> RTgope(Spec R, o) T2 720, (1),

Combining these observations, we find that we have isomorphisms
~ id—fa
C4/fp = fib (LR/FP [~1] = L/, [—1]>

id—720f4

(9.11.9.2) = fib <720LR/FP [—1] 72Lp/r, [-1}) .

Lemma 9.11.10. Let a,(R) C R be the kernel of the Frobenius endomorphism. For x € ay,(R), choose a lifty € A,
so that y? = pu for some u € A. Then:

(1) The image ya(x) of w in R lies in ap(R) and is independent of the choice of lift y;
(2) The following diagram is commutative

ap(R) —= H™ ' (Lgyr,)

—vA H™(fa)

op(R) — Hﬁl(LR/FP)
Here the horizontal maps are obtained by applying H® to (9.11.2.2)).
Proof. Assertion (1) follows from |18, Subl(imma 9.10], but we will in any case prove this implicitly in what follows.

Choose a surjective map A — A where A is the p-completion of a free J-ring over Z,), and let K = ker(;l — A).
Then we have

H Y (Lge,) ~ ker(K/(K? +pK) % R ; QY),
The map a,(R) -+ H ' (Lg /F,) now admits the following description, which can be deduced from Remark [9.11.7]
Given z € R with 2P = 0, we choose a lift § € A for . This satisfies §” = pt + k for some k € K. The image of k
in K/(K?+ pK) lands in H*I(ILR/]FP), and is the image of z. Applying ¢ to the previous identity gives us
(pt+ k +pd(9))" = (4" +pd(H))" = p(a? + pé(w)) + (k)
Expanding the left hand side shows that we have
piP € kP — (k) + p*A = P € —5(k) + pA.
Therefore, oy, (R) — H ™' (Lpg/r,) carries y4(z) to the image of —4(k) in K/K?, and this verifies the commutativity
of the diagram in (2). O
Proposition 9.11.11 (Simplified nilpotence criterion). Suppose that R is Noetherian, that ¢ C R is an ideal such
that Hi(]LR/Fp) is c-adically complete for i = —1,0, and that the following conditions hold:
(1) The operator fa induces a c-adically topologically locally nilpotent endomorphism of Q}%/Fp.
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(2) The operator va is a c-adically topologically locally nilpotent endomorphism of ap(R).

Then id — fa induces an automorphism of Lgrr,[—1]. In particular, the conclusion of Proposition holds (for
the image of ¢ in Ryeq)-

Proof. Condition (1) ensures that id — H'(f4) is an automorphism of Q}%/]Fp ~ H'(Lg/r,[—1]). Given (9.11.9.2), it
is now enough to know that id — H%(f4) is also an automorphism.

By Remark Ip(R) and @, (R) have the same image in H~'(LLg/g,[—1]). Therefore, condition (2) together
with assertion (2) of Lemma shows that H~1(f4) is a c-adically topologically nilpotent operator on this
common image M. In the notation of Remark set N = Rlgn(Spec R, N ). Then we obtain the followng
diagram with exact rows:

0 M H(Lpyp,) <> H'(N)
~ id—H '(fa)
0 M Hil(LR/FT]) T) Hl(N)
2

where §; is the boundary map associated with the top row of (9.11.9.1)) while d5 is associated with the bottom row,
and where the left vertical arrow is an isomorphism. To finish, we need to know that the image in H'(N) of d; is
equal to that of d2, which can be deduced from the last part of Remark a

Remark 9.11.12 (Complete local Fj-algebras). Any complete local Noetherian ring with finite p-basis satisfies
the unnumbered conditions of Proposition [0.11.11] with respect to its maximal ideal. Therefore, if the conditions
(1) and (2) hold, then we can conclude by Corollary [9.10.9| that the functor FFG, (R) — BK4 ,(R) is an exact
equivalence.

Example 9.11.13 (A result of de Jong). Suppose that R is a complete local Noetherian F,-algebra with perfect
residue field k and maximal ideal m. In this case, A is also complete local. We have

1®@dr—r(mod m?) 2

HO(H®ALA):n®RHO(LR/K)zn®RQ}3/H m/m=.

The endomorphism % : m/m? — m/m? induced by f4 can be described as follows: By the argument in |18, Lemma
8.2, there exists a d-ideal I C A such that A/I ~ W (k). Now, unwinding definitions, one sees that @ is given by

@(r(mod m?)) = §(7)(mod (p + I?))

where 7 € I is any lift of » € m. Condition (1) of Proposition is equivalent to asking for this operator to
be nilpotent. Condition (2) amounts to asking for the operator on e, (R)/mae,(R) induced by 4 to be nilpotent.
Combined with Remark this recovers the Theorem from the introduction to [18]. A slightly finer analysis
of the proof of Proposition tells us that condition (2) shows that ju,(R) — ep(R) is an isomorphism, while
condition (1) implies that Hg ((Spec R, i) — Hflppf(Spec R, ;) is an isomorphism; compare with |18, Lemma
10.1].
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