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Abstract. We use the newly developed stacky prismatic technology of Drinfeld and Bhatt-Lurie to give a uniform,

group-theoretic construction of smooth stacks BTG,µ
n attached to a smooth affine group scheme G over Zp and

1-bounded cocharacter µ, verifying a recent conjecture of Drinfeld. This can be viewed as a refinement of results

of Bültel-Pappas, who gave a related construction using (G,µ)-displays defined via rings of Witt vectors. We show

that, when G = GLh and µ is a minuscule cocharacter, these stacks are isomorphic to the stack of truncated p-

divisible groups of height h and dimension d (the latter depending on µ). This gives a generalization of results of

Anschütz-Le Bras, yielding a linear algebraic classification of p-divisible groups over very general p-adic bases, and

verifying another conjecture of Drinfeld.

The proofs use deformation techniques from derived algebraic geometry, combined with an animated variant of

Lau’s theory of higher frames and displays, and—with a view towards applications to the study of local and global

Shimura varieties—actually prove representability results for a wide range of stacks whose tangent complexes are

1-bounded in a suitable sense. As an immediate application, we prove algebraicity for the stack of perfect F -gauges

of Hodge-Tate weights 0, 1 and level n.
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1. Introduction

The goal of this paper is to prove two recent conjectures of Drinfeld [25]. The first of these has to do with a

Dieudonné theory for p-divisible groups over arbitrary p-adic formal schemes; that is, we aim to describe p-divisible

groups, or more generally truncated p-divisible groups or Barsotti-Tate groups, in terms of linear algebraic data.

For the purposes of this paper, this last phrase means a subcategory of vector bundles on a formal stack, though

it has historically taken the form of a description in terms of modules equipped with a Frobenius semi-linear map

along with certain additional structures.
1
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The stacks we consider here arose in recent work of Bhatt-Lurie [10, 11, 8] and Drinfeld [27]. These authors have

shown that one can associate with every p-adic formal scheme X a p-adic formal stack1 Xsyn, its syntomification,

whose coherent cohomology computes the p-adic syntomic cohomology of X. If X = Spf R is affine, we will also

denote this by Rsyn.2 Vector bundles of rank h on this stack and its mod-pn fibers—which are examples of objects

known as F -gauges over X—have a natural h-tuple of locally constant integer valued functions on X associated

with them: these are the Hodge-Tate weights. We prove:

Theorem A. Let BT n(X) be the category of n-truncated Barsotti-Tate groups over X [36], and let Vect{0,1}(X
syn)

be the category of vector bundles on Xsyn ⊗ Z/pnZ with Hodge-Tate weights in {0, 1}. Then there is a canonical

equivalence of categories

Gn : Vect{0,1}(X
syn ⊗ Z/pnZ) ≃−→ BT n(X)

compatible with Cartier duality.

Remark 1. Here are some (very incomplete) historical remarks, though see also [28, §7]. We will write BT (X) for

the category of p-divisible groups over X:

• The first attempt at a complete description of this category for a particular X was probably by Dieudonné-

Manin [57], where X = Specκ with κ a perfect field of characteristic p.

• A uniform proof of a description of BT (Specκ) in terms of Dieudonné modules was given by Fontaine [31].

• A general construction of a crystalline Dieudonné functor was given in [5], and this was used by de

Jong [21]—building on subsequent work of Berthelot-Messing [6]—to exhibit an equivalence between p-

divisible groups and Dieudonné F -crystals over formally smooth formal schemes over Fp whose reduced

scheme is of finite type over a field with finite p-basis.

• When X = SpecR with R a perfect Fp-algebra, a form of Theorem A is due to Gabber and Lau [47]: One

can show that Vect{0,1}(X
syn ⊗ Z/pnZ) is equivalent to a category of finite locally free Wn(R)-modules

equipped with certain additional structures appearing in loc. cit.

• When X = Spf R for p-complete R, p-divisible formal groups have been classified by Zink [70] and Lau [47]

in terms of Witt vector displays.

• When X is quasisyntomic, Anschütz and Le Bras demonstrated in [1] an equivalence of categories between

BT (X) and a certain category of admissible φ-modules over a sheaf of rings Opris obtained using prismatic

cohomology. One can once again reformulate their result as proving Theorem A for such rings. See also

the recent papers of Guo-Li [32] and Mondal [60], where a similar connection is made. Mondal actually

proves a classification theorem for all finite locally free p-power torsion commutative group schemes over

quasisyntomic X in terms of F -gauges.

• Perhaps the most general existing results are those of Lau in [44], where one finds a classification of p-

divisible groups over many Fp-algebras, including all schemes of finite type over a field with finite p-basis,

and, more generally, any Noetherian F -finite Fp-algebra. For p > 3, we can bootstrap this to a classification

over p-nilpotent bases lifting such Fp-algebras.
• Therefore, the main content of the above theorem is its validity for all p-adic formal schemes, as well as for

not necessarily formal p-divisible groups. Our proofs are uniform, without consideration of special cases,

and are largely independent of previous classifications: see Remark 11.5.5 in the body of the paper.

Remark 2. The compatibility with Cartier duality takes the following shape: There is a canonical objectOsyn{1} in
Vect{0,1}(X

syn) of rank 1, the Breuil-Kisin twist, which we can tensor with any vector bundleM over Xsyn⊗Z/pnZ
to obtain the twistM{1}. IfM has Hodge-Tate weights 0, 1, then so doesM∨{1}, and we now have a canonical

isomorphism of truncated Barsotti-Tate groups

Gn(M∨{1}) ≃−→ Gn(M)∗,

where the right hand side is the Cartier dual of Gn(M).

1This is actually a derived formal stack that is in general not a classical object. We will attempt to ignore this fact in this introduction.
2We have adopted this notation from the lecture notes of Bhatt [8].
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Remark 3. One striking feature of the theorem to those familiar with Dieudonné theory hitherto is the natural

direction of the functor realizing the equivalence. Usually, one associates linear algebraic objects with p-divisible

groups and their truncations. Here, our functor Gn goes in the other direction and associates truncated Barsotti-

Tate groups with objects that are more linear algebraic in nature. Its definition is in terms of syntomic cohomology:

That is, for any map f : Spf C → X, we set

Gn(M)(C) = τ≤0RΓ(Csyn ⊗ Z/pnZ, (f syn)∗M).

As such it is completely canonical, compatible with arbitrary base-change and satisfies quasisyntomic descent. The

proof will in fact show that it satisfies fpqc descent.

Remark 4. As noted above, in [60], Mondal extends the results of Anschütz-Le Bras and shows that the category

of finite flat group schemes over quasisyntomic formal schemes is equivalent to a certain subcategory of the category

of perfect F -gauges of Hodge-Tate weights {0, 1} and Tor amplitude [−1, 0]. In forthcoming work [56], this will be

generalized to the same context as that found in Theorem A.

Remark 5. As a prior footnote observed, Xsyn is not in general a classical object, and, correspondingly, the

category of vector bundles on Xsyn is in general an ∞-category that is not classical. However, the theorem shows

that the subcategory spanned by the objects with Hodge-Tate weights in {0, 1} is classical.

It is possible that this is because this category depends only on the classical truncation of Xsyn, though we have

not been able to verify this here. We do know that this is the case if one restricts to the subcategory spanned

by the F -gauges that satisfy a certain nilpotence condition: this follows from Remark 8.8.14 in the body of the

paper. This subcategory corresponds via the equivalence of Theorem A to that spanned either by the truncated

Barsotti-Tate groups that do not admit any non-trivial étale quotients—or (up to Cartier duality) by those that do

not admit any non-trivial multiplicative subgroups—at any geometric point.

1.1. Method of proof. Our proof is geometric in nature. Its starting point is the fundamental result of Grothendieck

that the stack BTn of n-truncated Barsotti-Tate groups is a smooth p-adic formal Artin stack [36].3 We begin by

showing the following analogue of Grothendieck’s theorem:

Theorem B. The assignment4

X 7→ Vect{0,1}(X
syn ⊗ Z/pnZ)≃

is represented by a smooth p-adic formal Artin stack over Zp.

Theorem A can be reduced to the assertion that this p-adic formal Artin stack—which we will denote for the

purposes of this introduction by Vectsyn{0,1},n—is canonically isomorphic to BTn. To construct this isomorphism, we

need another representability result.

Theorem C. For anyM in Vect{0,1}(X
syn) the functor Gn(M) on formal schemes over X given for f : Spf C → X

by

Gn(M)(C) = τ≤0RΓ(Csyn ⊗ Z/pnZ, (f syn)∗M)

is represented by a truncated Barsotti-Tate group scheme over X.

Theorems B and C together now give us a map of smooth p-adic formal Artin stacks

Gn : Vectsyn{0,1},n → BTn.

To get a map in the other direction, by the smoothness of the stacks involved, and quasisyntomic descent, it suf-

fices to define a canonical mapM : BTn(X)→ Vectsyn{0,1},n(X) when X = Spf R with R quasiregular semiperfectoid

(qrsp). For this, we use the functor defined by Mondal [60], which is a reinterpretation of that of Anschütz-

LeBras [1]. We could have also used the Dieudonné functor of Berthelot-Breen-Messing [5] for characteristic p

3One can circumvent the use of Grothendieck’s theorem, and in fact get an alternate proof of it, by making use of the classification

results of Lau from [44]. See Remark 11.5.5.
4We write C≃ for the underlying groupoid of any (∞-)category C.
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inputs and the results of Lau [44], which would have the consequence of actually giving an alternate proof of

Grothendieck’s smoothness theorem; see Remark 11.5.5

With the functorM in hand, the verification that it is indeed an inverse proceeds via a direct and quite simple

argument that comes down to the compatibility of the functor Gn with Cartier duality. This in turn relies on two

things:

(1) A computation of Bhatt-Lurie showing that we have a canonical isomorphism Gn(Osyn
n {1}) ≃ lµ.. pn ;

(2) Results of Berthelot-Messing [6] and de Jong [20] on crystalline Dieudonné theory. In terms of classification,

only the full faithfulness of the crystalline Dieudonné functor for complete DVRs in characteristic p is needed.

1.2. Truncated (G,µ)-apertures. The representability result in Theorem B is a special case of a more general

result that proves another conjecture of Drinfeld from [25]. Here is the setup for this: We start with a smooth

affine group scheme G over Zp (not necessarily reductive!) and a cocharacter µ : Gm → GO defined over the ring

of integers O of a finite unramified extension of Qp that is 1-bounded in the sense of Lau [45], so that the weights

of the adjoint action of µ on the Lie algebra g are bounded above by 1. For example, if G is reductive, then µ

will simply be a minuscule cocharacter of GO. A standard example, for non-negative integers d ≤ h with h > 0, is

G = GLh with µ = µd given by z 7→ diag(z, . . . , z︸ ︷︷ ︸
d

, 1, . . . , 1).

When µ is defined over Zp, Drinfeld has given a definition for a stack BTG,µn associated with the pair (G,µ) that

specializes to an open and closed substack of Vectsyn{0,1},n when (G,µ) = (GLh, µd). He conjectured that this should

be representable by a smooth 0-dimensional p-adic formal Artin stack over Zp. We generalize this to the case where

µ is defined over a finite unramified ring of integers.5

Remark 6. The purpose of the stacks BTG,µn is to give a group-theoretic construction of a putative stack of

truncated p-divisible groups equipped with ‘G-structure’. In particular, such a construction should apply even

in the case of the exceptional groups of type E6 and E7, which admit minuscule cocharacters, but do not admit

any faithful representations in which such cocharacters remain minuscule: This means that there is no direct way

to access ‘motives’ of such type through p-divisible groups or abelian varieties. Even in the case of a group like

GSp2g, the correct interpretation of what a ‘symplectic structure’ on a p-divisible group should be is a subtle point.

Furthermore, studying functoriality for group homomorphisms is somewhat annoying from this perspective, since

such maps in general do not in general have any compatibility with the faithful representations giving rise to p-

divisible groups. All of these issues are addressed cleanly and systematically by the stacks BTG,µn studied in this

article. Theorem A shows that the theory is indeed a generalization of the classical story of p-divisible groups.

To get to the definition of the stacks, we begin with a cartoon of how the syntomification is constructed. For

any p-complete commutative ring R, the stack Rsyn is obtained as follows. We have (derived) p-adic formal stacks

R∆, RN : These are the prismatization of R and the (Nygaard) filtered prismatization of R, respectively. The second

of these is a filtered stack : it lives naturally over A1/Gm. The open locus lying over the point Gm/Gm can be

identified with R∆: this is the de Rham embedding of R∆ into RN . There is another open immersion of R∆ into

RN , called the Hodge-Tate embedding, that is physically disjoint from the de Rham embedding. The syntomification

is obtained by gluing these two copies of R∆ together.

Remark 7. When R is a perfect Fp-algebra, we can identify R∆ with SpfW (R) and describe RN via the Rees

construction applied to the p-adic filtration onW (R): this yields a stack isomorphic to [SpfW (R)[u, t]/(ut−p)/Gm].

Here, u has degree 1 and t has degree −1, and the de Rham and Hodge-Tate embeddings correspond respectively

to the loci {t ̸= 0} and {u ̸= 0} (though the latter appears with a Frobenius twist). Objects over the mod-p fiber of

the syntomification can be interpreted as giving two filtrations on objects over R—a decreasing Hodge filtration and

an increasing conjugate filtration—along with an identification of their associated gradeds up to Frobenius twist.

In other words, vector bundles over this stack are the F -zips of Moonen-Pink-Wedhorn-Ziegler [65].

5In fact, one can do this over an arbitrary base, but we restrict ourselves to this case here, since it appears to suffice for global

applications.
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Let us return to the question of defining BTG,µn . Using the Breuil-Kisin twist Osyn
n {1} and the cocharacter

µ, we can produce a canonical G-torsor Pµ over ON . We now define BTG,µn as the groupoid-valued functor on

CRingp-comp
♡,O/ , the category of p-complete commutative O-algebras R: BTG,µn (R) is the (∞)-groupoid of flat local

G-torsors on Rsyn ⊗ Z/pnZ whose restriction to RN ⊗ Z/pnZ is isomorphic flat locally on SpecR to Pµ.

Remark 8. This local triviality condition should be viewed as an analogue of the possibly familiar Kottwitz

signature condition appearing in the moduli description of Shimura varieties of PEL type: When G = GLh, the

definition is essentially concerned with vector bundles on Rsyn ⊗ Z/pnZ. Any such F -gauge gives rise to a filtered

vector bundle over Spec(R ⊗ Z/pnZ) equipped with a Hodge filtration. The triviality condition imposed here fixes

the type of this filtration.

The next theorem proves [25, Conjecture C.3.1].6

Theorem D. The formal prestack BTG,µn is represented by a zero-dimensional quasi-compact smooth p-adic formal

Artin stack over O with affine diagonal. Moreover, the natural map BTG,µn+1 → BTG,µn is smooth and surjective.

Remark 9. As far as we are aware, the work of Bültel-Pappas [17] was the first to attempt to construct such

stacks in generality. However, their construction—which involves working with a more direct generalization of the

perfect case explained in Remark 7 using Witt vectors—has the expected properties only when restricted to what

the authors there call the ‘adjoint nilpotent’ locus. When considering the stack of p-divisible groups, this amounts

to working only with the connected ones. We show that the more elaborate syntomic construction here recovers

that of Bültel-Pappas when restricted to this nilpotent locus; see Remark 9.3.6.

We should also make note of the work of K. Ito [39]: He defines the notion of a prismatic G-display using the

prismatic site of Bhatt-Scholze. See the discussion in Section 7 of loc. cit. for the connection to the definitions

here. A closely related notion is studied by Hedayatzadeh-Partofard [34], and their main result can be viewed as a

special case of Theorem G below.

Remark 10. One should formulate and prove versions of the Theorem D ‘with coefficients’ (see for instance [38]

or [59]), allowing smooth group schemes over the ring of integers of finite extensions of Qp. This will be considered

in forthcoming work of the first author, Z. G.

There is also the very interesting question of finding the correct analogues of BTG,µn associated with parahoric

group schemes. In particular, these analogues should somehow be aware of the corresponding local models as

appearing for instance in [2]. However, this appears to require a genuinely new idea.

Let us now record some other results about BTG,µn that are of independent interest, and give some idea of the

proof of Theorem D along the way.

Following Drinfeld, we first obtain a somewhat explicit description of the mod-p fiber BTG,µ1 ⊗ Fp. To explain

this, recall that we can associate with the pair (G,µ) the algebraic k-stack DispG,µ1 of F -zips with G-structure

and type µ; see [65]: It is a smooth zero-dimensional Artin stack over k with affine diagonal, and DispG,µ1 (R) is

obtained by replacing Rsyn ⊗ Fp with the F -zip stack RFZip in the definition of BTG,µ1 (R). The stack RFZip is a

sort of toy model for the mod-p syntomification, and will play a significant technical role in our proofs. In any case,

we now have:

Theorem E. There is a natural map BTG,µ1 ⊗ Fp → DispG,µ1 that is a relatively representable by a smooth zero-

dimensional Artin stack with relatively affine diagonal: in fact, it is a gerbe banded by a finite flat commutative

p-group scheme of height one, the Lau group scheme. In particular, BTG,µ1 ⊗Fp is a smooth zero-dimensional Artin

stack over k with affine diagonal.

Remark 11. When restricted to smooth inputs and µ is defined over Zp, this result is due to Drinfeld [25]. We

verify here that his description continues to hold in general.

6Drinfeld takes the cocharacter µ to be a map Gm → Aut(G) defined over Zp and gives a slightly different definition for BTG,µ
n , so

we are technically proving something very closely related to Drinfeld’s conjecture. See Remark 9.1.4 for a discussion of this.



6 ZACHARY GARDNER AND KEERTHI MADAPUSI

With Theorem E in hand, the rest of the proof of Theorem D comes down to a double bootstrapping argument.

First, we inductively establish representability for BTG,µn ⊗ Fp for n ≥ 1. For this, note that, given an object

P ∈ BTG,µn (R), we can twist the adjoint representation on g by P to obtain a vector bundle (g)P over Rsyn⊗Z/pnZ.
It is not difficult now to see that the fibers of BTG,µn+1 → BTG,µn over P are controlled by the syntomic cohomology

of this F -gauge. The main property that makes this F -gauge tractable is that it has Hodge-Tate weights bounded

by 1: this is a direct consequence of the fact that µ is 1-bounded. The inductive argument therefore comes down

to a special case of the following theorem, which is also an input into the proof of Theorem C:

Theorem F. Suppose that R ∈ CRingp-comp and suppose thatM is an F -gauge over R corresponding to a perfect

complex on Rsyn⊗Z/pnZ with Tor amplitude in [−r,∞) and Hodge-Tate weights bounded by 1. Then the assignment

on p-complete R-algebras given by

C 7→ τ≤0RΓ(Csyn ⊗ Z/pnZ,M|Csyn⊗Z/pnZ)

is represented by a locally finitely presented p-adic formal derived algebraic r-stack over R.

The second bootstrapping argument involves a derived descent statement, encapsulated by:

Proposition 1. The natural map

BTG,µn (R)→ Tot
(
BTG,µn (R⊗L F⊗L

Z(•+1)
p )

)
is an equivalence.

Note that, even to state this result, one needs to be working with animated commutative rings. We will do so

systematically in the body of the paper.

To make full use of the proposition, we also need some finer control of the deformation theory of BTG,µn . This

involves an interesting (and in a sense elementary) technical tool: Weil restriction from Z/pnZ to Zp, an operation

that is only fully sensible in the derived realm. This yields, for any p-adic formal Artin stack X, a new derived

p-adic formal Artin stack X(n), whose values are characterized by

X(n)(R) = X(R⊗L Z/pnZ).

Using this, for any animated divided power thickening (R′ ↠ R, γ) in CRingp-comp
O/ we can write down a canonical

commuting diagram

(1.2.0.1)

BTG,µn (R′) > BP
−,(n)
µ (R′)

BTG,µn (R)

∨
> BP

−,(n)
µ (R)×BG(n)(R) BG

(n)(R′)

∨

.

Here, P−
µ ⊂ GO is the parabolic subgroup associated with the non-negative eigenspaces of the adjoint action of µ,

and BH for any group scheme H denotes its classifying stack. The obstruction theory for BTG,µn is now captured

by the following result:

Theorem G (Grothendieck-Messing theory). The above commuting square is Cartesian when the divided powers

are nilpotent.

This should be viewed as a truncated analogue of classical Grothendieck-Messing theory, which classifies liftings

of p-divisible groups across classical nilpotent divided power thickenings in terms of lifts of the Hodge filtration on

its crystalline realization. We first prove this when R′ is an Fp-algebra, and then lift it to general inputs using

Proposition 1. It is now not hard to deduce the general case of Theorem D from its mod-p version (at least when

p > 2) by applying Theorem G to the canonical nilpotent divided power thickening R → R/Lp. A very slightly

more involved argument also works when p = 2.
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One can obtain a more general Grothendieck-Messing theory for not necessarily nilpotent divided power thick-

enings by restricting to the nilpotent locus, which—as explained in Remark 9—can also be described in terms of

the (G,µ)-displays of Bültel-Pappas.

1.3. Higher animated frames. A key technical device we use is a generalization to the animated realm of the

notion of a higher frame introduced by Lau [45]. We call this an animated higher frame or simply frame. This is

combined with an important structural result due to Bhatt-Lurie that—in the terminology introduced here—says

that the syntomification of a semiperfectoid algebra can be realized from (and in fact determines) a canonical frame

structure on its absolute prismatic cohomology. We can now combine this with quasisyntomic descent in order to

translate questions about stacks over syntomifications to assertions about objects living over frames.

The flexibility afforded by this translation turns out to be very useful, since the category of frames permits

various constructions that are not visible on the level of the cohomological stacks. We exploit this flexibility

to prove Proposition 5.9.9, a technical frame-theoretic progenitor of Theorem G applying to somewhat general

thickenings of frames, using two tools:

(1) Derived deformation theory in the filtered context.

(2) An explicit understanding of the stack RFZip associated with the 1-truncated Witt frame (also termed the

zip frame by Lau [45]) W1(R).

This method can be viewed as an animated refinement (and a substantial generalization) of a unique lifting principle

that is (by now) quite classical, is due essentially to Zink, and appears in some form or other already in various

papers on related topics, including those of Lau [45], Bültel-Pappas [17], and also the recent work of Bartling [4]

and Hedayatzadeh-Partofard [34].

With this technical backup in our pockets, the proof of Theorem G is reduced to a nilpotence result for the

divided Frobenius on the fiber of the map between prismatic cohomologies of a nilpotent divided power thickening,

which we prove at the end of Section 6.

One interesting point here is that the map of frames to which one would like to apply this reasoning to—given

by Nygaard filtered prismatic cohomology—is not surjective for square-zero extensions of classical rings. In our

applications in §8.7, we use derived algebraic geometry again to reduce to the case of certain square-zero extensions

of animated commutative rings where the map in question is in fact surjective.

We also use similar techniques—derived deformation theory and reduction to the case of the zip frame—to prove

Proposition 5.10.23, the technical base for the proof of Theorem E.

1.4. Further remarks on the proofs. All the results above are special cases of theorems about objects that we

call 1-bounded stacks, whose precise definition is a bit technical and can be found in §4.8. Roughly speaking, a

1-bounded stack is a(n almost) finitely presented stack over the syntomification of a p-complete ring, equipped with

additional ‘bounding data’ for the Hodge-Tate weights of its cotangent complex. This bounding condition ensures

that the deformation theory is controlled by the sections of an F -gauge with Hodge-Tate weights bounded by 1.7

Given such an object X over Rsyn ⊗ Z/pnZ, we can define a functor on animated p-complete R-algebras by:

Γsyn(X ) : C 7→ Map/Rsyn⊗Z/pnZ(C
syn ⊗ Z/pnZ,X ).

The condition of 1-boundedness is essentially the one that ensures that Γsyn(X ) is representable: The arguments

sketched in §1.2 go through when applied to this prestack. Examples of 1-bounded stacks include:

• The ‘stack’ over Osyn ⊗ Z/pnZ parameterizing G-torsors that are isomorphic to Pµ when restricted to

BGm × Specκ for any algebraically closed field κ: this is of course relevant for Theorem D;

• Total spaces of vector bundles (and perfect complexes) with Hodge-Tate weights bounded by 1: this is

relevant for Theorem C.

• The stack Perf × (Zsyn
p ⊗Z/pnZ) of perfect complexes, equipped with bounding data that picks out perfect

F -gauges of Hodge-Tate weights 0, 1.

7This condition appears essential in order to obtain representable objects: The syntomic cohomology of Breuil-Kisin twists of

Hodge-Tate weights greater than 1 is known to not yield representable functors.
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The general representability result boils down via the technical inputs from animated frames explained above to

knowing the representability of certain Artin-Milne type cohomology groups, generalizing the fppf cohomology of

finite flat group schemes of height one. For this, we use representability results of Bragg and Olsson [15], which we

present and amplify into a somewhat broader context in Section 7.

This level of generality is responsible for some of the bulk of this paper. Our justification for indulging in it is that

it will be required for future applications, including, for instance, the construction of spaces of isogenies between

objects in BTG,µ∞ [48], leading to a general construction of Rapoport-Zink spaces as well as p-Hecke correspondences

without the direct involvement of p-divisible groups. It is also used for the construction of special cycles on Shimura

varieties in [54]. We expect that it will help address some of the difficulty in constructing the correct analogues of

BTG,µn when G is a parahoric, non-reductive group scheme.

As a more immediate consequence, we are able to obtain an extension of Theorem B to perfect F -gauges.

Theorem H. The prestack Perfsyn{0,1},n assigning to every p-complete ring R the ∞-groupoid of perfect complexes on

Rsyn ⊗ Z/pnZ with Hodge-Tate weights in {0, 1} is represented by a locally finitely presented derived p-adic formal

Artin stack over Zp. Moreover, the prestack Perfsyn0,n classifying perfect complexes on Rsyn⊗Z/pnZ with Hodge-Tate

weights 0 is canonically isomorphic to the p-adic formal stack of perfect complexes of lisse Z/pnZ-sheaves.

This result will be used in [56] to extend Theorem A to a classification of all finite flat p-power torsion commutative

group schemes over X in terms of certain perfect F -gauges.

1.5. Application to Shimura varieties. Theorem D also has a global application, which was the main motivation

for one of us (K.M.) to pursue the work here. Suppose that (G,X) is a Shimura datum of abelian type with reflex

field E. Suppose that G is unramified at p with reductive model GZp : this implies in particular that E is unramified

over p. Fix a place v | p of E, and choose an OEv -rational representative µ
−1 : Gm → GOEv for the (inverse

of the) conjugacy class of Shimura cocharacters underlying X. Then, for any level subgroup K ⊂ G(Af ) with

Kp = GZp(Zp), we have the integral canonical model SK over OE,(v). Let SFK be its formal completion along the

mod-v fiber. Combining the results here with those of Imai-Kato-Youcis in [37], one obtains the following theorem;

when p > 2, it is already contained in loc. cit., and a proof without this condition will appear in (a revision of) [54].

Theorem I. There exists a canonical formally étale map

ϖ : SFK → BT
GcZp ,µ

−1

∞ .

When (G,X) is of Siegel type, this agrees via the (polarized version of the) equivalence of Theorem A with the map

carrying a polarized abelian variety to its corresponding polarized p-divisible group.

The polarized version alluded to here can be found in §11.6. The group Gc is the so-called cuspidal quotient of

G, and µ is an OEv -rational representative for the conjugacy class of the Shimura cocharacter associated with X.

The map in the theorem is determined in a precise way by the canonical pro-étale Gc(Zp)-torsor over the generic

fiber of the Shimura variety via a functor such as the one described in [8, §6.3] in the context of vector bundles over

the syntomification.

The above theorem is an essential input into the global results of [54] and [48].

1.6. A note on the terminology. Various categories of objects associated with the pair (G,µ) show up in this

paper, and we have tried our best to find some coherent way for distinguishing between them. Here are some

possibly helpful remarks for the reader:

• For objects appearing over pn-torsion bases, we have used the adjective n-truncated: this is compatible

via Theorem 11.1.4 with the corresponding terminology for Barsotti-Tate groups.

• For objects associated with the (higher animated) frames appearing in Section 5, we have used the term

(G,µ)-windows: This harkens to Zink’s original terminology in [70].

• Upon the advice of Drinfeld, we have reserved the term (G,µ)-display for objects associated with the Witt

vector frame: this is compatible with the terminology in [17].
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• Finally, for the fundamental objects living over the syntomification stacks, we have coined the term (G,µ)-

aperture: The (admittedly vague) inspiration behind this choice is the aperture in a camera, which directs

light onto the lens, a lens that can occasionally be a prismatic one.

• Given a particular frame, one can often produce (G,µ)-windows over that frame from (G,µ)-apertures over

a quotient ring (see Remark 9.1.3): in this sense, frames can be viewed as a device for expanding apertures

into windows.

1.7. Structure of the paper.

• We begin in Section 3 with some background on derived stacks. We also recall the notion of derived Weil

restriction, and some facts about divided powers in the animated context.

• In Section 4, we recall the story of filtered animated rings and as well as of filtered derived stacks via C.

Simpson’s perspective of viewing such gadgets as objects over A1/Gm. We give an account of our notion of

a 1-bounded stack, give examples of such objects and prove some general facts about them.

• Section 5 contains the technical latticework undergirding this whole enterprise. Here, we present our

generalization of Lau’s theory of higher frames and displays from [45] in an animated context (though, as

mentioned above, we use the term ‘window’ instead of ‘display’). We then use this to prove an abstract

version of Grothendieck-Messing theory for 1-bounded stacks in § 5.9, and we also prove an abstract version

of the ‘reduction to F -zips’, Theorem E, in § 5.10.

• In Section 6, we review the stack-theoretic constructions of Drinfeld and Bhatt-Lurie from [8], [10], [11]

and [27]. Our treatment of the Nygaard filtered prismatization here—arising from conversations with

Juan Esteban Rodŕıguez Camargo—appears to be new and works cleanly for animated inputs. Using this

perspective, we recall in § 6.11 the filtered affineness of the various stacks when working with semiperfectoid

rings, where the stacks of Drinfeld and Bhatt-Lurie are now obtained—via the Rees construction—from

Nygaard filtered prismatic cohomology. We end with an important nilpotence result on the first divided

Frobenius on the fiber between the prismatic cohomologies of a nilpotent divided power extension.

• Section 7 recalls a result of Bragg-Olsson on the representability of derived stacks that parameterize the

fppf cohomology of certain ‘perfect complexes’ of finite flat group schemes of height one and extends it to

the almost perfect case.

• We then prove our general representability theorems for stacks of sections associated with 1-bounded stacks:

this takes up Section 8. We follow the strategy sketched above: Representability on the level of F -zips is first

lifted to representability of the stack of sections over the mod-p syntomification of Fp-algebras using filtered

affineness for semiperfectoid inputs and the results of § 5.10. This is then bootstrapped to representability

over the syntomification of Fp-algebras, followed by a further bootstrapping up to arbitrary p-nilpotent

algebras. We give some applications of our general representability results for stacks of F -gauges, and prove

Theorems F and H.

• Section 9 is where we define the stacks BTG,µn and prove Theorems D, E and G as consequences of the

general results of the previous section.

• In Section 10, we use deformation theory and a strategy introduced by Ito [38] to give explicit descriptions of

the points of BTG,µn valued in certain regular complete local Noetherian rings, and show that the deformation

rings defined by Faltings in [30, §7] in fact provide explicit coordinates for the complete local rings of

BTG,µ∞ = lim←−n BT
G,µ
n .

• Finally, in Section 11, we gather our results together to prove Theorem A. The reader will also find some

complements dealing (among other things) with polarizations and compatibility with the classical de Rham

and crystalline realizations.

• The short appendix A collects some completeness results in the context of graded and filtered commutative

rings that are used in Section 4.
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2. Notation and other conventions

(1) We adopt a resolutely ∞-categorical approach. This means that all operations, including (but not limited

to) limits, colimits, tensor products, exterior powers etc. are always to be understood in a derived sense,

unless otherwise stated.

(2) We will use Spc to denote the ∞-category of spaces, anima, or homotopy types: roughly speaking, this is

the localization of the Quillen model category of simplicial sets with respect to homotopy equivalences.

(3) A map X → Y in Spc is surjective if the induced map π0(X)→ π0(Y ) is a surjective map of sets; we will

denote surjective maps with ↠.

(4) For any ∞-category C and an object c of C, we will write Cc/ (resp. C/c) for the comma ∞-categories of

arrows c→ d (resp. d→ c).

(5) We will in a few places make reference to the process of animation, as described say in [58, Appendix A].

This is a systematic way to get well-behaved ∞-categories and functors between them, starting from ‘nice’

classical categories C with a set C0 of compact, projective generators. The animation of such a category is

the ∞-category PΣ(C0) of presheaves of spaces on C0 that preserve finite products.

(6) We will denote by CRing the ∞-category of animated commutative rings, obtained via the process of

animation from the usual category of commutative rings. Objects here can be viewed as being simplicial

commutative rings up to homotopy equivalence.

(7) We will follow homological notation for CRing: For any n ∈ Z≥0, CRing≤n will be the subcategory of

CRing spanned by those objects R with πk(R) = 0 for k > n; that is, by the n-truncated objects. If

n = 0, we will write CRing♡ instead of CRing≤0: its objects are the discrete or classical commutative

rings, and the category can be identified with the usual category of commutative rings.

(8) Any animated commutative ring R admits a Postnikov tower {τ≤nR}n∈Z≥0
where R → τ≤nR is the

universal arrow from R into CRing≤n and the natural map R→ lim←−n τ≤nR is an equivalence.

(9) We will also need the notion of a stable ∞-category from [50]: this is the ∞-category analogue of a

triangulated category. The basic example is the ∞-category ModR, the derived ∞-category of R-modules.

We will use cohomological conventions for these objects and so will write for instance H−1(M) instead of

π1(M).

(10) An important feature of a stable ∞-category C is that it has an initial and final object 0, and, for any map

f : X → Y in C, we have the homotopy cokernel hcoker(f) defined as the pushout of 0 → Y along f .

We will sometimes abuse notation and write Y/X for this object.

(11) If R ∈ CRing♡ is a classical commutative ring, M ∈ ModR is a complex of R-modules, and a1, . . . , am ∈ R
form a regular sequence, we will write M/L(a1, . . . , am) for the derived tensor product

M ⊗L
R R/(a1, . . . , am).

(12) In any stable ∞-category C and an object X in C, we set X[1] = hcoker(X → 0): this gives a shift functor

C → C with inverse X 7→ X[−1], and we set hker(f : X → Y ) = hcoker(f)[−1].
(13) Given an animated commutative ring R, we will write ModcnR for the sub ∞-category spanned by the

connective objects (that is, objects with no cohomology in positive degrees), and Perf(R) for the sub

∞-category spanned by the perfect complexes.

(14) We have a truncation operator τ≤0 : ModR → ModcnR defined as the right adjoint to the natural functor in

the other direction. This leads to truncation operators τ≤n and cotruncation operators τ≥n for any n ∈ Z
in the usual way.
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(15) If f : X → Y is a map in ModcnR , we set hkercn(f) = τ≤0 hker(f): this is the connective (homotopy)

kernel.

(16) For any stable∞-category C, the mapping spaces MapC(X,Y ) between any two objects have canonical lifts

to the∞-category of connective spectra. We will be interested in stable∞-categories like ModR, which are

ModcnZ -modules, in the sense that the mapping spaces have canonical lifts to ModcnZ . In this case, we can

extend the mapping spaces MapC(X,Y ) from ModcnZ to objects RHomC(X,Y ) in ModZ by taking

RHomC(X,Y ) = colimk≥0 MapC(X,Y [k])[−k] ∈ ModZ .

When C = ModR for an animated commutative ring R, this lifts to the internal Hom in ModR, which we

will denote by RHomR(X,Y ).

(17) We will write ∆ for the usual simplex category with objects the sets {0, 1, . . . , n} and morphisms given by

the non-decreasing functions between them.

(18) A cosimplicial object S(•) in an ∞-category C is a functor

∆ 7→ C

[n] 7→ S(n).

If C admits limits, we will write TotS(•) for the limit of the corresponding functor: this is the totalization

of S(•).

(19) Given any ∞-category C with finite coproducts, and any object S in C there is a canonical cosimplicial

object S(•) in C, the C̆ech conerve with S(n) =
⊔
i∈[n] S.

(20) If X is a (derived) stack (resp. an object of ModR for some R), and N ∈ Z\{0}, we will write X[N−1] for the

base-change SpecZ[N−1] ×X → SpecZ[N−1] (resp. for the base-change Z[N−1] ⊗Z X in ModZ[N−1]⊗ZR
).

On the rare occasions when these notations collide, context will make the usage clear.

3. Stacks and other preliminaries

3.1. Square-zero extensions and differential conditions. Given a pair (R,M) with R ∈ CRing and M ∈
ModcnR , we have a canonical object R⊕M ∈ CRingR//R, the trivial square-zero extension of R by M : This is

obtained by animating the construction on such pairs with R a polynomial algebra and M a finite free R-module

to the usual square-zero extension R⊕M .

If R ∈ CRingA/, we set

DerA(R,M) = MapA//R(R,R⊕M).

This is the space of A-derivations of R valued in M . We always have the trivial A-derivation dtriv = (id, 0).

A square-zero extension of R by M in CRingA/ is a surjective map R′ ↠ R in CRingA/ such that there exists

an A-derivation d : R→ R⊕M [1] and an equivalence of A-algebras

R′ ≃−→ R×d,R⊕M [1],dtriv R.

We have the cotangent complex LR/A ∈ ModcnR : this is obtained by animating the functor taking maps S → S′

of polynomial rings over Z in finitely many variables to the module of differentials Ω1
S′/S , and is characterized by

the property that, for any trivial square zero extension R⊕M ↠ R, there is a canonical equivalence

MapR(LR/A,M)
≃−→ DerA(R,M).

Definition 3.1.1. An R-algebra C ∈ CRingR/ is finitely presented (over R) if the functor S 7→ MapCRingR/
(C, S)

respects filtered colimits. For any such finitely presented C, the cotangent complex LC/R ∈ ModcnC is perfect; see [50,

(17.4.3.18)].

If in addition LC/R is 1-connective, we say that C is unramified over R; if LC/R ≃ 0, we say that C is étale

over R.

We say that a finitely presented C ∈ CRingR/ is smooth over R if LC/R ∈ ModcnC is locally free of finite rank.

It is quasi-smooth if LC/R is perfect with Tor amplitude [−1, 0].
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3.2. Derived (pre)stacks. Suppose that C is an∞-category admitting all finite and sequential limits, totalizations

of cosimplicial objects, and filtered colimits. A C-valued prestack over R ∈ CRing is a functor

F : CRingR/ → C.

If C = Spc, we will simply call F a prestack over R. Such objects organize into an ∞-category PStkR.

We view such prestacks as presheaves on the ∞-category of derived affine schemes SpecR′ over R (by definition

opposite to CRingR/), and we can consider the subcategory of prestacks that are fpqc (resp. étale) sheaves—that

is, presheaves satisfying descent along faithfully flat (resp. faithfully flat and étale) maps SpecR′ → SpecR.

Definition 3.2.1. Following Toën-Vezzosi [68], we will say that F is 0-geometric if we have F ≃ SpecR′ for some

R′ ∈ CRingR/, and, inductively, that it is an n-geometric derived Artin stack over R for an integer n ≥ 1 if

it is an étale sheaf and admits a surjective cover f : U = ⊔i∈I SpecR′
i → F of étale sheaves with R′

i ∈ CRingR/
satisfying the following condition: For every S ∈ CRingR/ and x ∈ F (S), the base-change U×f,F,x SpecS → SpecS

is represented by an (n− 1)-geometric derived Artin stack over S.

Following Lurie [49, §5], we will say that F is a derived Artin n-stack over R if it is m-geometric for some

m and is such that F (R′) is n-truncated for all discrete R′ ∈ CRingR/,♡. A derived Artin 0-stack over R will be

called a derived algebraic space over R.

A derived Artin stack over R is a prestack F that is a derived Artin n-stack for some n ≥ 0. If R = Z, then
we will simply say ‘derived Artin stack’ instead.

A map of X → Y of prestacks over R is a relative derived Artin stack if, for every R-algebra C and every

y ∈ Y (C), the base-change Xy → SpecC is a derived Artin stack over C.

Definition 3.2.2. A prestack F over R is locally of finite presentation or locally finitely presented if for

every filtered system {Ci}i∈I in CRingR/ with colimit C ∈ CRingR/, the natural map

colimi∈I F (Ci)→ F (C)

is an equivalence.

It is almost locally of finite presentation or almost locally finitely presented if the above map is an equivalence

for filtered colimits of k-truncated animated commutative R-algebras for all k ≥ 0.

Definition 3.2.3. A prestack F over R is formally smooth if for every square-zero extension C ′ ↠ C in CRingR/,

the map F (C ′)→ F (C) is surjective.

A derived Artin stack over R is smooth if is locally finitely presented and formally smooth.

Definition 3.2.4. A prestack F over A ∈ CRing that is an fpqc sheaf is classical if it is equivalent as an fpqc sheaf

to the left Kan extension to CRingA/ of its classical truncation Fcl : CRingπ0(A)/ → Spc: That is, it is a colimit of

derived affine schemes SpecB with B ∈ CRingπ0(A)/ in the ∞-category of fpqc sheaves on CRingopA/. The functor

F 7→ Fcl is fully faithful when restricted to classical prestacks.

3.2.5. For any prestack F ∈ PStkR, we have an ∞-category QCoh(F ) of quasi-coherent sheaves on F . The

precise definition can be found in [52, §6.2.2]: roughly speaking, it is obtained by right Kan extension of the

contravariant functor sending S ∈ CRingR/ to ModS . One can think of an object M in QCoh(F ) as a way of

assigning to every point x ∈ F (S) an object Mx ∈ ModS compatible with base-change. This ∞-category is

particularly well-behaved when F is quasi-geometric [52, §9.1]: this means that F is an fpqc sheaf with quasi-

affine diagonal admitting a flat cover by an affine derived scheme. Most of the prestacks we will encounter in this

paper will be quasi-geometric or instances of a formal analogue of this notion; see Corollary ??.

Definition 3.2.6. We will say that M is connective if Mx belongs to ModcnS for each x ∈ F (S) as above. We

will say that it is almost connective if, for every x ∈ F (S), there exists n ∈ Z≥0 such thatMx[n] is connective.

We will say that it is perfect if, for every x ∈ F (S),Mx is perfect. It is almost perfect if, for every x ∈ F (S),
Mx is almost perfect: That is, there exists m ≥ 0 such that Mx[m] is connective and such that, for all k ≥ 1,

τ≥−k(Mx[m]) is a finitely presented object in the ∞-subcategory spanned by the k-truncated connective objects
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in ModS . Concretely, any such object is up to shifting the geometric realization of a simplicial object valued in

projective S-modules of finite rank. See [50, §7.2.4],[33, Appendix A].

Write QCohcn(F ) (resp. QCohacn(F ), resp. Perf(F ), resp. APerf(F )) for the ∞-category spanned by the

connective (resp. almost connective, resp. perfect, resp. almost perfect) objects in QCoh(F ).

Definition 3.2.7. Following [52, §17.2.4], we will say that a morphism f : F → G in PStkR admits a cotangent

complex if there exists LF/G ∈ QCohacn(X) such that, for every C ∈ CRingR/, every M ∈ ModcnR , and every

x ∈ F (C), we have a canonical equivalence

MapC(LF/G,x,M)
≃−→ fib(f(x)[M ],x)(F (C ⊕M)→ G(C ⊕M)×G(C) F (C)).

Here, f(x)[M ] ∈ G(C ⊕M) is the image of f(x) along the natural section G(C)→ G(C ⊕M).

If F = SpecC and G = SpecD, then by Yoneda, any morphism f : F → G corresponds to an arrow D → C in

CRingR/, and f admits a cotangent complex, namely LC/D.

Remark 3.2.8. Suppose that F is a locally finitely presented derived Artin stack over R ∈ CRing♡ such that the

cotangent complex LF/R is a perfect complex of non-negative Tor-amplitude. Then F is smooth and classical. By

an argument via induction on n where F is an n-geometric derived Artin stack, this reduces to the fact that smooth

R-algebras are flat over R and thus classical; see [49, Prop. 3.4.9].

3.3. Derived vector stacks. We have the classical construction associating with every finite locally free R-module

M the affine R-scheme V(M) with ring of functions SymR(M
∨) the symmetric algebra of the R-dual M∨ of M .8

Its functor of points is given by S 7→ HomR(M,S).

One can now consider, for any R ∈ CRing and any almost perfect complex M ∈ ModR, the prestack

CRingR/
S 7→MapR(M,S)−−−−−−−−−−→ Spc.

It is represented by an almost finitely presented derived Artin n-stack V(M) over R where n is such that M [n] is

connective. When M is connective, this is derived affine and represented by the spectrum of the derived symmetric

algebra SymR(M), and the general case is obtained by taking iterated classifying stacks.

It is easy to see from the definition that V(M) has cotangent complex given by

LV(M)/R ≃ OV(M) ⊗RM.

3.4. p-adic formal stacks. Let CRingp-nilp be the subcategory of CRing spanned by those objects R such that p

is nilpotent in π0(R).

Definition 3.4.1. A p-adic formal prestack over R ∈ CRing is simply a Spc-valued functor on CRingp-nilpR/ .

Definition 3.4.2. For any R-algebra S, the restriction of the affine scheme SpecS to CRingp-nilpR/ yields a p-adic

formal prestack, which, since p will be fixed in this paper, we will denote simply by Spf S. This depends only on

the p-completion of S.

Definition 3.4.3. A p-adic formal prestack is a derived p-adic formal Artin stack if, for each n ≥ 1, its

restriction to CRing(Z/pnZ)/ is represented by a derived Artin stack. Given such a derived p-adic formal Artin stack

F , we will say that it is foo, if ‘foo’ is an attribute applicable to derived Artin stacks, and, if for each n ≥ 1, the

restriction of F to CRing(Z/pnZ)/ is a derived Artin stack that is foo.

Definition 3.4.4. Suppose that we have a surjective map A ↠ A in CRing with fiber J such that π0(A)red is an

Fp-algebra. Then we can consider the p-adic formal prestack Spf(A, J) given for each C ∈ CRingp-nilp by

Spf(A, J)(C) = MapCRing(A,C)×MapCRing(π0(A),π0(C)red) MapCRing(π0(A)red, π0(C)red).

In other words, we are looking at maps A→ C such that the image of J is locally nilpotent in π0(C). If J is clear

from context, we will sometimes just write Spf(A) instead.

8This is Grothendieck’s convention.
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Remark 3.4.5. Let CRingp-comp be the subcategory of CRing spanned by the (derived) p-complete animated

commutative rings. Then any p-adic formal prestack Y can be extended to a functor on CRingp-comp. For any

p-complete A, we have

Y(A) defn
= lim←−

n

Y(A/Lpn).

More precisely, this definition allows us to evaluate Y on any animated commutative ring A, but its value at A

depends only on the p-completion of A.

3.5. Weil restrictions. A very useful aspect of derived geometry is the ability to construct well-behaved Weil

restrictions along certain non-flat maps. This will enable us to correctly identify the local models for our stacks

from Theorem D.

Definition 3.5.1. Given R ∈ CRing, for any prestack X over R/Lpn, we will define its Weil restriction

Res(R/Lpn)/RX to be the p-adic formal prestack over R given by the composition

CRingp-nilpR/

C 7→C/Lpn−−−−−−−→ CRingR/Lpn/
X−→ Spc.

Definition 3.5.2. If Y is a p-adic formal prestack over R, we will set

Y (n) = Res(R/Lpn)/R(Y |CRing
R/Lpn/

).

There is then a canonical map α(n) : Y → Y (n) given on points by Y (C)→ Y (C/Lpn).

Remark 3.5.3. There is a natural functor

QCoh(X)
F7→F(n)

−−−−−→ QCoh(Res(Z/pnZ)/Zp X).

With any x̃ ∈ (Res(Z/pnZ)/Zp X)(C) corresponding to x ∈ X(C/Lpn) it associates the object F (n)
x̃ , which is the

image of Fx[−1] ∈ ModC/Lpn in ModC .

Proposition 3.5.4. Suppose that we have a map Y → Z of prestacks over Z/pnZ that is a relative locally almost

finitely presented (resp. smooth, resp. étale) derived Artin r-stack with cotangent complex L defn
= LY/Z . Then

Res(Z/pnZ)/Zp Y → Res(Z/pnZ)/Zp Z

is once again a relative locally almost finitely presented (resp. smooth, resp. étale) derived p-adic formal Artin

(r + 1)-stack, and we have a canonical identification

L(Res(Z/pnZ)/Zp Y )/(Res(Z/pnZ)/Zp Z)
≃−→ L(n).

Proof. Set

Ỹ = ResZ/pnZ/Zp Y ; Z̃ = ResZ/pnZ/Zp Z.

To begin, suppose that we have ỹ ∈ Ỹ (C) corresponding to y ∈ Y (C/Lpn) with image z̃ ∈ Z̃(C) corresponding to

z ∈ Z(C/Lpn). Let z̃′ ∈ Z̃(C ⊕M) be the trivial lift of z̃ corresponding to z′ ∈ Z((C ⊕M)/Lpn). Then we have:

fib(ỹ,z̃′)(Ỹ (C ⊕M)→ Ỹ (C)×Z̃(C) Z̃(C ⊕M)) = fib(y,z′)(Y ((C ⊕M)/Lpn)→ Y (C/Lpn)×Z(C/Lpn) Z((C ⊕M)/Lpn))

≃ MapC/Lpn(Ly,M/Lpn)

≃ MapC/Lpn(Ly,RHomC(C/
Lpn,M [1]))

≃ MapC(in,∗Ly[−1],M).

This proves that the cotangent complex is as claimed.

Now, given a map SpecR→ Z̃ with R ∈ CRingp-nilp corresponding to a map SpecR/Lpn → Z, we see that

Ỹ ×Z̃ SpecR ≃ Res(R/Lpn)/R(Y ×Z SpecR/Lpn).

Therefore, the first assertion amounts to showing that Ṽ
defn
= Res(R/Lpn)/R V is a locally almost finitely presented

derived Artin (r + 1)-stack over R whenever V is a locally almost finitely presented derived Artin r-stack over
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R/Lpn. If π0(R) is a G-ring, then, given our description of the cotangent complex in the first paragraph, this

follows quite easily from Artin-Lurie representability [49, Theorem 7.1.6]. The general case can be deduced from

this via standard approximation techniques.

For the remaining assertions, note that, if Y is smooth over Z, so that L is a perfect complex with Tor-amplitude

in [0,∞), then L(n) is also perfect with Tor-amplitude in [0,∞), showing that Ỹ is a smooth Artin stack over Z̃.

The same argument shows that Ỹ is étale over Z̃ when Y is étale over Z. □

3.6. Divided powers. We will also need the notion of animated divided powers, which is an additional structure

γ on surjective maps R′ ↠ R in CRing that ‘animates’ the classical notion.

3.6.1. We follow the presentation from [58, §3.2], where one obtains an ∞-category AniPDPair via the process

of animation: one takes the full subcategory E0 of the classical category PDPair of divided power thickenings

(R′ ↠ R, γ) spanned by those thickenings of the form

(D(Y )Z[X,Y ] ↠ Z[X], γ)

where X,Y are finite sets of variables and D(Y )Z[X,Y ] is the divided power envelope of Z[X,Y ]
Y 7→0−−−→ Z[X]

equipped with its tautological divided powers, and then takes AniPDPair = PΣ(E0) to be the ∞-category of finite

product preserving presheaves on E0. The natural functor PDPair → AniPDPair obtained via the Yoneda map is

fully faithful; see [58, Lemma 3.13].

3.6.2. There is a forgetful functor AniPDPair → AniPair that preserves all limits and finite colimits to the ∞-

category AniPair of surjective maps R′ ↠ R, and we can view a divided power structure γ on such a surjective

map as being a lift along the forgetful functor. The forgetful functor admits a left adjoint, the divided power

envelope, carrying f : R′ ↠ R to a surjection D(f) ↠ R equipped with a divided power structure. For all this,

see the discussion in [58, §3.2].

Definition 3.6.3. A divided power extension (or thickening) is a pair (R′ ↠ R, γ), where γ is a divided

power structure on R′ ↠ R.

3.6.4. We now explain the relationship with divided power algebras. For any R ∈ CRing and any M ∈ ModcnR ,

we have the animated divided power algebra ΓR(M): this is obtained by animating the usual divided power

algebra on pairs (R,M) with R a polynomial algebra in finitely many variables and M is a finite free R-module

defined for instance in [7, App. A]. This is in some sense a classical construction that goes back to the seminal

work of Dold-Puppe [23].

By construction, ΓR(M) is an object in CRingR/, equipped with a map of R-modules M → ΓR(M) that satisfies

a certain universal property. To explain this, write G♯a for the affine scheme Spec ΓZ(Z): this is the divided power

envelope of the origin in the additive group Ga.

Lemma 3.6.5. For any M ∈ ModcnR and for any other R-algebra C, we have a canonical equivalence

MapCRingR/
(ΓR(M), C)

≃−→ MapR(M,G♯a(C)).

Proof. Both sides of the purported equivalence are evaluations on M of functors ModcnR → Spcop that preserve

sifted colimits. Therefore, by [51, Prop. 5.5.8.15], it suffices to construct a canonical equivalence between these

functors when evaluated on free R-modules of finite rank. That is, we want to construct isomorphisms

MapCRingR/
(ΓR(R

n), C)
≃−→ G♯a(C)n;

or in other words isomorphisms

ΓR(R
n)

≃−→ ΓR(R)⊗R ⊗ · · · ⊗R ΓR(R)︸ ︷︷ ︸
n

in CRingR/. This is classical; see for instance [7, Prop. (A2)].

□
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Remark 3.6.6. For each m ≥ 1, there is a canonical map of schemes um : G♯a → Ga induced by the canonical

generator for the degree-m piece ΓmZ (Z) ⊂ ΓZ(Z): this is the m-th divided power map. If R′ ↠ R is in AniPair with

homotopy kernel I, then a divided power structure on I gives rise to a map of R′-algebras ΓR′(I)→ R′—equivalently

a map of R′-modules I → G♯a(R′)—equipped with:

• A homotopy equivalence between the induced map I → ΓR′(I)→ R′ with the tautological one;

• For each m ≥ 1, a lift γm : I → I of the composition

I → G♯a(R′)
um−−→ R′.

In the classical setting, the divided power operators γm determine the divided power structure on I completely.

Definition 3.6.7. Suppose that (R′ ↠ R, γ) is a divided power extension with π0(R
′) a p-nilpotent ring. Then we

will say that R′ ↠ R is a locally nilpotent (resp. nilpotent) divided power extension if γp : I → I is a locally

nilpotent9 (resp. nilpotent) endomorphism. If the divided power structure is nilpotent, its nilpotence degree is

the smallest integer m ≥ 1 such that γmp is nullhomotopic.

Remark 3.6.8. When (R′ ↠ R, γ) is a classical divided power extension of p-nilpotent rings (that is, it lies

in the image of PDPair with R′ p-nilpotent), then the local nilpotence condition simply says that every element

x ∈ I = ker(R′ → R) satisfies γm(x) = 0 for all m sufficiently large. Indeed, if γrp(x) = 0, then a short calculation

with the properties of divided powers and p-adic valuations of factorials shows that, for all m ≥ 1, and all k < pr,

there exists a unit u ∈ Z×
(p) such that

γprm+k(x) = uγm(γrp(x))γk(x) = 0.

Remark 3.6.9. If I is finitely generated, then local nilpotence is equivalent to saying that there exists an integer

m ≥ 1 such that we have I [m] = 0. Here, I [m] is the ideal generated by γr(x) for r ≥ m and x ∈ I. Indeed, let

x1, . . . , xk be generators for I, and let n0 be such that γm(xi) = 0 for all m ≥ n0. Then the identities

γn(y1 + · · ·+ yk) =
∑

n1+...+nk=n

k∏
i=1

γni(yi) ; γn(ay) = anγn(y)

show that we have γm(x) = 0 for all x ∈ I and all m ≥ kn0.

4. Filtered abstractions

The purpose of this section is to introduce enough background about filtered animated commutative rings and

modules so that we can discuss the key notion of a 1-bounded stack. We also give examples, as well as record some

important properties, of these objects.

4.1. Graded rings and modules.

4.1.1. As usual, a graded ring or module can be viewed as a Gm-equivariant object. Therefore, given R ∈ CRing, we

will define the∞-category of graded animated commutative R-algebras to be the opposite to the∞-category

of relatively affine map of derived stacksX → BGm×SpecR. Let O(1) be the inverse tautological bundle over BGm,

and set O(i) = O(1)⊗i. Then, given a relatively affine map X → BGm × SpecR, we will denote the coresponding

graded animated ring symbolically by B• = ⊕iBi, where Bi = RΓ(X,O(i)), so that X = (SpecB•)/Gm.

9That is, a map that is a filtered colimit of nilpotent endomorphisms. Here, ‘nilpotence’ is being used in the context of pointed

spaces, where a self-map f : (X, ∗) → (X, ∗) is nilpotent if some power fm is nullhomotopic, that is, is homotopic to the constant map

with value ∗.
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4.1.2. The ∞-category GrModB• of graded B•-modules is the category QCoh(X). Symbolically, if F is a

quasicoherent sheaf over X, we can write the associated graded module in the form M• = ⊕iMi, where Mi =

RΓ(X,F⊗O(i)). Note that by construction this is a symmetric monoidal∞-category, and we denote the associated

graded tensor product of M• and N• in GrModB• by

M• ⊗B• N•.

We will usually write MapB•
(M•, N•) for mapping spaces in this category.

Given any graded moduleM• overB• and an integer i, we obtain the i-shifted moduleM•(i): IfM• is associated

with a quasicoherent sheaf F over (SpecB•)/Gm,M•(i) is associated with F⊗O(i) and satisfies (M•(i))m =Mm+i.

4.1.3. Note that we can use this optic to speak of graded perfect B•-modules and graded vector bundles

over B•: they will correpond to perfect complexes (resp. vector bundles) over X.

For any R-algebra C, the relatively affine map BGm×SpecC → BGm×SpecR corresponds to C with its trivial

grading. In this case, we can speak simply of graded C-modules, etc.

4.2. Filtered objects via the Rees construction. We will make frequent use of the quotient stack A1/Gm,

where we view Gm as acting on the affine line via (t, z) 7→ tz−1. Explicitly, this stack parameterizes line bundles L
equipped with a cosection t : L → O.

4.2.1. This stack gives a geometric method for dealing with filtered objects [63]. More precisely, for any R ∈ CRing,

there is a canonical equivalence

QCoh(A1/Gm × SpecR)
≃−→ FilModR,

where the right hand side is the stable ∞-category of filtered objects in ModR: classically, if R = π0(R) is discrete,

then its associated triangulated derived category is the usual filtered derived category.

Symbolically, under this equivalence, a filtered module Fil•M on the right is associated with the Gm-equivariant

R[t]-module

Rees(Fil•M) =
⊕
i∈Z

FiliM · t−i.

Our convention is that t lives in graded degree 1. For the functor in the other direction, note that we have a canonical

family of line bundles O(n) = O(1)⊗n over A1/Gm indexed by integers n ∈ Z: Here, O(1) is the inverse tautological
line bundle L⊗−1. Note that we have canonical maps t : O(i) → O(i + 1). Given a quasi-coherent sheaf F over

A1/Gm × SpecR, we now obtain a filtered module Fil•M by setting FiliM = RΓ(A1/Gm × SpecR,F ⊗ O(−i))
with the transition maps given by t.

Definition 4.2.2. Any R-module M , viewed as a quasi-coherent sheaf on SpecR pulls back to a quasi-coherent

sheaf on A1/Gm×SpecR, and this yields a filtered R-module Fil•trivM with underlying R-moduleM . This filtration

is just the trivial filtration with FilitrivM =M if i ≤ 0 and 0 otherwise.

Definition 4.2.3. A filtered stack over R is an R-stack X equipped with a map to A1/Gm × SpecR; we will

view it as a filtration on the R-stack X(t̸=0) with associated graded X(t=0) → BGm.

4.3. Filtered animated commutative rings and filtered modules.

4.3.1. The Rees equivalence also gives us a compact way of defining filtered animated commutative R-

algebras. These correspond to relatively affine stacks over A1/Gm × SpecR. Symbolically, given a filtered

R-algebra Fil• S, the Gm-equivariant R[t]-module Rees(Fil• S) has a canonical Gm-equivariant structure of an

animated commutative R[t]-algebra, and taking the quotient of the associated affine scheme over A1×SpecR yields

the associated affine morphism

R(Fil• S)→ A1/Gm × SpecR.

We will call the source of this map the associated Rees stack. Note that the fiber of this stack over the open point

Gm/Gm is canonically isomorphic to SpecS, and its fiber over BGm is the relatively affine stack associated with

the graded ring
⊕

i gr
−i S.
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Note that we can now give a precise meaning to the ∞-category of filtered animated commutative algebras over

the filtered animated commutative ring Fil• S: it is opposite to the category of relatively affine stacks overR(Fil• S).
Moreover, fiber products in this opposite category correspond to filtered tensor products of filtered Fil• S-algebras.

Observe also that any animated commutative ring R admits a lift Fil•trivR to a trivially filtered animated

commutative ring corresponding to A1/Gm × SpecR: We have FilitrivR = R if i ≤ 0 and FilitrivR = 0 otherwise.

4.3.2. A filtered module over Fil• S is now just a quasi-coherent sheaf F over the associated Rees stack. Once

again, concretely, one can write it in the form Fil•M where the S-modules FiliM are obtained as global sections

of suitable twists of F . Write FilModFil• S for the associated ∞-category. We will write mapping spaces in this

category in the form MapFil• S( , ). If Fil•triv S is the trivial filtration, then we will also write MapFilModS ( , ) for

this mapping space.

Note that this gives us a symmetrical monoidal ∞-category by definition, where the tensor product corresponds

to that of quasicoherent sheaves on the Rees stack. We will denote the associated product between filtered Fil• S-

modules Fil•M and Fil•N by

Fil•M ⊗Fil• S Fil•N.

Using this optic, we can also systematically talk about filtered perfect complexes as well as filtered vector

bundles over Fil• S: these correspond to perfect complexes (resp. vector bundles) on the associated Rees stacks.

Pullback fromR(Fil• S) to the closed substackR(Fil• S)(t=0) yields a symmetric monoidal functor from FilModFil• S
to GrModgr• S : this is just the functor taking a filtered module to its associated graded.

4.4. Increasing filtrations. There is a variant of the above that looks at objects over the stack A1
+/Gm classifying

sections of line bundles u : O → L: this corresponds to the ‘usual’ action of Gm on A1. We will write A1
+×SpecR =

SpecR[u] where u has graded degree −1.
Quasi-coherent sheaves over this stack are now equivalent to increasingly filtered modules Fil•M , and relatively

affine schemes over it are now equivalent to increasingly filtered animated commutative rings Fil• S. We will denote

the corresponding Rees construction by R+(Fil• S). Symbolically, we have

R+(Fil• S) = Spec

(⊕
i

Fili S · ui
)
/Gm.

Observe that any animated commutative ring R admits a lift Filtriv• R to a trivially increasingly filtered animated

commutative ring corresponding to A1
+/Gm × SpecR: We have Filtrivi R = R if i ≥ 0 and Filtrivi R = 0 otherwise.

4.5. Filtered deformation theory.

4.5.1. Every filtered animated commutative algebra Fil• S over a filtered animated commutative ring Fil•R admits

a filtered cotangent complex LFil• S/Fil• R: this is a filtered Fil• S-module corresponding to the cotangent complex

of the associated Rees stacks. This controls the filtered deformation theory as follows:

A map of filtered animated commutative rings Fil• S′ → Fil• S is a filtered square-zero extension if the

corresponding map of Gm-equivariant affine schemes over A1/Gm is a square zero thickening. In this case the fiber

of the map of filtered rings is a filtered Fil• S-module Fil•M .

Given a connective filtered module Fil•M over Fil• S, we can consider the trivial square-zero extension Fil• S ⊕
Fil•M . We then have a canonical equivalence:

MapFil• R/(Fil
• S,Fil• S ⊕ Fil•M) ≃ MapFil• S(LFil• S/Fil• R,Fil

•M).

Sections of either equivalent space will be called Fil•R-derivations from Fil• S to Fil•M .
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One way to obtain square-zero extensions with fiber Fil•M therefore is as the left vertical arrow of a Cartesian

diagram of the form
Fil• S′ > Fil• S

Fil• S
∨

d
> Fil• S ⊕ Fil•M [1]

dtriv

∨

where the right vertical arrow is the trivial map and the horizontal one on the bottom is a Fil•R-derivation.

4.5.2. Now suppose that X → R(Fil• S) is an fppf (or even smooth) sheaf admitting a relative cotangent complex

LX
defn
= LX/R(Fil• S). For any filtered Fil• S-algebra Fil•A, set

X(Fil•A) = Map/R(Fil• S)(R(Fil
•A), X).

Then we obtain a Cartesian diagram
X(Fil• S′) > X(Fil• S)

X(Fil• S)
∨

d
> X(Fil• S ⊕ Fil•M [1]).

dtriv

∨

Moreover, for any x ∈ X(Fil• S), pulling LX along x yields a filtered module Fil• LX,x over Fil• S, and we have

a canonical equivalence:

fibx(X(Fil• S ⊕ Fil•M [1])→ X(Fil• S))
≃−→ MapFil• S(Fil

• LX,x,Fil•M [1]).

4.6. The attractor stack. The terminology we will use here is borrowed (with a sign difference) from [24].

Definition 4.6.1. Suppose that we have a prestack Y → BGm×SpecR. The associated fixed point locus is the

functor X0 on R-algebras given by

Y 0(C) = MapBGm×SpecR(BGm × SpecC,Y).

Definition 4.6.2. Suppose that we have a prestack X → A1/Gm × SpecR; its associated attractor stack or

simply attractor is the functor X− on R-algebras given by:

X−(C) = Map/A1/Gm×SpecR(A1/Gm × SpecC,X ).

We define its fixed point prestackX0 to be that of the restriction X(t=0) of X over the closed substack BGm×SpecR.

4.6.3. In other words, X− (resp. X0) is the Weil restriction of X (resp. X(t=0)) from A1/Gm × SpecR (resp.

BGm × SpecR) down to SpecR. Note that the sequence of natural maps

BGm × SpecR ↪→ A1/Gm × SpecR→ BGm × SpecR

yields maps

X0 ← X− ← X0

whose composition is the identity.

4.6.4. If we have a prestack X → A1
+/Gm then we have the analogous notion of the repeller X+ associated with

X , which also admits maps X0 → X+ → X0 whose composition is the identity.

If Y → BGm is a graded prestack, then we will define its attractor and repeller to be those associated with its

pullback over A1/Gm and A1
+/Gm, respectively.

Remark 4.6.5. If X is the pullback of an algebraic space over BGm, these notions are studied by Drinfeld in [24].
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4.6.6. Suppose that X is locally almost finitely presented over A1/Gm×SpecR and that it admits an almost perfect

relative cotangent complex. Note that, over X−, we have a canonical filtered almost perfect complex Fil• L−
X : This

associates with every x ∈ X−(C) the filtered module corresponding to the pullback of the cotangent complex

LX/(A1/Gm×SpecR) to A1/Gm × SpecC along x.

Similarly, over X0, we have a canonical graded almost perfect complex L0
X ,•: it is isomorphic to the associated

graded of the restriction of Fil• L−
X along X0 → X−.

Lemma 4.6.7. The prestack X− admits an almost perfect cotangent complex over X; we have

LX−/R ≃ L−
X /Fil

1 L−
X .

Similarly, the prestack X0 admits an almost perfect cotangent complex over X with

LX0/R ≃ L0
X ,0.

In particular, we have

LX−/X ≃ Fil1 L−
X [1]

Proof. From the discussion in §4.5, we see that, for C ∈ CRingR/, M ∈ ModcnC , and x ∈ X−(C), we have

fibx(X
−(C ⊕M)→ X−(C)) ≃ MapFilModC (Fil

• L−
X ,x,Fil

•
trivM) ≃ MapC(L

−
X ,x/Fil

1 L−
X ,x,M).

This proves the first part of the lemma. The proof of the second is entirely analogous, and the last follows from the

canonical fiber sequence

LX/R|X− → LX−/R → LX−/X .

□

We will now give a general criterion for representability of X−, X+ and X0 due to Halpern-Leistner and

Preygel [33, Example 1.2.2].

Proposition 4.6.8. Suppose that π0(R) is a G-ring and that X → A1/Gm × SpecR is a locally almost finitely

presented derived Artin 1-stack with quasi-affine (resp. affine) diagonal. Then X−, X0, X+ are locally almost

finitely presented derived Artin 1-stacks over R, and if X is flat over A1/Gm × SpecR, then X−, X0, X+ all have

quasi-affine (resp. affine) diagonal.

Proof. We recall some key points of the proof, which uses Lurie’s derived generalization of Artin’s representability

theorem [49, Theorem 7.1.6].

It is straightforward to see that X−, X0, X+ are all étale sheaves that are locally almost finitely presented,

nilcomplete and infinitesimally cohesive. We have already seen that they admit almost perfect cotangent complexes,

and it is clear that their classical truncations are valued in 1-truncated spaces.

The main difficulty now is to show that they are integrable (condition (3) in loc. cit.). The authors of [33] appeal

to a very general argument that applies to a wide class of quotient stacks, which are shown to be cohomologically

projective and hence formally proper. We can translate this into rather concrete assertions in the particular cases

we are dealing with here.

For X0, one uses Proposition A.2.1.

For X− (the argument for X+ is identical), we need to know that the map

Map/A1/Gm×SpecR(A1/Gm × SpecC,X )→ lim←−
m

Map/A1/Gm×SpecR(A1/Gm × SpecC/mm,X ).(4.6.8.1)

is an isomorphism. Here, C is a complete local Noetherian R-algebra with maximal ideal m.

For this, one first finds from Proposition A.2.2 that, for any Noetherian B ∈ CRing♡,R/, we have

Map/A1/Gm×SpecR(A1/Gm × SpecB,X ) ≃−→ lim←−
n

Map/A1/Gm×SpecR((A1/Gm)(tn=0) × SpecB,X ).
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Via filtered deformation theory, the desired integrability for X− now reduces to the already known assertion for

X0.10

It remains only to check the assertion about the diagonal, which is [33, Proposition 5.1.15]. □

4.7. 1-bounded fixed points. Suppose that Z → BGm × SpecR is a relative locally almost finitely presented

derived Artin stack and let Z0 → SpecR be the corresponding fixed point locus.

Definition 4.7.1. As observed in §4.6.6, over Z0 we have the canonical graded almost perfect complex L0
Z,•. The

locus Z0
1-bdd of 1-bounded fixed points is the locus of Z0 where we have L0

Z,i ≃ 0 for i < −1. If L0
Z,i is perfect

for all i < −1, and nullhomotopic for almost all but finitely many such i, then this locus is in fact an open substack

of Z0.

Example 4.7.2. Suppose that we have M ∈ APerf(BGm × SpecR) corresponding to a graded R-module M•.

Then we can take Z = V(M)→ BGm × SpecR to be the associated vector stack.

One checks that the corresponding fixed point locus Z0 now is just the vector stack V(M0)→ SpecR, while the

graded almost perfect complex L0
Z,• corresponds simply to the restriction of M to BGm ×V(M0). This implies

that

Z0
1-bdd = V(M0)×SpecR (SpecR)1-bdd,

where (SpecR)1-bdd ⊂ SpecR is the open locus Mi becomes nullhomotopic for i < −1.

Example 4.7.3. Consider the stack P : R 7→ Perf(R)≃ on CRing: this is represented by a locally finitely presented

derived Artin stack over Z; see [67, § 3].

Now take Z = P ×BGm → BGm: the fixed point locus Z0 associates with every R ∈ CRing the ∞-groupoid of

graded perfect R-modules.

The cotangent complex of P is M∨
taut ⊗Mtaut, where Mtaut ∈ Perf(P) is the tautological perfect complex. From

this, one finds that the graded perfect complex L0
Z,• is M∨

taut,• ⊗Mtaut,•, where Mtaut,• is the tautological graded

perfect complex over Z0.

Now, Z0
1-bdd is precisely the locus where M∨

taut,i ⊗Mtaut,j ≃ 0 for all i, j ∈ Z with |j − i| > 1.

In particular, the locus where Mtaut,i ≃ 0 for i ̸= 0, 1 is an open substack of Z0
1-bdd.

Remark 4.7.4. If Z is relatively locally finitely presented, then L0
Z,• is a graded perfect complex, and the condition

of being 1-bounded can be framed in terms of its dual graded tangent complex T0
Z,• by requiring that we have

T0
Z,i ≃ 0 for i > 1.

4.8. 1-bounded stacks.

Definition 4.8.1. Suppose that A ∈ CRing and R ∈ CRingA/. An R-pointed graded prestack over A is a

prestack Y → BGm,A equipped with a morphism ι : BGm × SpecR → Y of graded prestacks. In particular, for

such a prestack, any relative derived Artin stack Z → Y has an associated fixed point locus Z0 → SpecR obtained

from the base-change of Z over BGm × SpecR.

Usually R will be implicit, and we will simply call the pair (Y, ι) a pointed graded prestack. If the ‘point’ ι is

also clear from context, we will just refer to Y as a pointed graded prestack.

Definition 4.8.2. A 1-bounded stack X = (X♢, X0)→ (Y, ι) over (Y, ι) (or simply Y if ι is clear from context)

consists of the following data:

(1) A relative locally almost finitely presented derived Artin r-stack X♢ → Y;
(2) An open immersion X0 ↪→ X♢,0 factoring through X♢,0

1-bdd, which we will refer to as the fixed point locus

of X .
One can speak of maps between 1-bounded stacks over Y in the obvious way.

10This argument is closely related to one appearing in [24].
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4.8.3. Suppose that Y → A1/Gm × SpecA is in fact a filtered prestack, and that ι lifts to a map of filtered stacks

A1/Gm×SpecR→ Y over A. Then we will associate with any 1-bounded stack X → Y its attractor X− → SpecR

by setting X− defn
= X♢,− ×X♦,0 X0. Here X♢,− is the attractor of the base-change of X♢ over A1/Gm × SpecR.

Analogously, given a lift A1
+/Gm × SpecR→ Y, we can define an associated repeller X+.

4.8.4. If (Z, η)→ (Y, ι) is a map of pointed graded prestacks with η : BGm × SpecC → Z and X = (X♢, X0) is

a 1-bounded stack over Y, we set

Map/(Y,ι)((Z, ι),X ) = Map/Y(Z,X♢)×X♦,0(C) X
0(C).

Here, the map

Map/Y(Z,X♢)→ X♢,0(C) = Map/Y(BGm × SpecC,X♢)

is obtained via restriction along η.

If η and ι are clear from context, we will simply write Map/Y(Z,X ) for this space.
Here are our main examples:

Example 4.8.5. Example 4.7.2 shows that, ifM∈ APerf(Y) is an almost perfect complex whose restriction over

BGm×SpecR yields a graded complex concentrated in degrees ≥ −1, then the stack X♢ defn
= V(M)→ Y underlies

a 1-bounded stack over Y with X0 = X♢,0.

Example 4.8.6. Example 4.7.3 shows that, when Y = BGm (viewed as a pointed graded stack in the tautological

sense), then we obtain a 1-bounded stack P{0,1} → BGm with P♢
{0,1} = P ×BGm, and P 0

{0,1} ⊂ P♢,0
{0,1} is the open

substack parameterizing graded perfect complex M• with Mi ≃ 0 for i ̸= 0, 1.

For any pointed graded stack (Z, η)→ BGm, the space

Perf{0,1}((Z, η))
defn
= Map/BGm(Z,P{0,1})

is the ∞-groupoid of perfect complexes on Z whose restriction along η is in graded degrees 0, 1.

If we take A1/Gm → BGm to be the canonical map, then the associated attractor is the stack

R 7→ Perf{0,1}(A1/Gm × SpecR)

of filtered perfect complexes Fil•M with griM ≃ 0 for i ̸= 0,−1.
Similarly, the repeller associated with A1

+/Gm → BGm is the stack of ascendingly filtered perfect complexes

Fil•M with griM ≃ 0 for i ̸= 0, 1.

Both these stacks are locally finitely presented relative derived Artin stacks over SpecZ. This can be verified

using Artin-Lurie representability: the only difficulty is integrability, but this is easily checked using results from

Appendix A.

Example 4.8.7. We have an ‘open substack’ V{0,1} of P{0,1} by restricting to the open locus V♢
{0,1} ⊂ P

♢
{0,1}, where

the tautological perfect complex is in fact a vector bundle.

For any pair of non-negative integers d ≤ h, we can further refine this to the 1-bounded stack Vh,d{0,1} =

(V♢
{0,1}, V

0,h,d
{0,1} ), where V

0,h,d
{0,1} is the open and closed substack of the fixed point locus parameterizing graded vector

bundles M• such that Mi ≃ 0 for i ̸= 0, 1, and such that M1 is a vector bundle of rank d and M0 is a vector bundle

of rank h− d.
The attractor V −,h,d

{0,1} is the stack of filtered vector bundles Fil• V where: V has rank h; gri V ≃ 0 for i ̸= 0,−1;
and gr−1 V has rank d.

4.9. Cocharacters of group schemes and twisted group stacks. This following discussion is essentially

from [25, §2.3]. Suppose that G is a smooth affine group scheme over a classical commutative ring R and let

µ : Gm,R′ → GR′ be a cocharacter defined over some R′ ∈ CRingR/, inducing a Gm,R′ -action on GR′ via the adjoint

action.
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Remark 4.9.1. In [25], Drinfeld considers a seemingly more general situation where Gm,R acts on G via a map

Gm,R′ → Aut(G)R′ . For instance, one can consider the case of G = Ga equipped with the natural action of Gm.

This case can be subsumed—perhaps a bit unnaturally—into the setup here by viewing such a map as a cochar-

acter of the R′-group scheme G⋊µGm, where the semi-direct product is defined by the action of Gm,R′ on GR′ via

µ.

See also Remark 9.1.4 below.

4.9.2. The fpqc quotient of GR′ by the action of µ yields a group stack G{µ} over BGm,R′ . We have subgroups

U±
µ ⊂ P±

µ ⊂ GR′ with P±
µ /U

±
µ ≃Mµ independent of sign: Namely, P−

µ (resp. P+
µ ) is the attractor (resp. repeller)

of the base-change of G{µ} over A1/Gm × SpecR′, and Mµ is the fixed point locus of G{µ}.
Explicitly, given an R′-algebra S, we have

P−
µ (S) = MapBGm,R

(
A1/Gm × SpecS,G{µ}

)
; P+

µ (S) = MapBGm,R
(
A1

+/Gm × SpecS,G{µ}
)
;

Mµ(S) = MapBGm,R (BGm × SpecS,G{µ}) .

Restriction to the open point Gm/Gm ⊂ A1/Gm now gives a closed immersion of group schemes P±
µ ↪→ G. The

section Mµ → P±
µ exhibits it as the centralizer in P±

µ (and in G) of µ.

The subgroup U±
µ ⊂ P±

µ is the kernel of the map to Mµ.

4.9.3. In terms of Lie algebras, the action of µ gives us a grading of the base-change of g
defn
= LieG over R′:

gR′ =
⊕
i∈Z

gi,

where Gm acts on gi via z 7→ z−i. We now have:11

LieP±
µ =

⊕
±i≥0

gi ; LieU
±
µ =

⊕
±i>0

gi ; LieMµ = g0.

When G is reductive, then what we have defined here are the parabolic and unipotent subgroups of G associated

with µ.

4.9.4. Note that the cocharacter µ : Gm,R′ → GR′ yields a map

Bµ : BGm,R′ → BGR′

yielding a canonical G-torsor Pµ → BGm,R′ : The automorphisms of this torsor are represented by the group stack

G{µ} → BGm,R′ , and twisting by Pµ yields an isomorphism

BG×BGm,R′
≃−→ BG{µ}

of BGm,R′ -stacks carrying Pµ to the trivial G{µ}-torsor.
In particular, we can canonically view every G{µ}-torsor over a BGm,R′ -stack as a G-torsor, and vice versa.

4.9.5. Consider the pointed graded stack (BGm,R, ιR′), where ιR′ : BGm,R′ → BGm,R is the structure morphism.

If we take the stack Z = BG×BGm → BGm,R, the associated fixed point locus Z0 over R′ parameterizes, for any

C ∈ CRingR′/, G-torsors over BGm × SpecC.

Note that by the discussion in (4.9.4), for any R′-algebra C, we can also view Z0(C) as the ∞-groupoid of

G{µ}-torsors over BGm × SpecC. Unwinding definitions, one finds that, for any C ∈ CRingR′/, Z
0(C) is the

∞-groupoid of the following equivalent kinds of objects:

• G{µ}-torsors over BGm × SpecC;

• G⋊µGm-equivariant schemes P → SpecC such that the underlying G action presents P as a G-torsor over

C.

In the next lemma, given C ∈ CRingR′/ and a G-torsor Q → BGm × SpecC, we will write Qµ for the corre-

sponding G{µ}-torsor.

11We are following the sign conventions from [45]
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Lemma 4.9.6. There is a canonical open and closed immersion BMµ → Z0 mapping isomorphically onto the locus

of G-torsors Q → BGm × SpecC satisfying the following equivalent conditions when SpecC is connected:

(1a) There exists an étale cover C → C ′ such that the restriction of Q over BGm × SpecC ′ is isomorphic to

Pµ ⊗O C ′;

(1b) There exists an étale cover C → C ′ such that the restriction of Qµ over BGm × SpecC ′ is trivial;

(2a) For every geometric point C → κ of SpecC, the G-torsor x∗Q over BGm×Specκ is isomorphic to Pµ⊗Oκ;

(2b) For every geometric point C → κ of SpecC, the G{µ}-torsor x∗Qµ over BGm × Specκ is trivial;

(3a) For some geometric point C → κ of SpecC, the G-torsor x∗Q over BGm×Specκ is isomorphic to Pµ⊗Oκ;

(3b) For some geometric point C → κ of SpecC, the G{µ}-torsor x∗Qµ over BGm × Specκ is trivial.

Proof. The (a),(b) counterparts in each numbered pair are equivalent, so we will replace Q by Qµ and prove the

(b) sides of each pair.

The map BMµ → Z0 associates with each Mµ-torsor P0 the G-torsor obtained via pushforward along the map

Mµ → GO: Such a G-torsor is equipped with a canonical extension to an action of G⋊µ Gm.

Let us now show that this yields an isomorphism of BMµ(C) with the space of G{µ}-torsors over BGm×SpecC

satisfying any of the three given conditions (1b), (2b) and (3b). For condition (1b), it is easy: Giving such an object

over BGm × SpecC is the same as giving an étale torsor over C for the fixed point group scheme of G{µ}, which
is of course Mµ.

To finish, it is enough to see that BMµ is an open and closed substack of Z0. The quickest way to see this is

to observe, as Drinfeld does in [25, §C.2.3] that we have discrete invariants on Z0 given by G-conjugacy classes of

cocharacters Gm → G ⋊µ Gm lifting the identity map of Gm. Now, BMµ is the open and closed substack of Z0

associated with the trivial such lift. □

Remark 4.9.7. Let Z− be the attractor (of the base-change over A1/Gm of) Z. Then we find that Z−(C)×Z0(C)

BMµ(C) is spanned by G{µ}-torsors Qµ over A1/Gm × SpecC satisfying the following condition: There exists

an étale cover C → C ′ such that the restriction of Qµ over A1/Gm × SpecC ′ is trivial. Indeed, this amounts to

checking that a G{µ}-torsor Qµ over A1/Gm × SpecC with trivial restriction over BGm × SpecC is itself trivial.

This is because Qµ is smooth over A1/Gm × SpecC, and we have

MapA1/Gm×SpecC(A1/Gm × SpecC,Qµ) ≃−→ lim←−
n

MapA1/Gm×SpecC((A1/Gm)(tm=0) × SpecC,Qµ).

See the proof of Proposition 8.4.4.

In particular, Z− ×Z0 BMµ is isomorphic to the stack of étale torsors for the attractor group scheme associated

with G{µ}, which is of course P−
µ . In other words, we have Z− ×Z0 BMµ ≃ BP−

µ .

4.10. 1-bounded cocharacters. Here, we will present a key example of a 1-bounded stack relevant to Theorem D.

The notation will be as above.

Definition 4.10.1. Following [45], we will say that µ is 1-bounded if, under the adjoint action of µ, we have

gi = 0 for i > 1. In this case, we will set g+µ = g1.

If G is reductive, then this condition is equivalent to asking that µ be minuscule.

Lemma 4.10.2. If µ is 1-bounded, the exponential map induces an equivalence:

V(g+,∨µ )
≃−→ U+

µ .

In particular, for any C ∈ CRingR′/, we have an equivalence

g+µ ⊗R (C/Lpn)
exp−−→
≃

U+,(n)
µ (C).

Proof. See [45, Lemma 6.3.2]. □
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4.10.3. We now isolate a particular open substack of Z0
1-bdd using the 1-bounded condition on µ. For this, we

begin by noting that, for every representation W of G defined over R′, the usual twisting process by the G-torsor

P over BGm × SpecC yields a canonical graded vector bundleM•(W )P over SpecC.

In this way, we obtain a graded vector bundleM•(W ) over Z0. Now, the graded perfect complex T0
Z,• over Z0

is simplyM•(g)[−1].
The 1-bounded locus Z0

1-bdd is the open and closed locus over which we haveMi(g) ≃ 0 for i > 1.

Over BMµ, for each i ∈ Z, we have the vector bundles M0(gi) obtained by twisting the representation gi by

the universal Mµ-torsor. The restriction of T0
Z,• to BMµ is then seen to be isomorphic to the graded complex⊕

i∈ZM0(gi)(−i)[−1]. In particular, the 1-boundedness of µ ensures exactly that this is a 1-bounded complex.

That is, we have defined a map BMµ → Z0
1-bdd.

Definition 4.10.4. B(G,µ) will be the 1-bounded stack over the pointed graded stack (BGm × SpecR, ιR′) given

by the pair (BG×BGm, BMµ).

Remark 4.9.7 shows that the attractor B(G,µ)− is simply BP−
µ , and an analogous argument shows that the

repeller is BP+
µ .

Remark 4.10.5. It is easy to see from the definitions that B(G,µ) depends only on the isomorphism class of the

map Bµ : BGm,R′ → BGR′ . In particular, it depends on the cocharacter µ only up to conjugacy.

4.11. Deformations of 1-bounded fixed points. Suppose that Y = Spec(B•)/Gm for a non-positively graded

animated commutative ring B•.

4.11.1. For any m ≥ 0, we have the animated commutative graded ‘quotient’ B• → B≥−m with underlying

graded B0-module
⊕

i≥−mBi(−i). To construct this, we need a different perspective on the ∞-category of non-

positively graded animated commutative rings: They can also be obtained as the animation of the category of

non-positively graded commutative rings, which admits a set of compact projective generators given by graded

polynomial algebras in finitely many homogeneous variables in non-positive degrees. From this perspective, the

quotient map B• → B≥−m is simply the animation of the usual construction for non-positively graded commutative

rings. Note in particular, that B≥−1 is the graded trivial square-zero extension of B0 by B−1(1).

4.11.2. Let X = (X♢, X0)→ (Z, ι) be a 1-bounded stack over a pointed graded prestack with ι : BGm×SpecR→
Z. Suppose that we have a map of pointed prestacks Y → Z.

Proposition 4.11.3. Suppose that X♢ → Z is graded integrable (Definition A.2.5). Then the natural map

Map/Z(Y,X )→ Map/Z((SpecB≥−1)/Gm,X )

is an equivalence.

Proof. Consider the following general situation: Suppose that C ′
• → C• is a square-zero extension of animated

non-positively graded commutative B•-algebras with fiber I•. By the graded analogue of the discussion in §4.5, one
sees that the fiber of the map

Map/Z((SpecC
′
•)/Gm,X♢)→ Map/Z((SpecC)/Gm,X♢)

over a section x has the following features:

• The obstruction to its being non-empty is given by a section of

MapC•
(LX♦,x,•, I•[1])

where LX♦,x,• is the graded C•-module obtained via pulling the relative cotangent complex of X♢ over Y
along x.

• If the obstruction is nullhomotopic, then the fiber is equivalent to

MapC•
(LX♦,x,•, I•).
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Let x0 ∈ Map/Y((Spf C0)/Gm,X♢) = X♢,0(C0) be the image of x. Then Lemma A.2.3 below gives us a canonical

increasing and complete filtration Filwt
• LX♦,x,• with

grwt
−i LX♦,x,• ≃ C•(−i)⊗C0

LX♦,x0,i,

and we have

MapC•
(grwt

−i LX♦,x,•, I•) ≃ MapGrModC0
(LX♦,x0,i, I•(i)) ≃ MapC0

(LX♦,x0,i, Ii).

The right hand side here is is non-trivial only when LX♦,x0,i is not nullhomotopic and when i ≤ 0.

Now, if x0 is in the image of X0(C0), then it maps to a 1-bounded fixed point, and so LX♦,x0,i ≃ 0 for i ≤ −2.
From this, we deduce that the fiber over x depends only on the quotient I−1(1) ⊕ I0 of I•. More precisely, the

following square is Cartesian

Map/Z((SpecC
′
•)/Gm,X ) > Map/Z((SpecC•)/Gm,X )

Map/Z((SpecC
′
≥−1)/Gm,X )

∨
> Map/Z((SpecC≥−1)/Gm,X )

∨

Applying this with C ′
• → C• the map τ≤(k+1)B• → τ≤kB• for k ≥ 0 and using the fact that X♢ is a nilcomplete

smooth sheaf reduces to the situation where B• is a discrete graded commutative ring, so that Y is now a classical

stack.

We can now complete the proof by applying the same reasoning again to the square-zero thickenings B≥−m →
B≥−m+1 for m ≥ 2 and using graded integrability. □

Remark 4.11.4. Proposition A.2.4 shows that X → (Z, ι) is graded integrable whenever X♢ → Z has quasi-affine

diagonal.

However, graded integrability holds under weaker hypotheses. For instance, if X♢ = P × BGm → Z = BGm,

where P is as in Example 4.7.3, then, even though P does not have quasi-affine diagonal over SpecZ, we still know

that the map

Map((SpecB•)/Gm,P) = Perf((SpecB•)/Gm)→ lim←−
m

Perf((SpecB≥−m)/Gm) = lim←−
m

Map((SpecB≥−m)/Gm,P)

is an equivalence. In other words, the 1-bounded stack P{0,1} → BGm from Example 4.8.6 is graded integrable.

Similarly, the 1-bounded stack from Example 4.8.5 is also graded integrable.

4.12. A useful cartesian square.

4.12.1. Suppose that Fil• S is a non-negatively filtered animated commutative ring, and set S = gr0 S. The map

S → S underlies an arrow Fil• S → Fil•triv S of filtered animated commutative rings corresponding to a map of

stacks

A1/Gm × SpecS → R(Fil• S)

whose restriction over the open point of A1/Gm is the closed immersion SpecS → SpecS.

We will view Y defn
= R(Fil• S) as a pointed graded stack via the composition

BGm × SpecS → A1/Gm × SpecS → Y.

4.12.2. Let X = (X♢, X0)→ (Z, ι) be a 1-bounded stack over a pointed graded prestack with ι : BGm×SpecR→
Z, and let X− → SpecR be its associated attractor.
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Suppose that we have a map of pointed prestacks Y → Z. We now have a commutative diagram

Map/Z(Y,X ) > Map/Z(SpecS,X♢)

X−(S) = Map/Z(A1/Gm × SpecS,X )
∨

> Map/Z(SpecS,X♢).

∨

(4.12.2.1)

Proposition 4.12.3. Suppose that the kernel of the map

π0(S)→ π0(S)

is locally nilpotent and that X♢ → Z is filtered integrable (Definition A.2.8) and also satisfies the following additional

condition: For any classical ring R and any locally nilpotent ideal I ⊂ R, and for any map SpecR→ Z, we have

X♢(R) = lim←−
m

X♢(R/Im).

Then (4.12.2.1) is a Cartesian square.

Proof. Let Fil•
(S↠S)

S be the non-negatively filtered animated commutative ring with Fil0
(S↠S)

S ≃ S and

gri
(S↠S)

S ≃

{
S if i = 0;

0 otherwise.

The associated Rees algebra sits in a Cartesian square of graded animated commutative rings⊕
i Fil

i
(S↠S)

S · t−i > S[t, t−1]

S[t]

∨
> S[t, t−1].

∨

(4.12.3.1)

One can obtain this construction for instance by animating the obvious one for surjections of polynomial algebras

over Z.
For any non-negatively filtered animated commutative ring Fil•A, view R(Fil•A) as a pointed graded prestack

with

ι : BGm × Spec gr0A→ R(Fil•A).

Also, set

Fil•A′ = Fil•(A↠gr0(A))A,

where the right hand side is defined as above. If R(Fil•A) is a pointed graded stack over (Z, ι), set

X (Fil•A) defn
= Map/Z(R(Fil

•A),X )

The diagram (4.12.2.1) is Cartesian with R(Fil• S) replaced by R(Fil• S′). This is because of the Cartesian

nature of (4.12.3.1), and the surjectivity of the vertical maps; see (4) of [49, Theorem 7.5.1].

Note that there is a natural map R(Fil• S′)→ R(Fil• S). To complete the proof of the proposition it now suffices

to show that the corresponding map

X (Fil• S)→ X (Fil• S′)

is an equivalence. We will prove this using filtered deformation theory.

Suppose quite generally that Fil•B → Fil•A is a square-zero extension of non-negatively filtered animated

commutative rings with fiber Fil•K, and write Fil•K ′ for the fiber of the induced map Fil•B′ → Fil•A′. If
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R(Fil•B) is a pointed graded stack over (Z, ι), by the discussion in §4.5, we obtain a Cartesian square

X (Fil•B) > X (Fil•A)×X0(gr0 A) X
0(gr0B)

X (Fil•A)×X0(gr0 A) X
0(gr0B)

∨
> X (Fil•A⊕ Fil•K[1])×X0(gr0 A) X

0(gr0B).
∨

Moreover, if LX♦/Y is the relative cotangent complex, then for any x ∈ X (Fil•A), we obtain a filtered Fil•A-module

Fil• LX♦/Y,x, and we have a canonical equivalence:

fibx(X (Fil•A⊕ Fil•K[1])→ X (Fil•A)) ≃ MapFil• A(Fil
• LX♦/Y,x,Fil

•K[1]).

Similarly, if x′ ∈ X (Fil•A′) is the image of x, we have

fibx′(X (Fil•A′ ⊕ Fil•K ′[1])→ X (Fil•A′)) ≃ MapFil• A(Fil
• LX♦/Y,x,Fil

•K ′[1]).

We claim that the natural map between these fibers is an equivalence. For this, set

Fil• J = hcoker(Fil•K → Fil•K ′).

The claim would follow if we knew that

MapFil• A(Fil
• LX♦/Y,x,Fil

• J [1]) ≃ 0.

For this, first note that by construction we have Fili J ≃ 0 for i ≤ 1. Now, the 1-bounded condition essentially

ensures that Fil• LX♦/Y,x is generated in filtered degrees ≤ 1, and so the mapping space above vanishes as desired.

To see this precisely, one can argue as follows. If Fil• LX♦/Y,x is the filtered base-change over Fil•triv gr
0A, then

the 1-bounded condition tells us that gri LX♦/Y,x ≃ 0 for i ≥ 2. By Lemma A.2.3, gr• LX♦/Y,x admits an increasing

filtration with i-th graded piece isomorphic to

gri LX♦/Y,x(i)⊗gr0 A gr•A,

and, for each i and each j ≥ 1, we have

Mapgr• A(gr
i LX♦/Y,x(i)⊗gr0 A gr•A, gr• J [1](−j)) ≃ Mapgr0 A(gr

i LX♦/Y,x, gr
i+j J [1]) ≃ 0

since either the source or the target of this mapping space has to be zero. Using this, one finds that

MapFil• A(LX♦/Y,x, gr
• J [1](−j)) ≃ Mapgr• A(gr

• LX♦/Y,x, gr
• J [1](−j)) ≃ 0.

Here we are viewing graded modules over gr•A as filtered modules over Fil•A with trivial transition maps: Geo-

metrically, this corresponds to pushforward along the closed immersion R(Fil•A)(t=0) → R(Fil•A).
Using the cofiber sequence

Fil• J(−j + 1)→ Fil• J(−j)→ (gr• J)(−j)
now shows that we have

MapFil• A(Fil
• LX♦/Y,x,Fil

• J [1]) ≃ MapFil• A(Fil
• LX♦/Y,x,Fil

• J [1](−j))

for all j ≥ 1. Now, for every m ∈ Z, the m-th filtered piece of Fil• J [1](−m + 1) is zero. Therefore, we conclude

that the mapping spaces in question are also zero.

The claim that we just verified shows that, if X (Fil•A)→ X (Fil•A′) is an isomorphism, then so is X (Fil•B)→
X (Fil•B′). We will use this principle repeatedly in what follows.

For every k, we have the truncated filtered animated commutative ring τ≤k(Fil
• S) obtained by taking the

corresponding truncation for the associated Rees algebra: this is a square-zero extension of τ≤(k−1) Fil
• S by a filtered

module πk(Fil
• S)[k]. Via the deformation argument above, combined with induction on k and nilcompleteness,

one therefore reduces to showing that the map

X (π0(Fil• S))→ X (π0(Fil• S′))

is an isomorphism
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So we can assume that Fil• S corresponds to a classical graded ring R(Fil• S). Set I = im(Fil1 S) ⊂ S: this is

locally nilpotent by hypothesis. For m ≥ 1, let Fil• Sm = Fil• S/Im Fil• S be the induced filtered structure on the

ring Sm = S/Im. We now claim that we have

X (Fil• S) = lim←−
m

X (Fil• Sm).

Via smooth affine descent, this follows from our hypotheses: Indeed, they ensure that Map/Z(SpecA,X ) =

lim←−mMap/Z(SpecA/J
m,X ) for any discrete commutative ring A with ideal J ⊂ A, complete for the J-adic topol-

ogy, equipped with SpecA→ Z. We apply this with A = Rees(Fil• S)⊗ZZ[t, t−1]⊗Zr for r ≥ 0 and J ⊂ A the ideal

generated by I, and appeal to descent to deduce the claimed equality.

Therefore, using the deformation argument again, we are reduced to the case S = S1, where the map Fil1 S → S

is 0.

In the notation of (A.2.6), we now have Fil•(1) S = Fil•triv S = Fil•(1) S
′, and Fil•(m) S

′ = Fil• S′ for m ≥ 2.

Therefore, the proposition holds with Fil• S replaced with Fil•(m) S for any m ≥ 1. We now conclude using filtered

integrability. □

Remark 4.12.4. The above result can be viewed as a generalization of [45, Remark 6.3.3].

Definition 4.12.5. Given the above result and Proposition 4.11.3, we will find the following notion useful: A

1-bounded stack X over a pointed graded stack (Z, ι) is strongly integrable if it is filtered integrable, graded

integrable, and also satisfies the following condition: For any classical ring R and any locally nilpotent ideal I ⊂ R,
and for any map SpecR→ Z, we have

X♢(R) = lim←−
m

X♢(R/Im).

Remark 4.12.6. Proposition A.2.7 tells us that X is filtered integrable whenever X♢ → Z has quasi-affine diagonal.

Moreover, by Noetherian approximation, and Theorem 1.5 from [9], it is in fact strongly integrable: Indeed, we

already observed in Remark 4.11.4 that it is graded integrable.

These conditions are also valid more generally: For instance, if X = P{0,1} → BGm with X♢ = P × BGm
(notation as in Example 4.8.5), then we still know that the map

Map(R(Fil• S),P) = lim←−
m

Map(R(Fil•(m) S),P)

is an equivalence. Moreover, for any I-adically complete ring R, we also have

P(R) = Perf(R) = lim←−
m

Perf(R/Im) = lim←−
m

P(R/Im).

See [9, Lemma 8.2]. Therefore, combined with Remark 4.11.4, we find that X is strongly integrable.

Similarly, the 1-bounded stack from Example 4.7.2 is also strongly integrable.

5. Animated higher frames and windows

The purpose of this section is to give an account of the theory of [45] in an animated context, and to use it to

prove two crucial technical results, Propositions 5.9.9 and 5.10.23. They play an essential role in the establishment

of the representability theorems of Section 8.

5.1. Generalized Cartier divisors.

Definition 5.1.1. Recall that a generalized Cartier divisor for an animated commutative ring R is a surjective

map R ↠ R whose homotopy kernel I is an invertible R-module. By abuse of notation we will refer to such an

object via the cosection s : I → R, which is the same as a map s : SpecR→ A1/Gm.
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5.1.2. Any generalized Cartier divisor lifts R to a filtered animated commutative ring Fil•I R where the filtration

is the I-adic one given by

FilkI R =

{
I⊗k if k ≥ 0

R if k < 0,

and the transition maps are the identity for k ≤ 0 and given by

I⊗k ≃ I ⊗R I⊗(k−1) s⊗1−−→ R⊗R I⊗(k−1) ≃ I⊗(k−1)

for k > 0. We will also have occasion to consider the two-sided I-adic filtration given by FilkI,±R = I⊗k for all

k ∈ Z, which once again underlies a filtered animated commutative ring with

R(Fil•I,±R) ≃ SpecR.

To verify the assertions in the previous paragraph, using the classifying map s : SpecR → A1/Gm, one reduces

everything to the case where R = Z[x] with I = xZ[x], and here everything can be checked explicitly.

Remark 5.1.3. This also gives a concrete way of thinking of a point SpecR → R(Fil• S) of the Rees stack

corresponding to a filtered commutative ring Fil• S: it is equivalent to giving a generalized Cartier divisor I → R,

along with a map of filtered animated commutative rings Fil• S → Fil•I,±R.

5.1.4. For any M ∈ ModR, we will set M [I−1] = colimk≥0 I
−k⊗RM , where the transition maps are induced by s.

When we have an isomorphism R
≃−→ I of R-modules given by a section ξ of I, we will write Fil•ξ R and Fil•ξ,±R

for these filtered rings.

For any R-module M , we will write M/L(p, I) for M/Lp⊗R R.
If R′ ∈ CRingR/ is an R-algebra, and s′ : I ′ = R′ ⊗R I

1⊗s−−→ R′, then we will sometimes also denote the I ′-adic

filtrations on R′ by Fil•I R
′ and Fil•I,±R

′.

5.2. Formal Rees stacks. Suppose that I → A is a generalized Cartier divisor with p-complete quotient A, and

suppose that A underlies a filtered animated commutative ring Fil•A.

Definition 5.2.1. The formal Rees stack associated with this datum is the one associating with each R ∈
CRingp-nilp the space of generalized Cartier divisors J → R along with maps Fil•A→ Fil•J,±R (see Remark 5.1.3)

such that the underlying map A→ R is in Spf(A, I)(R).

In the sequel, the Rees construction will only be appealed to in this formal context. Therefore, by abuse of

notation, we will denote this formal stack once again by R(Fil•A).
In particular, we have R(Fil•I,±A) ≃ Spf(A, I).

5.3. Witt vectors, δ-rings and prisms. We recall the notion of an animated δ-ring from [11, App. A]. First,

we note:

Remark 5.3.1. Every R ∈ CRingFp/ is equipped with a canonical Frobenius endomorphism φ : R → R obtained

by animating the usual Frobenius endomorphism for polynomial algebras over Fp. In particular, for any R ∈ CRing,

we obtain a canonical map

φ : R
can−−→ R/Lp

φ−→ R/Lp,

where can : R→ R/Lp is the canonical surjection.

5.3.2. Now, one defines for any animated commutative Z(p)-algebra R the 2-truncated (p-typical) Witt ringW2(R)

with underlying space R2 such that the projection onto the first coordinate is a map of animated commutative rings

W2(R) ↠ R. This amounts to the observation that the functor C 7→ W2(C) on discrete commutative rings is
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represented by a smooth ring scheme, and so extends canonically to an animated ring scheme equipped with a map

to Ga. There exists a canonical Cartesian square of animated commutative rings

W2(R) > R

R
∨

φ
> R/Lp.

can

∨

(5.3.2.1)

Definition 5.3.3. A δ-structure on an animated Z(p)-algebra R is a section of the natural map W2(R)→ R.

An (animated) δ-ring is an animated Z(p)-algebra R equipped with a δ-structure. We obtain an ∞-category

CRingδ of animated δ-rings in the usual fashion.

Remark 5.3.4. Via projection onto the second coordinate of W2(R), such a section yields an operator δ : R→ R

satisfying certain properties, which, when R is discrete, completely determines the δ-structure.

Remark 5.3.5. The Cartesian square (5.3.2.1) shows that, giving a δ structure on R is equivalent to giving a lift

φ : R → R of the map φ : R → R/Lp. In particular, when R is flat over Z(p), a δ-structure is equivalent to giving

an endomorphism φ : R→ R lifting the p-power Frobenius endomorphism of R/pR.

Remark 5.3.6. Note that, if R is an Fp-algebra, then the natural map R→ R/Lp is not a morphism in CRingFp/,

and is in fact not compatible with the natural Frobenius endomorphisms on source and target. Therefore, the

Frobenius endomorphism of R does not underlie a prism structure on R.

Remark 5.3.7. If R is k-truncated, so isW2(R). This shows that, for any δ-ring R, the composition R→W2(R)→
W2(τ≤kR) factors through τ≤kR. In other words, τ≤kR inherits a canonical δ-ring structure from R.

Remark 5.3.8. The forgetful functor from CRingδ → CRing admits both a left and right adjoint: The former is

the free δ-ring functor and the latter is the Witt functor A 7→W (A).

Lemma 5.3.9. Let Z(p){x} be the free δ-ring obtained by hitting Z(p)[x] with the left adjoint. Then the associated

Frobenius lift Z(p){x}
x7→φ(x)−−−−−→ Z(p){x} is faithfully flat.

Proof. See [13, Lemma 2.11]. □

Definition 5.3.10. Following [11, Def. 2.4], we define a(n animated) prism to be an animated δ-ring A equipped

with a generalized Cartier divisor I → A with quotient A such that the following conditions hold:

(1) A is (p, I)-complete.

(2) Given a perfect field k of characteristic p and a map A→W (k) of δ-rings, we have W (k)⊗A A ≃ k.
If we want to emphasize the Cartier divisor, we will sometimes also denote the prism by (A, s : I → A).

Definition 5.3.11. A prism (A, I) is transversal if A is flat over Zp and the map I → A is injective mod-p.

Definition 5.3.12. A prism (A, I) is perfect if the Frobenius lift φ : A→ A is an isomorphism.

Remark 5.3.13. If (A, I) is a perfect prism, A/Lp is a perfect Fp-algebra and so is discrete; this implies that A is

also discrete and p-torsion free. It is a result of Bhatt-Scholze [13, Theorem 3.10] that the assignment (A, I) 7→ A

is an equivalence of categories between perfect prisms and perfectoid rings. The inverse carries a perfectoid ring R

to the perfect prism (Ainf(R), ker θ) where Ainf(R) =W (R♭) with R♭ the tilt of R and θ : Ainf(R)→ R is the usual

map.

5.3.14. Associated with any prism (A, I) is a canonical invertible module A{1} over A constructed in [10, Propo-

sition 2.5.1] and characterized by the following properties:
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(1) ([10, (2.2.11)]) For any transversal prism (A, I), we have

A{1} = lim←−
k

Ik/Ik+1,

where Ik = Iφ∗
A(I) · · · (φ

k−1
A )∗(I), and the maps Ik/Ik+1 → Ik−1/Ik are induced by dividing the natural

maps by p.

(2) ([10, (2.5.3)]) For any map of prisms (A, I)→ (B, J), there is a canonical isomorphism B⊗AA{1}
≃−→ B{1}.

By [10, Remark 2.5.9], we have a canonical isomorphism I ⊗A φ∗(A{1}) ≃−→ A{1}.
For any M ∈ ModA and i ∈ Z, we will set M{i} defn

= M ⊗A A{1}⊗i.

5.4. Animated higher frames.

Definition 5.4.1. A(n animated higher) frame A is a tuple (Fil•A, I
s−→ A,Φ, A{1}), where:

(1) Fil•A is a non-negatively filtered (p, I)-complete animated commutative ring;

(2) s : I → A is a generalized Cartier divisor;

(3) Φ : Fil•A → Fil•I A is a map of filtered animated commutative rings such that the underlying endomor-

phism φ : A → A of animated commutative rings is a ‘näıve’ Frobenius lift in the sense that the induced

endomorphism of π0(A)/pπ0(A) is Frobenius;

(4) A{1} is an invertible A-module equipped with an isomorphism12

I ⊗A φ∗A{1} ≃−→ A{1}.

Frames organize into an ∞-category in a natural way. The morphisms

A→ A′ = (Fil•A′, I ′
s′−→ A′,Φ′, A′{1})

are maps f : Fil•A→ Fil•B of filtered animated commutative rings equipped with isomorphisms A′⊗A (I
s−→ A) ≃

(I ′
s′−→ A′) and A′ ⊗A A{1}

≃−→ A′{1}, along with a commuting diagram

Fil•A
Φ

> Fil•I A

Fil•A′
∨

Φ′
> Fil•I′ A

′ ≃ A′ ⊗A Fil•I A.
∨

5.4.2. Given a frame A, we will write RA for the p-complete animated commutative ring gr0A and A for the

quotient of I
s−→ A.

Let Fil•I,±A be the two-sided I-adic filtration on A; then we obtain a map

Φ± : Fil•A→ Fil•I,±A,

which restricts to Φ in non-negative degrees, and which in filtered degree −i (for i ∈ Z>0) is given by s−i ◦ φ.
Write φi : Fil

iA→ I⊗i for the filtered degree-i component of Φ.

For any M ∈ ModA and i ∈ Z, set M{i} =M ⊗A A{1}⊗i.

Definition 5.4.3. If (I
s−→ A) = (A

p−→ A) with A{1} ≃ A we will say that A is a p-adic frame.

Since A{1} and I → A are superfluous here, we will denote a p-adic frame by a tuple (A,Fil•A,Φ).

12The main role of this ‘abstract’ Breuil-Kisin twist is in the interpretation of the (G,µ)-windows appearing in § 5.5 below in terms

of the general definitions of § 5.9 (see Remark 5.5.8). As such, it can be ignored for now. In cases of interest, this twist will either be

trivial or be determined by a prism structure on (A, I).
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Remark 5.4.4. Our definition of an animated frame is inspired by the definition of Lau in [45, §2], but allows for
more general objects. In fact, our notion of a p-adic frame is quite close to being the natural animated generalization

of Lau’s definition.

Indeed, suppose that we have a p-adic frame A such that A is a discrete Zp-algebra, and such that FiliA is also

discrete for all i ≥ 0. Then we obtain the graded Rees ring

S(A)
defn
= Rees(Fil•A) =

⊕
i=0

FiliA · t−i

along with maps τ, σ : S(A)→ A. Here, τ is given by

τ : S(A)→ S(A)/(t− 1) ≃ A

and σ as the composition

S(A)
Rees(Φ±)−−−−−−→ Rees(Fil•p,±A)→ Rees(Fil•p,±A)/(t− p) ≃ A.

The triple (S(A), σ, τ) is—after a sign change in the graded degrees—a (higher) frame as defined by Lau [45,

Definition 2.0.1]

Remark 5.4.5. One can somewhat reverse this process: Suppose that (S, σ, τ) is a higher frame in the sense of

Lau. Then one obtains an animated filtered commutative ring Fil• S0 with underlying ring S0 and filtration given

by Fili S0 = Si
τi−→ S0. Note that this is in general not a filtered ring in the classical sense, since the S0-modules

Fili S0 are not necessarily ideals in S0. This is the case for the truncated Witt frame from [45, Example 2.1.6].

As explained in [45, Remark 2.0.2], σ0 : S0 → S0 is a lift of the mod-p Frobenius on S/pS, and σi gives a map

Fili S0 → S0 such that pσi+1 = σi|Fili+1 S0
for all i ≥ 0. This means precisely that these maps organize into a map

Φ : Fil• S0 → Fil•p S0 of filtered animated commutative rings.

If we now assume that each Si is derived p-complete, then we have recovered our notion of a p-adic frame.

Remark 5.4.6. As noted in the previous remarks, our definition is a closely related to that of Lau if we restrict to

p-adic frames. To motivate our more general definition, we need to look ahead to Lemma 6.11.6 and Theorem 6.11.7

below. These results show that the Nygaard filtered prismatization and syntomification of a semiperfectoid ring can

be described in terms of an animated higher frame—as defined here—obtained from its Nygaard filtered prismatic

cohomology. Thus, we will be able to apply the theory from this section to study objects living over the stacks that

will appear in Section 6, and we do so in Section 8.

Definition 5.4.7. A frame A is prismatic if the following conditions hold:

• The pair (A, I) is a prism.

• The endomorphism φ : A→ A is the one obtained from the underlying δ-ring structure on A. In particular,

it is a lift of the Frobenius endomorphism of A/Lp.

• The invertible module A{1} and the datum of the isomorphism I⊗Aφ∗A{1} ≃ A{1} are the canonical ones
from (5.3.14).

Since the datum of A{1} is superfluous here, we will denote a prismatic prism by the tuple (A, I → A,Fil•A,Φ).

Note that any p-adic frame whose näıve Frobenius lift underlies a δ-ring structure is automatically prismatic.

Example 5.4.8 (The Witt frames). Suppose that we have R ∈ CRingp-comp. If R is discrete, since W (R) is a

derived p-complete δ-ring, putting Remark 5.4.5 together with [45, Example 2.1.3] gives us the Witt frame W (R)

associated with R. More generally, by applying this to the p-completed ring of functions of the Witt scheme W ,

we see that W (R) underlies a p-adic frame W (R) for any p-complete animated commutative ring R. It is a p-adic

frame and the filtration Fil•LauW (R) is given by

FiliLauW (R) =

{
W (R) if i ≤ 0;

F∗W (R) if i ≥ 1,
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with transition map Fil1LauW (R) = F∗W (R)→ W (R) given by the Verschiebung map, and that in higher degrees

given by F∗W (R)
p−→ F∗W (R). The filtered Frobenius lift is obtained in filtered degree 0 via the fact that we have

FV = p, and is the identity in filtered degrees i ≥ 1.

Note that this frame is prismatic.

Example 5.4.9 (The truncated Witt frames). When R is an Fp-algebra, in [45, Example 2.1.6], Lau also defines

the truncated Witt frames with underlying ring Wn(R) for n ≥ 1. In particular, when n = 1, we obtain the zip

frame from Example 2.1.7 of loc. cit.. Similarly to the previous example, Remark 5.4.5 now also gives us p-adic

frames Wn(R); however, they will no longer be prismatic. Explicitly, the underlying filtered animated commutative

ring at level n is Fil•LauWn(R) with

FiliLauWn(R) =

{
Wn(R) if i ≤ 0;

F∗Wn(R) if i ≥ 1,

and once again the transition maps are given by Verschiebung in degree 1 and by multiplication by p in higher

degrees. The filtered Frobenius lift is given by F in degree 0 and the identity in higher degrees.

The Witt frames have some useful universal properties. To explain them we need to introduce the following

notion.

Definition 5.4.10 (Laminations). A lamination for a prismatic frame A is the provision of an isomorphism of

generalized Cartier divisors13

(I ⊗AW (RA)→W (RA))
≃−→ (W (RA)

p−→W (RA))

such that the resulting isomorphism

A⊗AW (RA) =W (RA)/
L(I ⊗AW (RA))

≃−→W (RA)/
Lp

is an isomorphism of RA-algebras. Here, the RA-algebra structure on the left is via the composition

RA = gr0A
φ=gr0 Φ−−−−−→ gr0I A = A→ A⊗AW (RA)

while that on the right is obtained from the map RA → F∗W (RA) induced by the Frobenius lift F : W (RA) →
F∗W (RA).

A frame A is laminated when it is equipped with a lamination.

Lemma 5.4.11. The following data are equivalent for a prismatic frame A:

(1) A map of frames A→W (RA) extending the canonical map λA : A→W (RA).

(2) A lamination for A.

Proof. The direction (1)⇒(2) is straightforward. The other direction uses the following description of the filtration

underlying the Witt frame W (R): We have a Cartesian square of filtered animated commutative rings

Fil•LauW (R) > Fil•trivR

Fil•p F∗W (R)
∨

> Fil•triv F∗W (R),

∨

where the right vertical arrow is obtained from the map R → F∗W (R) induced by the Frobenius lift F : W (R)→
F∗W (R).

If A is prismatic, then the δ-ring structure on A yields a map λA : A → W (RA). A lamination for A extends

this to a map of filtered animated commutative rings

Fil•I λA : Fil•I A→ Fil•pW (RA).

13These are in fact Cartier-Witt divisors for RA; see [11, Example 2.11] and also § 6.2 below.
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There is now a canonical map Fil•A→ Fil•LauW (RA) induced by

Fil•A
(Φ,can)−−−−−→ φ∗ Fil

•
I A×Fil•triv φ∗A

Fil•trivRA
(φ∗ Fil•I λA,id)−−−−−−−−−→ Fil•p F∗W (RA)×Fil•triv F∗W (RA)

Fil•trivRA.

Note that for the definition of the second map we are crucially using the fact that φ∗A → F∗W (RA) is a map

of RA-algebras. It is not difficult to see now that this underlies the map of frames whose existence is asserted in

(1). □

Remark 5.4.12. An earlier version of this paper erroneously omitted the condition that the isomorphism of

quotient rings be one of RA-algebras. In particular, we had asserted the existence of a canonical map of frames

A → W (RA) for any p-adic prismatic frame A. Here is an example communicated to us by Eike Lau that shows

that this is incorrect: Let R = Fp[ϵ] be the ring of dual numbers over Fp, and let h : R→ R be the automorphism

given by ϵ 7→ uϵ for u ̸= 1 ∈ F×
p . Then one can define a frame A with the same underlying prism as W (R) but

where the map Φ : Fil•LauW (R)→ Fil•p F∗W (R) is replaced with Φ′ = Fil•pW (h) ◦Φ. In this case, RA = R and the

map λA is simply the identity, but it cannot be extended to a map of frames A → W (R). Indeed, if it could be,

then we would have Φ′ = Φ.

The issue is that the natural identification φ∗A = F∗W (R) is not an isomorphism of R-algebras. To see this,

note that W (R) is a trivial square-zero extension of R by G♯a(R)[1], and the map R → F∗W (R) is classified (after

shifting) by a map of complexes R ≃ LR/Fp [−1] → G♯a(R) ⊂ W (R) carrying 1 to [ϵ], while the map R → φ∗A

corresponds to the map carrying 1 to [uϵ].

There is however the following result.

Lemma 5.4.13. Suppose that A is a p-adic frame with RA an Fp-algebra and that φ : A → A is a lift of the

Frobenius endomorphism of RA
14. Then there is a canonical map of frames A→W1(RA).

Proof. When R is an Fp-algebra, we have a Cartesian square of filtered animated commutative R-algebras

Fil•LauW1(R) > Fil•trivR

Fil•p φ∗R
∨

> Fil•triv φ∗R,
∨

where the right vertical arrow is induced by the Frobenius endomorphism of R and the bottom horizontal arrow is

obtained via base-change from Fp of the map of filtered animated commutative rings corresponding to the map of

graded Fp[t]-algebras
Fp[t, u]/(ut)

u7→0−−−→ Fp[t].
Now, the map Fil•A→ Fil•LauW1(RA) underlying the map of frames A→W1(RA) is given by

Fil•A
(Φ,can)−−−−−→ Fil•p φ∗A×Fil•triv φ∗RA Fil•trivRA

(φ∗can,id)−−−−−−→ Fil•p φ∗RA ×Fil•triv φ∗RA Fil•trivRA.

□

Example 5.4.14 (Breuil-Kisin frames). Take (A, I ′) to be a transversal prism, so that I ′ ⊂ A is an ideal with A/I ′

(and hence) A p-completely flat, and let I = φ(I ′) ⊂ A. Taking FiliA = FiliI′ A completes (A,φ) to a prismatic

frame A. When A = W (k)[|u|] for a perfect field k with φ(u) = up, and I ′ = (E(u)) is generated by an Eisenstein

ideal, this appears in the classical Breuil-Kisin theory.

The argument from [10, Proposition 3.6.6] shows that A is canonically laminated: More precisely, I ′⊗AW (RA)→
W (RA) is a Cartier-Witt divisor in the Hodge-Tate locus of the Cartier-Witt stack (we will encounter this in this

paper in § 6.3), and so its Frobenius twist I ⊗AW (RA)→W (RA) is canonically isomorphic to W (RA)
p−→W (RA).

14Note that this holds if either A is prismatic, or if A → RA is a map of Fp-algebras and φ is the Frobenius endomorphism of A.
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Moreover, since the map A → W (RA) is a map of δ-rings, one sees that the map RA → W (RA) is the canonical

one.

More generally, given any prismatic frame A, we will say that it is of Breuil-Kisin type if the filtration Fil•A is

of the form Fil•I′ A, where (A, I
′) is another prism structure on A equipped with an isomorphism φ∗I ′

≃−→ I, and the

map Φ is the associated map of filtered animated commutative rings. The argument from the previous paragraph

shows that A also admits a lamination. See also Remark 6.10.2 and Lemma 6.10.4 below.

Example 5.4.15 (The Ainf frame). As a special case of the previous example, we have the case where (A, I ′) is a

perfect prism with R
defn
= A/I ′ perfectoid.

When p = 0 ∈ R, A = Ainf(R) =W (R) with I = pW (R), and this gives a special case of Example 5.4.8.

Remark 5.4.16 (Operations of frames). For future reference, let us record some basic operations on frames:

(1) (Base-change) Suppose that A is a frame and that φA : A → A is the underlying näıve Frobenius lift. If

(A,φA)→ (B,φB) is a map of animated commutative rings equipped with näıve Frobenius lifts such that

B is also (p, I)-complete, then one sees that the tuple (B ⊗A Fil•A,B ⊗A I → B,B ⊗A A{1})15 underlies

a canonical frame B ⊗A A. The filtered Frobenius lift is the one underlying the map

φ∗
B Fil•B ≃ B ⊗A φ∗

A Fil•B
id⊗Φ−−−→ B ⊗A Fil•I A = Fil•B⊗AI B.

Here, we are viewing Φ as a map φ∗
A Fil•A→ Fil•I A of filtered animated commutative A-algebras.

(2) (Reduction-mod-pn) Applying this with B = A/Lpn with its induced näıve Frobenius lift shows that we have

a canonical frame A/Lpn obtained by reducing the original one mod pn. Note that, if A is not prismatic, then

this induced lift will not agree with the canonical Frobenius endomorphism of A/Lp for n = 1. Therefore,

to avoid confusion, we will reserve this operation for prismatic frames in the sequel.

(3) (Postnikov tower) For k ≥ 0, there is a canonical frame structure τ≤kA obtained by taking the k-truncations

of all the defining data. By Remark 5.3.7, this operation preserves the property of being prismatic.

Remark 5.4.17 (Mapping to zip frames). Suppose that A = (A, I → A,Fil•A,Φ) is a prismatic frame. Then

the map A→ A/L(p, I) is compatible with Frobenius, and so by Remark 5.4.16 we obtain via base-change a frame

A♡ defn
= A/L(p, I). If further we can fix an orientation for the prism16—that is, a trivialization of A-modules

A
≃−→ I—then A♡ is now a p-adic frame, and so Lemma 5.4.13 gives us maps of frames

A→ A♡ →W1(RA♡).

If A is a p-adic prismatic frame, then the lemma already gives a map A→ W1(RA) through which the above map

factors.

Definition 5.4.18 (Stacks associated with frames). Let Spf A
defn
= Spf(A, I) be the p-adic formal scheme obtained

from A with its (p, I)-adic topology. If R(Fil•A)→ A1/Gm×Spf Zp is the associated formal Rees stack over Spf Zp
as in §5.2, we obtain two maps

τ, σ : Spf A ↪→ R(Fil•A)
as follows:

• τ is obtained by pulling back the open point

Gm/Gm × Spf Zp ↪→ A1/Gm × Spf Zp.

It is in particular, an open immersion.

• σ is obtained as the composition

Spf A
≃−→ R(Fil•I,±A)

R(Φ±)−−−−→ R(Fil•A).

15The tensor products here are meant to be in the (p, I)-complete category.
16This is mostly for convenience. We could omit this condition at the cost of replacing the truncated Witt frame by a twisted version

that incorporates the invertible module I.
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Remark 5.4.19. We also have a canonical map π : R(Fil•A) → A1/Gm × Spf A arising from the map of filtered

rings Fil•triv A → Fil•A. From it, we obtain a map R(Fil•A) → Spf A whose composition with τ is the identity,

while its composition with σ is the endomorphism of Spf A obtained from the Frobenius lift φ.

Remark 5.4.20 (The abstract filtered de Rham point). The restriction of the map τ to Spf RA extends along the

open immersion

Gm/Gm × Spf RA ↪→ A1/Gm × SpecRA

to a map A1/Gm×Spf RA → R(Fil•A). On the level of filtered rings this corresponds to the map Fil•A→ Fil•trivRA.

In particular, by restricting this last map to BGm × Spf RA, we can view R(Fil•A) as an RA-pointed graded

formal stack in the sense of Definition 4.8.1.

Example 5.4.21 (The stacks in the oriented Breuil-Kisin case). Suppose that A is of Breuil-Kisin type associated

with a transversal prism (A, I ′). Assume also that we have an orientation given by a generator ξ′ ∈ I ′. Then

Fil•A = Fil•ξ′ A, and so we have

R(Fil•A) = Spf

(⊕
i

(ξ′)min(0,i)t−iA

)
/Gm

ξ′t−1 7→u←−−−−−−
≃

Spf (A[u, t]/(ut− ξ′)) /Gm

The map τ now corresponds simply to the open immersion of the locus t ̸= 0. The map σ is a bit more interesting:

On the level of maps of graded rings it corresponds to the composition

A[u, t]/(ut− ξ′)→ (φ∗A)[u, t]/(ut− ξ)→ (φ∗A)[u, u
−1, t]/(ut− ξ) ≃−→ (φ∗A)[u, u

−1].

Here, the first map is induced by the Frobenius lift φ acting on coefficients. Put more simply, σ is obtained by

inverting u and then applying the Frobenius endomorphism of Spf A. It is an open immersion if and only if (A, I ′)

is a perfect prism.

Before we state the next result, recall the following:

Definition 5.4.22. We will say that a map B → C in CRing is Henselian if π0(B)→ π0(C) is surjective, and if

(π0(B), ker(π0(B)→ π0(C))) is a Henselian pair as defined for instance in [66, Tag 09XD].

Proposition 5.4.23. Suppose that A is a (prismatic) frame. Then A ↠ RA is Henselian. Moreover, every p-

completely étale map RA → RA′ lifts uniquely to a (p, I)-completely étale map A → A′17, where A′ underlies a

(prismatic) frame A′ uniquely determined by the fact that Fil•A′ = Fil•A⊗A A′.

Proof. This is an animated variant of [45, Lemma 4.2.3].

Let us check that A↠ RA is Henselian. We follow the argument from [1, Lemma 4.1.28]. Since A is (p, I)-adically

complete, it is enough to check that π0(A/
L(p, I)) → π0(RA/

L(p, I)) is Henselian, which is true since its kernel is

locally nilpotent; indeed, our hypotheses imply that it is annihilated by the p-power Frobenius.

In fact, this argument also proves the assertion on lifting p-completely étale maps to (p, I)-completely étale ones;

see [66, Tag 0ALI].

Similarly, we also have an endomorphism φ′ : A′ → A′ extending φ : A→ A and lifting the Frobenius endomor-

phism of π0(A
′)/pπ0(A

′). The corresponding filtered map Φ′ : Fil•A′ → Fil•I A
′ is now given by

Fil•A′ ≃ A′ ⊗A Fil•A′ φ′⊗Φ−−−→ A′ ⊗A Fil•I A
′ ≃ Fil•I A

′.

If A is prismatic, we can interpret δ-ring structures on A′ as sections A′ → W2(A
′), and the (p, I)-complete

étaleness of A′ over A guarantees that there exists a unique (up to homotopy) such section lifting the corresponding

one for A. □

5.5. (G,µ)-windows over frames. Now, suppose that we are in the situation of §4.9, so that G is a smooth group

scheme over Zp, O is the ring of integers in a finite unramified extension of Zp and µ : Gm,O → GO is a cocharacter.

The associated map Bµ : BGm,O → BGO classifies a G-torsor Pµ over BGm,O.

17By this, we mean that A′ is (p, I)-complete, and A/L(p, I) → A′/L(p, I) is étale.

https://stacks.math.columbia.edu/tag/09XD
https://stacks.math.columbia.edu/tag/0ALI


38 ZACHARY GARDNER AND KEERTHI MADAPUSI

5.5.1. Let k be the residue field of O. If A is a frame such that RA lifts to CRingk/, then A lifts canonically to

CRingO/: Lift the map O → RA/
L(p, I) first to O → A/L(p, I) using local nilpotence and the formal étaleness of

O, and then to A by (p, I)-completeness.

We will view R(Fil•A) as living over the stack BGm via the line bundle associated with the filtered module

Fil•A{1} defn
= Fil•A(−1)⊗A A{1}.

Note that the restriction of this line bundle along τ corresponds to the A-module A{1}, while that along σ corre-

sponds to I ⊗A φ∗A{1} ≃ A{1}. Therefore, if we take the structure map Spf A→ BGm classifying the line bundle

associated with A{1}, both σ, τ can be viewed as maps of stacks over BGm.

Proposition 5.5.2. The following are equivalent for an fpqc G{µ}-torsor Qµ over R(Fil•A)⊗ Z/pnZ.
(1) Qµ is trivial étale-locally on Spf RA. That is, there exists a p-completely étale map RA → RA′ such that

the restriction of Qµ over R(Fil•A′)⊗ Z/pnZ is trivial.

(2) The restriction of Qµ to R(Fil•A)(t=0) ⊗ Z/pnZ is trivial étale-locally on Spf RA.

(3a) The restriction of Qµ over A1/Gm × Spf RA is trivial étale-locally on Spf RA.

(3b) For every geometric point RA → κ of Spf RA, the restriction of Qµ over A1/Gm × Specκ is trivial.

(4a) The restriction of Qµ over BGm × Spf RA is trivial étale-locally on Spf RA.

(4b) For every geometric point RA → κ of Spf RA, the restriction of Qµ over BGm × Specκ is trivial.

If Spf RA is connected, then this is also equivalent to: For some geometric point RA → κ of Spf RA, the restriction

of Qµ over BGm × Specκ is trivial.

Proof. The equivalence of (3a), (3b), (4a) and (4b) follows from Lemma 4.9.6 and Remark 4.9.7, as does the

equivalence of these statements with the last unnumbered assertion.

We can finish by showing (3a)⇒(1). Since the stacks involved are (p, I)-complete, it is enough to know that

every section of the smooth relative scheme Qµ over A1/Gm × SpecRA/
L(p, I) can be lifted to a section over

R(Fil•A/L(p, I)).
Note that the kernel of the classical truncation of A/L(p, I) → RA/

L(p, I) is a locally nilpotent thickening, as

observed in the proof of Proposition 5.4.23. If µ is 1-bounded, we can now conclude using Proposition 4.12.3.

In general, we can use the argument from the proof of loc. cit. to prove the following claim: Given a non-

negatively filtered animated commutative ring Fil•B where the kernel of π0(B) → π0(gr
0B) is locally nilpotent,

and given a map X → R(Fil•B) fibered by smooth schemes, X admits a section over R(Fil•B) if and only if

it admits a section over A1/Gm × SpecB. Indeed, using the invariance of this property under filtered nilpotent

thickenings of Fil•B, we reduce successively to the case where Fil•B is discrete, then to the case where Fil1B → B

is the zero map, and then using Proposition A.2.7 to the case where the Rees algebra of Fil•B is itself a nilpotent

extension of B[t]. □

Definition 5.5.3. WindG,µ∞,A(RA) is the ∞-groupoid of G-torsors Q over R(Fil•A) equipped with an isomorphism

of G-torsors ξ : σ∗Q ≃−→ τ∗Q over Spf RA, and satisfying the following equivalent conditions:

(1) The associated G{µ}-torsor Qµ is trivial étale locally on Spf RA.

(2) For every geometric point RA → κ, the restriction of Qµ over BGm × Specκ is trivial.

(3) For every geometric point RA → κ, the restriction of Q over BGm × Specκ is isomorphic to Pµ.
We will refer to the objects of this ∞-groupoid as (G,µ)-windows over A.

When A is prismatic, we will define the ∞-groupoid of n-truncated (G,µ)-windows over A by replacing

R(Fil•A) with R(Fil•A)⊗Z/pnZ in the above definition, and asking for the isomorphism ξ to be of G-torsors over

A/Lpn.

We have

WindG,µ∞,A = lim←−
n

WindG,µn,A.

Definition 5.5.4. We will call (G,µ)-windows over the Witt vector frame W (R) (G,µ)-displays over R, and

write DispG,µ∞ (R) for the ∞-groupoid spanned by them.
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If R is an Fp-algebra, then, for n ≥ 1, we will call (G,µ)-windows over the truncated Witt vector frame Wn(R)

n-truncated (G,µ)-displays.18

For classical R, these definitions recover the definition from [17] (for n =∞) and [45, §5].
When n = 1, one can show that, in the language of [65], DispG,µ1 is the stack over k parameterizing G-zips of

type µ.

Remark 5.5.5. Here is a slightly different perspective on the definition, closer to the treatment in [45, 17]. Suppose

that we have a trivialization A
≃−→ A{1}.

Let Q0 be the G-torsor over R(Fil•A)⊗ Z/pnZ obtained from the torsor Pµ → BGm,O: Its automorphisms are

represented by the sheaf L+
AG

(n){µ} given by

L+
AG

(n){µ}(RA′) = MapBGm,O (R(Fil
•A′)⊗ Z/pnZ, G{µ}).

Because of our chosen trivialization of A{1}, the restriction of Q0 along both τ and σ is also trivial, and so its

automorphisms are represented on the p-completely étale site of RA by the sheaf L+
AG

(n) given by

L+
AG

(n)(RA′) = G(n)(A′) = G(A′/Lpn).

Pullback along σ and τ gives two maps

σ, τ : L+
AG

(n){µ} → L+
AG

(n)

We now have

WindG,µn,A = [L+
AG

(n) �σ τ L
+
AG

(n){µ}],
where the right hand side indicates the quotient by the action given symbolically by

L+
AG

(n) × L+
AG

(n){µ} (h,g)7→τ(h)−1gσ(h)−−−−−−−−−−−−→ L+
AG

(n).

Remark 5.5.6. Under the same condition as in the previous remark, the ∞-groupoid of (G,µ)-windows over A

can be viewed as the quotient

[L+
AG �σ τ L

+
AG{µ}]

with

L+
AG(RA′) = G(A′) ; L+

AG{µ}(RA′) = MapBGm,O (R(Fil
•A′), G{µ}).

Note that, by Proposition 4.12.3, if µ is 1-bounded, we have

L+
AG{µ}(RA′) ≃ G(A′)×G(RA′ ) P

−
µ (RA′).

Assume for the rest of this subsection that µ is 1-bounded.

Remark 5.5.7. If R is a discrete p-complete O-algebra and W (R) is the Witt frame from Example 5.4.8, then

the above description shows that our notion of a (G,µ)-display in terms of (G,µ)-windows over W (R), recovers the

notion defined in [17].

Remark 5.5.8. Let S(A) be the coequalizer in p-adic formal prestacks of the two maps

σ, τ : Spf A→ R(Fil•A).

Unwinding definitions, WindG,µn,A(RA) is simply the space

Map/BGm(S(A)⊗ Z/pnZ,B(G,µ)),

where B(G,µ) → (BGm, ιO) is the 1-bounded stack from Definition 4.10.4 and we are viewing S(A) as a pointed

graded stack via Remark 5.4.20.

18This is unfortunately inconsistent with our use of the adjective ‘n-truncated’ for windows, but it is compatible with the definition

from [47]. For perfect R, the two notions of truncatedness agree.
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Remark 5.5.9. Suppose that A is flat over Zp. Suppose also that we have Fil1A = (E) for some non-zero divisor

E ∈ A, so that RA = A/(E), I = (φ(E)) and A{1} is trivial. In particular, A is prismatic.

Let Hµ → GA be the dilatation of GA along the subgroup P−
µ ⊗ RA ⊂ G ⊗ RA (see for instance [14, §3.2]).

This is a smooth affine group scheme over A characterized by the fact that, for any flat A-algebra B, we have

Hµ(B) = G(B)×G(B/(E)) P
−
µ (B/(E)). In particular, conjugation by µ(E) on the generic fiber of GO restricts to a

map int(µ(E)) : Hµ → GA
Then we have L+

AG{µ}(RA′) = Hµ(A
′), τ is just the natural map Hµ(A

′) → G(A′), while σ is given by

φ ◦ int(µ(E)); see the argument in [45, Lemma 5.2.1].

Therefore, we see that WindG,µ∞,A is the étale sheafification of the functor

RA′ 7→ [G(A′) �σ∗ τ∗ Hµ(A
′)].

In other words, a section over A′, amounts to giving an Hµ-torsor P over A for the p-completely étale topology,

along with an isomorphism ξ : σ∗P ≃−→ τ∗P.

Remark 5.5.10. There is another situation in which the description of WindG,µ∞,A simplifies considerably: If A is

flat over Zp, FiliA = 0 for i ≥ 1, RA = A and I = (p). This is of course not a laminated frame.

Then L+
AG{µ}(RA′) = P−

µ (A′), and τ∗ : P−
µ (A′)→ G(A′) is the natural map, with σ is given by φ ◦ int(µ(p)).

We find that an object of WindG,µ∞,A(A
′) is simply a P−

µ -torsor P ′ over A′ for the p-completely étale topology,

along with an isomorphism σ∗P ′ ≃−→ τ∗P ′

5.6. A-gauges and the case of GLh. Here, we look at what the above definitions specialize to for G = GLh for

some h ≥ 1. First, a more general definition.

Definition 5.6.1. An A-gauge of level n (resp. A-gauge) is a quasicoherent sheafM∈ QCoh(R(Fil•A)⊗Z/pnZ)
(resp. M ∈ QCoh(R(Fil•A))) equipped with an isomorphism ξ : σ∗M ≃−→ τ∗M in QCoh(Spf A/Lpn) (resp.

QCoh(Spf A)).

Note that by definition an A/Lpn-gauge is the same as an A-gauge of level n.

As usual, one can append the adjectives ‘vector bundle’, ‘perfect’, ‘almost perfect’, ‘connective’ and ‘almost

connective’ to obtain objects in the corresponding full subcategories.

Remark 5.6.2. We can also view A-gauges (of level n) as quasicoherent sheaves over the prestack S(A) from

Remark 5.5.8.

Definition 5.6.3. Every A-gauge yields via pullback along

BGm × Specπ0(RA/
L(p, I))→ R(Fil•A)

a graded complex over π0(RA/
L(p, I)). The Hodge-Tate weights of an A-gauge are the integers i ∈ Z such that

the associated graded complex is not nullhomotopic in degree i.

Remark 5.6.4. Explicitly, given an A-gauge (M, ξ), we can viewM as a derived (p, I)-complete filtered module

Fil• M over Fil•A. Base-change along Φ± : Fil•A → Fil•I,±A yields a filtered module Φ∗
± Fil• M over Fil•I,±A

whose degree-0 filtered piece is an A-module Mσ corresponding to σ∗M. The isomorphism ξ now corresponds to

an isomorphism Mσ
≃−→ M in ModA.

Remark 5.6.5 (Parasitic A-gauges). Suppose that we have a quasicoherent sheaf Q over A1/Gm × Spf RA whose

restriction over Gm/Gm × Spf RA is nullhomotopic: this corresponds to a filtered module Fil•Q over RA such that

colimn Fil
nQ ≃ 0. Via pushforward along the closed immersion

ι : A1/Gm × Spf RA = R(Fil•trivRA) ↪→ R(Fil
•A)

we obtain a quasicoherent sheaf ι∗Q over R(Fil•A). One checks that we have

τ∗ι∗Q ≃ 0 ≃ σ∗ι∗Q.
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The first equivalence is from our hypothesis on Q, while the second applies generally to any pushforward along ι.

In particular, ι∗Q is trivially equipped with the structure of an A-gauge. We will call this the parasitic A-gauge

associated with Q (or, equivalently, with Fil•Q).

Example 5.6.6. In § 5.9, we will need a particular instance of a parasiticA-gauge arising in the following way: Given

any p-complete N ∈ ModRA and an integer m ∈ Z, there is a canonical p-complete filtered module Fil•Q(N,m)

over RA such that, for any other p-complete filtered module Fil•M , we have a canonical equivalence

RHomFil•triv RA
(Fil•M,Fil•Q(N,m)) ≃ RHomRA(Fil

mM,N).

We have Filj Q(N,m) = N if j ≥ m and 0 otherwise. The transition maps are the identity in filtered degrees > m

and 0 in other degrees.

Let Mpar(N,m) be the parasitic A-gauge associated with Fil•Q(N,m). If Fil• Mpar(N,m) is the associated

filtered module over Fil•A, then, for any other filtered module Fil• M with filtered base-change Fil•HdgM over RA,

we have

RHomFil• A(Fil
• M,Fil• Mpar(N,m)) ≃ RHomFil•triv RA

(Fil•HdgM,Fil•Q(N,m)) ≃ RHomRA(Fil
m
HdgM,N).

In particular, if Fil• M underlies an A-gauge (M, ξ), then giving a map of A-gaugesM→Mpar(N,m) is equivalent

to giving a map FilmHdgM → N in ModRA .

Remark 5.6.7. A-gauges (of level n) organize into a symmetric monoidal stable∞-category A−gauge (A−gaugen).
For any map A→ B of frames, there is a natural base-change map

A−gauge
(M,ξ)7→B⊗A(M,ξ)
−−−−−−−−−−−−→ B−gauge

that induces functors between gauges of level n ≥ 1.

The proof of the next result is as in [45, Example 5.3.5], and follows from Proposition 5.5.2.

Proposition 5.6.8. Suppose that µ : Gm → GLh is the cocharacter given by

z 7→ diag(zm1 , zm2 , . . . , zmh)

for m1,m2, . . . ,mn ∈ Z. Then WindGLh,µ
n,A is equivalent to the ∞-groupoid of A-gauges M of level n such that the

underlying filtered module Fil• M satisfies the following condition: There exists a p-completely étale cover RA → RA′

and an isomorphism

Fil•A′ ⊗Fil• A Fil• M
≃−→

h⊕
i=1

Fil•A′{mi}/Lpn.

Here, we have set

Fil•A′{mi}
defn
= (Fil•A′)(−mi)⊗A A{mi}.

5.7. Divided Dieudonné complexes. We will fix a prismatic frame A. The purpose of this subsection is to

connect the definitions here with those of Anschütz-Le Bras [1]. More precisely, we show that perfect A-gauges with

Hodge-Tate weights in {0, 1} admit a more concrete description modeled after the notion of a filtered Dieudonné

module appearing in loc. cit. Similar discussions—though in a more limited context—can be found in [32] and [60].

Definition 5.7.1. Set R = RA. Then the filtered Frobenius lift carrying Fil1A to I induces a map φ : R→ A. A

divided Dieudonné complex over R with respect to A is a tuple (M,Fil0M →M,M
ΨM−−→ φ∗M, ξ) such that:

(1) M ∈ Perf(A) is a perfect complex over A;

(2) Fil0M →M
defn
= R⊗A M is a map of perfect complexes over R;

(3) ΨM : M→ φ∗M is a map of perfect complexes over A;
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(4) ξ is an isomorphism of perfect complexes over R sitting in a diagram

φ∗M > hcoker(ΨM)

A⊗φ,R gr−1M.

≃ ξ

∨>

Here, gr−1M =M/Fil0M and the diagonal map is obtained as the composition

φ∗M→ A⊗A φ∗M
≃−→ A⊗φ,RM → A⊗φ,R gr−1M.

These can be organized into an ∞-category in a natural way, which we denote by DDCA(R).

A divided Dieudonné complex has Tor amplitude in [a, b] if M is in Perf [a,b](A) and if Fil0M, gr−1M are both

in Perf [a,b](R). Write DDC
[a,b]
A (R) for the subcategory spanned by the objects with Tor amplitude in [a, b].

Remark 5.7.2. Observe that the definition of a divided Dieudonné complex does not use the full frame structure.

Indeed, we only need the prism (A, I) and a commuting square of animated commutative rings

A
φ

> A

R
∨

φ
> A.

∨

With this setup, we can define categories DDC
[a,b]
(A,I)(R) just as before.

Proposition 5.7.3. Let Perf
[a,b]
{0,1}(A−gauge) be the full subcategory of A−gauge spanned by the perfect A-gauges

with Hodge-Tate weights in {0, 1} and Tor amplitude in [a, b]. Then there is a canonical equivalence of ∞-categories

Perf
[a,b]
{0,1}(A−gauge)

≃−→ DDC
[a,b]
A (R).

Proof. Let P{0,1} → BGm be the 1-bounded stack from Example 4.8.6, so that Map/BGm(R(Fil
•A),P{0,1}) is

canonically equivalent to the∞-groupoid underlying the∞-category Perf{0,1}(R(Fil•A)) of perfect complexes over

R(Fil•A) with Hodge-Tate weights in {0, 1}. Then Proposition 4.12.3 shows that this ∞-groupoid is equivalent to

that of tuples (M,Fil•M,η) where:

(1) M ∈ Perf(A);

(2) Fil•M is a filtered perfect complex over R with associated gradeds supported in degrees 0,−1;
(3) η : R⊗A M

≃−→M is an isomorphism of perfect complexes over R.

In fact, one can upgrade this equivalence to one between the ∞-category of such tuples and Perf{0,1}(R(Fil•A)).
Indeed, morphisms between two objectsM,M′ in the latter category are parameterized by sections of the 1-bounded

stack V(M⊗M′,∨) (see Example 4.8.5), and one can now apply Proposition 4.12.3 once again to conclude.

Given a tuple (M,Fil•M,η) mapping toM in Perf{0,1}(R(Fil•A)), let Fil• M be the filtered perfect complex over

Fil•A corresponding toM, and let Fil• φ∗M be the filtered perfect complex over Fil•I A obtained via base-change

along the filtered Frobenius lift Φ. By Lemma A.2.3, we find:

gri φ∗M ≃

{
0 if i < −1
A⊗φ,R gr−1M if i = −1.

Using this, one finds a canonical identificationMσ
≃−→ Fil0 φ∗M, and so giving an isomorphismMσ

≃−→ M is equivalent

to giving a fiber sequence of perfect complexes over A of the form

M→ φ∗M→ A⊗R gr−1M.
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The datum of the pair (Fil•M,η) is equivalent once again to giving the underlying map of perfect complexes

Fil0M → R ⊗A M over R. With this, we have completed the proof of the proposition, except for the matching of

the conditions on Tor amplitude. But this can be verified directly. □

Corollary 5.7.4. Let Vect{0,1}(A−gauge) be the full subcategory of A−gauge spanned by the vector bundle A-gauges

with Hodge-Tate weights in {0, 1}. Then there is a canonical equivalence of ∞-categories

Vect{0,1}(A−gauge)
≃−→ DDC

[0,0]
A (R).

5.7.5. We can now complete the connection with [1]. Suppose that A is classical in the following sense: A is

p-completely flat, Fil•A is a discrete filtered commutative ring filtered by A-submodules FiliA ⊂ A, and also I ⊂ A
is a locally principal ideal. Suppose also that we have Fil1A = φ−1(I) ⊂ A; equivalently, we are assuming that the

map φ : R→ A is injective.

Proposition 5.7.6. Under these conditions, there is a natural equivalence of categories between Vect{0,1}(A−gauge)
and the category of pairs (N, φN) where:

(1) N is a finite locally free A-module;

(2) φN : N→ N is a φ-linear map such that the cokernel of the linearization φ∗N→ N is killed by I;

(3) The image of the composition N
φN−−→ N → N/IN is a locally free R-module FN such that the induced map

A⊗R FN → N/IN is injective.

Proof. By Corollary 5.7.4, Vect{0,1}(A−gauge) is equivalent to the category of tuples (M,ΨM,M → gr−1M) where:

(1) M is a finite locally free A-module;

(2) ΨM : M→ φ∗M is an injective A-linear map;

(3) M = M/(Fil1A)M and M → gr−1M is a surjection onto a finite locally free R-module gr−1M

such that ΨM(M) is the kernel of the composition

φ∗M→ A⊗A φ∗M
≃−→ A⊗φ,RM → A⊗φ,R gr−1M.

Given such a tuple, we will identify M with a submodule of φ∗M via ΨM. Note that the short exact sequence

0→ M→ φ∗M→ A⊗φ,R gr−1M → 0

implies in particular that we have Iφ∗M ⊂ M. Now, set N = M{−1}, so that we have a map

φN : N
n7→φ∗n−−−−−→ φ∗N ≃ φ∗A{−1} ⊗A φ∗M ≃ A{−1} ⊗A Iφ∗M ⊂ M{−1} = N.

We claim the pair (N, φN) satisfies the conditions in the proposition. Indeed, set Fil0 M = ker(M→ gr−1M). Then

one checks that we have φ−1
N (IN) = (Fil0 M){−1}. Hence the composition of the projection onto N/IN with φN has

image FN ≃ (gr−1M){−1}. Similarly, one finds that the base-change along φ of FN maps isomorphically onto the

direct summand (A⊗R gr−1M){−1} of N/IN.
Conversely, given a pair (N, φN), we set

M = N{1} ; Fil0 M = φ−1
N (IN){1} ; gr−1M = M/Fil0 M.

Then condition (2) of the proposition tells us that gr−1M is locally free over R. To obtain the map ΨM, we first

observe that we have

IM{−1} = (1⊗ φN)
−1(IN) ⊂ φ∗N.

Indeed, since IMσ{−1} = ker(φ∗N → A ⊗R FN), this is equivalent to condition (3), which asserts that A ⊗R FN

maps injectively into N/IN. Now, tensoring this inclusion with I⊗−1{1} gives us ΨM. □

Remark 5.7.7. As in Remark 5.7.2, the definition of the category of pairs (N, φN) appearing in the above proposi-

tion requires only the discrete prism (A, I), since we have R = A/φ−1(I). When (A, I) = (∆R, IR) is the initial prism

associated with a qrsp ring R, the proof of Proposition 5.7.6 shows that the category DDC
[0,0]
(∆R,IR)(R) is equivalent to

the category of admissible prismatic Dieudonné modules over R from [1, Definition 4.10]. Later, in Section 6, we will

see that there is in fact a canonical frame ∆R extending the data of (∆R, IR) and Fil1 ∆R = ker(∆R → R). Therefore,
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these categories can be further identified with the category Vect{0,1}(∆R−gauge), which in turn can be identified

with the category of vector bundle F -gauges over R with Hodge-Tate weights in {0, 1}; see Proposition 8.2.2.

5.8. W1(R)-gauges and F -zips. Suppose that R is an Fp-algebra, so that we have the associated 1-truncated Witt

frameW1(R). We will now find thatW1(R)-gauges are the same as (derived) F -zips as appearing for instance in [69].

In general, as explained in the introduction, the stack RFZip associated with this frame will play an important role

in what follows, so we begin by describing it explicitly.

5.8.1. As explained in [45, Example 2.1.7], the Rees algebra Rees(Fil•LauW1(R)) admits the following description

as a graded R-algebra:

Rees(Fil•LauW1(R)) = R[t]×φ∗R φ∗R[u].(5.8.1.1)

Here, t is in graded degree 1 as usual, and u is in graded degree −1. The map R[t] → φ∗R is the composition of

the Frobenius map R→ φ∗R with t 7→ 0 and the map φ∗R[u]→ φ∗R is given by u 7→ 0.

Geometrically, this is telling us that R(Fil•LauW1(R)) is obtained as follows. Consider the two canonical closed

immersions

χ+ : BGm × Specφ∗R→ A1
+/Gm × Specφ∗R(5.8.1.2)

χ− : BGm × SpecR→ A1/Gm × SpecR(5.8.1.3)

of stacks over R and let φχ− be the composition

BGm × Specφ∗R
id×φ−−−→ BGm × SpecR

χ−−−→ A1/Gm × SpecR.

Then we obtain R(Fil•LauW1(R)) by gluing the two closed substacks A1/Gm × SpecR and A1
+/Gm × Specφ∗R

along BGm × Specφ∗R via the maps φχ− and χ+.

5.8.2. Let us now consider the two maps τ, σ : SpecR→ R(Fil•LauW1(R)). For this, note that we have a canonical

map

R(Fil•LauW1(R))→ A1/Gm × A1
+/Gm

of BGm-stacks. It suffices to construct this for R = Fp, where it arises from the identity Fp[t] ×Fp Fp[u] =

Fp[t, u]/(ut).
It is now not difficult to check that the map τ (resp. σ) is the open immersion obtained as the pre-image of the

open locus t ̸= 0 (resp. u ̸= 0) of A1/Gm × A1
+/Gm.

Definition 5.8.3. The stack RFZip (the F -zip stack for R) is the stack S(W1(R)) obtained as the coequalizer

of the open immersions

τ, σ : SpecR→R(Fil•LauW1(R))

Remark 5.8.4. We now obtain the following alternative construction of RFZip: We first glue A1/Gm × SpecR

with A1
+/Gm × Specφ∗R along the open substack SpecR ≃ Gm/Gm × SpecR. Denote the resulting stack by YR:

Note that this is not a stack over SpecR, only over SpecFp.
RFZip is now obtained as the coequalizer of the two maps

BGm × Specφ∗R
χ+−−→ A1

+/Gm × Specφ∗R ↪→ YR ; BGm × SpecR
φχ−−−−→ A1/Gm × SpecR ↪→ YR.

Remark 5.8.5. This stack is the same as the stack XS defined by Yaylali in [69, Appendix] with S = SpecR.

Definition 5.8.6. An F -zip over R is an W1(R)-gauge. Equivalently, it is an object in QCoh(RFZip).

Remark 5.8.7. Using Remark 5.8.4, one sees that giving an F -zip M over R is equivalent to specifying the

following data:

• A decreasingly filtered complex Fil•HdgM
− over R obtained via pullback along the map A1/Gm×SpecR→

RFZip;

• An increasingly filtered complex Filconj• M+ over R obtained via pullback along A1
+/Gm×SpecR→ RFZip;
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• An isomorphism η :M+ ≃−→M− in ModR identifying both with a common R-module M ;

• An isomorphism of graded R-modules

α : grconj• M+ ≃−→ φ∗ gr−•
HdgM

−.

In the sequel, we will use the identification M+ ≃M− ≃M to drop all superscripts.

Remark 5.8.8. When R is classical and M is a vector bundle over RFZip, we essentially recover the definition

of Moonen-Pink-Wedhorn-Ziegler from [65]. The de Rham cohomology of any smooth projective scheme over R

with degenerating Hodge-to-de Rham spectral sequence, when equipped with its decreasing Hodge filtration and

its increasing conjugate filtration, yields an example of such an F -zip. The more general definition given here

corresponds to that of a derived F -zip as appearing in the work of Yaylali [69, §3.6].

Remark 5.8.9. Note that the Hodge-Tate weights of an F -zip M as defined in Definition 5.6.3) are precisely the

integers i such that gr−iHdgM is not nullhomotopic.

Construction 5.8.10. Given an F -zip M over R, we obtain ModFp -valued prestacks over R:

RΓ∗
FZip(M) : C 7→ RHomQCoh(CFZip)(M |CFZip ,OCFZip) ;

RΓFZip(M) : C 7→ RΓ(CFZip,M |CFZip).

We can make this ‘F -zip cohomology’ quite explicit using the description of the stack from Remark 5.8.4. Let us

do this for the first functor. We obtain two maps

q1, q2 : RHomR(M/Filconj−1 M,C)×RHomR(M,C) RHomR(M/Fil1HdgM,C)→ RHomR(gr
conj
0 M,C),

where the first is via restriction to grconj0 M , and is R-linear, while the second is via

RHomR(M/Fil1HdgM,C)→ RHomR(gr
0
HdgM,C)

φ∗◦α−−−→ RHomR(gr
conj
0 M,C)

and so is φ-semilinear. We now have:

RΓ∗
FZip(M)(C) ≃ hker (q1 − q2) .(5.8.10.1)

For a full justification of this isomorphism, one can argue as in the proof of Lemma 5.10.6 below.

Remark 5.8.11. If M is perfect with dual F -zip M∨, then we have a canonical isomorphism

RΓ∗
FZip(M)

≃−→ RΓFZip(M
∨).

Remark 5.8.12. Suppose that A is a prismatic frame and that we have fixed an orientation for (A, I) (we will

simply refer to this data as an oriented prismatic frame from now on). Then Remark 5.4.17 tells us that we have

a map of prestacks RFZip
A♡ → S(A), where

RA♡ = RA/
L(I, p).

In particular, there is a symmetric monoidal functor

A−gauge (M,ξ)7→M♡

−−−−−−−−→ QCoh(RFZip
A♡ ).

If A is a p-adic prismatic frame, then we actually have a map RFZip
A → S(A), and so we obtain a symmetric

monoidal functor

A−gauge (M,ξ)7→M−−−−−−−→ QCoh(RFZip
A )

lifting the previous one.
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5.9. Abstract deformation theory for 1-bounded stacks. For any frame B, we can view R(Fil•B) as an RB-

pointed graded formal stack using Remark 5.4.20. More precisely, for every n,m ≥ 1, we can view R(Fil•B) ⊗B
B/L(pn, Im) as an RB/

L(pn, Im)-pointed graded stack. We will assume for simplicity that B is an oriented prismatic

frame as in Remark 5.8.12. Given a map of prismatic frames B → C, C again inherits the orientation.

Construction 5.9.1. Suppose that X = (X♢, X0) → R(Fil•B) is a strongly integrable 1-bounded formal stack.

By this, we mean that it is an inverse system of strongly integrable (in the sense of Definition 4.12.5) 1-bounded

stacks over R(Fil•B) ⊗B B/L(pn, Im). Suppose also that it is equipped with an isomorphism ξ : σ∗X♢ ≃−→ τ∗X♢

of formal stacks over Spf B. Then, for any p-completely étale RB-algebra RB′ we will set

ΓB(X , ξ)(RB′)
defn
= eq

(
Map(R(Fil•B′),X )

ξ◦σ∗
>

τ∗>
X♢(B′)

)
.

All mapping spaces here are of formal prestacks over R(Fil•B), and we have set X♢(B′) = Map(Spf B′,X♢), where

we are viewing Spf(B′) as a formal scheme over R(Fil•B) via the map τ .

Equivalently, if S(B) is as in Remark 5.5.8, then ξ gives a descent Xξ → S(B) for X , and we have

ΓB(X , ξ)(RB′) = Map(S(B),Xξ)

Remark 5.9.2. Suppose that the structure map for X♢ factors through R(Fil•B) ⊗ Z/pnZ for some n ≥ 1. For

clarity, denote the corresponding stack by

Y♢ → R(Fil•B)⊗ Z/pnZ.

Since R(Fil•B) ⊗ Z/pnZ is RB/
Lpn-pointed, the asociated fixed point stack Y ♢,0 lives over RB/

Lpn, and the

fixed point stack X♢,0 → Spf RB for X♢ is obtained via Weil restriction (see §3.5): X♢,0 = Res(RB/Lpn)/RB Y
♢,0.

The open substack X0 ⊂ X♢,0 of 1-bounded points determines and is determined by a canonical open substack

Y 0 ⊂ Y ♢,0 such that X0 is the Weil restriction of Y 0 along RB → RB/
Lpn. The attractor stack X− is similarly

the Weil restriction of Y − = Y ♢,− ×Y ♦,0 Y 0.

In particular, we find that X arises from a 1-bounded stack Y = (Y♢, Y 0) over R(Fil•B)⊗Z/pnZ. Suppose now
that the isomorphism ξ arises from an isomorphism ξn : σ∗Y♢ ≃−→ τ∗Y♢ of stacks over B/Lpn. Then we can define

ΓB(Y, ξn)(RB′)
defn
= eq

(
Map(R(Fil•B′)⊗ Z/pnZ,Y)

ξn◦σ∗
>

τ∗ >
Y♢(B′/Lpn)

)
.

We now have a canonical isomorphism of prestacks ΓB(Y, ξn)
≃−→ ΓB(X , ξ)

Remark 5.9.3. By the filtered integrability of X , we have

Map(R(Fil•B′),X ) ≃ Map(A1/Gm × Spf RB′ ,X )×X♦(RB′ ) X♢(B′).

Indeed, it is enough to know that we have

Map(R(Fil•B′/L(pn, Im)),X ) ≃ Map(A1/Gm × SpecRB′/L(pn, Im),X )×X♦(RB′/L(pn,Im)) X♢(B′/L(pn, Im))

for each n,m ≥ 1, and this follows from the filtered integrability assumption, because the kernel of π0(B
′/L(p, I))→

π0(RB′L(p, I)) is locally nilpotent, as observed in the proof of Proposition 5.4.23.

Construction 5.9.4. Let q : B → A be a map of frames such that the associated map RB → RA is a locally

nilpotent thickening—that is, π0(RB) → π0(RA) is a surjection with locally nilpotent kernel. We now have a

canonical equivalence of small p-completely étale sites (RB)ét
B′ 7→A′

−−−−→
≃

(RA)ét. Write ΓA(X , ξ) for the sheaf on

(RB)ét
≃−→ (RA)ét obtained from the pullback of (X , ξ) over R(Fil•A). We then obtain a canonical map of sheaves

q∗ : ΓB(X , ξ)→ ΓA(X , ξ).

Definition 5.9.5. Let X− be the (formal) attractor on p-complete RB-algebras given by

R 7→ Map(A1/Gm × Spf R,X ),
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and let X be the stack R 7→ X♢(R) = Map(Spf R,X♢). For any map of frames B → A as in Construction 5.9.4,

write X−
A (resp. XA) for the sheaf X−

A : RB′ 7→ X−(RA′) (resp. XA : RB′ 7→ X(RA′)) on (RB)ét.

Construction 5.9.6. Suppose that B ↠ A is surjective, and set K = hker(B ↠ A). Suppose in addition that the

map B → RB factors through a map π : A → RB lifting A → RA; equivalently, K → B factors through a map

Fil1B → B. Note that this is trivially the case if either B
≃−→ A or RB

≃−→ RA. Then we have a commuting diagram

ΓB(X , ξ) > X−

ΓA(X , ξ)

q∗

∨
> X−

A ×XA X
∨

.

of sheaves on (RB)ét. Here, the top arrow arises from pullback along the map from Remark 5.4.20 (for B), while

that on the bottom is from this map (for A) in the first co-ordinate combined with pullback along τ ◦ Spf(π) :

Spf RB → R(Fil•A) in the second co-ordinate.

There is a trivial situation in which the square from Construction 5.9.6 is Cartesian.

Proposition 5.9.7. Suppose that q : B
≃−→ A, and the lift A

≃−→ B → RB is the obvious one. Then the square in

Construction 5.9.6 obtained via the map A
≃−→ B → RB is Cartesian.

Proof. For any p-completely étale map RB → RB′ reducing to RA → RA′ , first note that our hypothesis says that

X(B′)
≃−→ X(A′).

By Remark 5.9.3, we have

Map(R(Fil•B′),X ) ≃ X−(RB′)×X(RB′ ) X♢(B′);

Map(R(Fil•A′),X ) ≃ X−(RA′)×X(RA′ ) X♢(A′).

The proposition follows quite formally now from the two previous paragraphs. □

Remark 5.9.8. With the hypotheses of Construction 5.9.6, set F̃il
1
A = hker(π : A→ RB), which factors through

Fil1A → A via a map v : F̃il
1
A → Fil1A. This gives us a canonical φ-semilinear map φ̇1 : K → K such that we

have a commuting diagram with exact rows19:

K > Fil1B > F̃il
1
A

K

φ̇1

∨
> B

φ1

∨
> A.

(φ1)◦v

∨

Proposition 5.9.9. With the hypotheses and notation of Remark 5.9.8, suppose that the following additional

conditions hold:

(1) B and A are prismatic.

(2) π0(Fil
1B) ↠ π0(Fil

1A) is surjective; equivalently,

Fil1K = hker(Fil1B → Fil1A)

is connective.

(3) The map K → K induced by φ̇1 is topologically locally nilpotent; equivalently, the endomorphism induced

on K/L(p, I) is locally nilpotent.20

Then the commuting square in Construction 5.9.6 is Cartesian.

19Here and elsewhere we are using the orientation on (B, I) to identify the target of the divided Frobenius lift with B.
20That is, an endomorphism that is a filtered colimit of nilpotent endomorphisms.
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Corollary 5.9.10. With the hypotheses as in Proposition 5.9.9, if RB
≃−→ RA, then q∗ is an equivalence.

Remark 5.9.11. The proof of Proposition 5.9.9, which is the main result of this subsection, will be given below,

and is inspired by the arguments of Lau [45], who, in our language here, considered the case of the 1-bounded stack

yielding (G,µ)-windows. Similar arguments, building on the work of Zink [70] for nilpotent displays, also appear

in [17], [4] and [34]. All of these arguments involve some kind of nilpotence criterion. Our result here is closest in

spirit to that of Lau, since the locus of nilpotence is on the fiber K, while in the other works, it is manifested in

the display or window that is being deformed.

Remark 5.9.12. Suppose that B is a laminated prismatic frame. Then Lemma 5.4.11 gives us a canonical map

of frames q : B → A
defn
= W (RB). The map B → W (RB) is surjective if and only if B surjects onto W (C)/pW (C)

where we have set C = π0(RB)/pπ0(RB). If C is semiperfect, then we have W (C)/pW (C) = C, and so this

surjectivity is immediate. Therefore, if we knew the topological local nilpotence of the endomorphism φ̇1, then

it would follow from Corollary 5.9.10 that q∗ is an equivalence, and so we can compute ΓB(X , ξ) using the Witt

frame. In practice, this kind of nilpotence is seldom true. However, one can salvage the situation by transferring

the nilpotence condition to the pair (X , ξ) instead. See Remark 5.9.29 below.

We now begin our preparations for the proof.

Remark 5.9.13. By (p, I)-completeness, to see that B → A is surjective, it is enough to know that B/L(p, I) →
A/L(p, I) is so. Moreover, in the situation of Construction 5.9.6, we have a commuting diagram with exact rows

K > Fil1B > F̃il
1
A

Fil1K

∨
> Fil1B

∨
> Fil1A

∨

K
∨

> B
∨

> A
∨

where the composition of the vertical arrows on the left is isomorphic to the identity on K. In other words, we have

a section K → Fil1K splitting the fiber sequence

RK [−1]→ Fil1K → K,

where RK = hker(RB ↠ RA). Therefore, we have Fil1K
≃−→ K ⊕RK [−1]. This shows in particular that condition

(2) of Proposition 5.9.9 holds if and only if RK is 1-connective.

Construction 5.9.14. Set Fil•K
defn
= hker(Fil•B → Fil•A): The associated quasicoherent sheaf K over R(Fil•B)

naturally underlies an B-gauge (K, ξ), where ξ is determined by the fact that both σ∗K and τ∗K can be canonically

identified with the quasicoherent sheaf over Spf B associated with K.

Lemma 5.9.15. There is a canonical fiber sequence of B-gauges

K′ → K →Mpar(RK [−1], 1)

where K′ has Hodge-Tate weights ≤ −1. Here,Mpar(RK [−1], 1) is the parasitic B-gauge from Example 5.6.6.

Proof. Let Fil•Hdg(RB ⊗B K) be the filtered base-change of Fil•K along Fil•B → Fil•trivRB . Then above factors

though Fil1Hdg(RB ⊗B K). As observed in Example 5.6.6, giving the second map in the purported fiber sequence

amounts to giving a map Fil1Hdg(RB ⊗B K) → RK [−1]. To see this, it is enough to know that the map Fil1K →



CONJECTURES OF DRINFELD 49

RK [−1] induced by the splitting from Remark 5.9.13 factors through Fil1Hdg(RB ⊗B K) → RK [−1]. Now, there is

a natural fiber sequence

Fil1B ⊗B K → Fil1K → Fil1Hdg(RB ⊗B K),

so we want to show that the induced map Fil1B⊗BK → RK [−1] is nullhomotopic. Equivalently, we want to know

that it factors through the map K → Fil1K defined in Remark 5.9.13. Unraveling definitions, this amounts to

knowing that Fil1B ⊗B A→ A factors through F̃il
1
A = hker(A→ RB), which is clear.

To finish, we need to check that K′ = hker(K →Mpar(RK [−1], 1)) has Hodge-Tate weights ≤ −1. This amounts

to knowing that, if Fil•K ′ is the associated filtered module, then gr0K ′ ≃ 0. Equivalently, we want to know that

the map gr0K → gr0 Mpar(RK [−1], 1) is an isomorphism; but the source and target of this map are both canonically

identified with RK with the map being identified with the identity. □

The key tool for the proof of Proposition 5.9.9 is deformation theory in the form of the next lemma.

Lemma 5.9.16. Suppose that we have a commuting diagram of frames

B > A

D
∨

> C
∨

satisfying the following properties:

(1) The horizontal arrows satisfy the hypotheses of Proposition 5.9.9.

(2) The lift C → RD is compatible with the lift A→ RB in that we have a commuting square

A > C

RB
∨

> RD
∨

.

(3) The vertical arrows are square-zero extensions. More precisely, the underlying maps Fil•B → Fil•D and

Fil•A→ Fil• C are square-zero extensions of filtered animated commutative rings.

(4) The commuting square

ΓD(X , ξ) > X−
D

ΓC(X , ξ)
∨

> X−
C ×XC XD

∨

.

from Construction 5.9.6 applied to D → C is Cartesian.

Then the corresponding commuting square for B → A is also Cartesian.

The bulk of the rest of this subsection will be devoted to the proof of Lemma 5.9.16. For now, let us see that

the lemma implies the proposition.
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Proof of Proposition 5.9.9 assuming Lemma 5.9.16. Applying the lemma to the squares

τ≤(k+1)B > τ≤(k+1)A

τ≤kB
∨

> τ≤kA
∨

for k ≥ 0 and using nilcompleteness for the stacks involved, we reduce to the case where R(Fil•B) and R(Fil•A)
are classical (p, I)-complete formal stacks (with bounded p-power and I-power torsion).

Now, the images of K in B/(p, I)B and π0(RB)/pπ0(RB) are locally nilpotent. Therefore, using the strong

integrability hypothesis, we find that if we set21

Bm = π0(B/K
m ⊗B B),

then we have

ΓB(X , ξ) = lim←−
m

ΓBm(X , ξ) ; X− = lim←−
m

X−
Bm

; X = lim←−
m

XBm .

Therefore, by applying the lemma to the squares

Bm+1
> A

Bm

∨
> A,

wwwwwwwwww
we reduce to the case B = B1 = A. Here, the result follows from Proposition 5.9.7. □

Construction 5.9.17. Suppose that we have A-gauges (M, ξ), (M′, ξ′) corresponding to (p, I)-complete filtered

modules Fil• M, Fil• M′ over Fil•A, with underlying A-modules M and M′, and isomorphisms

ξ : Mσ
≃−→ M ; ξ′ : M′

σ
≃−→ M′

of A-modules. Here, Mσ and M′
σ are the A-modules underlying the quasicoherent sheaves obtained from M and

M′ via restriction along σ. Set

RHA(M,M′)(RA)
defn
= hker(RHomFil• A(Fil

• M,Fil• M′)
ξ′◦σ∗◦ξ−1−τ∗

−−−−−−−−−→ RHomA(M,M
′)).

Put more succinctly, we have

RHA(M,M′)(RA) = RHomA−gauge((M, ξ), (M′, ξ′)).

Construction 5.9.18. Suppose that M (resp. M′) has Hodge-Tate weights ≥ −1 (resp. ≤ −1). Let M♡ and

M
′,♡ be the associated F -zips over RA♡ (see Remark 5.8.12). They correspond to tuples

(Fil•HdgM
♡,FilconjM♡, φ∗ gr•HdgM

♡ ≃−→ grconj• M♡) ; (Fil•HdgM
′,♡,FilconjM

′,♡, φ∗ gr•HdgM
′,♡ ≃−→ grconj• M

′,♡).

The hypotheses on the weights tell us that

griHdgM
♡ ≃ grconji M♡ ≃ 0 for i ≤ 1;

griHdgM
′,♡ ≃ grconji M

′,♡ ≃ 0 for i ≥ 1;

21We are implicitly using the following fact: If I, J ⊂ B are δ-ideals in the classical δ-ring B (that is, we have δ(I) ⊂ I, δ(J) ⊂ J ,

or equivalently the δ-structure descends to both B/I and B/J), then IJ is once again a δ-ideal. This follows easily from the defining

identites δ(x+ y) = δ(x) + δ(y) +
∑p−1

i=1
1
p

(p
i

)
xiyp−i and δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y).
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Therefore, we obtain maps

ψM♡ : Fil1HdgM
♡ →M♡ → grconj1 M♡ ≃−→ φ∗ Fil1HdgM

♡

ψ∗
M ′,♡ : φ∗ gr1HdgM

′,♡ ≃−→ Filconj1 M
′,♡ →M

′,♡ → gr1HdgM
′,♡.

This yields an operator

ψ♡
M ,M ′ : RHomR

A♡ (Fil1HdgM
♡, gr1HdgM

′,♡)→ RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡)

given as the composition

RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡)

φ∗

−−→ RHomR
A♡ (φ∗ Fil1HdgM

♡, φ∗ gr1HdgM
′,♡)

≃ RHomR
A♡ (grconj1 M♡,Filconj1 M

′,♡)

→ RHomR
A♡ (M♡,M

′,♡)

→ RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡).

Here, the penultimate (resp. last) arrow is obtained via precomposition alongM♡ → grconj1 M♡ (resp. Fil1HdgM
♡ →

M♡) and postcomposition along Filconj1 M
′,♡ →M

′,♡ (resp. M
′,♡ → gr1HdgM

′,♡).

Remark 5.9.19. If A is p-adic and RA is an Fp-algebra, then we obtain F -zips M ,M ′ over RA from which

M♡,M
′,♡ are produced via base-change along the natural map RA → RA♡ . Moreover, the operator ψ♡

M ,M ′ arises

from an operator

ψM ,M ′ : RHomRA(Fil
1
HdgM, gr1HdgM

′
)→ RHomRA(Fil

1
HdgM, gr1HdgM

′
).

Since RA♡ = R/L(p, I) ≃ R/L(0, 0) is an iterated square-zero extension of RA, ψ
♡
M ,M ′ is locally nilpotent if and

only if ψM ,M ′ is so.

Lemma 5.9.20. Suppose that we have A-gauges (M, ξ) and (M′, ξ) with the following properties:

(1) M is almost perfect with Hodge-Tate weights ≥ −1 andM′ has Hodge-Tate weights ≤ −1;
(2) The operator ψ♡

M ,M ′ is locally nilpotent.

Then RHA(M,M′)(RA) ≃ 0.

Proof. With the notation as in Construction 5.9.17, we want to show that the map

ξ′ ◦ σ∗ ◦ ξ−1 − τ∗ : RHomFil• A(Fil
• M,Fil• M′′)→ RHomA(M,M

′)

is an equivalence.

Let Fil•HdgM
′ be the filtered RA-module obtained via pullback along A1/Gm × Spf RA → R(Fil•A). Our

hypothesis on the Hodge-Tate weights ofM′ implies

gr1 M′ ≃−→ gr1HdgM
′ ; griM′ ≃ 0 for i < 1.

This can be seen for instance from Lemma A.2.3 and its proof. Arguing as in the proof of Proposition 4.12.3, and

using the condition on the Hodge-Tate weights ofM, one now finds that the natural maps

RHomFil• A(Fil
• M,Fil• M′)→ RHomFil• A(Fil

• M,Fil• M′(−j))

are equivalences for all j ≥ 1, and this shows that the map

τ∗ : RHomFil• A(Fil
• M,Fil• M′)→ RHomA(M,M

′)

is an equivalence.

To finish, therefore, it is enough to know that the composition

RHomA(M,M
′)

(τ∗)−1

−−−−→ RHomFil• A(Fil
• M,Fil• M′)

ξ′◦σ∗◦ξ−1

−−−−−−−→ RHomA(M,M
′)

is a topologically locally nilpotent endomorphism. We will in fact see that, withM′,♡ =M′/L(p, I), the induced

endomorphism of RHomA(M,M
′,♡) is locally nilpotent.
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Let Fil• φ∗M and Fil• φ∗M′ be the filtered complexes over Fil•I A obtained via base-change along Φ : Fil•A →
Fil•I A. Then the condition on the Hodge-Tate weights ofM tells us that we have

Mσ
≃−→ I−1 ⊗A Fil1 φ∗M ≃ Fil1 φ∗M,

where we have used the chosen orientation for I for the last isomorphism. From this, we obtain a map

ζ : M
ξ−1

−−→
≃

Mσ
≃−→ Fil1 φ∗M→ A⊗φ,RA Fil1HdgM.

On the other hand, consider the composition

φ∗M′ = Fil1 φ∗M′ ≃−→ I−1 ⊗A Fil1 φ∗M′ → M′
σ

ξ′−→
≃

M′.

This factors through a map

ξ : A⊗φ,RA gr1M
′,♡ ≃−→ gr1 φ∗M

′,♡ → M
′,♡.

One now checks that the relevant endomorphism of RHomA(M,M
′,♡) is given as the composition

RHomA(M,M
′,♡)→ RHomR

A♡ (M♡,M
′,♡)

→ RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡)

A⊗φ,RA (·)
−−−−−−−→ RHom

A
♡(A⊗φ,RA Fil1HdgM

♡, A⊗φ,RA gr1HdgM
′,♡)

ξ◦(·)◦ζ−−−−→ RHomA(M,M
′,♡).

This shows that it is enough to know the local nilpotence of the endomorphism obtained as the composition

RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡)

A⊗φ,RA (·)
−−−−−−−→ RHom

A
♡(A⊗φ,RA Fil1HdgM

♡, A⊗φ,RA gr1HdgM
′,♡)

ξ◦(·)◦ζ−−−−→ RHomA(M,M
′,♡)

→ RHomR
A♡ (M♡,M

′,♡)

→ RHomR
A♡ (Fil1HdgM

♡, gr1HdgM
′,♡)

But this is nothing but ψ♡
M ,M ′ ! □

Remark 5.9.21. The local nilpotence of ψ♡
M ,M ′ can be deduced from two finer conditions:

(1) A condition on ψM♡ : Successive pullback and composition yields a map

Φn : MapR
A♡

(Fil1HdgM
♡, φ∗ Fil1HdgM

♡)
f 7→(φn)∗f◦(φn−1)∗f◦···◦φ∗f◦f−−−−−−−−−−−−−−−−−−−−→ MapR

A♡
(Fil1HdgM

♡, (φn+1)∗ Fil1HdgM
♡)

If we have Φn(ψM♡) ≃ 0 for some n, then ψ♡
M ,M ′ will be nilpotent.

(2) A condition on ψ∗
M ′,♡ : We can view ψ∗

M ′,♡ as an endomorphism in the classical derived category of the con-

nective complex of Fp-vector spaces underlying gr1HdgM
′,♡; that is, as an element of EndD≤0(Fp)(gr

1
HdgM

′,♡).

Within this ring, we have the ideal of locally nilpotent endomorphisms

Endnilp
D≤0(Fp)(gr

1
HdgM

′,♡),

and we can ask that ψ∗
M ′,♡ belong to this ideal. This will imply that ψ♡

M ,M ′ is locally nilpotent.

Construction 5.9.22. Let us put ourselves in the setup of Lemma 5.9.16. Set

Fil• J = hker(Fil•B → Fil•D) ; Fil• I = hker(Fil•A→ Fil• C);

Fil• P = hker(Fil•D → Fil• C) ; Fil•N = hker(Fil• J → Fil• I) ≃ hker(Fil•K → Fil• P ).

Since they are fibers of square zero extensions, we can view Fil• J (resp. Fil• I) as filtered modules over Fil•D

(resp. Fil• C). As in Construction 5.9.14, we then obtain a D-gauge J (resp. C-gauge I) with underlying filtered
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module Fil• J (resp. Fil• I). Similarly, associated with Fil• P and Fil•N , we have D-gauges P and N . Note that

we have fiber sequences of B-gauges22

N → K → P ; N → J → I.
Moreover, by Lemma 5.9.15, we have a commutative diagram of B-gauges

N ′ > N >Mpar(RN [−1], 1)

K′
∨

> K
∨

>Mpar(RK [−1], 1)
∨

P ′
∨

> P
∨

>Mpar(RP [−1], 1)
∨

where the rows and columns are all fiber sequences and where the left vertical row only involves B-gauges with

Hodge-Tate weights ≤ −1. Here, we have set RN = hker(RK → RP ).

Remark 5.9.23. Let K
′,♡ be the F -zip over RB♡ associated with K′. Then, as in Construction 5.9.18, we obtain

an operator

ψ∗
K′,♡ : φ∗ gr1HdgK

′,♡ → gr1HdgK
′,♡.

Similarly, we have operators

ψ∗
N ′,♡ : φ∗ gr1HdgN

′,♡ → gr1HdgN
′,♡ ; ψ∗

P ′,♡ : φ∗ gr1Hdg P
′,♡ → gr1Hdg P

′,♡

obtained from N ′ and P ′, respectively. Now, we have

gr1HdgK
′,♡ ≃ gr1K/L(p, I),

and the underlying φ-semilinear map for ψ∗
K′,♡ is the composition

gr1K/L(p, I)→ K/L(p, I)→ Fil1K/L(p, I)→ gr1K/L(p, I)

where the first map is induced from the divided Frobenius lift φ1 : Fil1K → K, and the second is obtained from

the section K → Fil1K seen in Remark 5.9.13. In particular, we find that the topological local nilpotence of φ̇1

implies the local nilpotence of ψ∗
K′,♡ in the sense of condition (2) of Remark 5.9.21. A similar conclusion holds for

ψ∗
P ′,♡ , and hence for ψ∗

N ′,♡ as well.

Construction 5.9.24. For each y ∈ X(R) and y− ∈ X−(R), the relative cotangent complex of X♢ yields via

pullback an almost perfect module LX♦,y ∈ ModR and a filtered almost perfect module Fil• LX♦,y− ∈ FilModR.

For S = B,A,C,D, and Q ∈ ModS , define maps of sheaves

Map(LX , Q)→ XS ; Map(Fil1 L−
X , Q)→ X−

S ; Map(L−
X/Fil

1 L−
X , Q)→ X−

S

as follows: The fiber of Map(LX , Q) (resp. Map(Fil1 L−
X , Q), Map(L−

X/Fil
1 L−

X , Q)) over y ∈ XS(RB′) = X(RS′)

(resp. y− ∈ X−
S (RB′) = X−(RS′)) is the sheaf on (RB′)ét given by

B′′ 7→ MapRS′ (LX,y, RS′′ ⊗RS N)

(resp. B′′ 7→ MapRS′ (Fil
1 L−

X,y− , RS′′ ⊗RS N))

(resp. B′′ 7→ MapRS′ (L
−
X,y−/Fil

1 L−
X,y− , RS′′ ⊗RS N))

22Given a map of frames S → T , we can via restriction view any T -gauge also an S-gauge. We will do so freely in what follows.
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Lemma 5.9.25. There is a canonical Cartesian square of sheaves on (RB)ét

X− > X−
D

(X ×XA X−
A )×XD×XCX

−
C
X−
D

∨
> Map(Fil1 L−

X , RN )

0

∨

where the two arrows out of X− are the natural ones.

Proof. This is an exercise in deformation theory. An application of Lemma 4.6.7 gives us canonical Cartesian

squares
X− > X−

D

X−
D

∨
> Map(L−

X/Fil
1 L−

X , RJ [1]);

0

∨

and
X ×XA X−

A
> XD ×XC X−

C

XD ×XC X−
C

∨
> Map(LX , RJ [1])×Map(LX ,RI [1]) Map(L−

X/Fil
1 L−

X , RI [1]).

0

∨

The lemma can be shown by combining these diagrams appropriately. □

Proof of Lemma 5.9.16. For simplicity, we will omit ξ from the notation in what follows. It suffices to show that

the diagram
ΓB(X ) > X−

ΓA(X )×ΓC(X ) ΓD(X )
∨

> (X ×XA X−
A )×XD×XCX

−
C
X−
D

∨

is Cartesian. Using the Cartesian square from Lemma 5.9.25, we reduce to showing that the resulting diagram

ΓB(X ) > X−
D

ΓA(X )×ΓC(X ) ΓD(X )
∨

> Map(Fil1 L−
X , RN )

0

∨

is Cartesian.

Given any x ∈ ΓC(X , ξ)(RC′), pulling back the cotangent complex of X♢ along x yields an almost perfect C ′-

gauge L(X )x. We now obtain a map of sheaves H(L(X ), I[1])→ ΓC(X ) whose fiber over x is the sheaf of animated

abelian groups on (RC′)ét given by

HC′(L(X )x, C ′ ⊗C I[1])
defn
= τ≤0RHC′(L(X )x, C ′ ⊗C I[1]).

Here, we have denoted by C ′⊗C I the C ′-gauge obtained from I via the obvious base-change operation. The same

construction applied with I replaced by J and N gives maps of sheaves

H(L(X ),J [1])→ ΓD(X ) ; H(L(X ),N [1])→ ΓD(X ).
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Standard arguments using filtered deformation theory (see the proof of Proposition 8.6.1 below for instance) tell

us that we have canonical isomorphisms of sheaves

ΓA(X )
≃−→ ΓC(X )×obC ,H(L(X ),I[1]),0 ΓC(X );(5.9.25.1)

ΓB(X )
≃−→ ΓD(X )×obD,H(L(X ),J [1]),0 ΓD(X ).

for certain sections

obC : ΓC(X )→ H(L(X ), I[1]) ; obD : ΓD(X )→ H(L(X ),J [1]).

These isomorphisms imply that the restriction of obD along the projection to the second coordinate lifts to a

map

ob : ΓA(X )×ΓC(X ) ΓD(X )→ H(L(X ),N [1])

of sheaves over ΓD(X ), and furthermore that we have a canonical Cartesian diagram

ΓB(X ) > ΓD(X )

ΓA(X )×ΓC(X ) ΓD(X )
∨

ob
> H(L(X ),N [1]).

0

∨

Therefore, the proof of the lemma is completed by:

Sublemma 5.9.26. There is a canonical isomorphism

H(L(X ),N [1])
≃−→ ΓD(X )×X−

D
Map(Fil1 L−

X , RN ).

Proof. Given x ∈ ΓD(X )(RB′), the associated D′-gauge L(X )x has Hodge-Tate weights ≥ −1 by our 1-boundedness

hypothesis. Explicitly, the underlying quasicoherent sheaf over R(Fil•D′) is obtained via pullback of the rela-

tive cotangent complex of X♢ along the section R(Fil•D′) → X♢ underlying x. The associated filtered module

Fil•Hdg L(X )x over RD′ admits the following description: Let η−D′(x) ∈ X−
D(RB′) = X−(RD′) be the image of x

under the map ΓD(X )→ X−
D . Then we have a canonical isomorphism

Fil•Hdg L(X )x ≃ Fil• L−
X,η−

D′ (x)
∈ FilModRD′ .

From Construction 5.9.22, we obtain a fiber sequence of D-gauges

N ′[1]→ N [1]→Mpar(RN , 1)

with N ′[1] having Hodge-Tate weights ≤ −1. Now, as explained in Example 5.6.6, and from the discussion in the

first paragraph of the proof, we obtain a canonical isomorphism

H(L(X ),Mpar(RN , 1))
≃−→ ΓD(X )×X−

D
Map(Fil1 L−

X , RN )

Therefore, to prove the lemma, it is now enough to know that H(L(X ),N ′[m]) ≃ 0 for all m ∈ Z. This follows

from Lemma 5.9.20, criterion (2) from Remark 5.9.21, and Remark 5.9.23. □

□

Construction 5.9.27. Since we have a map of frames B → W1(RB♡), we can consider the associated sheaf

ΓW1(RB♡ )(X , ξ) on (RB)ét equipped with a natural map

ΓA(X , ξ)→ ΓW1(RB♡ )(X , ξ)

Given x ∈ ΓW1(RB♡ )(X , ξ)(RB), by pulling back the cotangent complex of X♢ along the associated section of X ,
we obtain an F -zip L♡(X )x over RB♡ with Hodge-Tate weights ≥ −1. In particular, via the process explained in

Construction 5.9.18, we obtain an operator

ψ♡
x : Fil1 L♡(X )x → φ∗ Fil1 L♡(X )x.
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As x varies, this data organizes into an F -zip L♡(X ) over ΓW1(RB♡ )(X , ξ) along with an operator ψ♡ : Fil1 L♡(X )→
φ∗ Fil1 L♡(X ).

Remark 5.9.28. An analysis of the proof of Lemma 5.9.16, and in particular that of Sublemma 5.9.26, shows

that it goes through if one replaces the topological nilpotence hypothesis on φ̇1 with the following condition: The

operator ψ♡ : Fil1Hdg L
♡(X )→ φ∗ Fil1Hdg L

♡(X ) satisfies Φn(ψ♡) ≃ 0 for n sufficiently large. Indeed, this amounts

to replacing the use of nilpotence criterion (2) of Remark 5.9.21 with that of criterion (1).

If L♡(X ) is perfect with dual F -zip T♡(X ) obtained from the relative tangent complex of X , then this is also

equivalent to requiring that the dual map

ψ♡,∗ = (ψ♡)∨ : φ∗ gr−1
Hdg T

♡(X )→ gr−1
Hdg T

♡(X ),

when viewed as a φ-semilinear endomorphism of gr−1
Hdg T

♡(X ), is nilpotent in the usual sense.

Remark 5.9.29. Taking Remark 5.9.12 into account, we see that ΓB(X , ξ) can be computed using the Witt frame

W (RB) when π0(RB)/pπ0(RB) is semiperfect and when the nilpotence condition of Remark 5.9.28 holds.

Remark 5.9.30. Suppose thatB is a p-adic prismatic frame and that X arises from a pair (Y, ξ1) overR(Fil•B)⊗Fp
as in Remark 5.9.2. Then by the same process from which L♡(X ) was obtained, we get an F -zip L(Y) over

ΓW1(RB)(Y, ξ1), and by Remark 5.9.19, it is enough to check that the corresponding operator

ψ : Fil1Hdg L(Y)→ φ∗ Fil1Hdg L(Y)

satisfies Φn(ψ) ≃ 0 for n sufficiently large.

5.9.31. There is a somewhat different (and much simpler) situation in which one also obtains a Cartesian diagram

as above. This will prove useful to us in Section 10. Instead of the hypotheses from Proposition 5.9.9, suppose

instead that the map σ : Spf B → R(Fil•B) admits a factoring

Spf B
σ−→ R(Fil•A)→ R(Fil•B)

along with a factoring of σ : Spf A→ R(Fil•A) as

Spf A→ Spf B
σ−→ R(Fil•A).

Here, the first map is the one arising from the map of frames.

Proposition 5.9.32. Under these hypotheses, there is a canonical Cartesian diagram

ΓB(X , ξ)(RB) > X−(RB)

ΓA(X , ξ)(RA)

q∗

∨
> X−(RA)×X(RA) X(RB)

∨

.

Proof. We have Cartesian squares

ΓA(X , ξ)(RA) > Map(R(Fil•A),X )

X♢(B)
∨

(q∗,id)
> X♢(A)×X♢(B)

(τ∗,σ∗)

∨

;

ΓB(X , ξ)(RB) > Map(R(Fil•B),X )

X♢(B)
∨

∆
> X♢(B)×X♢(B)

(τ∗,σ∗)

∨

,
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which together yield another Cartesian square

ΓB(X , ξ)(RB) > Map(R(Fil•B),X )

ΓA(X , ξ)(RA)
∨

> Map(R(Fil•A),X )×τ∗,X♦(A) X♢(B)

(q∗,σ
∗)

∨

The proof of the proposition is now completed using the filtered integrability of X . □

5.10. A pseudo-torsor structure associated with 1-bounded stacks. Suppose that we have a p-adic prismatic

frame A as in Definitions 5.4.3 and 5.4.7, and suppose also that the following conditions hold:

• A is laminated, so that we have a map of frames A→W (RA) (Lemma 5.4.11).

• RA is a semiperfect Fp-algebra.
Let us take a 1-bounded stack Y → R(Fil•A)⊗Fp that is strongly integrable, and is equipped with an isomorphism

ξ1 : σ∗Y♢ → τ∗Y♢ over SpecA. We will view this data as a 1-bounded stack Y over S(A). Via Remark 5.9.2, we

obtain the sheaf

ΓA(Y)
defn
= ΓA(Y, ξ1)

over (RA)ét. Further, as in Remark 5.9.30, we can consider the sheaf ΓFZip(Y)
defn
= ΓW1(RA)(Y, ξ1), and we obtain

a canonical map

ΓA(Y)→ ΓFZip(Y)

of sheaves on (RA)ét. The goal of this section is to prove Proposition 5.10.23, which gives a somewhat explicit

picture of this map of stacks. Later, in Section 8, we will apply it to prove a general version of Theorem E.

Remark 5.10.1. We will see that ΓA(Y) is a pseudotorsor over ΓFZip(Y) for a particular group stack constructed

from A and the relative cotangent complex of Y♢. This group stack is an abstraction of the complexes of Artin-Milne

computing the fppf cohomology of height 1 group schemes [3].

The basic strategy behind the study of the map involves the following steps:

(1) When A is the Witt frame W (RA), S(W (RA)) ⊗ Fp is a square-zero thickening of RFZip
A = S(W1(RA)),

and so we can use deformation theory to describe the map ΓW (RA)(Y)→ ΓFZip(Y).
(2) In general, we have a map of frames A → W (RA) lifting the mod-p map from above, and we can use it,

along with the 1-boundedness of Y, to lift the description in the first step from W (RA) to A. This step also

uses deformation theory and the strong integrability of Y.
To carry this out, we break down the stacks R(Fil•A) ⊗ Fp and R(Fil•LauW1(RA)) via compatible stratifications

by certain somewhat explicit substacks, and we use a stratum-by-stratum analysis to get a grip on the picture.

Remark 5.10.2. Our hypotheses imply that the filtration Fil•A is p-adic, in the sense that R(Fil•A) is a p-adic
formal stack over

R(Fil•p Zp) ≃ Spf Zp[u, t]/(ut− p)/Gm,

where u has degree −1 and t has degree 1. We can interpret u as yielding, for every i ∈ Z, a commuting diagram

Fili−1A · t−i+1 u
> FiliA · t−i

Fili−1A · t−i+1.

t

∨
p

>
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This gives us a diagram of closed immersions

R(Fil•A)(u=0)

R(Fil•A)(t=u=0)

λ−

>

>
R(Fil•A)⊗ Fp

R(Fil•A)(t=0)

>

λ+

>

obtained via base-change from the diagram

A1/Gm × SpecFp ≃ R(Fil•p Zp)(u=0)

BGm × SpecFp ≃ R(Fil•p Zp)(t=u=0)

>

> R(Fil•p Zp)⊗ Fp

A1
+/Gm × SpecFp ≃ R(Fil•p Zp)(t=0).

>

>

Remark 5.10.3. We have canonical maps of stacks over SpecA

α− : A1/Gm × SpecRA ≃ R(Fil•LauW1(RA))(u=0) → R(Fil•A)(u=0) ↪→ R(Fil•A)⊗ Fp;

α+ : A1
+/Gm × Specφ∗RA ≃ R(Fil•LauW1(RA))(t=0) → R(Fil•A)(t=0) ↪→ R(Fil•A)⊗ Fp.

In particular, α− gives a map α0 : BGm×SpecRA → R(Fil•A)(t=u=0), and we can use it to view R(Fil•A)(u=0),

R(Fil•A)(t=0) and R(Fil•A)(t=u=0) as RA-pointed graded stacks.

Definition 5.10.4. Let Y − → SpecRA (resp. Y 0 → SpecRA, Y
+ → SpecRA) be the attractor stack (resp. fixed

point stack, repeller stack) over RA for Y♢ → R(Fil•A)⊗ Fp associated with the maps α− (resp. α0, α+).

Remark 5.10.5. We have canonical maps Y − → Y 0 and Y + → φY 0, where φY 0 = Y 0×SpecRA,φSpecRA, induced

via restriction along the projections A1/Gm → BGm and A1
+/Gm → BGm.

We also have maps χ∗
− : Y 0 → Y − and χ∗

+ : Y + → φY 0 induced by restriction along the closed immersions

χ− : BGm → A1/Gm and χ+ : BGm → A1
+/Gm.

There are also maps j∗− : Y − → Y and j∗+ : Y + → φY = Y ×SpecRA,φ SpecRA obtained via restriction along

the open points of A1/Gm and A1
+/Gm. The isomorphism ξ : σ∗Y♢ → τ∗Y♢ induces an isomorphism φY

≃−→ Y of

stacks over RA, which we also denote by ξ. In particular, composing with this isomorphism gives a map Y + → Y .

Finally, we have the relative Frobenius map Y 0 y 7→φy−−−−→ φY 0 over SpecRA.

Lemma 5.10.6. There is a natural isomorphism of étale sheaves

ΓFZip(Y)
≃−→ eq

[
Y 0 ×φY 0 Y + ×Y Y −

pr1 >

χ∗
−◦pr3

> Y
0

]
.

Proof. By definition, we have

ΓFZip(Y)(RA′)
≃−→ eq

[
Map(R(Fil•LauW1(RA′)),Y)

ξ◦σ∗
>

τ∗>
Y (RA′)

]
.
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The compositions

Map(R(Fil•LauW1(RA)),Y)→ Y − j∗−−−→ Y ; Map(R(Fil•LauW1(RA)),Y)→ Y + j∗−−−→ φY

arising from restrictions along the u = 0 and t = 0 loci, respectively, can be identified with τ∗ and σ∗.

Now, quite formally, we see that the right hand side in the isomorphism asserted by the lemma is equivalent to

eq

(
Y + ×Y Y −

χ∗
+◦pr1

>

φ(χ∗
−◦pr2)

>
φY 0

)
.

Therefore, to finish, it is enough to know that we have

Map(R(Fil•LauW1(RA)),Y)
≃−→ eq

(
(Y + × Y −)(RA′)

χ∗
+◦pr1

>

φ(χ∗
−◦pr2

> )
φY 0(RA′)

)
.

Let T be the Rees algebra R(Fil•LauW1(RA)). Via smooth descent for Y♢, we are reduced to knowing that, for

any RA-algebra S, we have

Y♢(S ⊗RA T )
≃−→ eq

[
Y♢(S ⊗RA φ∗RA[u])× Y♢(S ⊗RA RA[t])

u7→0
>

φ◦(t7→0)
>
φY♢(S ⊗RA φ∗RA)

]
.

The claim now follows from the cohesiveness of Y ×R(Fil• A)⊗Fp SpecS → SpecS (property (4) of [49, Theorem

7.5.1]), and the fact that the commutative diagram

S ⊗RA T > S ⊗RA RA[t]

S ⊗RA φ∗RA[u]
∨

> S ⊗RA φ∗RA
∨

is a Cartesian square of surjective maps of animated commutative rings. Indeed, it suffices to check this for S = RA,

where it was seen in the identity (5.8.1.1). □

We would like a similar description of ΓA(Y), and we begin by looking more closely at the substacks from

Remark 5.10.2.

Construction 5.10.7 (The abstract Hodge filtration). The relatively affine map

R(Fil•A)(u=0) → R(Fil•p Zp)(u=0) ≃ A1/Gm × SpecFp

corresponds to a lift Fil•Hdg A of A to an animated filtered commutative ring: this is the Hodge filtration on A.

By construction, we have

FiliHdg A = hcoker(u : Fili−1A · t−i+1 → FiliA · t−i).
We have an open immmersion

j− : SpecA ≃ R(Fil•Hdg A)(t̸=0) ↪→ R(Fil•Hdg A)

through which the map τ : SpecA→ R(Fil•A)⊗ Fp factors.

Example 5.10.8. Let us take the Witt frame from Example 5.4.8 associated with R ∈ CRingFp/ semiperfect. The

filtration in this case is p-adic: The map u is an isomorphism in filtered degree i ≥ 1, is the map F : W (R) →
F∗W (R) in degree 0 and is multiplication by p in negative degrees. Thus we have

FiliHdgW (R)
≃−→


hcoker(F :W (R)→ F∗W (R)) ≃ (W (R)[F ])[1] ≃ G♯a(R)[1] if i = 1

W (R) if i ≤ 0

0 otherwise.

Here, in the case i = 1, we have used the surjectivity of F : W (R) → F∗W (R)—which is a consequence of the

semiperfectness of R—and [10, Variant 3.4.12]. Concretely, for R discrete, the isomorphism W (R)[F ]→ G♯a sends
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an element x with Witt coordinates (x0, x1, . . .) to the element x0 equipped with the unique collection of divided

powers γm(x0) determined by the fact that γrp(x0) = xr for all r ≥ 0.

The map

G♯a(R)[1] ≃ hcoker(F :W (R)→ F∗W (R)) ≃ Fil1HdgW (R)→W (R)

is induced from V : F∗W (R)→W (R).

In particular, we find that Fil•HdgW (R) is a square-zero extension of Fil•trivR, and we have

hker(Fil•HdgW (R)→ Fil•trivR) ≃ G♯a(R)[1]⊗R Fil•trivR(1),

where Fil•trivR(1) is the free filtered module of rank 1 over R with associated graded supported in degree −1.23
Note also that the associated graded algebra gr•HdgW (R) is supported in degrees −1, 0, and is isomorphic as a

graded R-algebra to G♯a(R)[1]⊕R.

Construction 5.10.9 (The abstract conjugate filtration). The relatively affine map

R(Fil•A)(t=0) → R(Fil•p Zp)(t=0) ≃ A1
+/Gm × SpecFp

corresponds to an increasingly filtered animated commutative Fp-algebra: The underlying animated commuta-

tive Fp-algebra corresponds to the derived affine scheme R(Fil•A)(t=0,u̸=0), and the degree −i component of the

associated Rees algebra is isomorphic to griA · ui.
Now, σ factors through a map

Spf A ≃ R(Fil•pA)(t=0,u̸=0) → R(Fil•A)(t=0,u̸=0).

In our applications, A will be the frame associated with the Nygaard filtered prismatic cohomology of a semiperfect

Fp-algebra R, and this map will be an isomorphism: This last fact is equivalent to the known assertion that the

conjugate filtration on the Hodge-Tate cohomology of R is exhaustive.

Therefore, we will write Filconj• A for the increasingly filtered animated commutative ring associated withR(Fil•A)(t=0),

and call it the conjugate filtration on A. In particular, we have a map

j+ : SpecA→ R(Filconj• A)(u̸=0) ↪→ R(Filconj• A)

through which σ factors.

Remark 5.10.10. The pullbacks of both R(Fil•A)(t=0) and R(Fil•A)(u=0) over BGm × SpecFp are isomorphic

to R(Fil•A)(t=u=0): this identification corresponds to an isomorphism of graded animated commutative rings

grconj• A
≃−→ gr•Hdg A.

Example 5.10.11. Let us return to the Witt frame from Example 5.10.8. Here, we have

Filconji W (R) = griLauW (R) ≃


R if i = 0

F∗W (R) if i ≥ 1

0 otherwise.

The transition maps Filconji W (R)→ Filconji+1 W (R) are the identity when i ≥ 1, while the map

R = Filconj0 W (R)→ Filconj1 W (R) = F∗W (R)

is induced from the commuting diagram

W (R)
F
> F∗W (R)

R
∨

> F∗W (R).

∨

23Recall that according to our convention the i-th associated graded piece for a decreasing filtration is in graded degree −i.
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The map Filconji W (R)→W (R) for i ≥ 1 is the identification F∗W (R) ≃W (R).

Definition 5.10.12. Define sheaves on (RA)ét:

Γ(t=0)(Y) : RA′ 7→ Map(R(Fil•A′)(t=0),Y);
Γ(u=0)(Y) : RA′ 7→ Map(R(Fil•A′)(u=0),Y);

Γ(t=u=0)(Y) : RA′ 7→ Map(R(Fil•A′)(t=u=0),Y);

ΓA(Y) : RA′ 7→ Y(A′
).

All spaces of maps are over R(Fil•A)⊗ Fp, and we are viewing SpecA
′
as a scheme over it via τ .

Lemma 5.10.13. We have an isomorphism of étale sheaves

ΓA(Y)
≃
> eq

(
Γ(t=0)(Y)×j∗+,ΓA(Y),j∗−

Γ(u=0)(Y)
λ∗
+◦pr1

>

λ∗
−◦pr2

> Γ(t=u=0)(Y)
)
.

Proof. As in the proof of Lemma 5.10.6, this reduces via smooth descent to the claim that, for any p-adic formal

affine scheme Spf T → R(Fil•A) we have

Map(SpecT/Lp,Y) ≃
> eq

[
Map(SpecT/Lu,Y)×Map(SpecT/Lt,Y) >

> Map(SpecT/L(u, t),Y)
]
.

Here, we have set

T/Lu
defn
= T ⊗Zp[u,t],u7→0 Zp[t] ; T/Lt

defn
= T ⊗Zp[u,t],t7→0 Zp[u]

T/L(u, t)
defn
= T ⊗Zp[u,t],u7→0,t7→0 Zp

and all the mapping spaces are over R(Fil•A)⊗ Fp.
Just like in the proof of Lemma 5.10.6, the claim now follows from the fact that the commutative diagram

T/Lp > T/Lu

T/Lt
∨

> T/L(u, t)
∨

of surjective maps of animated commutative rings is Cartesian. This last assertion only needs to be checked when

T = Zp[u, t]/(ut− p), where it is clear. □

Construction 5.10.14. As we saw in Construction 5.9.24, there are certain quasicoherent sheaves over the stacks

Y, Y ±, Y 0,ΓFZip(Y) that can be produced from the relative cotangent complex LY♦ of Y♢ over R(Fil•A)⊗ Fp.
To begin, we can simply restrict the cotangent complex over Y to obtain an almost perfect complex L(Y) ∈

APerf(Y ). Its pullback over Y − (resp. Y +) underlies a decreasingly filtered (resp. increasingly filtered) almost

perfect complex Fil•Hdg L(Y) (resp. Filconj L(Y)). The associated graded complex gr•HdgL(Y) (resp. grconj• L(Y)) is
pulled back from a graded almost perfect complex over Y 0 (resp. over φY 0) along Y − → Y 0 (resp. Y + → φY 0),

which we denote by the same symbol.

Finally, over ΓFZip(Y), we have a canonical isomorphism between the pullbacks of φ∗ gr•Hdg L(Y) and grconj• L(Y)
along the canonical map ΓFZip(Y) → Y 0 obtained via projection onto the target of the equalizer diagram in

Lemma 5.10.6. This yields an F -zip L(Y) over ΓFZip(Y), which is precisely the one described in Remark 5.9.30.

Construction 5.10.15. Let Q̃ be a quasicoherent sheaf over SpecRA associated with an RA-module Q. For any

sheaf Z over (RA)ét and any almost perfect complex M over Z, as in Construction 5.9.24, we can define a map of

sheaves

Map(M, Q̃)→ Z
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whose fiber over y ∈ Z(RA′) is the sheaf on (RA′)ét given by

A′′ 7→ MapRA′ (My, RA′′ ⊗RA Q).

Construction 5.10.16. Let Z1
A be the quasicoherent étale sheaf24 over RA given by

Z1
A(RA′) = Filconj1 A

′ ×A′ Fil1Hdg A
′ ≃ hker(Filconj1 A

′ → φ∗RA′).

The RA′ -module structure is given via the isomorphism RA′ = gr0A′ ≃−→ Filconj0 A
′
.

Let H1
A be the quasicoherent étale sheaf

H1
A : RA′ 7→ grconj1 A

′
.

Note that we have two maps

q1, q2 : Z1
A → H1

A.

The first of these is obtained via the natural map Filconj1 A
′ → grconj1 A

′
, and is a linear map of quasicoherent sheaves,

while the second is obtained from the composition

Z1
A(RA′)→ Fil1Hdg A

′ → gr1Hdg A
′ ≃−→ grconj1 A

′
.

This one is φ-semilinear, and so corresponds to a map 1⊗ q2 : φ∗Z1
A → H1

A.

Example 5.10.17. Let us return to the example of the Witt frame. Here, using Examples 5.10.8 and 5.10.11, we

see that

H1
W (R)(R) ≃ hcoker(R→ F∗W (R)) ≃ G♯a(R)[1];

Z1
W (R)(R) ≃ hker(F∗W (R)→ φ∗R) ≃ φ∗G♯a[1]

Here, in the first isomorphism, we have used the inverse of the composition of the isomorphisms

G♯a(R)[1] ≃ hcoker(F :W (R)→ F∗W (R))
≃−→ hcoker(R→ F∗W (R)).

Via these identifications, q2 is the identity on the underlying Fp-modules, corresponding to the R-linear counit

φ∗φ∗G♯a(R)[1]→ G♯a[1], while q1 arises after a shift from the map

φ∗G♯a(R) ≃ (F∗W (R))[F ]
V−→W (R)[F ] ≃ G♯a(R).

We can now describe the relative situation between the consituents of the equalizer diagrams involved in Lem-

mas 5.10.6 and 5.10.13.

Lemma 5.10.18. (1) There is a canonical equivalence

ΓA(Y)×Y Y
− ≃−→ Γ(u=0)(Y).

(2) There is a canonical Cartesian square of prestacks over RA

Γ(t=0)(Y) > Y 0

Y + ×φY 0 Y 0
∨

d+
> Map(Fil1Hdg L(Y), Z1

A[1])

0

∨

24Recall that all sheaves are with respect to the small étale site.
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(3) There is a canonical map

Γ(t=u=0)(Y)→ Y 0

presenting the source as a trivial torsor under Map(Fil1Hdg L(Y), H1
A). In particular, there is a Cartesian

square
Γ(t=u=0)(Y) > Y 0

Y 0
∨

d0
> Map(Fil1Hdg L(Y), H1

A[1])

0

∨

Proof. The first assertion is immediate from filtered integrability and Proposition 4.12.3. The other two will use

graded integrability and Proposition 4.11.3. This tells us that we have

Γ(t=0)(Y)(RA′) ≃ Map
(
R+(Fil

conj
• A

′
),Y

)
≃ Map

(
Spec(Filconj1 A

′ · u⊕ Filconj0 A
′
)/Gm,Y

)
,

and

Y +(RA′) ≃ Map(A1
+/Gm × SpecRA′ ,Y)

≃ Map (Spec(φ∗(RA′u⊕RA′))/Gm,Y) .

This description, combined with graded deformation theory, shows that Γ(t=0)(Y) is a trivial torsor over Y 0

under the sheaf Map(Fil1Hdg L(Y),Fil
conj
1 ). Here, Filconj1 is the étale sheaf over RA given by RA′ 7→ Filconj1 A

′
.

Similarly, Y + is a trivial torsor over φY 0—and therefore Y +×φY 0 Y 0 is a trivial torsor over Y 0—under the sheaf

Map(Fil1Hdg L(Y), φ∗O), where O is the structure sheaf on (RA)ét.

Assertion (2) follows from this and the definition of Z1
A. Assertion (3) is shown in similar fashion. □

Notation 5.10.19. Let us simplify our notation in the following way: Set Y Σ = Y 0 ×φY 0 Y +, ΓFZip = ΓFZip(Y)
and

Γ(t=0) = Γ(t=0)(Y)×Y Σ ΓFZip ; Γ(u=0) = Γ(u=0)(Y)×Y − ΓFZip ≃ ΓA = ΓA(Y)×Y ΓFZip;

Γ(t=u=0) = Γ(t=u=0)(Y)×Y 0 ΓFZip.

Remark 5.10.20. Note that we have two maps ζ1, ζ2 : Γ(t=0) → Γ(t=u=0) obtained as follows: The first arises from

the natural map Γ(t=0)(Y)→ Γ(t=u=0)(Y), while the second is defined as the composition

Γ(t=0) = Γ(t=0)(Y)×Y Σ ΓFZip(5.10.20.1)

→ ΓA(Y)×Y ΓFZip

≃←− Γ(u=0)(Y)×Y − ΓFZip

→ Γ(t=u=0)(Y)×Y 0 ΓFZip = Γ(t=u=0).

Unwinding definitions now shows that we have

ΓA(Y)
≃
> eq

(
Γ(t=0)

ζ1
>

ζ2
> Γ(t=u=0)

)
.

Remark 5.10.21. Write

γ0 : ΓFZip → Y 0 ; γ+ : ΓFZip → Y Σ

for the tautological maps. Define maps

δ0 : ΓFZip
d0◦γ0

−−−−→ Map(Fil1Hdg L(Y), H1
A[1])

δ+ : ΓFZip
d+◦γ+

−−−−→ Map(Fil1Hdg L(Y), Z1
A[1])
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Lemma 5.10.18 now gives us canonical isomorphisms

Γ(t=0) ≃ ΓFZip ×0,Map(Fil1Hdg L(Y),Z1
A[1]),δ+ ΓFZip;(5.10.21.1)

Γ(t=u=0) ≃ ΓFZip ×0,Map(Fil1Hdg L(Y),H1
A[1]),δ0 ΓFZip.(5.10.21.2)

Construction 5.10.22. As explained in Remark 5.9.30, the F -zip L(Y) over ΓFZip with Hodge-Tate weights ≥ −1
gives us a map

ψ : Fil1Hdg L(Y)→ φ∗ Fil1Hdg L(Y)
of almost perfect complexes over ΓFZip.

Combining the maps q1, q2 : Z1
A → H1

A with ψ yields, for every i ∈ Z, two further maps of étale sheaves

q1,ψ[i], q2,ψ[i] : Map(Fil1Hdg L(Y), Z1
A[i])→ Map(Fil1Hdg L(Y), H1

A[i]).

The map q1,ψ[i] is simply given by postcomposition with q1[i], and is independent of ψ, while the map q2,ψ[i] is

given by the composition

Map(Fil1Hdg L(Y), Z1
A[i])

φ∗

−−→ Map(φ∗ Fil1Hdg L(Y), φ∗Z1
A[i])

(1⊗q2)◦()◦ψ−−−−−−−−→ Map(Fil1Hdg L(Y), H1
A[i]).

We now set for any i ∈ Z25

ΓA,ψ(Fil
1
Hdg L(Y)[−i])

defn
= τ≤0 hker(q1,ψ[i]− q2,ψ[i]).

This is a ModcnFp -valued prestack over ΓFZip.

We also obtain two further maps

q1,ψ[1] ◦ δ+, q2,ψ[1] ◦ δ+ : ΓFZip → Map(Fil1Hdg L(Y), H1
A[1]).

Here is the main result of this subsection:

Proposition 5.10.23. (1) The maps δ0, q1,ψ[1] ◦ δ+, q2,ψ[1] ◦ δ+ are all canonically isomorphic. In particular,

for i = 1, 2, qi,ψ[1] yields a map ηi obtained as the composition of

Γ(t=0)
(5.10.21.1)−−−−−−→

≃
ΓFZip ×0,Map(Fil1Hdg L(Y),Z1

A[1]),δ+ ΓFZip

→ ΓFZip ×0,Map(Fil1Hdg L(Y),H1
A[1]),qi,ψ[1]◦δ+ ΓFZip

≃ ΓFZip ×0,Map(Fil1Hdg L(Y),H1
A[1]),δ0 ΓFZip

(5.10.21.2)−−−−−−→
≃

Γ(t=u=0).

(2) There are natural isomorphisms of maps ηi ≃ ζi for i = 1, 2. In particular, we have

ΓA(Y)
≃
> eq

(
Γ(t=0)

η1
>

η2
> Γ(t=u=0)

)
.

(3) There is a canonical Cartesian diagram

ΓA(Y) > ΓFZip

ΓFZip

∨
> ΓA,ψ(Fil

1
Hdg L(Y)[−1]).

0

∨

25The geometric meaning of this definition—when specialized to the case where A = ∆R is the frame associated with the prismatic

cohomology of a semiperfect Fp-algebra R—will be explained in Section 7.
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Remark 5.10.24. Assertion (3) is simply a reinterpretation of the description of ΓA(Y) given to us by the second

part of assertion (2), which in turn is immediate from the first part and Remark 5.10.20. Moreover, it is straight-

forward to see from the deformation theory that assertion (1) and the first part of assertion (2) both hold for i = 1.

The non-trivial part of the proposition therefore is seeing that they are also valid for i = 2.

Remark 5.10.25. Though this is not obvious from the formulation here, the validity of assertion (1) for i = 2

contains as a special case the key identity (5.6) of [25, Lemma 5.3.3].

Just as in the proof of Proposition 5.9.9, the main input to the proof of Proposition 5.10.23 is deformation theory,

which we encapsulate in the Lemmas 5.10.28 and 5.10.34 below. For now, we make some preliminary remarks.

Remark 5.10.26. Suppose that Fil• S is a non-negatively and increasingly filtered animated commutative ring

equipped with a map π : S → S♭
defn
= Fil0 S of animated commutative rings, and write f for the composition

S♭ = Fil0 S → S → S♭. The map π induces a filtered morphism Fil• π : Fil• S → Filtriv• S♭. If gr• S is the associated

graded object, then we have a projection ϖ : gr• S → gr0 S = S♭ onto the degree 0 part whose composition with

the endomorphism f agrees with gr• π if we view S♭ as a trivially graded animated commutative ring. Given a

module Fil•M over Fil• S, base-change along Fil• π gives an increasingly filtered module Fil•M
♭ over S♭. Taking

the associated graded and then graded base-change along ϖ gives us a graded module (gr•M)
♭
over S♭. We have

a canonical isomorphism

f∗(gr•M)
♭ ≃−→ gr•M

♭.

Note in particular that for all i ∈ Z, we have an S♭-linear map FiliM → f∗ FiliM
♭.

Lemma 5.10.27. With the setup from Remark 5.10.26, let Fil•M and Fil•N be modules over Fil• S with the

following properties:

(1) (griM)
♭ ≃ 0 for i > 1;

(2) FiliN ≃ 0 for i < 1.

Then there is a canonical isomorphism

ζ : MapFil• S(Fil•M,Fil•N)
≃−→ MapS♭((gr1M)

♭
,Fil1N)

such that we have a commuting diagram

MapS♭((gr1M)
♭
,Fil1N) <

ζ

≃
MapFil• S(Fil•M,Fil•N) > MapS(M,N)

MapS♭(gr1M
♭,Fil1N

♭)

∨
<
≃

MapFiltriv• S♭(Fil•M
♭,Fil•N

♭)

∨
> MapS♭(M

♭, N ♭)

∨

Here, the vertical arrow on the left is the composition

MapS♭((gr1M)
♭
,Fil1N)→ MapS♭((gr1M)

♭
, f∗ Fil1N

♭)
≃−→ MapS♭(f

∗(gr1M)
♭
,Fil1N

♭)
≃−→ MapS♭(gr1M

♭,Fil1N
♭).

Proof. Taking the associated graded and then base-change along ϖ gives a canonical map

MapFil• S(Fil•M,Fil•N)→ Mapgrtriv• S♭((gr•M)
♭
, (gr•N)

♭
).

Using our hypotheses, one can now use Lemma A.2.3 to see that this map is an isomorphism and also that the

right hand side can be identified with MapS♭((gr1M)
♭
,Fil1N). This gives us the isomorphism ζ. The map on the

bottom left is obtained from restriction to Fil1M
♭: The fact that any such restriction must factor through gr1M

♭

and that the resulting map of mapping spaces is an isomorphism can also be deduced using the weight filtration

from Lemma A.2.3. □

Lemma 5.10.28. Suppose that A→ Aℏ is a square-zero extension of prismatic, p-adic frames equipped with p-adic

filtration, and suppose that assertions (1) and (2) of Proposition 5.10.23 hold with A replaced with Aℏ. Then they

hold for A.
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As usual, we will need to set up some prepwork before we embark on the proof.

Notation 5.10.29. Set R = RA and Rℏ = RAℏ . We have a canonical equivalence Rét ≃ Rℏ,ét. There are the

counterparts of the various sheaves on Rét considered above, but obtained from Aℏ instead of A. We will distinguish

these counterparts with a ℏ index: Y Σ
ℏ , Γ(t=0),ℏ(Y), ΓFZip,ℏ, Lℏ(Y), etc. We will also simplify Lℏ(Y) to Lℏ in what

follows.

Set

Fil•HdgK
defn
= hker(Fil•Hdg A→ Fil•Hdg Aℏ) ; Fil

conj
• K

defn
= hker(Filconj• A→ Filconj• Aℏ).

Also, set I = hker(R→ Rℏ).

Construction 5.10.30. Write Filconj•,ℏ for the sheaf of increasingly filtered animated commutative rings given by

R′ 7→ Filconj• A
′
ℏ. Over Γ(t=0),ℏ(Y), we obtain a sheaf of increasingly filtered modules Filconj• Lℏ over Filconj•,ℏ , whose

fiber over a point x ∈ Γ(t=0),ℏ(Y)(R′) with underlying map

y : R+(Fil
conj
• A′

ℏ)→ Y♢

is the pullback Filconj• Lℏ,y along y of the relative cotangent complex of Y♢ over R(Fil•A) ⊗ Fp. Filtered base-

change to the structure sheaf Oℏ : R′ 7→ R′
ℏ with its trivial increasing filtration26 yields the pullback along the

map Γ(t=0),ℏ(Y) → Y +
ℏ of the filtered module Filconj• Lℏ. Similarly, taking the associated graded and then graded

base-change to the structure sheaf Oℏ with its trivial grading27 gives the pullback along Γ(t=0),ℏ(Y) → Y 0
ℏ of

gr•Hdg Lℏ.

Construction 5.10.31. Write Fil•Hdg,ℏ for the sheaf of decreasingly filtered animated commutative rings given by

R′ 7→ Fil•Hdg A
′
ℏ. Over Γ(u=0),ℏ(Y), we obtain from the cotangent complex of Y♢ a sheaf of decreasingly filtered

modules Fil•Hdg Lℏ over Fil•Hdg,ℏ. Filtered base-change to the structure sheaf Oℏ : R′ 7→ R′
ℏ with its trivial decreasing

filtration yields the pullback along the map Γ(u=0),ℏ(Y) → Y −
ℏ of the filtered module Fil•Hdg Lℏ. Similarly, taking

the associated graded and then graded base-change to the structure sheaf Oℏ with its trivial grading gives the

pullback along Γ(u=0),ℏ(Y)→ Y 0
ℏ of gr•Hdg Lℏ.

Construction 5.10.32. Write gr•ℏ for the sheaf of graded animated commutative rings given by

R′ 7→ gr•Hdg A
′
ℏ ≃ grconj• A

′
ℏ.

Over Γ(t=u=0),ℏ(Y), entirely analogously to the previous constructions, we obtain a sheaf of graded gr•ℏ-modules

L•,ℏ over Γ(t=u=0),ℏ(Y). Graded base-change to the structure sheaf gives the pullback along Γ(t=u=0),ℏ(Y)→ Y 0
ℏ of

gr•Hdg Lℏ. Moreover, the pullback of this graded module to Γ(t=0),ℏ(Y) (resp. Γ(u=0),ℏ(Y)) is canonically isomorphic

to the associated graded for Filconj• Lℏ (resp. Fil•Hdg Lℏ).

Remark 5.10.33. The Aℏ-module J
defn
= Fil1HdgK can be equipped with the structure of a filtered module Fil• J

over Filconj• Aℏ with

Fili J =

{
FiliK ×K J if i > 0;

0 otherwise.

Note in particular that we have

Fil1 J
≃−→ Filconj1 K ×K Fil1HdgK

≃−→ Z1
K

defn
= hker(Z1

A → Z1
Aℏ

).

Moreover, the map gr• J → grconj• K factors through

grconj≥1 K
defn
= hker(grconj• K → grtriv• I).

Note also the composition of maps

J = Fil1HdgK → gr1HdgK
≃−→ grconj1 K.(5.10.33.1)

26The map in question is obtained from Filconj• Aℏ → Rℏ.
27Here, we are viewing Oℏ as the zeroth graded piece of Fil•conj.



CONJECTURES OF DRINFELD 67

Proof of Lemma 5.10.28. Consider the map Γ(t=0) → Γ(t=0),ℏ×ΓFZip,ℏ ΓFZip: An unwinding of the definitions shows

that this can be rewritten as

Γ(t=0)(Y)×Y Σ ΓFZip →
[
Γ(t=0),ℏ(Y)×Y Σ

ℏ
Y Σ
]
×Y Σ ΓFZip.

Via this and deformation theory we obtain a Cartesian square

Γ(t=0) > Γ(t=0),ℏ ×ΓFZip,ℏ ΓFZip

Γ(t=0),ℏ ×ΓFZip,ℏ ΓFZip

∨
> Map(Filconj• Lℏ,Fil• J [1]).

0

∨

We also obtain similar Cartesian squares

Γ(u=0) > Γ(u=0),ℏ ×ΓFZip,ℏ ΓFZip

Γ(u=0),ℏ ×ΓFZip,ℏ ΓFZip

∨
> Map(Lℏ, J [1])

0

∨

;

Γ(t=u=0) > Γ(t=u=0),ℏ ×ΓFZip,ℏ ΓFZip

Γ(t=u=0),ℏ ×ΓFZip,ℏ ΓFZip

∨
> Map(L•,ℏ, gr

conj
≥1 K[1]).

0

∨

Lemma 5.10.27 gives us canonical isomorphisms

Map(Filconj• Lℏ,Fil• J [1])
≃−→ Map(Fil1Hdg Lℏ,Fil1 J [1])

≃−→ Map(Fil1Hdg Lℏ, Z
1
K [1]).(5.10.33.2)

Further, using Lemma A.2.3, one deduces that there are canonical isomorphisms

Map(L•,ℏ, gr
conj
≥1 K[1])

≃−→ Map(Fil1Hdg Lℏ, gr
conj
1 K[1])

≃−→ Map(Fil1Hdg Lℏ, H
1
K [1]),(5.10.33.3)

where H1
K

defn
= hker(H1

A → H1
Aℏ

).

The map Γ(t=0) → Γ(t=u=0) is compatible via these isomorphisms and the Cartesian squares above with the

composition

Map(Fil1Hdg Lℏ, Z
1
K [1])→ Map(Fil1Hdg Lℏ, H

1
K [1])

induced by q1 : Z1
K → H1

K .

The map Γ(u=0) → Γ(t=u=0) is compatible via the map

Map(Lℏ, J [1])→ Map(Lℏ, gr
conj
1 K[1])→ Map(Fil1Hdg Lℏ, H

1
K [1]),(5.10.33.4)

where the first map is obtained from post-composition with the map (5.10.33.1), and the second via restriction to

Fil1Hdg Lℏ. Note that the first mapping space is of morphisms linear over the sheaf R′ 7→ A
′
while the other two

spaces are of maps linear over the structure sheaf.

The map from (5.10.20.1) is in turn compatible with the composition

Map(Fil1Hdg Lℏ, Z
1
K [1])

(5.10.33.2)−−−−−−→
≃

Map(Filconj• Lℏ,Fil• J [1])

→ Map(Lℏ, J [1])

(5.10.33.4)−−−−−−→ Map(Fil1Hdg Lℏ, H
1
K [1]).
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Lemma 5.10.27 tells us that the resulting map is canonically isomorphic to the composition

Map(Fil1Hdg Lℏ, Z
1
K [1])→ Map(Fil1Hdg Lℏ, φ∗H

1
K [1])

≃−→ Map(φ∗ Fil1Hdg Lℏ, H
1
K [1])

≃−→ Map(grconj1 Lℏ, H
1
K [1])

→ Map(Lℏ, H
1
K [1])

→ Map(Fil1Hdg Lℏ, H
1
K [1]).

The three preceding paragraphs complete the verification of Lemma 5.10.28. □

Lemma 5.10.34. Assertions (1) and (2) of Proposition 5.10.23 hold for A =W (R) the Witt vector frame associated

with a semiperfect Fp-algebra R.

Proof. We’ll follow the notation simplifications from Lemma 5.10.28. To begin, Lemma 5.10.18, combined with

Example 5.10.17, tells us that we have Cartesian squares

Γ(t=0) ×Γ
W (R)

Γ(u=0) > ΓFZip

ΓFZip

∨

δ+
> Map(Fil1Hdg L(Y), φ∗G♯a[2])

0

∨

and

Γ(t=u=0) > ΓFZip

ΓFZip

∨

δ0
> Map(Fil1Hdg L(Y),G♯a[2]).

0

∨

Since W (R) is a square-zero extension of R with fiber G♯a(R)[1], standard deformation theory also gives us a

Cartesian square

Γ(u=0) > ΓFZip

ΓFZip

∨

δ−
> Map(L(Y),G♯a[2]).

0

∨

Furthermore, the composition

ΓFZip
δ−−−→ Map(L(Y),G♯a[2])→ Map(Fil1Hdg L(Y),G♯a[2])

is canonically isomorphic to δ0.

An unwinding of the deformation theory used above now shows that δ− agrees with the composition

ΓFZip
δ+−−→ Map(Fil1Hdg L(Y), φ∗G♯a[2])

≃−→ Map(grconj1 L(Y),G♯a[2])→ Map(L(Y),G♯a[2])

Here, in the isomorphism in the middle, we have used the isomorphism φ∗ Fil1Hdg L(Y)
≃−→ grconj1 L(Y) and adjunction

for φ.

Combining the last two paragraphs with the definition of q2,ψ and the explicit description of q2 in Example 5.10.17

now completes the proof. □
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Proof of Proposition 5.10.23. To begin, note that the last assertion of the proposition follows immediately from the

definitions and the first two assertions.

The verification of the other two assertions follows the same format as the proof of Proposition 5.9.9, so we will

be terse. First, we can use Lemma 5.10.28 and the nilcompleteness of the various prestacks involved to reduce to

the case where the Rees algebra Rees(Fil•A) is a discrete graded ring.

Now, Lemma 5.4.11 gives us a canonical map of frames A→W (R), where we have set R = π0(RA). Since RA is

semiperfect, this map is surjective on the underlying filtered animated commutative rings: First, the map A→W (R)

is surjective. Indeed, by p-completeness, this assertion is equivalent to saying that π0(A) → W (R)/pW (R) is sur-

jective. But the semiperfectness of RA tells us that W (R)/pW (R) ≃ R. Next, the map FiliA→ FiliLauW (π0(RA))

is surjective for each i ≥ 1. By the definition of the Lau filtration on W (R) and the fact that Fil•A is p-adic, it

suffices to check this for i = 1, where it follows from the fact that Fil1LauW (R) = F∗W (R) is a submodule of W (R)

via the map V .

As in Remark 5.4.16, classical base-change along A → W (R) (viewed as the derived base-change, followed

by taking the 0-truncation), yields a non-negatively filtered animated commutative ring Fil•W (R) lifting W (R),

underlying a frame AW (R), and admitting surjective maps of frames

A→ AW (R)→W (R).

The kernel of the first map is locally nilpotent mod-p, and so—using strong integrability and Lemma 5.10.28 once

again—it is enough to know that the proposition holds for the frame AW (R).

If Fil•K is the kernel of Fil•W (R) → Fil•LauW (R), then the frame structure on Fil•W (R) descends to the

filtered quotient Fil•(m)W (R), where

Fili(m)W (R) = FiliW (R)/
( ∑
j1+...+jm=i

im(Filj1 K ⊗W (R) ⊗· · · ⊗W (R) Fil
jm K)

)
Now, we have Fil•(1)W (R) = Fil•LauW (R) and the map Fil•(m+1)W (R) → Fil•(m)W (R) is a square-zero extension,

for each m ≥ 1. Therefore, we can use filtered integrability and the deformation argument above to reduced to the

case of the Witt frame W (R), which is taken care of by Lemma 5.10.34. □

Here is a useful corollary to Proposition 5.10.23.

Corollary 5.10.35. Suppose that the following additional conditions hold:

• Y♢ is smooth over R(Fil•A)⊗ Fp;
• Its relative tangent complex TY♦ is 1-connective;

Then ΓA(Y)→ ΓFZip(Y) is a torsor under ΓA,ψ(Fil
1
Hdg L(Y)).

Proof. It is enough to know that, in assertion (2) of Lemma 5.10.18, we have the stronger assertion that

Γ(t=0)(Y)→ Y + ×φY 0 Y 0

is a torsor under Map(Fil1Hdg L(Y), Z1
A).

Looking at the proof of that assertion, we find that we need to know that the map

(Fil1Hdg L(Y))∨ ⊗O Filconj1 → (Fil1Hdg L(Y))∨ ⊗O φ∗O

is surjective on connective covers. But in fact our hypothesis on the tangent complex shows that the source and

target of this map are already connective. Therefore, it is enough to know that the map

RA′ ≃ Filconj0 A′ → φ∗RA′

is surjective for any étale map RA → RA′ . But this is guaranteed to us by the semiperfectness of RA, and the fact

that any étale algebra over a semiperfect ring is also semiperfect; see Lemma 9.2.1 below. □
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6. The stacks of Drinfeld and Bhatt-Lurie

6.1. Transmutation. Suppose that we have a map π : Z → Y of p-adic formal prestacks such that Z is a relative

ring prestack over Y : For us, this will mean that we have specified a lift of the associated functor

CRingp-nilp/Y

(C,y)7→Z((C,y))−−−−−−−−−−→ Spc

to a presheaf valued in CRing, which we will denote by the same symbol.

Here, CRingp-nilp/Y is the ∞-category of pairs (C, y) with C ∈ CRingp-nilp and y ∈ Y (C), and Z((C, y)) is the

fiber of Z(C) over y. Then, for any R ∈ CRingp-nilp, its transmutation with respect to π is the p-adic formal

prestack over Y given by

Trπ(R) : CRing
p-nilp
/Y → Spc

(C, y) 7→ MapCRing(R,Z((C, y)))

This gives us a limit preserving functor

CRingp-nilp,op
SpecR 7→Trπ(R)−−−−−−−−−−→ PStk/Y .

6.2. Cartier-Witt divisors and prismatizations. Here, we quickly recall the story of (derived) absolute prisma-

tizations from [11, §8].

6.2.1. To begin, we have the p-adic formal prestack Z∆
p (the notation is from [8]) of Cartier-Witt divisors, denoted

WCart in [10]. For R ∈ CRingp-nilp, Z∆
p(R) parameterizes surjective maps π : W (R) ↠ W (R) of animated rings

such that two properties hold:

• I = hker(π) is a locally free W (R)-module of rank 1;

• The map π0(I) ≃ I ⊗W (R) W (π0(R))→W (π0(R)) is a Cartier-Witt divisor in the sense of [10, §3.1.1].
The second condition means that, Zariski-locally on SpecR, we have a W (π0(R))-linear isomorphism π0(I) ≃

W (π0(R)) such that the compositionW (π0(R)) ≃ π0(I)→W (π0(R)) is given by multiplication by a distinguished

element d ∈ Wdist(π0(R)), given in Witt coordinates by (d0, d1, . . .) with d0 ∈ π0(R) nilpotent mod-p and with

d1 ∈ π0(R)×.
In this situation, we will call the map I →W (R) a Cartier-Witt divisor over R.

This description shows (see [11, Proposition 8.4]):

Proposition 6.2.2. We have Z∆
p ≃Wdist/W

×, whereWdist is represented by the formal spectrum of Zp[x0, x±1
1 , x2, . . .]

∧
(x0,p)

,

and inherits the W×-action from the natural one on W , where W is represented by the formal spectrum of

Zp[x0, x1, . . .]∧p . In particular, Z∆
p is classical.

6.2.3. Over Z∆
p , we have the tautological relative ring prestack G∆

a given by (W (R)
π−→ W (R)) 7→ W (R). Trans-

mutation with respect to this (see §6.1) now gives a functorial assignment R → R∆ from CRingp-nilp to PStk/Z∆
p
.

Concretely, R∆ associates to any (W (C) ↠ W (C)) ∈ Z∆
p(C) the space MapCRing(R,W (C)). We call R∆ the

prismatization of R.

Remark 6.2.4. We have a canonical equivalence Spf Zp
≃−→ F∆

p induced by the Cartier-Witt divisorW (Fp) = Zp
p−→

Zp =W (Fp).

Remark 6.2.5. There is a canonical ‘Frobenius lift’ φ : Z∆
p → Z∆

p arising from the map F :W →W , which carries

a Cartier-Witt divisor I →W (R) to F ∗I →W (R)

Remark 6.2.6. If (A, I) is an animated prism as in [11, §2], then there is a canonical map ι(A,I) : Spf A → Z∆
p

associating to each p-nilpotent A-algebra C, the Cartier-Witt divisor I ⊗A W (C) → W (C). Here, A → W (C) is

the canonical lift of A → C afforded by the δ-ring structure on A. If we have a map R → A/I—that is, if (A, I)

lifts to an object in the (animated) prismatic site of R—then ι(A,I) admits a lift to a map to R∆.

6.3. The Hodge-Tate locus.
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6.3.1. Let Â1 be the p-adic formal completion of A1, equipped with the inverse of the usual action of Gm (as

in §4.2). Then, Â1/Gm parameterizes line bundles L equipped with a cosection t : L → O that is nilpotent mod-p,

meaning that for some (hence any) local trivialization of L, t is given by a section of O that is nilpotent mod-p.

Then the natural map Wdist → Â1 descends to a map Z∆
p → Â1/Gm, and the Hodge-Tate locus ZHT

p is defined

to be the fiber product (derived or classical: both are the same in this case)

ZHT
p = Z∆

p ×Â1/Gm BGm.

This is a closed substack of Z∆
p with locally invertible ideal sheaf, which Bhatt-Lurie make a very detailed study of

in [10, §3.4]. They show that ZHT
p has a somewhat concrete description.

To explain this, first note that we have a canonical map Spf Zp → ZHT
p corresponding to the Cartier-Witt divisor

W (Zp)
V (1)−−−→W (Zp).

Proposition 6.3.2. The above map presents ZHT
p as the formal classifying stack BG♯m over Spf Zp. In particular,

it is a flat surjection. Moreover, there is a natural equivalence

Spf Zp ×Z∆
p
F∆
p

≃−→ G♯m × SpecFp.

Proof. The first assertion is [10, Theorem 3.4.13]; see also [27, Lemma 4.5.2].

For the second, note that the left hand side is a canonically trivial G♯m-torsor over

FHT
p

defn
= ZHT

p ×Z∆
p
F∆
p ,

but this base is canonically identified with the closed subscheme SpecFp ⊂ Spf Zp via the equivalence of Re-

mark 6.2.4. □

6.4. The Nygaard filtered prismatization. The underived story of the Nygaard filtered prismatization is ex-

plained in Bhatt’s notes [8, §5] following Drinfeld in [27, §5]. We will now explain how to make sense of these

constructions in the context of animated rings. This explanation was helped greatly by conversations with Juan

Esteban Rodŕıguez Camargo.

6.4.1. View W as a ring stack over Spf Zp, associating with each p-nilpotent R the ring of Witt vectors W (R).

We will consider modules for the ring stack W in the ∞-category of fppf sheaves over R, and refer to them simply

as W -modules over R. Here are some examples of W -modules:

• Any quasicoherent sheaf can be viewed as a Ga-module, and is hence equipped with the structure of a

W -module via the map W → Ga.
• Given an invertible R-module L, we can take the divided power envelope of the identity section within

the vector group scheme V(L∨)28 to obtain the W -module V(L∨)♯. Here, the W -action is via the map

W → Ga.
• Given any W -module M , we obtain a new W -module F∗M via restriction along the map F : W → W . If

M =W , then F∗W is in fact an animated W -algebra.

• Given anyW (R)-moduleM , we obtain an associatedW -module I⊗W (R)W that assigns to every R-algebra

S the W (S)-module I ⊗W (R) W (S).

28Recall that we are using Grothendieck’s convention, so that this is the total space of L.
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We now have a diagram of W -modules over Spf Zp where all the rows and columns are fiber sequences of W -

modules.

F∗W ========= F∗W

G♯a > W

V

∨
F

> F∗W

p

∨

G♯a

wwwwwwwww
> Ga

∨
> GdR

a ≃ F∗W/
Lp.

∨

(6.4.1.1)

See [8, Corollary 2.6.8].

6.4.2. Consider the (derived) p-adic formal stack Z∆
p × A1/Gm: over any p-nilpotent R, this parameterizes pairs

(I
d−→ W (R), L→ R), consisting of a Cartier-Witt divisor and a generalized Cartier divisor. We will view the map

of W -modules

F∗M
′ defn
= F∗(I ⊗W (R) W )

d−→ F∗W

as a generalized Cartier divisor for the W -algebra F∗W . In turn this induces a generalized Cartier divisor

F∗M
′ ⊗F∗W GdR

a → GdR
a

for the W -algebra GdR
a . On the other hand, over this formal prestack, we have another generalized Cartier divisor

L⊗R GdR
a → GdR

a for the same W -algebra.

Suppose that we are given a map

F∗M
′ ⊗F∗W GdR

a

α
> L⊗R GdR

a

GdR
a

<

>

of generalized Cartier divisors. Then pulling back the fiber sequence

V(L∨)♯ → L⊗R Ga → L⊗R GdR
a

of W -modules along the composition

F∗M
′ → F∗M

′ ⊗F∗W GdR
a

α−→ L⊗R GdR
a

now gives us a sequence of W -modules

V(L∨)♯ →M(α)→ F∗M
′.

Lemma 6.4.3. There is a canonical map of W -modules M(α)
dα−−→W whose cofiber has a canonical structure of a

W -algebra.

Proof. We can lift F∗W to a filtered W -algebra with filtration Fil•F∗M ′ F∗W obtained from the generalized Cartier

divisor F∗M
′ → F∗W . Similarly, we can lift GdR

a (resp. Ga) to a filtered W -algebra with filtration Fil•LGdR
a (resp.

Fil•LGa).
The map α can be viewed now as yielding a map of non-negatively filtered animated W -algebras

F∗ Fil
•
M ′ W → Fil•LGdR

a ,



CONJECTURES OF DRINFELD 73

and we can upgrade W to a non-negatively filtered animated W -algebra Fil•αW such that we have a Cartesian

square
Fil•αW > F∗ Fil

•
M ′ W

Fil•LGa
∨

> Fil•LGdR
a .

∨

This has the feature that Fil•αW =W and Fil1αW =M(α). In particular, we obtain a canonical map M(α)→W ,

and we also see that its cofiber is the W -algebra gr0αW . □

Definition 6.4.4. Let ZN
p be the p-adic formal prestack whose values on R ∈ CRingp-nilp are given by triples

(I → W (R), L → R,α), where (I → W (R), L → R) is a section of Z∆
p × A1/Gm, and α is a map of generalized

Cartier divisors on ring stacks

α : (F∗M
′ ⊗F∗W GdR

a → GdR
a )→ (L⊗R GdR

a → GdR
a ).

By abuse of notation we will refer to this tuple by the symbolM
d−→W , whereM

defn
= M(α) and d = dα, and refer

to it as a filtered Cartier-Witt divisor over R.29 We will also write W/dM instead of gr0αW . We will also write

LM → R for the underlying generalized Cartier divisor and M ′ d′−→W for the map of W -modules I ⊗W (R)W →W

arising from the Cartier-Witt divisor I →W (R), so that we have a diagram of fiber sequences of W -modules

V(L∨
M )♯ > M > F∗M

′

G♯a
∨

> W

d

∨
> F∗W

d′

∨

Definition 6.4.5. Over ZN
p , we have the p-adic formal ring stack GN

a assigning to every filtered Cartier-Witt

divisor W
d−→M over R, the W (R)-algebra (W/dM)(R).

For any R ∈ CRingp-nilp, we now define the Nygaard filtered prismatization RN to be the transmutation

of SpecR with respect to GN
a . That is, it is the p-adic formal prestack over ZN

p that associates with each C ∈
CRingp-nilp and (M

d−→W ) ∈ ZN
p (C) the space MapCRing(R, (W/dM)(C)).

Proposition 6.4.6. The p-adic formal prestacks ZN
p and GN

a are classical. Moreover, their classical truncations

agree with the descriptions in [8, §5].

Proof. By construction ZN
p lives over the classical formal prestack Z∆

p ×A1/Gm. So it is enough to know that it is

classical after flat base-change over the latter prestack.

Consider the pullback X of ZN
p along the flat cover

Wdist × A1 → Z∆
p × A1/Gm.

Then the fiber of X over a section (d′, t) ∈ Wdist(R) × A1(R) is the stack of commuting squares of maps of

F∗W -modules
F∗W > GdR

a

F∗W

d′

∨
> GdR

a

tdR

∨

29We will see in Proposition 6.4.6 below this agrees with the definitions from [8] for discrete inputs. The notation and terminology

have been adapted from Bhatt’s notes.
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where the bottom arrow is the natural one, and where tdR is the map induced by t and the Ga-algebra structure

on GdR
a . Another way of looking at X is as the stack over Wdist × A1 ×GdR

a sitting in a Cartesian diagram

X > Wdist × A1 ×GdR
a

GdR
a

∨

∆
> GdR

a ×GdR
a

(d′,t,α)7→(d
′,dR,tdR◦α)

∨

Here, d
′,dR is the section of GdR

a associated with d′.

Pulling back along the flat cover

Wdist × A1 ×Ga →Wdist × A1 ×GdR
a

gives us a flat cover Y → X sitting in a Cartesian diagram

Y > Wdist × A1 ×Ga

GdR
a

∨
∆

> GdR
a ×GdR

a

(d′,t,u)7→(d
′,dR,tdR◦udR)

∨

By invoking (6.4.1.1), we can write this as a composition of two Cartesian squares

Y > Wdist × A1 ×Ga

W
∨

d7→(F (d),π(d))
> W ×Ga

(d′,t,u)7→(d′,t◦u)

∨

GdR
a

∨
∆

> GdR
a ×GdR

a

(d′,a)7→(d
′,dR,adR)

∨

After all is said and done, the classicality of ZN
p is now reduced to the classicality of Y , which comes down to

the assertion that the maps of formal schemes

W
(F,π)−−−→W ×Ga ; Wdist × A1 ×Ga

(id,m)−−−−→W ×Ga

are p-completely Tor-independent. Here, m : A1 ×Ga
(t,u)7→tu−−−−−−→ Ga is the multiplication map.

But these are actually maps of affine formal schemes corresponding to maps of p-complete rings given by:

α : Zp[T, x0, x1, . . .]∧p
T 7→x0,xi 7→F∗xi−−−−−−−−−−→ Zp[x0, x1, . . .]∧p

β : Zp[T, x0, x1, . . .]∧p
T 7→ut,xi 7→xi−−−−−−−−→ Zp[u, t, x0, x±1

1 , . . .]∧(x0,p)
.

The first map is the composition of the map α′ : T 7→ x0, xi 7→ xi with the flat map F ∗. Therefore, it is enough to

check that α′ and β are p-completely Tor-independent. This comes down to the concrete (and easy) assertion that

the element

ut− x0 ∈ Fp[u, t, x0, x±1
1 , . . .]∧(x0)

is a non-zero divisor.
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Let us now look at GN
a . It suffices to check that it is classical after base-change to Y . Here, the above description

shows that we have a commuting diagram of fiber sequences of W -modules

G♯a > W > F∗W

G♯a

u♯

∨
> M

∨
> F∗W

wwwwwwwwww

G♯a

t♯

∨
> W

∨
> F∗W

d′

∨

(6.4.6.1)

where the composition of the middle vertical arrows is multiplication by a section d ofW with F (d) = d′, and where

M → W is the universal filtered Cartier-Witt divisor over Y . This description shows that the W -module scheme

M over Y is classical: It is a colimit of the classical schemes W and G♯a, and so the restriction of GN
a to Y is also

classical.

The last assertion about the values on discrete inputs can now be deduced from [8, Lemma 5.2.8]. □

Remark 6.4.7. The proof shows that every filtered Cartier-Witt divisor can be obtained flat locally as one sitting

in the diagram (6.4.6.1) for sections u, t of Ga and d of W with d restricting to multiplication by (tu)♯ on G♯a.
More generally, for any invertible module L equipped with a section R

u−→ L and a cosection L
t−→ R, and a

section d of W restricting to (t◦u)♯ on G♯a, we obtain a similar diagram with the middle sequence now an extension

of F∗W by V(L∨)♯. For future reference, we will denote a filtered Cartier-Witt divisor obtained in this way by

M(L, d, t, u)→W .

Remark 6.4.8. As pointed out to us by Camargo, the definition of ZN
p can also be formulated as follows. Let

(A1/Gm)dR be the transmutation of A1/Gm with respect to the ring stack GdR
a : It is a formal prestack over Spf Zp

parameterizing generalized Cartier divisors P → GdR
a . There is a multiplication map

µ : A1/Gm × (A1/Gm)dR → (A1/Gm)dR

((L
t−→ Ga), (Q

t′−→ GdR
a )) 7→ (L⊗Q t′◦(t⊗idQ)−−−−−−−→ GdR

a ).

We now have a Cartesian diagram:

ZN
p

> A1/Gm × (A1/Gm)dR

Z∆
p

∨

(M ′→W )7→(F∗M
′⊗F∗WGdR

a →GdR
a )

> (A1/Gm)dR

µ

∨

(6.4.8.1)

Remark 6.4.9. The prestack FN
p admits a quite explicit description explained in [8, Prop. 5.4.2]. Suppose that

we are given a filtered Cartier-Witt divisor (M
d−→ W ) ∈ ZN

p (R). Then it is not difficult to see that the existence

of a map Fp → (W/dM)(R) implies that M →W is isomorphic canonically to a filtered Cartier-Witt divisor of the

form M(L, p, t, u)→W . Therefore we have

FN
p ≃ Z(ut− p)/Gm,

where Z(ut− p) ⊂ A1 × A1
+ = Spf Zp[t, u] is the closed formal Gm-equivariant subscheme defined by the equation

ut− p.
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6.5. The de Rham and Hodge-Tate embeddings and syntomification. We will now define two canonical

open immersions jdR, jHT : Z∆
p → ZN

p , called the de Rham and Hodge-Tate embeddings. These are described

in [27, §5.3, 5.6], and in [8, §5.3]. Let M ′ → W be the map of W -modules over Z∆
p associated with the universal

Cartier-Witt divisor over Z∆
p .

Definition 6.5.1. The open immersion jdR is simply the open locus Z∆
p ×A1/Gm (Gm/Gm) parameterizing filtered

Cartier-Witt divisors (M
d−→W ) ∈ Z∆

p(R), where the underlying map LM
≃−→ R is an isomorphism. Over this locus,

the classifying map (F∗M
′ → F∗W )→ (GdR

a
id−→ GdR

a ) yields the filtered Cartier-Witt divisor given by

G♯a > M > F∗M
′

G♯a

wwwwwwwww
> W

∨
> F∗W

d′

∨

where the right square is Cartesian.

The pullback of jdR to the stack Y from the proof of Proposition 6.4.6 is the open locus where t ̸= 0. Equivalently,

it is the pullback of the open locus

Gm/Gm × (A1/Gm)dR ↪→ A1/Gm × (A1/Gm)dR

via the top horizontal map in (6.4.8.1).

Definition 6.5.2. The open immersion jHT is given by the natural map

(F∗F
∗M ′ F∗(d′)−−−−→ F∗W )→ (F∗F

∗M ′ ⊗F∗W GdR
a → GdR

a )

which classifies the filtered Cartier-Witt divisor given by

V(L∨)♯ > M ′ > F∗F
∗M ′

G♯a
∨

> W
∨

> F∗W
∨

Here L → Ga is the generalized Cartier divisor for Ga obtained via base-change from M ′ → W . The filtered

Cartier-Witt divisors obtained in this fashion will be called invertible.

The pullback of jHT to the stack Y from the proof of Proposition 6.4.6 is the open locus where u ̸= 0. Equivalently,

it is the pullback of the open locus

A1/Gm × (Gm/Gm)dR ↪→ A1/Gm × (A1/Gm)dR

via the top horizontal map in (6.4.8.1).

Definition 6.5.3. We now define the prestack Zsyn
p to be the coequalizer of the immersions jdR, jHT. Practically,

what this means is that we have

QCoh(Zsyn
p )

≃
> eq

(
QCoh(ZN

p )
j∗dR>

j∗HT

> QCoh(Z∆
p)

)
.

Definition 6.5.4. The process of transmutation now yields for every R ∈ CRingp-nilp open immersions jdR, jHT :

R∆ → RN , and we now define the syntomification of R, Rsyn, to be their coequalizer. By construction we have a

canonical structure map Rsyn → Zsyn
p . Equivalently, Rsyn is the transmutation of R with respect to the ring stack

Gsyn
a → Zsyn

p .

6.6. The Breuil-Kisin twist. Here we will describe a canonical line bundle Osyn{1} on Zsyn
p called the Breuil-

Kisin twist.
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6.6.1. Specifying such a line bundle is equivalent to specifying a line bundle ON {1} on ZN
p equipped with an

isomorphism

j∗dRON {1} ≃−→ j∗HTON {1}
of line bundles on Z∆

p .

We begin by considering the pullback of the tautological line bundle on BGm: this gives a line bundle OBGm{1}
over ZN

p . Note that we have a canonical trivialization

j∗dROBGm{1} ≃−→ OZ∆
p
.(6.6.1.1)

Via the Hodge-Tate embedding, we obtain a canonical equivalence

j∗HTOBGm{1} ≃−→ IZHT
p

(6.6.1.2)

where the right hand side is the ideal sheaf of the Hodge-Tate divisor.

6.6.2. Next, we consider a canonical line bundle O∆{1} on Z∆
p that is characterized up to isomorphism by any of

the following properties:

• ([10, (2.2.11)]) For any transversal prism (A, I) the pullback of O∆{1} to Spf A under the map ι(A,I) from

Remark 6.2.6 is canonically isomorphic to A{1}.
• ([27, §4.8, 4.9]) We have the line bundle O(ZHT

p ) on Z∆
p corresponding to the Hodge-Tate divisor. The

endomorphism φ∗− id of the Picard group Pic(Z∆
p) is an equivalence, and we take O∆{1} to be the preimage

of O(ZHT
p ).

• ([10, (9.1.6)]) Let f : (P1
Zp)

∆ → Z∆
p be the map of prismatizations arising from the structure morphism

P1
Zp → Spf Zp. Then, we have O∆{−1} ≃ R2f∗O.

6.6.3. There is a canonical isomorphism

φ∗O∆{1} ≃−→ O(ZHT
p )⊗O∆{1}(6.6.3.1)

of line bundles over Z∆
p .

We now set

ON {1} = OBGm{1} ⊗ π∗O∆{1}.
Since π ◦ jdR = id and π ◦ jHT = φ, combining (6.6.3.1), (6.6.1.1) and (6.6.1.2) shows that this line bundle does

admit a canonical descent to a line bundle Osyn{1} over Zsyn
p .

6.7. The canonical sections xdR and xNdR.

6.7.1. For any R ∈ CRingp-nilp, we have canonical maps

xdR : SpecR→ R∆ ; xNdR : A1/Gm × SpecR→ RN

with the following properties:

• The composition

A1/Gm × SpecR
xN
dR−−→ RN t−→ A1/Gm

is the canonical structure map.

• The restriction of xNdR to the open point SpecR is isomorphic to xdR.

• We have a commuting square

A1/Gm × SpecR
xN
dR > RN

SpecR
∨

xdR
> R∆

π

∨

.
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6.7.2. The map xdR corresponds to the Cartier-Witt divisor (W (R)
p−→W (R)) with the map R→W (R)/Lp the one

through which the Frobenius endomorphism of W (R)/Lp canonically factors. Alternatively, there are equivalences

of abstract animated rings

W (R)/Lp
≃−→ F∗W (R)

≃−→ GdRa (R),

and the desired map is the evaluation of the natural map Ga → GdRa on R.

6.7.3. The map xNdR associates with every cosection t : L→ C of a line bundle L over an R-algebra C the filtered

Cartier-Witt divisor associated with the zero map GdR
a → L⊗R GdR

a . Explicitly, it is given by the map

M(t) = F∗W ⊕V(L∨)♯
d=(V,t♯)−−−−−→W,

where the quotient W/dM(t) is also a quotient of W/VW ≃ Ga, giving us the map

R→ C = Ga(C)→ (W/dM(t))(C).

6.8. Relationship with divided powers. The next observation will be used later to formulate abstract Grothendieck-

Messing type statements.

Lemma 6.8.1. Suppose that we have a divided power thickening R′ ↠ R in CRingp-nilp. Then the canonical point

xdR,R′ from §6.7 factors canonically through a point x̃dR,R′ : SpecR′ → R∆.

Proof. The claim here is that the canonical map R′ → GdR
a (R′) admits a factoring through R that depends only

on the divided powers on the fiber J of R′ ↠ R. Since the constructions and the conclusion are compatible with

sifted colimits, we reduce to the case where R′ ↠ R is a classical divided power thickening of p-completely flat

Zp-algebras.
Now, it suffices to construct a canonical lift of R′-modules J → G♯a(R′): this follows from Remark 3.6.6. □

Remark 6.8.2. The lemma can be interpreted as follows: For any A ∈ CRingp-comp, we can consider the big

crystalline site, whose underlying ∞-category is the opposite to that of tuples (A → R,R′ ↠ R, γ) of divided

power extensions of objects in CRingp-nilpA/ . Associated with such an object we obtain a canonical map

Spf R′ → R∆ → A∆.

If one wants to be more judicious, one could also restrict to the small version where A → R is required to be

étale and finitely presented. This will not make any difference in the sequel.

Note that the sites we are considering here are the animated versions of the usual notions. The reader can

consult [58, §4] for a comparison of the two notions, derived and classical.

6.9. Prismatic cohomology. We will need the relationship between the stacks defined above and relative (Ny-

gaard filtered) prismatic cohomology as constructed in [13] and [10] for semiperfectoid rings.

Definition 6.9.1 (Relative prismatic cohomology). Suppose that we have a (classical) bounded prism (A, I) with

A = A/I. Then, with any R ∈ CRingA/ we can associate its relative prismatic cohomology ∆R/A.
This can be obtained—see [10, Construction 4.1.3]—as the left Kan extension of its restriction to polynomial

A-algebras R, where ∆R/A is defined to be an inverse limit in the ∞-category of p-complete derived rings over A

(see also [11, §7]):
∆R/A

≃−→ lim←−
(B,v)∈(R/A)∆

B,

where (R/A)∆ is the prismatic site for R relative to (A, I).

Remark 6.9.2 (Conjugate filtered Hodge-Tate cohomology). The base-change ∆R/A
defn
= A ⊗A ∆R/A over Fp

is the relative Hodge-Tate cohomology, which is equipped with a canonical exhaustive increasing filtration

Filconj• ∆R/Zp supported in non-positive degrees, and a canonical equivalence30

grconji ∆R/A{i}
≃−→ ∧iLR/A[−i]

30The cotangent complex appearing here is the p-completed version.
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for each i ≥ 0; see [10, Remark 4.1.7]. This is characterized by the property that it respects sifted colimits in

A-algebras and is isomorphic to the Postnikov filtration on ∆R/A for polynomial algebras R over A.

Definition 6.9.3. A p-complete animated commutative ring R is semiperfectoid if there exists a perfectoid ring

R0 and a surjective map R0 ↠ R.

In [10, §4.4] one finds the construction of the absolute prismatic cohomology ∆R of any p-complete animated

commutative ring R; see in particular Construction 4.4.10 of loc. cit. We will need to know the following result due

to Bhatt-Lurie and Holeman [35]:

Theorem 6.9.4 (Affineness of the prismatization). Suppose that R0 is a perfectoid ring with corresponding perfect

prism (A, I) = (Ainf(R0), ker θ). Then:

(1) There are canonical isomorphisms of commutative rings

∆R0

≃−→ ∆R0/A
≃−→ A.

(2) In fact, for any R0-algebra R, there is an isomorphism

∆R
≃−→ ∆R/A.

(3) If R is a semiperfectoid R0-algebra, then ∆R ≃ ∆R/A is a (p, I)-complete animated commutative ring, and

there is a canonical isomorphism (independent of the choice of R0) of p-adic formal stacks

Spf(∆R)
≃−→ R∆.

Proof. The second statement follows from [10, Proposition 4.4.12], while the second isomorphism in assertion (1)

is from the fact that (A, I) is an initial prism with a map R0 → A.

The last assertion is [11, Corollary 7.18]. The only additional remark to be made is that (∆R,∆R ⊗A I) is an

initial prism equipped with a map R → ∆R, and so is independent of the choice of the perfectoid ring R0: this

follows for instance from [35, Theorem 3.3.7]. The map Spf(∆R) → R∆ is canonical and arises from the general

construction in Remark 6.2.6. □

Remark 6.9.5. Suppose that R is a semiperfect Fp-algebra, then we can take R0 = R♭ to be its perfection. In

this case, we obtain isomorphisms

∆R
≃−→ ∆R/Zp

γcrys
R/Zp−−−−→
≃

∆crys
R/Zp

≃−→ ∆crys
R/W (R♭)

≃ Acrys(R).(6.9.5.1)

Here, ∆crys
R/W (R♭)

(resp. ∆crys
R/Zp) is the relative derived crystalline cohomology of R over W (R♭) (resp. over Zp)

and Acrys(R) ↠ R is the p-completed animated divided power envelope of the map W (R♭) ↠ R.31 The second

isomorphism is explained in [10, Remark 4.6.5], the third is a consequence of the fact that W (R♭) is formally

étale over Zp, and the last isomorphism is an animated enhancement of a result of Illusie [58, Prop. 4.64]. The

composition of these isomorphisms is φ-semilinear over W (R♭) via the isomorphism ∆R♭
≃−→W (R♭).

In fact, Remark 4.6.5 of [10] shows that we have canonical isomorphism

γcrysR/Zp : ∆R/Zp
≃−→ ∆crys

R/Zp

for any R ∈ CRingFp/. In particular, for any such R we have canonical isomorphisms

(6.9.5.2) ∆R
≃−→ ∆R/

Lp
≃−→
(

∆crys
R/Zp

)
/Lp

≃−→ dRR/Fp ,

where on the right hand side we now have the derived de Rham cohomology of R over Fp.

Remark 6.9.6. The isomorphism ∆R
≃−→ Acrys(R) is compatible with the relationship between the big crystalline

site and the prismatization explained in Remark 6.8.2. Namely, if R′ ↠ R is a divided power thickening, then

Lemma 6.8.1 gives a lift ∆R → R′ of ∆R → R, and the universal property of Acrys(R) as a p-completed divided

power envelope also yields a lift ∆R
≃−→ Acrys(R)→ R′. These two are canonically isomorphic.

31Note that this will not agree with the classical p-complete divided power envelope unless R is quasisyntomic.
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6.10. Filtered Cartier-Witt divisors associated with filtered prisms. Our purpose here is to extend the

construction from Remark 6.2.6 to the filtered setting.

Definition 6.10.1. A filtered prism is a prismatic frame A equipped with a commuting diagram of filtered

animated commutative A-algebras

Fil•A
Φ

> φ∗ Fil
•
I A

Fil•A⊗A A/Lp
∨

1⊗φ
> Fil•A⊗A φ∗A/

Lp

ζ

∨

where the left arrow is the mod-p reduction map. We will denote this by the pair (A, ζ).

Remark 6.10.2 (Breuil-Kisin filtered prisms). Consider the situation where A is associated with a prism (A, I ′)

as in Example 5.4.14. Then we have a canonical filtered prism structure arising from the composition

φ∗ Fil
•
I A

≃−→ Fil•I′ A⊗A φ∗A→ Fil•I′ A⊗A φ∗A/
Lp.

Proposition 6.10.3. Suppose that we are given a filtered prism (A, ζ). Then we have a map

ι(A,ζ) : R(Fil•A)→ RN
A

of p-adic formal stacks over A1/Gm with the following properties:

(1) There is a canonical Cartesian square

Spf(A)
τ
> R(Fil•A)

R∆
A

ι(A,I)

∨

jdR
> RN

A

ι(A,ζ)

∨

(2) There is a canonical commutative diagram

Spf(A)
σ
> R(Fil•A)

R∆
A

ι(A,I)

∨

jHT

> RN
A .

ι(A,ζ)

∨

(3) The composition of ι(A,ζ) with the map

A1/Gm × Spf RA → R(Fil•A)

from Remark 5.4.20 is isomorphic to the filtered de Rham section xNdR : A1/Gm × Spf RA → RN
A

Proof. Write (M ′ →W ) = (I ⊗AW →W ) for the canonical Cartier-Witt divisor over Spf A. We claim that there

is a canonical commuting diagram of filtered animated commutative W -algebras over Spf A

Fil•A⊗AW > F∗ Fil
•
M ′ W

Fil•A⊗A Ga
∨

> Fil•A⊗A GdR
a

∨

(6.10.3.1)
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lifting the already known Cartesian square of the underlying W -algebras. The left vertical and bottom horizontal

arrows are the evident ones, while the top arrow is obtained via base-change from Φ. The right vertical arrow is

obtained as the composition

F∗ Fil
•
M ′ W

≃−→ (φ∗ Fil
•
I A)⊗φ∗A F∗W

ζ⊗1−−→ (Fil•A⊗A φ∗A/
Lp)⊗φ∗A F∗W

≃−→ Fil•A⊗A (F∗W/
Lp)

≃−→ Fil•A⊗A GdR
a .

Now, given a generalized Cartier divisor (L → C) and a map η : Fil•A → Fil•L C parameterizing a C-valued

point of R(Fil•A), we can use η and the diagram (6.10.3.1) to obtain a commuting diagram of filtered animated

commutative W -algebras over C:

Fil•A⊗AW > Fil•α(η)W > F∗ Fil
•
M ′ W

Fil•L C ⊗C Ga
∨

> Fil•L C ⊗C GdR
a .

∨

(6.10.3.2)

Here, the square on the right is Cartesian and Fil•α(η)W is the filtered animated W -algebra associated with the

filtered Cartier-Witt divisor over C parameterized by the right vertical map as in Lemma 6.4.3. In particular, note

that we obtain maps of animated commutative rings

RA = gr0A→ gr0A⊗AW (C)→ (gr0α(η)W )(C).

Therefore, we have produced from η a point in RN
A (C). This gives us the map ι(A,ζ).

If (L
≃−→ C) is an isomorphism, then it’s clear that α(η) lies in the de Rham locus, and moreover that the

top right arrow in (6.10.3.2) is an isomorphism on associated graded algebras. In particular, the induced map

(gr0α(η)W )(C)→W (C) is an isomorphism of RA-algebras. This verifies assertion (1).

Let us look at assertion (2). When η factors as

Fil•A→ φ∗ Fil
•
I,±A→ Fil•L C,

the map A → C factors as A
φ−→ φ∗A → C. Then Fil•L C is the base-change of Fil•I A along φ∗A → C and the

diagram of W -modules over C from (6.10.3.2) is of the form

Fil•A⊗AW > φ∗(Fil
•
I A)⊗φ∗AW > F∗(Fil

•
I A⊗AW ) ≃ F∗(φ∗(Fil

•
φ∗I A)⊗φ∗AW )

Fil•L C ⊗C Ga
∨

> Fil•L C ⊗C GdR
a

∨

where the top left horizontal arrow is obtained from the composition

Fil•A⊗AW ≃ φ∗φ
∗ Fil•A⊗φ∗AW

Φ⊗1−−−→ φ∗(Fil
•
I A)⊗φ∗AW.

This implies that α(η) lies in the Hodge-Tate locus.

For assertion (3), we begin with the following observation:

Lemma 6.10.4 (Filtered prisms are laminated). The filtered prism structure canonically endows A with a lamina-

tion.
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Proof. Using the map Fil•A→ Fil•trivRA and (6.10.3.1), we get a commuting square of filtered animated commu-

tative rings
Fil•A > F∗ Fil

•
M ′ W (RA)

Fil•trivRA

∨
> Fil•triv GdR

a (RA)
∨

Unwinding definitions, the existence of the right vertical arrow means that I ⊗RW (RA)→W (RA)/
Lp is equipped

with a nullhomotopy, and hence that I⊗RW (RA)→W (RA) admits a factoring through W (RA)
p−→W (RA). Since

these are both Cartier-Witt divisors, we conclude that there is a canonical isomorphism between them. Moreover,

the bottom horizontal arrow shows that the isomorphism between the associated quotient algebras is in fact one of

RA-algebras. □

Therefore, for any η factoring through a point of A1/Gm × RA associated with a generalized Cartier divisor

t : L → C, we see that the top right corner in the diagram (6.10.3.2) is F∗ Fil
•
pW , and the right vertical arrow is

the zero map on all positive filtered degrees. It now follows that we have

(Fil1α(η)W →W )
≃−→ (F∗W ⊕ (L⊗G♯a)

(V,t♯)−−−→W )

and the map Fil1A→ Fil1α(η)W ≃ F∗W⊕(L⊗G♯a) is the divided Frobenius in the first coordinate and the zero map

in the second coordinate. In particular, gr0α(η)W is a quotient of Ga ≃W/F∗W , and the map RA → (gr0α(η)W )(RA)

is just the evaluation at RA of this quotient map. This verifies (3) and completes the proof of the proposition. □

Example 6.10.5 (The Breuil-Kisin case). Let us return to the situation of Remark 6.10.2. A map η : Fil•A →
Fil•L C for an A-algebra C corresponds to a factoring C ⊗A I ′

u−→ L
t−→ C of the map C ⊗A I ′ → C. Associated with

this is an arrow between maps of W -modules over C

(F∗M
′ → F∗W )→ (I ′ ⊗A GdR

a → GdR
a )→ (L⊗C GdR

a
tdR−−→ GdR

a )

where the second map is given by udR on the source. The associated filtered Cartier-Witt divisor is obtained from

M ′ via pushforward along udR.

Remark 6.10.6 (The perfectoid case). In the previous example, when A = Ainf(R0) is the frame associated with

a perfectoid ring R0 (Example 5.4.15), and I ′ = (φ−1(ξ)) for an orientation I = (ξ), then, via Example 5.4.21, we

see that we are getting a map

Spf
(
Ainf(R0)[u, t]/(ut− φ−1(ξ))

)
/Gm → RN

0 .

This map is actually an isomorphism; see [8, Proposition 5.5.8].

Example 6.10.7 (The Witt filtered prism). The Witt frame W (R) can be endowed with a canonical filtered prism

structure, and so Proposition 6.10.3 gives us a canonical map R(Fil•LauW (R)) → RN . To see this structure, note

that, quite generally, if A is a p-adically filtered frame, then we have a map Fil•pA→ Fil•A, and base-change along

φ yields a map

ζ̃A : φ∗ Fil
•
pA ≃ Fil•pA⊗A φ∗A→ Fil•A⊗A φ∗A.

When A =W (R), we claim that the resulting diagram

Fil•LauW (R) > F∗ Fil
•
pW (R)

Fil•LauW (R)⊗W (R) F∗W (R)

ζ̃W (R)

∨
1⊗F

>



CONJECTURES OF DRINFELD 83

is commutative. This follows from the fact that Fil•LauW (R)→ F∗ Fil
•
pW (R) is an isomorphism in filtered degrees

≥ 1, while the right vertical arrow is an isomorphism in filtered degrees ≤ 0.

Corollary 6.10.8. Suppose that we have a map of frames γ : A→ B with A underlying a filtered prism (A, ζ). Let

S(B) be as in Remark 5.5.8. Then we have an associated map

ιγ : S(B)→ Rsyn
A

of p-adic formal prestacks.

Proof. Proposition 6.10.3 gives a map S(A)→ Rsyn
A , which we can compose with the map S(B)→ S(A) obtained

from γ. □

Remark 6.10.9. If B is a Z/pnZ-algebra, then ιγ will factor through Rsyn
A ⊗ Z/pnZ.

Example 6.10.10. Suppose that R is an Fp-algebra. Example 6.10.7 and Corollary 6.10.8 applied to the map of

frames W (R)→W1(R) now give us a canonical map

RFZip = S(W1(R))→ Rsyn ⊗ Fp.

See § 8.1 for an explicit description of this map.

6.11. Nygaard filtered prismatic cohomology. We now review the story of the Nygaard filtration on prismatic

cohomology.

Definition 6.11.1. A map R → S of p-complete animated commutative rings is p-quasisyntomic (or simply

quasisyntomic) if it is p-completely flat (that is, S/Lp is flat over R/Lp), and if LS/R has p-complete Tor amplitude

[−1, 0]: that is, LS/R ⊗ Fp has Tor amplitude [−1, 0] over S/Lp.
We will say that R→ S is a quasisyntomic cover if it is quasisyntomic and S/Lp is faithfully flat over R/Lp.

These properties are invariant under base-change via maps R→ R′ of p-complete animated commutative rings.

Example 6.11.2. The key example of a quasisyntomic map is

Zp[T ]∧ → Zp[T 1/p∞ ]∧,

where the superscript ∧ denotes p-adic completion.

Remark 6.11.3 (Relative Nygaard filtration). We begin with the story relative to a bounded prism (A, I). For

what we need, there is no harm in restricting even to perfect prisms, and we will do so.

Given R ∈ CRingp-comp

A/
, Write φ∗∆R/A for the base-change A ⊗φ,A ∆R/A. It is shown in [10, §5.1] that there is

now a canonical lift Fil•N φ∗∆R/A of ∆R/A to FilModA characterized by the following properties:

(1) It respects sifted colimits in R.

(2) It satisfies p-quasisyntomic descent with respect to R.

(3) If R is a p-quasisyntomic over A such that the quotient ring R/pR is generated by the images of A and

(R/pR)♭, then FiliN ∆R/A is discrete and we have

FiliN φ∗∆R/A = {x ∈ φ∗∆R/A : (1⊗ φ)(x) ∈ Ii∆R/A}.

Remark 6.11.4. The map 1⊗ φ : φ∗∆R/A → ∆R/A can be canonically lifted to a filtered map

Fil•N φ∗∆R/A → Fil•I ∆R/A.

inducing for every i ∈ Z an equivalence

griN φ∗∆R/A
≃−→ Ii/Ii+1 ⊗A Filconji ∆R/A ≃ Filconji ∆R/A{i}.

See [10, Remark 5.1.2].
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Remark 6.11.5 (Absolute Nygaard filtration). In [10, §5.5], we find the construction of an absolute Nygaard

filtration Fil•N ∆R on absolute prismatic cohomology. It can be characterized by two properties: First, it satisfies

quasisyntomic descent. Second, if (A, I) is a perfect prism and R is an R0 = A-algebra, then, by [10, Theorem

5.6.2], the isomorphism

∆R
Theorem 6.9.4(2)−−−−−−−−−−−→

≃
∆R/A

≃−→ φ∗∆R/A

lifts to an isomorphism of filtered objects

Fil•N ∆R
≃−→ Fil•N φ∗∆R/A.(6.11.5.1)

In fact, if R is qrsp and (∆R, IR) is the canonical initial prism equipped with a map R→ ∆R, then we have

FiliN ∆R = {x ∈ ∆R : φ(x) ∈ FiliIR ∆R}.

More generally, if R is semiperfectoid and (∆R, IR) is the associated initial prism, then we have a canonical

filtered map

Φ : Fil•N ∆R → Fil•IR ∆R
lifting the Frobenius endomorphism of ∆R, which agrees with the relative counterpart from Remark 6.11.4 via the

isomorphism (6.11.5.1). This follows from the construction explained in [10, Notation 5.7.5].

Lemma 6.11.6. Suppose that R is semiperfectoid. Then, in the notation of §5.4, the tuple (Fil•N ∆R, IR → ∆R,Φ)
underlies a filtered prism (∆R, ζR) with gr0N ∆R ≃ R.

Proof. Via mod-p Tot descent [10, Propositions 4.4.15, 5.5.24], we can reduce to the case where R is a semiperfect

Fp-algebra. Here we’d like to first check that Fil•N ∆R is a filtered animated commutative ring and that the map

Φ is a map of filtered animated commutative rings. When R is qrsp, then the assertion is clear, and to know it

in general, it is easiest to note that the construction is via right Kan extension from Fp-algebras R as in (3) of

Remark 6.11.3 followed by left Kan extension from polynomial Fp-algebras. This endows Fil•N ∆R with the structure

of a filtered derived commutative ring in general, and also shows that Φ is a map of filtered derived commutative

rings. This assertion specializes when R is semiperfect to the structure desired.

The other thing to be verified is the existence of a commuting diagram witnessing the structure of a filtered prism.

Since Fil•N ∆R is p-adically filtered for any semiperfect R, via the observation in Example 6.10.7 and quasisyntomic

descent, for any Fp-algebra, we obtain a canonical map of filtered derived commutative rings

ζ̃R : φ∗ Fil
•
p ∆R

ζ̃∆R−−→ Fil•N ∆R ⊗∆R φ∗∆R

It now suffices to verify that the functorial-in-R diagram

Fil•N ∆R > φ∗ Fil
•
p ∆R

Fil•N ∆R ⊗∆R φ∗∆R

ζ̃R

∨
1⊗φ

>

is commutative. Since all constructions involved are left Kan extended from finitely generated polynomial Fp-
algebras and respect tensor products, it is actually enough to check for R = Fp[x].

Here, the filtration Fil•N ∆R is complete. Therefore, it is enough to see that the diagram commutes after passing

to the associated graded algebras, and we can interpret the resulting diagram as one involving increasingly filtered

derived commutative rings:
Filconj• φ∗∆R/Fp > Filtriv• φ∗∆R/Fp

Filconj• ∆R/Fp ⊗∆R φ∗∆R

∨
1⊗φ

>
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We are viewing Filconj• ∆R/Fp as a ∆R-algebra via the map ∆R → R ≃ Filconj0 ∆R/Fp . Since the conjugate filtration

for Fp[x] is a two-step filtration, it is enough to know that the diagram in zeroth degree

Fp[x] = Filconj0 φ∗∆Fp[x]/Fp
ι

> φ∗∆Fp[x]/Fp

Fp[x]⊗∆Fp[x]/Fp
φ∗∆Fp[x]/Fp

∨
1⊗φ

>

commutes. This amounts to knowing that the sections x⊗1 and 1⊗ ι(x) of the bottom right corner are canonically

homotopic. □

The following description of the Nygaard filtered prismatization of semiperfectoid rings due to Bhatt-Lurie will

be important for us.

Theorem 6.11.7. Suppose that R is semiperfectoid. Then there is a canonical isomorphism

ι(∆R,ζR) : R(Fil•N ∆R)
≃−→ RN

of p-adic formal stacks.

Proof. The existence of the map ι(∆R,ζR) follows from Lemma 6.11.6 and Proposition 6.10.3.

To complete the proof, we follow the format of [8, Theorem 5.5.10]. Choose a map R0 → R with R0 perfectoid,

and consider the map ι
defn
= ι(∆R,ζR) as a map of stacks over

[Spf(∆R0
[u, t]/(ut− φ−1(ξ)))/Gm]

≃−→ R(Fil•N ∆R0
)
ι(∆R0

,ζR0
)

−−−−−−−→
≃

RN
0 .

See Remark 6.10.6. Theorem 6.9.4 now shows that ι is an isomorphism over the t ̸= 0 locus. That it is also an

isomorphism over the u ̸= 0 locus follows from the same theorem and the fact that the conjugate filtration on the

Hodge-Tate cohomology ∆R/R0
is exhaustive.

To see that ι is an isomorphism, it is now enough to know that it is also an isomorphism over the t = u = 0

locus. The restriction of GN
a over

RN
0,(t=u=0) ≃ R

HT
0 ×BGm ≃ Spf R0 ×BGm

is canonically isomorphic to the trivial square-zero extension Ga ⊕ (O(1){−1} ⊗G♯a)[1]. Therefore, the fiber of the

map RN
(t=u=0) → RN

0,(t=u=0) over a point of RHT
0 × BGm–given by a point of RHT

0 (C)—equivalent by our choice

of orientation ξ to giving an R0-algebra structure on C and a line bundle L over C—is isomorphic to the space

MapCRing/R0
(R,C⊕B(L{−1}⊗CG♯a)(C)). This space in turn parameterizes R-algebra structures on the R0-algebra

C along with a section of

MapR(LR/R0
, B(L{−1}⊗CG♯a)(C)) ≃ MapR(LR/R0

⊗RL∨[−1]{−1},G♯a(C)) ≃ MapR(ΓR(LR/R0
⊗RL∨[−1]{−1}), C).

Here, we have used Lemma 3.6.5.

To summarize, RN
(t=u=0) is represented over RHT

0 × BGm by the relatively affine formal scheme represented by

the formal spectrum of the graded p-complete animated commutative ring

ΓR(LR/R0
[−1]{−1}) ≃

∞⊕
i=0

∧iLR/R0
[−i]{−i}.

By the Hodge-Tate decomposition (see Remark 6.9.2), this is also the case for R(Fil•N ∆R)(u=t=0).

Therefore, the map

R(Fil•N ∆R)(u=t=0) → RN
(t=u=0)(6.11.7.1)

corresponds to an endomorphism of the graded R0-algebra
⊕∞

i=0 ∧iLR/R0
[−i]{−i} that is functorial in the semiper-

fectoid R0-algebra R, is compatible with tensor products and is the identity in degree 0. We claim that this is in
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fact the identity. To see this, one follows the argument from [8, Theorem 5.5.10] to find that this endomorphism

is obtained via left Kan extension from an endomorphism of the same functor but now defined on p-completely

smooth R0-algebras and valued in derived R0-algebras that are p-complete. In fact, one can argue as in the proof

of [11, Theorem 7.17] to the consideration just of the p-completed polynomial algebra R0[x]
∧ over R0. Here, the

graded algebra is just R0[x]
∧ ⊕ R0[x]

∧dx{−1}[−1], and one sees that the only possible functorial endomorphisms

with the required properties are the identity and the map killing dx.

We claim that the later is not possible. Indeed, it is enough to find one semiperfectoid R0-algebra R such that the

map (6.11.7.1) does not factor through RHT×BGm. If R0 is p-torsion free, then we choose R = R0/pR0; otherwise,

we choose R = R0/xR0 for some regular element x ∈ R0. In fact, in the first case, we can replace R0 with its tilt,

and reduce to the consideration just of the second case, where the claim is easily verified using Remark 6.9.5. □

6.12. Descent. The stacks we are concerned with here carry p-quasisyntomic covers to covers in the fpqc topology.

This is well-known to experts, but we include proofs here, since it is important for what follows.

Proposition 6.12.1. Suppose that we have a p-completely étale map g : R → S in CRingp-comp. Then the

associated maps gN : SN → RN and g∆ : S∆ → R∆ are (p, I)-completely étale.

Proof. The assertion for g∆ is shown in [11, Remark 3.9]. The main point is that, for any C ∈ CRingp-nilp and a

Cartier-Witt divisor I → W (C) with quotient W (C), the small p-completely étale site of W (C) is equivalent to

that of W (C), and hence to that of C. This shows that, given R→W (C), we have

S ⊗RW (C) ≃W (C ′)

for a canonical étale cover C → C ′.

Let us now look at gN : given (M
d−→ W ) in ZN

p (C), W/dM is an extension of W by hcoker(t♯), where t♯ :

V(L∨)♯ → G♯a is the map associated with a cosection of a line bundle over SpecC. Therefore, the map

(W/dM)(C)→W (C)

is surjective as long as C is G♯a-acyclic. For such C, the same argument as in the previous paragraph shows that

S ⊗R (W/dM)(C) ≃ (W/dM)(C ′)

for a canonical étale map C → C ′. In general, we can choose a faithfully flat map C → D such that D is G♯a-acyclic,
and so the conclusion from the previous sentence follows for C by fpqc descent for étale C-algebras. □

Proposition 6.12.2. Suppose that we have g : R→ S in CRingp-comp with S the p-completion of Zp[T 1/p∞ ]⊗Zp[T ]R

for some map Zp[T ] → R. Then the associated maps gN : SN → RN and g∆ : S∆ → R∆ are surjective in the

p-completely flat topology.

Proof. By the limit-preserving properties of the prismatization and Nygaard filtered prismatization functors, we

are reduced to the situation where R = Zp[T ]∧ and S = Zp[T 1/p∞ ]∧.

Here, we will use the following consequence of Lemma 5.3.9: For any C ∈ CRingp-nilp and any map β : Zp[T ]→
W (C), we can find a faithfully flat map C → C ′, and an extension Zp[T 1/p∞ ] → W (C ′) of β. Now, given any

diagram W (C) ↠ W (C) ← Zp[T ] corresponding to a C-valued point of R∆, we can first lift the second map to a

map Zp[T ] → W (C), and then find C → C ′ as in the previous sentence, so that we have a lift to C ′-valued point

of S∆.

This completes the proof in the case of the prismatizations. For the Nygaard filtered prismatization, suppose

that we have a point in RN (C). By replacing C with a flat cover if necessary we can assume that it is of the

form M(C, d, t, u) → W (see Remark 6.4.7). We then have a surjection W/Ld → W/M with homotopy kernel

hcoker(u♯). This means that, over G♯a-acyclic algebras, any map Zp[T ]→ (W/M)(C) can be lifted étale locally to a

map Zp[T ]→W (C)/Ld, and thence to W (C), and we can run the argument used for the prismatization again. □

Corollary 6.12.3. For any R ∈ CRingp-comp, there exists a quasisyntomic cover R→ R∞ with R⊗Rm
∞ semiperfec-

toid for all m ≥ 1, and also satisfying the following properties:
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(1) The maps

R∆
∞ → R∆ ; RN

∞ → RN

are surjective in the p-completely flat topology;

(2) R∆
∞ ≃ Spf ∆R is a derived formal affine scheme and RN

∞ ≃ R(Fil
•
N ∆R) is a derived p-adic formal Artin

1-stack;

(3) The natural maps

(R∞⊗̂RR∞)N → RN
∞

are (p, I)-completely faithfully flat, where I = IR∞ .

Proof. Choose a set of generators {xi : i ∈ I} for π0(R)/pπ0(R), and a map Zp[Ti : i ∈ I]∧p → R carrying Ti onto

xi ∈ π0(R)/pπ0(R). The R-algebra

R∞
defn
= Zp[ζ1/p

∞

p ][T
1/p∞

i : i ∈ I]∧p ⊗̂Zp[Ti:i∈I]∧pR

now does the job. By construction R⊗Rm
∞ is semiperfectoid for all m ≥ 1, and it follows from Proposition 6.12.2

that R∆
∞ → R∆ and RN

∞ → RN are surjective in the p-completely flat topology: Indeed, the Proposition tells us

that these are filtered limits of such covers, so one is reduced to the fact that a filtered colimit of faithfully flat

maps of rings is once again faithfully flat.

Assertion (2) is immediate from Theorem 6.11.7.

The last assertion follows from Lemma 6.12.4 below. □

Lemma 6.12.4. Suppose that R→ S is a quasisyntomic cover of semiperfectoid rings. Then the map

SN ⊗ Z/pnZ→ RN ⊗ Z/pnZ

is a faithfully flat map of derived p-adic formal Artin 1-stacks.

Proof. Given Theorem 6.11.7, the proof is identical to that of assertion (1) in the proof of [32, Proposition 2.29]. □

Combining Corollary 6.12.3 with Lemma 6.12.4 also yields:

Corollary 6.12.5. Suppose that R→ S is a quasisyntomic cover in CRingp-comp. Then the map

SN → RN

is a surjection in the p-completely flat topology.

6.13. A nilpotence result. We will need a certain nilpotence result for applications to the abstract Grothendieck-

Messing theory formulated in §8.7. Suppose that (R′ ↠ R, η) is a divided power thickening of semiperfectoid rings

in CRingp-nilp. Then by Lemma 6.8.1 and Theorem 6.9.4, the natural map ∆R′ → R′ factors canonically through

∆R.
Set

KR′↠R
defn
= hker (∆R′ → ∆R)

Just as in Remark 5.9.8, the maps

φ1 : Fil1N ∆R′ → IR′ ; φ1 : Fil1N ∆R → IR

now give rise to a φ-semilinear map

KR′↠R → IR′ ⊗∆R′ KR′↠R.

Using the defining properties of the Breuil-Kisin twist, this map yields a φ-semilinear endomorphism32

φ̇1 : KR′↠R{1} → KR′↠R{1}.

32If M → IR′ ⊗∆R′ M is a φ-semilinear map for a ∆R′ -module M , then it factors through a linear map φ∗M → IR′ ⊗∆R′ M . In

turn this gives a linear map φ∗(M{1}) ≃ I∨
R′ ⊗∆R′ (φ∗M){1} → (I∨

R′ ⊗∆R′ IR′ ) ⊗∆R′ M{1} ≃ M{1} corresponding to a φ-semilinear

endomorphism of M{1}.
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Proposition 6.13.1. Suppose that the divided power structure is nilpotent of nilpotence degree m as in Defini-

tion 3.6.7. Then the composition

KR′↠R{1}
φ̇2m+1

1−−−−→ KR′↠R{1} → KR′↠R{1}/L(p, I)

is nullhomotopic.

We will need a little preparation.

Assumption 6.13.2. Until further notice, we will assume that R′ is an Fp-algebra. In particular, the Breuil-Kisin

twist is trivial in this case, and so will be ignored.

Notation 6.13.3. Set K = KR′↠R, Fil
•A = Fil•N ∆R, Fil

•A′ = Fil•N ∆R′ , and I = hker(R′ ↠ R). We will use an

overline (·) to denote mod-p reduction. Set

FiliK = hker(FiliA′ → FiliA) ; Filconji K = hker(Filconji A
′ → Filconji A).

Remark 6.13.4. The composition Fil1K → K → K induced by φ1 factors through Filconj1 K. Moreover, we have

a canonical isomorphism

I = hker(R′ ↠ R)
≃−→ hker(Filconj0 A

′ → Filconj0 A) = Filconj0 K.

The factoring A′ → A→ R′ induces a splitting (see the argument in Remark 5.9.13):

Fil1K
≃−→ K ⊕ I[−1].(6.13.4.1)

The endomorphism of K arising from φ̇1 is now given by the composition

K → Fil1K → Filconj1 K → K,

where the first map is obtained from the splitting (6.13.4.1). It will be useful therefore to consider the composition

u : Filconj1 K → K → Fil1K → Filconj1 K(6.13.4.2)

Remark 6.13.5 (The not-necessarily-nilpotent qrsp case). Let us jettison the nilpotence hypothesis on the divided

power structure, and observe that all the constructions involved here make sense for arbitrary divided power

extensions (R′ ↠ R, γ) of Fp-algebras.
Let us assume instead for the moment that R′ and R are qrsp Fp-algebras and that we have φn(I) = 0 for

n sufficiently large; for instance, this is the case if the divided powers are nilpotent. In this situation, we can

understand K and the section K → Fil1K in reasonably explicit fashion. Let R♭ be the inverse limit perfection

of R, and hence also of R′. Then A′ (resp. A) is the p-completed divided power envelope of W (R♭) → R′ (resp.

W (R♭)→ R). The lift A→ R′ is obtained from the divided powers on I. The map Fil•A′ → Fil•A is an injective

map of classical filtered commutative rings, and so we have

K ≃ (A/A′)[−1] ; Fil1K = (Fil1A/Fil1A′)[−1].

Set J ′ = ker(R♭ → R′) and J = ker(R♭ → R). Write π : A → A/A′ for the quotient map. Then the A′-module

A/A′ is topologically generated by elements of the form

π(γm1([x̃1]) · · · γmr ([x̃r])),

for x̃i ∈ J and mi ≥ 2. The divided powers here are those in Fil1A given by the construction of A as a divided

power envelope. The section K → Fil1K is obtained after a cohomological shift from the map

A/A′ → Fil1A/Fil1A′(6.13.5.1)

sending π(γm([x̃])) to the image of γm([x̃]) − [η̃m(x)], where x ∈ I is the image of x̃ and η̃m(x) ∈ J is a lift of the

divided power ηm(x) ∈ I. Products of such elements are sent compatibly to the products of their images.
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Remark 6.13.6. Let us now explicate the structure of Filconj1 K in the qrsp context. We begin by noting that the

map

R
≃−→ Filconj0 A ⊂ A

carries x ∈ R to x̃p, for any x̃ ∈ A lifting x; see [10, Remark F.7]. Moreover, by Construction F.8 of loc. cit,

we see that Filconj1 A is generated as a module over Filconj0 A by elements of the form γp(x̃) for x̃ ∈ J . Finally, by

Proposition F.9 of loc. cit., there is a canonical isomorphism J/J2 ≃−→ grconj1 A sending x̃+J2 to the image of γp(x̃).

Since a similar description holds for Filconj1 A
′
, we obtain compatible short exact sequences

0→ R′ → Filconj1 A→ J ′/(J ′)2 → 0 ; 0→ R→ Filconj1 A→ J ′/(J ′)2 → 0.

Together they yield a fiber sequence

I → Filconj1 K → grconj1 K ≃ hker(J ′/(J ′)2 → J/J2).

Lemma 6.13.7. With the setup of Remark 6.13.6, consider the commuting diagram

H0(Filconj1 K)[0] > Filconj1 K > H1(Filconj1 K)[−1]

H0(Filconj1 K)[0]

H0(u)[0]

∨

> Filconj1 K

u

∨

> H1(Filconj1 K)[−1]

H1(u)[−1]

∨

where the rows are the tautological fiber sequences. Set u0 = H0(u) and u1 = H1(u). Then:

(1) We have u0(I) = u0(H
0(Filconj1 K)) ⊂ H0(Filconj1 K).

(2) The composition

I
u0−→ H0(Filconj1 K)→ Filconj1 A

′

carries x ∈ I to ηp(x) − γ′p(x̃p) where x̃ ∈ J is any lift of x. Here, we are viewing ηp(x) as an element of

A
′
via the identification R′ = Filconj0 A

′
.

(3) Via the isomorphisms H1(Filconj1 K) ≃ J/(J2 + J ′) ≃ I/I2, u1 corresponds to the endomorphism

I/I2
x+I2 7→ηp(x)+I

2

−−−−−−−−−−−→ I/I2.

In particular, if the divided power structure is nilpotent of nilpotence degree m, then u2m is nullhomotopic.

Proof. Assertion (1) amounts to knowing that, for all x̃ ∈ J ′ ∩ J2, u kills γ′p(x̃). Via the isomorphism ζ : H0(K) ≃
(A/A′)[p], γ′p(x̃) is mapped to the image of

γp([x̃])
p ∈ A. If x̃ =

∑
i ỹiz̃i for ỹi, z̃i ∈ J , then we find that

ζ(x̃) = (p− 1)!
∑
i

π(γp([ỹi])γp([z̃i]))
(6.13.5.1)7→ (p− 1)!

∑
i

(γp[ỹi]− [η̃p(yi)])(γp[z̃i]− [η̃p(zi)]) ∈ (Fil1A/Fil1A′)[p].

It is clear now that this element dies under the divided Frobenius: it lies in the image of Fil2A.

Let us now proceed to assertion (2). The map I → H0(Filconj1 K) ⊂ H0(K) ≃ (A/A′)[p] now admits the following

explicit description: It associates with each x ∈ I the element (p− 1)!π(γp([x̃])), where x̃ ∈ J is any lift of x. Via

the section (6.13.5.1) we obtain maps

I → (A/A′)[p]→ (Fil1A/Fil1A′)[p]→ Fil1A′

whose composition now takes x to the image in Fil1A′ of the element

[x̃p]− p! · [η̃p(x)] ∈ Fil1A′.

Hitting this element with the divided Frobenius and then taking the image in A
′
gives

u(x) = (p− 1)!
(
γ′p(x̃

p)− ηp(x)
)
= ηp(x)− γ′p(x̃p) ∈ H0(Filconj1 K).
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Now for assertion (3): Unwinding definitions, we see that the composition of this endomorphism with the inclusion

J/(J2 + J ′)
x̃ 7→γp(x̃)−−−−−−→ A/im(A

′
)

can be described as follows: Given x̃ ∈ J lifting an element of J/(J2 + J ′), we consider γp([x̃]) ∈ A, map it to the

element γp([x̃])−[η̃p(x)] ∈ Fil1A, hit it with the divided Frobenius to get the element
γp([x̃]

p)
p −(p−1)!γp([η̃p(x)]) ∈ A

and take its image in A/im(A
′
). Since γp([x̃

p]) is divisible by p2, this image is exactly that of η̃p(x) ∈ J .
Finally, note that (1), (2) and (3) together imply that, when ηmp = 0, um0 and um1 are both the zero endomorphism.

Therefore, um factors through a mapH1(Filconj1 K)[−1]→ H0(Filconj1 K) and so its square will be nullhomotopic. □

Proof of Proposition 6.13.1. Suppose first that R′ and R are quasisyntomic Fp-algebras, and that the divided power

structure has nilpotence degree m. Consider the endomorphism u from (6.13.4.2). Then, using quasisyntomic

descent and Lemma 6.13.7, we find that u2m = 0. Since φ̇2m+1
1 factors through u2m mod p, this shows that we have

φ̇2m+1
1 = 0 mod p.

The case where R′ is a general Fp-algebra can be deduced from this and the fact that the ∞-category of

divided power extensions (R′ ↠ R, η) of Fp-algebras of nilpotence degree m is generated under sifted colimits by

extensions where R′ and R are quasisyntomic. This boils down to the observation that the universal quotient of

the divided power algebra Fp⟨X⟩ in one variable in which the divided power has nilpotence degree m is isomorphic

to Fp[X0, . . . , Xm−1]/(X
p
0 , . . . , X

p
m−1).

For the general case, using mod-p Tot descent for prismatic cohomology [10, Proposition 5.5.24], one now sees

that, even when R′ ∈ CRingp-comp is arbitrary, the divided power structure on R′ ↠ R being nilpotent of nilpotence

degree m implies that φ̇2m+1
1 acts nullhomotopically on K{1}/L(p, I). □

7. A result of Bragg-Olsson

The goal of this section is to state and prove Theorem 7.1.5, which is due to Bragg-Olsson in the case of perfect

complexes, and is an important ingredient in the general representability theorem that will appear in the next

section.

7.1. Formulation of the result.

7.1.1. For R ∈ CRingFp/, set

Z1
∆(R) = Filconj1 ∆R ×∆R

Fil1Hdg ∆R ≃ hker(Filconj1 (R/Lp)→ R)

Then we have two maps

q1, q2 : Z1
∆(R)→ grconj1 ∆R ≃ LR/Fp [−1],

where q1 arises from the natural map Filconj1 ∆R → grconj1 ∆R, and q2 arises from the natural map Fil1Hdg ∆R →
gr1Hdg ∆R composed with the Cartier isomorphism.

Z1
∆(R) inherits the structure of an object in ModR from Filconj1 ∆R. For this structure, q1 is R-linear, while q2 is

φ-semilinear, and so corresponds to an R-linear map 1⊗ q2 : φ∗Z1
∆(R)→ grconj1 ∆R.

7.1.2. Let Modφ,∗R be the ∞-category of pairs (N,ψ), where N ∈ ModR, and ψ : N → φ∗N is a map in ModR.

For each such pair, we obtain two maps

q1,ψ, q2,ψ : RHomR(N,Z
1
∆(R))→ RHomR(N, gr

conj
1 ∆R).

The map q1,ψ is simply postcomposition with q1, and is independent of ψ, while the second is the composition

RHomR(N,Z
1
∆(R))

φ∗

−−→ RHomR(φ
∗N,φ∗Z1

∆(R))
(1⊗q2)◦( )◦ψ−−−−−−−−→ RHomR(N, gr

conj
1 ∆R).
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Remark 7.1.3. Suppose that R is a smooth Fp-algebra. Then we have

Filconji ∆R ≃ τ≤iΩ•
R/Fp ,

and therefore Z1
∆(R) ≃ Ω1,cl

R/Fp [−1] is the shifted module of closed differential forms, while grconj1 ∆R ≃ H1(Ω•
R/Fp)[−1].

The map q1 now is the natural surjection, while q2 is the composition

Ω1,cl
R/Fp [−1]→ Ω1

R/Fp [−1]
≃−→ H1(Ω•

R/Fp)[−1],

where the first map is the inclusion, and the second is the Cartier isomorphism.

When N is a vector bundle over R, there is an associated finite flat commutative group scheme G(N,ψ) of height

one (see §7.2 below), and the complex RΓφ(R, (N,ψ)) is (up to shift) precisely that of Artin-Milne appearing in [3,

Prop. 2.4], which computes the flat cohomology of G(N,ψ).

7.1.4. We can now associate with each (N,ψ) ∈ Modφ,∗R the space

RΓφ (R, (N,ψ)) = hker
(
RHomR(N,Z

1
∆(R))

q1,ψ−q2,ψ−−−−−−→ RHomR(N, gr
conj
1 ∆R)

)
.

This yields a prestack

S(N,ψ) : CRingR/ → ModcnFp

C 7→ τ≤0RΓφ (C, (C ⊗R N, id⊗ ψ))

Theorem 7.1.5. Suppose that N is almost perfect and (−m)-connective; then S(N,ψ) is represented by an almost

finitely presented derived Artin m-stack over R. If N is perfect, then S(N,ψ) is finitely presented. If, further, N has

Tor amplitude in [1,∞), then S(N,ψ) is smooth over R.

Remark 7.1.6. When R is classical and N is finite locally free, we will see in Corollary 7.2.3 below that S(N,ψ) is in
fact a finite flat group scheme over R. The stacks associated with shifts (N,ψ)[−r] can then be described in terms of

this group scheme. When R is Noetherian and N is a finitely generated R-module, the classical truncation of S(N,ψ)
can be described non-canonically as follows: Choose a presentation (F1, ψ1) → (F2, ψ2) → (N,ψ) → 0 with F1, F2

finite locally free over R, and take the kernel of the resulting map of finite flat group schemes S(F2,ψ2) → S(F1,ψ2).

Remark 7.1.7. Suppose that we have a cofiber sequence

(N ′, ψ′)→ (N,ψ)→ (N ′′, ψ′′)

in Modφ,∗R . Then we obtain a Cartesian diagram of prestacks

S(N,ψ) > S(N ′,ψ′)

S(N ′,ψ′)

∨
> S(N ′′,ψ′′)[−1].

0

∨

7.2. Flat cohomology of height one group schemes. We now present the proof of Bragg-Olsson with appro-

priate modifications to accommodate almost perfect complexes.

Construction 7.2.1. Suppose that R is discrete and that N is locally free of finite rank over R. Then the pair

(N,ψ) gives rise to a finite flat commutative p-group scheme G(N,ψ) over R of height 1, meaning that its Frobenius

endomorphism is trivial; see [22, Exp. VIIA], [19, §2]. Explicitly, the Cartier dual G(N,ψ)∗ is given as the kernel

of the map

V(N∨)
V(ψ∨)−F−−−−−−→ V(φ∗N∨) ≃ R⊗φ,R V(N∨),

where F is the relative Frobenius map for V(φ∗N∨) with respect to R.

We now have:
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Theorem 7.2.2. For any C ∈ CRingR/, we have a canonical isomorphism

RΓφ (C, (C ⊗R N, id⊗ ψ))
≃−→ RΓfppf(SpecC,G(N,ψ)).

Proof. By considering the universal situation for pairs (N,ψ), one reduces to the case where R is a smooth Fp-
algebra. The arrow in question is obtained via left Kan extension from an isomorphism of functors for smooth

R-algebras C, where it is a classical theorem of Artin-Milne [3, Proposition 2.4]; see Remark 7.1.3.

That this map is an isomorphism is a theorem of Bragg-Olsson [15, Theorem 4.8], who attribute the proof to

Bhatt-Lurie. □

Corollary 7.2.3. (1) The stack S(N,ψ) is canonically isomorphic to the group scheme G(N,ψ).

(2) If r ≥ 0, the stack S(N,ψ)[−r] is isomorphic to the iterated classifying stack BrG(N,ψ).

(3) If r ≤ 0, the S(N,ψ)[−r] is derived affine over R and is of the form SpecB−r, where the map R→ B−r has

(−r)-connective cofiber.

Proof. The first two assertions are clear from Theorem 7.2.2. For the last assertion, note that, for each r ≤ 1,

applying Remark 7.1.7 to the cofiber sequence

(N,ψ)[−r] id−→ (N,ψ)[−r]→ (0, id)

and using the obvious isomorphism S((0, id)) ≃ SpecR gives us a Cartesian square of prestacks

S(N,ψ)[−r] > SpecR

SpecR
∨

0
> S(N,ψ)[−r+1].

0

∨

Therefore, induction on r shows that S(N,ψ)[−r] is derived affine and is the spectrum of B−r
defn
= R⊗B−r+1R. Further-

more, we can assume that the augmentation map B−r+1 → R has (−r + 1)-connective fiber I−r+1. Consideration

of the fiber sequence

I−r+1 ⊗B−r+1 R→ R→ R⊗B−r+1 R = B−r

now shows that R→ B−r has (−r)-connective cofiber, as desired. □

Proof of Theorem 7.1.5. Suppose that N is (−m)-connective. By [50, Proposition 7.2.4.11(5)] and its proof, we can

assume that (N,ψ) is given as a filtered colimit

(N,ψ) ≃ colimj∈Z≥1
(Nj , ψj)

where, for each j ≥ 1, Qj = hcoker(Nj−1 → Nj)[m − j] is finite locally free over R. Here, we set N0 ≃ 0. If N is

perfect, we can assume that (Nj , ψj) ≃ (N,ψ) for j sufficiently large. We now have

S(N,ψ) ≃ lim←−
j

S(Nj ,ψj).

By Remark 7.1.7, for each j ≥ 1, we have a Cartesian diagram

S(Nj ,ψj) > S(Nj−1,ψj−1)

S(Nj−1,ψj−1)

∨
> S(Qj ,ψ′

j)[j−m−1],

0

∨

where ψ′
j : Qj → φ∗Qj is the map induced from ψj [m − j] and ψj−1[m − j]. Combined with Corollary 7.2.3, this

shows:

• S(Nj ,ψj) is a finitely presented derived Artin m-stack for every j ≥ 1;
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• For j ≥ m and every map SpecC → S(Nj−1,ψj−1) over SpecR, the map

S(Nj ,ψj) ×S(Nj−1,ψj−1)
SpecC → SpecC

is represented by a finitely presented derived affine scheme SpecBj such that C → Bj has (j−m)-connective

cofiber.

By the next lemma, this implies that S(N,ψ) → S(Nm−1,ψm−1) is relatively represented by an almost finitely presented

derived scheme, and is hence itself an almost finitely presented derived Artin m-stack over R.

Lemma 7.2.4. Suppose that B ∈ CRingC/ is presented as a filtered colimit

B ≃ colimj≥mBj

in CRingC/ such that the following conditions hold for all j ≥ m:

(1) Bj is finitely presented over C;

(2) hcoker(Bj → Bj+1) is (j −m)-connective.

Then B is almost finitely presented over C.

Proof. For each j ≥ m, the map τ≤(j−m)Bj → τ≤(j−m)B is an isomorphism, and the source is clearly finitely

presented in the full subcategory of (j −m)-truncated objects in CRingC/. □

To finish, it remains to show that S(N,ψ) is smooth if N has Tor amplitude in [1,∞): But the above proof tells

us that it is enough to know that S(N,ψ)[−r] is smooth when N is locally free and r ≥ 1, and this is also clear from

Corollary 7.2.3. □

8. Representability theorems for 1-bounded stacks

In this section, we prove a representability theorem under somewhat general hypotheses. We also record some

applications to stacks obtained from F -gauges.

8.1. The map from the F -zip stack to the mod-p syntomification.

8.1.1. We have a canonical map η : RFZip → Rsyn⊗Fp obtained from Example 6.10.10. We can give a much more

explicit description of η. Consider first the map

A1/Gm × SpecR
xN
dR−−→ RN ⊗ Fp → Rsyn ⊗ Fp.(8.1.1.1)

Next, we will construct another map

A1
+/Gm × SpecR

xN
HT−−→ RN ⊗ Fp → Rsyn ⊗ Fp(8.1.1.2)

whose restriction to the open substack Gm/Gm × SpecR agrees with that of (8.1.1.1), and thus yields a map

η̃ : Y × SpecR→ Rsyn ⊗ Fp.
This is constructed as follows: Given a point (L, u : C → L) of A1

+/Gm × SpecR over C ∈ CRingR/, we have

the Cartier-Witt divisor W
p−→ W along with the map of trivial generalized Cartier divisors (GdR

a
0−→ GdR

a ) →
(GdR

a ⊗C L
0−→ GdR

a ) induced by u. In the notation of Remark 6.4.7, the associated filtered Cartier-Witt divisor

is simply M(L, p, 0, u) → W ; the quotient W/M(L, p, 0, u) is also a quotient of Ga, and this yields the structure

map from R. The restriction to the open point corresponds to the natural structure map R → C → W (C)/Lp, as

desired.
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8.1.2. Consider now the two maps

BGm × SpecR→ A1/Gm × SpecR
xN
dR−−→ RN ⊗ Fp;

BGm × SpecR→ A1
+/Gm × SpecR

xN
HT−−→ RN ⊗ Fp.

The composition with the map to FN
p is the same for both of these: It attaches to every line bundle L the filtered

Cartier-Witt divisor M(L, p, 0, 0)→W ; however the structure map R→ (W/M(L, p, 0, 0))(C) associated with the

second composition differs from that associated with the first via pre-composition with φ : R→ R. This shows that

the map η̃ descends to the desired map η : RFZip → Rsyn ⊗ Fp.

8.2. F -gauges and F -zips.

8.2.1. Suppose that R ∈ CRing(Z/pmZ)/. An F -gauge over R of level n is a quasi-coherent sheaf M over

Rsyn ⊗ Z/pnZ. Via the map xNdR of §6.7, we obtain a symmetric monoidal functor of symmetric monoidal ∞-

categories

QCoh(Rsyn ⊗ Z/pnZ)→ QCoh(RN ⊗ Z/pnZ)
(xN

dR)∗−−−−→ QCoh(A1/Gm × Spec(R/Lpn)),

which can be viewed as a functorM→ Fil•HdgMn from F -gauges of level n to filtered modules over R/Lpn.

The Hodge-Tate weights of an F -gaugeM are the integers i such that gr−iHdgMn ̸= 0. We will say thatM is

1-bounded if its Hodge-Tate weights are bounded above by 1.

As an immediate consequence of Theorem 6.11.7, we find:

Proposition 8.2.2. Suppose that R is semiperfectoid. Then there is a canonical symmetric monoidal equivalence

of stable ∞-categories

QCoh(Rsyn ⊗ Z/pnZ) ≃−→ ∆R−gaugen,
where the right hand side is the ∞-category of ∆R-gauges of level n from §5.6. This is compatible with the definition

of Hodge-Tate weights on both sides.33

From this we obtain:

Proposition 8.2.3. Suppose that R → R∞ is as in Corollary 6.12.3. Then we have an equivalence of symmetric

monoidal stable ∞-categories compatible with Hodge-Tate weights

QCoh(Rsyn ⊗ Z/pnZ) ≃−→ Tot
(

∆
R

⊗(•+1)
∞

−gaugen
)
.

Construction 8.2.4. Associated withM are the ModZ/pnZ-valued prestacks over R

RΓ∗
syn(M) : CRingR/ → ModZ/pnZ

C 7→ RHomQCoh(Csyn⊗Z/pnZ)(M|Csyn ,OCsyn⊗Z/pnZ).

RΓsyn(M) : CRingR/ → ModZ/pnZ

C 7→ RΓsyn(SpecC,M|Csyn)
defn
= RΓ(Csyn,M|Csyn)

We will set

Γ∗
syn(M) = τ≤0RΓ∗

syn(M) ; Γsyn(M) = τ≤0RΓsyn(M).

Suppose now that R is an Fp-algebra. Then pullback along η : RFZip → Rsyn ⊗ Fp. gives a symmetric monoidal

functor

η∗ : QCoh(Rsyn ⊗ Fp)→ QCoh(RFZip).

Note that there are natural maps

RΓ∗
syn(M)→ RΓ∗

FZip(η
∗M) ; RΓsyn(M)→ RΓFZip(η

∗M)

for any F -gaugeM over R of level 1, where the right hand side of each map is as in Construction 5.8.10.

33See Definition 5.6.3 for the one on the right hand side.
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Remark 8.2.5. IfM is perfect with dual F -gaugeM∨, then we have a canonical isomorphism

RΓ∗
syn(M)

≃−→ RΓsyn(M∨).

8.3. Prestacks of sections. We will now use the terminology and results of §4.7.

8.3.1. Suppose that R ∈ CRing(Z/pmZ)/. Note that Rsyn ⊗ Z/pnZ is a pointed graded stack equipped with a

canonical map of graded stacks

BGm × Spec(R/Lpn)→ Rsyn ⊗ Z/pnZ.

arising via the map

xNdR,R ⊗ Z/pnZ : A1/Gm × Spec(R/Lpn)→ RN ⊗ Z/pnZ.

Suppose that we have a 1-bounded stack X = (X♢, X0) → Rsyn ⊗ Z/pnZ. Define a prestack Γsyn(X ) that

associates with each C ∈ CRingR/ the space

Γsyn(X )(C) = MapRsyn⊗Z/pnZ(C
syn ⊗ Z/pnZ,X ).

Unpacking definitions, one sees that we have

Γsyn(X )(C) = MapRsyn⊗Z/pnZ(C
syn ⊗ Z/pnZ,X♢)×X♦,0(C/Lpn) X

0(C/Lpn),

where X♢,0 → SpecR/Lpn is the fixed point locus of X♢.

8.3.2. This has a slightly more explicit description. First, define prestacks ΓN (X ) and Γ∆(X ) over R by

ΓN (X )(C) = Map/Rsyn⊗Z/pnZ(C
N ⊗ Z/pnZ,X );

Γ∆(X )(C) = Map/Rsyn⊗Z/pnZ(C
∆ ⊗ Z/pnZ,X♢).

Restriction along the de Rham and Hodge-Tate immersions yields maps

j∗dR, j
∗
HT : ΓN (X )→ Γ∆(X ),

and we now have

Γsyn(X )
≃
> eq

(
ΓN (X )

j∗dR>

j∗HT

> Γ∆(X )
)
.(8.3.2.1)

8.4. Some auxiliary stacks. Suppose that X = (X♢, X0) is a 1-bounded stack over Rsyn ⊗ Z/pnZ.

8.4.1. Let X(n), X−,(n), X−,0 be the prestacks over R given by

X(n)(C) = Map/Rsyn⊗Z/pnZ(SpecC/
Lpn,X );

X−,(n)(C) = Map/Rsyn⊗Z/pnZ(A1/Gm × SpecC/Lpn,X );

X0,(n)(C) = Map/Rsyn⊗Z/pnZ(BGm × SpecC/Lpn,X ).

The last two stacks are simply the Weil restriction from R/Lpn to R of the attractor and fixed point locus of

(X♢, X0), respectively.

8.4.2. If R is in addition an Fp-algebra, then also define

X+,(n)(C) = Map/Rsyn⊗Z/pnZ(A1
+/Gm × SpecC/Lpn,X ).

This is the Weil restriction of the repeller associated with X and the map A1
+/Gm × SpecR/Lpn → RN ⊗ Z/pnZ.
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8.4.3. Suppose that n = m, so that R is a Z/pnZ-algebra. In this case, for any R-algebra C, we have a section

C/Lpn → C, and so we can also define prestacks X,X−, X0, X+ over R (the last only when n = m = 1) by:

X(C) = Map/Rsyn⊗Z/pnZ(SpecC,X♢);

X−(C) = Map/Rsyn⊗Z/pnZ(A1/Gm × SpecC,X );
X0(C) = Map/Rsyn⊗Z/pnZ(BGm × SpecC,X );
X+(C) = Map/Rsyn⊗Fp(A

1
+/Gm × SpecC,X ).

The last three stacks are simply the attractor, fixed point locus and repeller for X base-changed from C/Lpn to C.

Note a subtlety about base-points: The base-point BGm × SpecC → A1
+/Gm × SpecC is a lift of the Frobenius

endomorphism of BGm × SpecC. In particular, we actually have

X+(C) = Map/Rsyn⊗Fp(A
1
+/Gm × SpecC,X♢)×φX♦,0(C)

φX0(C).

Here, φX0 is given by φX0 = X0 ×SpecR,φ SpecR.

Proposition 8.4.4. Suppose that X → Rsyn ⊗ Z/pnZ is a 1-bounded stack and suppose that π0(R) is a G-ring.

Suppose also that X♢ has quasi-affine diagonal over Rsyn ⊗ Z/pnZ. Then X(n), X−,(n), X0,(n) and X+,(n) (if

m = 1)—and, if n = m, the prestacks X, X−, X0 and X+ (if n = m = 1)—are locally almost finitely presented

derived Artin stacks over R.

Proof. By Propositions 3.5.4 and 4.6.8 it follows that X♢,−,(n), X♢,+,(n), X♢,0,n and X0,(n) are locally finitely

presented derived Artin stacks. Since we have

X±,(n) = X♢,±,(n) ×X♦,0,(n) X0,(n),

we see that these are also locally finitely presented derived Artin stacks.

The argument for X(n) is even simpler, since it is a mod-pn Weil restriction of a derived Artin stack by definition.

The argument for the remaining four prestacks (when n = m) is the same, but doesn’t involve Weil restrictions.

□

Remark 8.4.5. Suppose that X♢ is graded integrable (this is in particular true if it has quasi-affine diagonal by

Proposition 4.11.3). When n = m = 1, for any R-algebra C, the map

X+(C)→ Map/Rsyn⊗Fp((A
1
+/Gm)(u2=0) × SpecC,X♢)×φX♦,0(C)

φX0(C)

is an equivalence. Suppose now that L0
X ,• is the graded almost perfect complex over X0 obtained via pullback from

the relative cotangent complex of X♢. Then, via graded deformation theory, we obtain a Cartesian diagram of

stacks
X+ > X0

φX0
∨

> V(L0
X ,−1[−1]).

0

∨

Therefore, as soon as X0 is representable by an almost locally finitely presented derived Artin stack, it follows X+

is alson almost locally finitely presented derived Artin stack. Note also that X+ is quasicompact as soon as X0 is

so.

8.5. Dévissage to the F -zip stack. Suppose that n = 1, and that we have a 1-bounded stack X → Rsyn ⊗ Fp
with R ∈ CRingFp/.

Construction 8.5.1. Define a prestack ΓFZip(X ) over R by

ΓFZip(X ) : CRingR/ → Spc

C 7→ Map/Rsyn⊗Fp(C
FZip,X ).
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The argument from Lemma 5.10.6 shows that we have a presentation

ΓFZip(X )
≃
> eq

(
X− ×X X+

φλ∗
−◦pr1

>

λ∗
+◦pr2

>
φX0

)
.(8.5.1.1)

Lemma 8.5.2. Suppose that X♢ is a relative r-stack with one of the following properties:

• X♢ → Rsyn ⊗ Fp has quasi-affine diagonal and π0(R) is a G-ring;

• The stacks X−, X+, X0 are almost locally finitely presented derived Artin r-stacks over R.

Then ΓFZip(X ) is an almost locally finitely presented derived Artin r-stack over R.

Proof. Proposition 8.4.4 shows that the first condition implies the second. We now conclude using the presenta-

tion (8.5.1.1). □

Remark 8.5.3. Let LX be the relative cotangent complex for X♢ over Rsyn ⊗ Z/pnZ. For every section x ∈
ΓFZip(X )(C), the almost perfect F -zip L(X )x = x∗LX ∈ APerf(CFZip) has Hodge-Tate weights bounded below by

−1. We will view this as giving us an almost perfect F -zip L(X ) over ΓFZip(X ). Since X is fibered in derived Artin

r-stacks, this F -zip is (−r)-connective.

Construction 8.5.4. Given a section x of X over CFZip (equivalently, of ΓFZip(X ) over C), we obtain a (−r)-
connective almost perfect F -zip x∗LX , which corresponds to a tuple (Fil•Hdg Lx,Fil

conj
• Lx, η, α). We have a canonical

map

ψx : Fil1Hdg Lx → Lx → grconj1 Lx ≃ φ∗ Fil1Hdg Lx(8.5.4.1)

By Theorem 7.1.5, for each i ∈ Z, we now obtain a relative locally almost finitely presented derived Artin (m+ i)-

stack34 Si(X )→ ΓFZip(X ), whose fiber over x is given by S(Fil1Hdg Lx,ψx)[−i].

Theorem 8.5.5. Suppose that X♢ → Rsyn ⊗ Fp satisfies one of the following conditions:

• It is strongly integrable35;

• It has quasi-affine diagonal.

Then:

(1) There is a canonical Cartesian diagram of prestacks over R:

Γsyn(X ) > ΓFZip(X )

ΓFZip(X )
∨

> S1(X ),

0

∨

where the right vertical map is the zero section.

(2) Suppose that X♢ is smooth over Rsyn⊗Z/pnZ, and that its relative tangent complex is 1-connective. Then

Γsyn(X )→ ΓFZip(X ) is a quasisyntomic torsor under S0(X ).
(3) In particular, if X satisfies the hypotheses in Lemma 8.5.2, then Γsyn(X ) is represented by a locally almost

finitely presented derived Artin r-stack over R.

Proof. The last assertion is immediate from Lemma 8.5.2.

For the first two, begin by noting that the condition of having quasi-affine diagonal implies the other one by

Remark 4.12.6. Therefore, we can assume that X is strongly integrable.

By quasisyntomic descent, we can reduce to checking the existence of the diagram in (1) for semiperfect inputs.

Here, the result follows from Theorem 6.11.7 and Proposition 5.10.23.

Assertion (2) follows analogously from Corollary 5.10.35.

□

34If m+ i < 0, this will just be a relative derived scheme.
35See Definition 4.12.5
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Corollary 8.5.6. Suppose thatM is an almost perfect (−r)-connective F -gauge of level 1 over R with Hodge-Tate

weights bounded below by −1. IfM is perfect with Tor amplitude in [s, r], writeM∨ for the dual F -gauge: this has

Tor amplitude in [−r,−s] and has Hodge-Tate weights bounded above by 1.

(1) The prestack Γ∗
syn(M) over R is represented by an almost finitely presented derived Artin r-stack, which is

in fact finitely presented ifM is perfect.

(2) If M is perfect and s ≥ 1, then Γsyn(M∨) ≃ Γ∗
syn(M) is a smooth, faithfully flat derived Artin stack over

R.

(3) If r ≤ 0, then Γsyn(M) is a derived affine scheme over R.

Proof. As we saw in § 3.3, the vector stack X = V(M) → Rsyn ⊗ Fp is an almost finitely presented r-stack, and

Example 4.8.5 shows that it can be extended to a 1-bounded stack—denoted by the same symbol—by bringing

along the entire fixed point locus.

Moreover, the associated stacks X−,(n), X+,(n) and X0,(n) admit the following explicit description: Associated

withM is an F -zip giving in particular the pair (Fil•HdgM,Filconj• M); thenX−,(n) (resp. X+,(n), X0,(n)) is the mod-

pn Weil restriction of the vector stack associated with M/Fil1HdgM (resp. M/Filconj−1 M , gr0HdgM). In particular,

all three stacks are representable, and so, if M is the underlying F -zip, then the discussion in Construction 5.8.10

shows that Γ∗
FZip(M) is representable by a locally finitely presented derived Artin r-stack.

By Theorem 8.5.5 and Remark 4.12.6, we have a Cartesian diagram

Γ∗
syn(M) > Γ∗

FZip(M)

Γ∗
FZip(M)

∨
> S(N,ψ)[−1]

∨

(8.5.6.1)

where ψ : N → φ∗N is a map of almost perfect complexes over ΓFZip(M) with N = Fil1HdgM .

Therefore, Theorem 7.1.5 shows that Γsyn(V(M)) = Γ∗
syn(M) is represented by a locally finitely presented

derived Artin r-stack.

For (2), first note that, under these hypotheses, Γ∗
FZip(M) is smooth over R: This is because we can rewrite the

formula (5.8.10.1) as

Γ∗
FZip(M)(R) ≃ RΓFZip(SpecR,M

∨) ≃ hcoker(grconj0 M∨[−1]→ Filconj0 M∨ ×M∨ Fil0HdgM
∨),

where both source and target on the right are values of smooth vector stacks, faithfully flat over R. The proof is

now completed by the second assertion from Theorem 7.1.5.

We now come to (3): Under our hypotheses, M is a connective perfect F -zip, and so (5.8.10.1) shows that

Γ∗
FZip(M) is the equalizer of a pair of maps between derived affine schemes over R, and is hence itself derived affine.

The assertion now follows from (8.5.6.1) and (3) of Corollary 7.2.3. □

8.6. Bootstrapping from characteristic p: coefficients. Continue to assume that R is an Fp-algebra. Suppose
now that we have a 1-bounded stack X → Rsyn⊗Z/pnZ. For m ≤ n, write Xm for its restriction over Rsyn⊗Z/pmZ.

Over Γsyn(X1), we have an almost perfect F -gauge L1(X ) of level 1 and Hodge-Tate weights bounded below by

−1: this associates with every x ∈ Γsyn(X1)(C) the pullback to Csyn ⊗ Fp of the cotangent complex of X♢
1 over

Rsyn⊗Fp. In turn, for any i ∈ Z, this gives us via Corollary 8.5.6 a ModcnFp -valued relative locally finitely presented

derived Artin stack Γ∗(L1(X )[i])→ Γsyn(X1) associating with each x the derived Artin stack

Γ∗(L1(X )[i])x = Γ∗
syn(L1(X )x[i])

over C.
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Proposition 8.6.1. There is a canonical Cartesian diagram of prestacks

Γsyn(Xm+1) > Γsyn(Xm)

Γsyn(Xm)
∨

> Γ∗(L1(X )[−1])×Γsyn(X1) Γsyn(Xm),

0

∨

In particular, if X1 satisfies the hypotheses of Theorem 8.5.5, then Γsyn(X ) is represented by a locally almost finitely

presented derived Artin r-stack over R.

Proof. The last assertion follows from Theorem 8.5.5 and Corollary 8.5.6.

The existence of the Cartesian diagram of prestacks is an application of deformation theory. Let LN
1 (X ) (resp.

L∆
1 (X )) be the almost perfect complex over the Nygaard filtered prismatization of ΓN (X1) (resp. over the prisma-

tization of Γ∆(X1)) obtained similarly to L1(X ) by pulling back the relative cotangent complex of X♢ along the

tautological map.

From the first relative vector stack, we obtain a prestack over ΓN (X1) given on pairs (C, x) with x ∈ ΓN (X1)(C)

by

Γ∗
N (L1(X )[−1]) : (C, x) 7→ MapQCoh(CN⊗Fp)(L

N
1 (X )x,OCN⊗Fp [1]).

Similarly, over Γ∆(X1), we obtain a prestack given on pairs (C, x) with x ∈ Γ∆(X1)(C) by

Γ∗
∆(L1(X )[−1]) : (C, x) 7→ MapQCoh(C∆⊗Fp)(L

∆
1 (X )x,OC∆⊗Fp [1]).

Suppose that C is semiperfect to fix ideas: we can reduce to considering only such inputs by quasi-syntomic

descent.

Let us look at the fibers of the map

ΓN (Xm+1)(C)→ ΓN (Xm)(C).

By Theorem 6.11.7, CN ⊗ Z/prZ is the Rees stack R(Fil•N ∆C)⊗ Z/prZ. Then by the discussion in §4.5 we have a

canonical Cartesian square

ΓN (Xm+1)(C) > ΓN (Xm)(C)

ΓN (Xm)(C)
∨

> Map(R(Fil•N ∆C/Lpm ⊕ Fil•N ∆C [1]),X♢)×X♦,0,(1)(C) X
0,(1)(C).

0

∨

Moreover, the prestack over R given by

C 7→ Map(R(Fil•N ∆C/
Lpm ⊕ Fil•N ∆C [1]),X♢)×X♦,0,(1)(C) X

0,(1)(C)

is canonically isomorphic over ΓN (Xm) to the pullback of the stack Γ∗
N (L1(X )[−1]), showing that we have a

Cartesian diagram of prestacks over ΓN (Xm):

ΓN (Xm+1) > ΓN (Xm)

ΓN (Xm)
∨

> Γ∗
N (L1(X )[−1])×ΓN (X1) ΓN (Xm)

0

∨

There exists an analogous Cartesian diagram withN replaced with ∆. Combining these two diagrams with (8.3.2.1)

now proves the Proposition. □
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Remark 8.6.2. Note that the establishment of the Cartesian diagrams in the proposition above did not use the

hypothesis that R is an Fp-algebra: One simply has to replace the word ‘semiperfect’ by ‘semiperfectoid’ in the

proof.

Suppose that X♢ is as in (2) of Theorem 8.5.5. Then we have the following more streamlined assertion, which

can be deduced from Proposition 8.6.1 and Corollary 8.5.6.

Corollary 8.6.3. With these hypotheses, Γsyn(Xm+1) → Γsyn(Xm) is a quasisyntomic torsor under the smooth

Artin stack Γ∗(L1(X )), and is in particular smooth and surjective.

8.7. Deformation theory. We continue with the assumptions of the previous subsection.

Construction 8.7.1. Suppose that we have a divided power thickening (C ′ ↠ C, γ) of R-algebras. Then we have

a canonical commuting square

Γsyn(X )(C ′) > X−,(n)(C)

Γsyn(X )(C)
∨

> X−,(n)(C)×X(n)(C) X
(n)(C ′).

∨

(8.7.1.1)

This is obtained as follows: The top arrow and the first coordinate of the bottom arrow are obtained from the

canonical map Γsyn(X )→ X−,(n) obtained via pullback along the mod-pn reduction of the map

xNdR : A1/Gm × SpecC → CN

for every R-algebra C. The second coordinate of the bottom arrow is obtained via pullback along the (mod-pn

reduction of the) lift

x̃dR,C′ : SpecC ′ → C∆

from Lemma 6.8.1.

Theorem 8.7.2. Suppose that X is 1-bounded and strongly integrable, and that Γsyn(X ) is represented by a locally

almost finitely presented derived p-adic formal Artin stack over R 36. Let (C ′ ↠ C, γ) be a nilpotent divided power

thickening. Then the commuting square (8.7.1.1) is Cartesian.

Proof. Write

α(C′↠C,γ) : Γsyn(X )(C ′)→ Γsyn(X )(C)×X−,(n)(C)×
X(n)(C)

X(n)(C′) X
−,(n)(C ′)

for the natural map. We would like to show that it is an equivalence when the divided power thickening is nilpotent.

By quasisyntomic descent, we can reduce to the case where C ′ and C are semiperfect. Note that the existence

of divided powers on C ′ ↠ C is equivalent to the existence of a commuting diagram

∆C′ = Acrys(C
′) > ∆C = Acrys(C)

C ′
∨

>
<

C
∨

Moreover, by Proposition 6.13.1 and its proof, the nilpotence of the divided powers is equivalent to the topological

local nilpotence of the divided Frobenius φ̇1 on hker(∆C′ → ∆C) arising from the diagonal lift in the diagram.

Now, first suppose that hker(C ′ ↠ C) is 1-connective. In this case, we are in the situation of Proposition 5.9.9

with B = ∆C′ and A = ∆C . Indeed, by Remark 5.9.13, and the already observed topological local nilpotence of φ̇1

it only remains to check that the map ∆C′ → ∆C is surjective. This follows from the argument used in [10, Remark

4.1.20]: One reduces to checking that the map is surjective on the associated graded for the conjugate filtration on

36We will only need it to be locally almost finitely presented and infinitesimally cohesive.
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Hodge-Tate cohomology (that is, Hodge cohomology), and hence that the map ∧kC′LC′/Fp [−k]→ ∧kCLC/Fp [−k] has
connective fiber for all k ≥ 0. This reduces in turn to knowing that the map

C ′ ⊗C ∧kC′LC′/Fp → ∧
k
CLC/Fp

has k-connective fiber. However this fiber is filtered with associated gradeds isomorphic to

∧iCLC/Fp ⊗C ∧
j
C(LC/C′ [−1])

for i + j = k and j ≥ 1, and so it is enough to know that each of these pieces is k-connective. Now, LC/Fp is 1-

connective, while LC/C′ is 2-connective [52, Corollary 25.3.6.4], so the desired connectivity follows from décalage [52,

Proposition 25.2.4.2].

In the general case, ∆C′ → ∆C need not be surjective, so we cannot directly apply the arguments from § 5.9.

To proceed, let us make note of the following principles:

(1) If we have a factoring C ′ ↠ C1 ↠ C, equipped with compatible nilpotent divided power structures, then

we can verify the Cartesianness of the square for C ′ ↠ C by separately verifying it for each factoring map.

(2) For every m ≥ 0, τ≤mC
′ ↠ τ≤mC inherits a divided power structure from C ′ ↠ C.

(3) If C1 → C is any map of semiperfect Fp-algebras, then C1×C C ′ ↠ C1 is equipped with a nilpotent divided

power structure

Applying these principles, we get a factoring

C ′ ↠ C ×τ≥1(C) τ≥1(C
′) ↠ C

equipped with compatible divided powers. The first of these maps has 1-connective homotopy kernel, and we have

already verified that (8.7.1.1) is Cartesian for such maps. The second is a base-change of the map τ≥1(C) ↠ τ≥1(C
′),

and using infinitesimal cohesiveness we can reduce the checking of the Cartesianness of the associated square to

that of the square associated with the map of 1-truncated rings.

Therefore, we can assume that C ′ and C are 1-truncated. Via the same technique, applied now to 0-truncations,

we can reduce to checking separately the following two cases:

• π0(C ′)
≃−→ π0(C) is an isomorphism;

• C ′ and C are discrete.

Let us first deal with the second case. Here, we have C = C ′/I, where I ⊂ C ′ is an ideal equipped with nilpotent

divided powers. Using local almost finite presentation, we see that we have

Γsyn(X )(C) = colimJ⊂I Γsyn(X )(C ′/J)

where J ⊂ I ranges over the finitely generated sub-ideals of I that inherit a divided power structure from J .37 This

lets us reduce to the case where I is finitely generated, so that the divided powers I [n] of I are eventually 0. By

repeatedly applying the first principle above, we can reduce to the case where I [2] = 0, so that the divided powers

are trivial and I ⊂ C ′ is a square-zero ideal. In this case, by the infinitesimal cohesiveness of Γsyn(X ), it suffices

to verify the theorem in the situation where C ′ = C ⊕ I[1], where we are reduced to the already known case of

1-connective fiber.

Now, let us consider the first case where π0(C
′)

≃−→ π0(C) is an isomorphism. If we set D = π0(C), then C
′ (resp.

C) is a square-zero thickening by M ′[1] (resp. M [1]) for some discrete D-modules M ′, M , and the map C ′ ↠ C

arises from a map M ′ →M of D-modules. If M ′′ ⊂M is the image of M , we obtain a factoring C ′ ↠ C ′′ ↠ C into

nilpotent divided power thickenings where C ′′ is a square-zero extension of D by M ′′[1]. The first of these maps

has 1-connective fiber, so we are reduced to the situation where M = M ′′ is a submodule of M ′. Set N = M ′/M ;

then the fiber of C ′ ↠ C is the discrete D-module N , and so N is equipped with a divided power filtration given by

the submodules N [m] ⊂ N generated by the images of γk : N → N for all k ≥ m. Just as in the classical case, we

can use this filtration to reduce to the case of a trivial square-zero thickening, and hence to the case of 1-connective

fiber. □

37Note that, since the divided powers are nilpotent, the divided power closure of any finitely generated ideal is once again finitely

generated.
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Remark 8.7.3. Under further restrictions, one can dispense with the nilpotence of the divided powers on C ′ ↠ C.

Note that we have maps

Γsyn(X )(C)→ ΓFZip(X )(C)
x7→ψx−−−−→ π0(MapC(Fil

1
Hdg Lx, φ

∗ Fil1Hdg Lx)).

Here, ψx was defined in Construction 8.5.4. Within the π0(C)-module on the right, we have the subspace of nilpotent

operators f satisfying

0 = Φn(f) = (φn)∗f ◦ · · · ◦ φ∗f ◦ f = 0 ∈ π0(MapC(Fil
1
Hdg Lx, (φ

n+1)∗ Fil1Hdg Lx))

for some n ≥ 1.

Let

Γnilp
syn (X )(C)→ Γsyn(X )(C)

be the pullback of this subspace. This is the nilpotent locus of Γsyn(X )(C).
We then claim that, for any divided power thickening (C ′ ↠ C, γ) as above, the commuting square (8.7.1.1)

restricts to a Cartesian square

Γnilp
syn (X )(C ′) > X−,(n)(C ′)

Γnilp
syn (X )(C)

∨
> X−,(n)(C)×X(n)(C) X

(n)(C ′)

∨

(8.7.3.1)

Since the kernel of π0(C
′)→ π0(C) is locally nilpotent, we see that Γnilp

syn (X )(C ′) factors through Γnilp
syn (X )(C), giving

us the restricted commuting square. To see that this is Cartesian, we can use quasisyntomic descent to reduce to the

case where C ′ and C are semiperfect. Here, if hker(C ′ ↠ C) is 1-connective, then the argument used in the proof

above still works: We have to replace the nilpotence of the map φ̇1 with the nilpotence of ψx and the argument

explained in Remark 5.9.28.

For the general case, we only give a sketch of a proof: Let us consider the prestack C 7→ ΓWitt(X )(C) constructed
using the Witt vector frames W (C) and the definitions from § 5.9. We can similarly define the nilpotent locus

Γnilp
Witt(X )(C)→ ΓWitt(X )(C).

Now, Remark 5.9.29 tells us that the natural map

Γnilp
syn (X )(C)→ Γnilp

Witt(X )(C)(8.7.3.2)

induced from the map of frames ∆C →W (C) is an equivalence.

To proceed, we need to recall the relative Witt frame W (C ′/C) defined in [45, Example 2.1.9]: All we need is

that its underlying animated commutative ring isW (C ′), but its zeroth associated graded is C, andW (C ′)→W (C)

factors through a sequence of maps

W (C ′)→W (C ′/C)→W (C).

Using Remark 5.9.28 again tells us that we can compute Γnilp
Witt(X )(C) using W (C ′/C) instead. Combining this

with Proposition 5.9.7 now gives us a Cartesian diagram

Γnilp
Witt(X )(C ′) > X−,(n)(C ′)

Γnilp
Witt(X )(C)

∨

> X−,(n)(C)×X(n)(C) X
(n)(C ′)

∨

.

One checks that this square is compatible via the isomorphism (8.7.3.2) with the square (8.7.3.1). This completes

the proof.
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Remark 8.7.4. By quasisyntomic descent, the argument used above shows that we have a frame-theoretic inter-

pretation of the nilpotent locus via the Witt vector frame for any R-algebra C. That is, we always have

Γnilp
syn (X )(C)

≃−→ Γnilp
Witt(X )(C).

Remark 8.7.5. In fact, one can say more. Let (A, ζ) be any filtered prism and with C = RA ∈ CRingR/, so that

we have maps S(A) → Csyn → Rsyn given by Proposition 6.10.3. Then we can apply the definitions from §5.9 to

the restriction of X over S(A)⊗ Fp and obtain a space ΓA(X )(C) equipped with natural maps

Γsyn(X )(C)→ ΓA(X )(C)→ ΓWitt(X )(C).
If we set

Γnilp
A (X )(C) = ΓA(X )(C)×ΓWitt(X )(C) Γ

nilp
Witt(X )(C)

then the arguments used above show that we obtain natural maps

Γnilp
syn (X )(C)→ Γnilp

A (X )(C)→ Γnilp
Witt(X )(C),

where the composition of the two maps as well as the last map are equivalences. In particular, we can compute

Γnilp
syn (X )(C) using any such frame A with RA ≃ C.

Remark 8.7.6. The argument used above, applied for any discrete semiperfect C, to the surjective map of frames

∆C → π0(∆C), shows that Γ
nilp
syn (X )(C) depends only on the classical truncation of the syntomification Csyn.

We wonder if this is true even for the non-nilpotent locus. This would be implied by a topological local nilpotence

result for the divided Frobenius endomorphism of hker(∆R → π0(∆R)) for R semiperfect. Concretely, we are looking

at the fiber of the map between the derived crystalline cohomology and classical crystalline cohomology of R.

If this local nilpotence is true in general, this would show that the classical truncation of Γsyn(X ) depends only
on the classical truncations of the stacks Csyn for varying C. This in turn would explain why, when X♢ is fibered

in derived algebraic spaces over Rsyn ⊗ Fp, Γsyn(X ) is also a derived algebraic space over R.

8.8. Bootstrapping from characteristic p: the base. We will now take R to be in CRingp-comp. For any p-adic

formal prestack Z over R set R(Z) = Z(1), so that R(Z)(C) = Z(C/Lp) for any C ∈ CRingp-comp
R/ . This gives an

endomorphism of the ∞-category of p-adic formal prestacks over R, and so can be iterated: We have

Rt(Z)(C) = Z(C ⊗ F⊗Zt
p ).

The key for us is the following systematic dévissage from characteristic p:

Proposition 8.8.1. Let X → Rsyn ⊗ Z/pmZ be a 1-bounded stack that is strongly integrable. For any C ∈
CRingp-comp

R/ , the canonical map

Γsyn(X )(C)→ Tot
(
Γsyn(X )(C ⊗Z F⊗Z•+1

p )
)

is an equivalence. That is, we have an equivalence of p-adic formal prestacks

Γsyn(X )
≃−→ Tot

(
R•+1(Γsyn(X ))

)
.

Now, if (C ′ ↠ C, γ) is a divided power thickening ofR-algebras, we obtain the canonical commuting square (8.7.1.1).38

Corollary 8.8.2 (Grothendieck-Messing). Suppose that X → Rsyn ⊗ Z/pmZ is 1-bounded and strongly integrable,

and that Γsyn(X )⊗Fp is representable. Then, if (C ′ ↠ C, γ) is a nilpotent divided power thickening, the commuting

square (8.7.1.1) is Cartesian.

Proof. Nilpotence of divided powers is preserved under arbitrary base-change along maps C ′ → D′. Therefore, for

every m ≥ 1, the map

C ′ ⊗ F⊗Z•+1
p ↠ C ⊗ F⊗Z•+1

p

of cosimplicial R⊗ Fp-algebras canonically lifts to a cosimplicial diagram of nilpotent divided power thickenings of

R⊗ Fp-algebras. This gives us a cosimplicial diagram of commuting squares as in (8.7.1.1), which are all Cartesian

38Strictly speaking, we had imposed the condition that R be an Fp-algebra when we introduced this square; however, this hypothesis

was not used in its construction.
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by Theorem 8.7.2. We conclude by Proposition 8.8.1, which now shows that the commuting square the corollary is

concerned with is a limit of Cartesian ones. □

As an immediate consequence, we obtain:

Corollary 8.8.3. With the hypotheses above, write ϖX : Γsyn(X )→ X−,(n) for the canonical map. Then Γsyn(X )
admits an almost perfect cotangent complex over X−,(n), and we have canonical isomorphisms

LΓsyn(X )/R ≃ ϖ∗
XLX−,(n)/X(n) ;

LΓsyn(X )/X−,(n) ≃ ϖ∗
X

(
LX(n)/R|X−,(n)

)
[1].

Assuming Proposition 8.8.1, we can now show:

Theorem 8.8.4. Suppose that X is a 1-bounded r-stack over Rsyn ⊗ Z/pnZ. Suppose that one of the following

holds:

(1) X♢ has quasi-affine diagonal and π0(R) is a G-ring;

(2) X is strongly integrable, and the p-adic formal stacks X− and X0 over R/Lpn are representable.

Then:

(1) Γsyn(X ) is represented by a p-adic formal locally almost finitely presented Artin r-stack over R.

(2) If X♢ is flat over Rsyn ⊗ Z/pnZ with (quasi-)affine diagonal, then Γsyn(X ) has (quasi-)affine diagonal.

(3) If X− and X0 are quasi-compact, then Γsyn(X ) is quasi-compact.

Proof. We can assume that R is a Z/pmZ-algebra for some m ≥ 1. As usual, the first hypothesis implies the second,

and so we will assume that (2) is valid. Moreover, by Remark 8.4.5, when n = m = 1, our hypotheses also imply

that the repeller X+ is also representable.

One can now prove assertion (1) using a rather general argument involving Artin-Lurie representability; see

Remark 8.8.13 below. Here, we give a more direct proof using Grothendieck-Messing theory.

By Proposition 8.6.1, we know that, under our hypotheses, Γsyn(X )⊗Fp is represented by a locally almost finitely

presented Artin r-stack over R/Lp.

If p > 2, then applying Corollary 8.8.2 to the natural nilpotent divided power structure on R↠ R/Lp, we obtain

a Cartesian square of prestacks

Γsyn(X ) > X−,(n)

R(Γsyn(X ))
∨

> X(n) ×R(X(n)) R(X
−,(n))

∨

.

Assertion (1) now follows, since all the prestacks involved except for the one in the top left corner are known to be

locally almost finitely presented derived p-adic formal Artin stacks over R.

If p = 2, then we can do something similar, by first considering the nilpotent divided power thickening R↠ R/L4

to reduce to showing that Γsyn(X )⊗Z/4Z is a locally finitely presented Artin stack over Z/4Z, and then using the

trivial divided powers on the square zero extension R↠ R⊗Z/4Z F2 (for R ∈ CRing(O/4)/) to reduce further to the

known case of n = 1.

Let us proceed to assertions (2) and (3): It is enough to prove them for the stack Γsyn(X ) ⊗ Fp. First, note

that, under the hypotheses of (2) (resp. of (3)), ΓFZip(X1) has (quasi-)affine diagonal (resp. is quasicompact): This

follows from Proposition 4.6.8 and the presentation (8.5.1.1).

Now, we claim that the zero section ΓFZip(X1)→ S1(X1) is quasi-compact, and that it has affine diagonal under

the hypotheses of (2). This reduces to knowing that S0(X1) is quasi-compact over ΓFZip(X1), with affine diagonal

under the hypotheses of (2). This can be deduced from the proof of Theorem 7.1.5: one has to make the additional

observation that the assumption in (2) guarantees that the relative cotangent complex of X is (−1)-connective.
Combined with Theorem 8.5.5, this shows that, under the hypotheses of (2) (resp. of (3)), Γsyn(X1) ⊗ Fp has
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(quasi-)affine diagonal (resp. is quasicompact). By Proposition 8.6.1, the assertions for n ≥ 2 are now reduced

to the following assertion: For any almost perfect F -gauge M over R with Hodge-Tate weights bounded below

by −1 the stack Γ∗
syn(M) → SpecR is quasi-compact, and has affine diagonal when M is (−1)-connective. The

quasi-compactness follows from Corollary 8.5.6. The diagonal map for the stack is a torsor under Γ∗
syn(M[1]), so it

suffices to now observe that—whenM is (−1)-connective—Γ∗
syn(M[1]) is affine by the same corollary. □

8.8.5. We now proceed towards the proof of Proposition 8.8.1. Let us say that a map f : Z → Y of p-adic formal

prestacks over Rsyn satisfies Tot descent for X♢ if the natural map

Map/Rsyn⊗Z/pnZ(Y ⊗ Z/pnZ,X♢)→ Tot
(
Map/Rsyn⊗Z/pnZ(Z

×Y (•+1) ⊗ Z/pnZ,X♢)
)

is an equivalence. The map satisfies universal Tot descent for X♢ if, for any Y ′ → Y , the base-change

Z ×Y Y ′ → Y ′ also satisfies Tot descent for X♢

Remark 8.8.6. Any flat cover satisfies universal Tot descent for X♢.

Remark 8.8.7. A composition of maps satisfying (universal) Tot descent for X♢ also satisfies (universal) Tot

descent for X♢.

Remark 8.8.8. Suppose that we have maps Z
f−→ Y

g−→ V such that:

• f ◦ g satisfies Tot descent for X♢;

• f satisfies universal Tot descent for X♢

Then g also satisfies Tot descent for X♢. This follows because, from our assumption on f , we find that the map

f×Vm : Z×Vm → Y ×Vm also satisfies Tot descent for X♢ for all m ≥ 1.

Remark 8.8.9. We have the following observation of Halpern-Leistner and Preygel: Suppose that we have A ∈
CRing equipped with a map Z[T1, . . . , Tr] → A such that A is derived J-complete, where J = (T1, . . . , Tr) ⊂
Z[T1, . . . , Tr]; set A = A/L(T1, . . . , Tr). Suppose that we have a derived J-adic formal Artin stack Y over A. Then,

for R ∈ CRingA/ derived J-complete, the map

Y(R)→ Tot

(
Y(R⊗A A

⊗L
A•+1

)

)
is an equivalence. In fact, one only needs for Y to be nilcomplete and infinitesimally cohesive; see [33, Cor. 3.1.4].

So Proposition 8.8.1 is certainly implied by Theorem D. Here we will use the former to complete the proof of the

latter.

Lemma 8.8.10. The map C∆ ×Z∆
p
ZHT
p → C∆ satisfies Tot descent for X♢.

Proof. Via quasisyntomic descent once again, we reduce to the case where C is semiperfectoid. Let I
t−→ ∆C be the

generalized Cartier divisor on ∆C underlying its structure of a prism, so that we have

C∆ ≃ Spf(∆C) ; C
∆ ×Z∆

p
ZHT
p ≃ Spf(∆C)(t=0).

Now, ∆C here is equipped with its I-adic topology with respect to which it is derived complete. Therefore, the

lemma follows from Remark 8.8.9. □

Lemma 8.8.11. The map FHT
p → ZHT

p satisfies universal Tot descent for X♢

Proof. We will use Proposition 6.3.2, which shows (via Remark 8.8.6) that the map Spf Zp → ZHT
p satisfies universal

Tot descent for X .
It is now enough to show (see Remark 8.8.8) that the map SpecFp → Spf Zp satisfies universal Tot descent for

X♢. This follows from Remark 8.8.9 and the fact that we are dealing with p-adic formal stacks. □
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Lemma 8.8.12. Suppose that we have C ∈ CRingp-nilpR/ . Then we have a canonical Cartesian square

Map(CN ⊗ Z/pnZ,X ) > Map(C∆ ⊗ Z/pnZ,X♢)

X−(C/Lpn)
∨

> X(C/Lpn).
∨

Proof. Via quasisyntomic descent, we reduce to the case of C semiperfectoid, where this follows from Theorem 6.11.7

and filtered integrability. □

Proof of Proposition 8.8.1. The limit preserving property of the functors SpecC 7→ C∆ and SpecC 7→ CN shows

that we have

C∆ ×Z∆
p
F∆
p ×Z∆

p
× · · · ×Z∆

p
F∆
p︸ ︷︷ ︸

•+1

≃−→ (C ⊗ F⊗•+1
p )∆;

CN ×ZN
p
FN
p ×ZN

p
× · · · ×ZN

p
FN
p︸ ︷︷ ︸

•+1

≃−→ (C ⊗ F⊗•+1
p )N .

Lemmas 8.8.10 and 8.8.11 together show that the composition

C∆ ×Z∆
p
FHT
p → C∆ ×Z∆

p
F∆
p → C∆

satisfies Tot descent for X♢, while the second map satisfies universal Tot descent for X♢. Therefore, Remark 8.8.8

now shows that C∆ → C∆ ×Z∆
p
F∆
p satisfies Tot descent for X♢.

This, combined with the discussion in the first paragraph, shows that we have

Map(C∆ ⊗ Z/pnZ,X♢)
≃−→ TotMap

(
(C ⊗ F⊗•+1

p )∆ ⊗ Z/pnZ,X♢).
Now, Lemma 8.8.12 combined with Remark 8.8.9 tells us that we also have

Map(CN ⊗ Z/pnZ,X ) ≃−→ TotMap
(
(C ⊗ F⊗•+1

p )N ⊗ Z/pnZ,X
)
.

The proof is now concluded by contemplating the identity (8.3.2.1). □

Remark 8.8.13. When π0(R) is a G-ring, one can also deduce Theorem 8.8.4 from Proposition 8.6.1 and the

following general assertion: Suppose that Y is a p-adic formal prestack over R with the following properties:

(1) Y⊗ Fp is represented by a locally almost finitely presented derived Artin stack over R/Lp;

(2) Y satisfies Tot descent with respect to p: For every C ∈ CRingp-nilpR/ , the natural map

Y(C)→ Tot
(
Y(C ⊗ F⊗·+1

p )
)

is an equivalence.

Then Y is represented by a derived p-adic formal Artin stack over R.

This is shown using Artin-Lurie representability [49, Theorem 7.1.6]. All the criteria involving limits are easily

checked using our hypotheses. The existence of a p-completely almost perfect cotangent complex for Y follows from

the existence of an almost perfect cotangent complex for Y ⊗ Fp and Tot descent along p for p-completely almost

perfect complexes. From this, one also deduces the local almost finite presentation, which completes the verification

of all the criteria in loc. cit.

Remark 8.8.14. For any C ∈ CRingp-nilpR/ , set

Γnilp
syn (X )(C) = Γnilp

syn (X1)(C/
Lp)×Γsyn(X1)(C/Lp) Γsyn(X )(C).

The prestack Γnilp
syn (X )→ Γsyn(X ) is the nilpotent locus, and the argument from Corollary 8.8.2 and Remark 8.7.3

shows that, for any not necessarily nilpotent divided power thickening (C ′ ↠ C, γ), we have a Cartesian diagram
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as in that remark. That is, we have a Grothendieck-Messing theory for such thickenings as long as we restrict to

the nilpotent locus.

Moreover, via Remark 8.7.4 and Tot descent, or by using Corollary 5.9.10 and quasisyntomic descent, one sees

that Γnilp
syn (X )(C) can be computed using the Witt frame for any R-algebra C. In fact, using the argument, one

sees as in Remark 8.7.5 that Γnilp
syn (X )(C) can be computed using any filtered prism (A, ζ) satisfying RA ≃ C. In

particular, for discrete C, it depends only on the classical truncation of Csyn.

8.9. Functoriality. Suppose that we have a map f : X1 → X2 of 1-bounded stacks over Rsyn ⊗ Z/pnZ satisfying

the hypotheses of Theorem 8.8.4. Then we obtain a map of derived stacks Γsyn(f) : Γsyn(X1) → Γsyn(X2) over R.

We also have the corresponding map of Weil restricted stacks X
−,(n)
1 → X

−,(n)
2 and X

(n)
1 → X

(n)
2 .

The following is immediate from Corollary 8.8.3:

Proposition 8.9.1. Let ϖ1 : Γsyn(X1)→ X
−,(n)
1 be the canonical map. Then we have a natural isomorphism

LΓsyn(X1)/Γsyn(X2)
≃−→ ϖ∗

1LX−,(n)
1 /(X

(n)
1 ×

X
(n)
2

X
−,(n)
2 )

.

8.10. Sections of perfect F -gauges with Hodge-Tate weights ≤ 1. Suppose that M is a perfect F -gauge

of level n over R ∈ CRingp-comp with Hodge-Tate weights bounded by 1. Pulling M back along xNdR yields an

increasingly filtered perfect complex Fil•HdgMn over R/Lpn. The next theorem is immediate from Theorem 8.8.4

and Corollary 8.5.6 by observing that we have Γsyn(M) ≃ Γ∗
syn(M∨).39

Theorem 8.10.1. The prestack Γsyn(M) is represented by a p-adic formal locally finitely presented derived Artin

stack over R with cotangent complex OΓsyn(M) ⊗R (gr−1
HdgMn)

∨[1]. Moreover, if (C ′ ↠ C, γ) is a nilpotent divided

power thickening in CRingp-comp
R/ , then we have a Cartesian square

Γsyn(M)(C ′) > C ′ ⊗R Fil0HdgMn

Γsyn(M)(C)
∨

> (C ⊗R Fil0HdgMn)×C⊗RMn
(C ′ ⊗RMn).

∨

Moreover:

(1) IfM has Tor amplitude in (−∞,−1], then Γsyn(M) is a smooth faithfully flat p-adic formal stack over R.

(2) IfM has Tor amplitude in [0,∞), then Γsyn(M) is a derived affine p-adic formal scheme over R.

Proof. Only the numbered asssertions require proof. To show them, we can assume that R is an Fp-algebra. We

already know from Corollary 8.5.6 that the statements are true ifM has level 1 and we now use the usual dévissage

by power of p (say in the form of Proposition 8.6.1) to see that they are true in general. □

8.11. Stacks of perfect F -zips of Hodge-Tate weights 0, 1. For every n ≥ 1, let X → Zsyn
p ⊗ Z/pnZ be the

1-bounded stack obtained via base-change from P{0,1} → BGm as described in Example 4.8.6.

We will denote the associated formal prestack Γsyn(X )→ Zp by Perfsyn{0,1},n. Concretely, this associates with every

R ∈ CRingp-nilp the ∞-groupoid Perf{0,1}(R
syn ⊗ Z/pnZ)≃ of perfect F -gauges of level n over R with Hodge-Tate

weights 0, 1.

Over this prestack we have a canonical filtered perfect complex Fil•HdgMtaut obtained by viewing, for each R,

the universal perfect F -gauge of level n as a perfect complex over Rsyn, and pulling back along xNdR. We obtain the

next theorem from Theorem 8.8.4 and the discussion in Example 4.8.6.

39One can also, without any additional work, formulate and prove a version for almost perfect F -gauges wth Hodge-Tate weights

≥ −1 by considering the prestack Γ∗
syn(M) instead.
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Theorem 8.11.1. The prestack Perfsyn{0,1},n is represented by a p-adic formal locally finitely presented derived Artin

stack over Zp with cotangent complex (gr−1
HdgMtaut)

∨⊗Fil0HdgMtaut. Moreover, if (C ′ ↠ C, γ) is a nilpotent divided

power thickening of p-complete algebras in CRing, then we have a Cartesian square

Perfsyn{0,1},n(C
′) > Perf{0,1}(A1/Gm × SpecC ′/Lpn)

Perfsyn{0,1},n(C)
∨

> Perf{0,1}(A1/Gm × SpecC/Lpn)×Perf(C/Lpn) Perf(C
′/Lpn).

∨

Proof. The only thing that needs still to be verified is the assertion about the cotangent complex. For this, note

that we have

X−,(n) : C 7→ Perf{0,1}(A1/Gm × SpecC/Lpn)

X(n) : C 7→ Perf(C/Lpn).

The fiber of the map X−,(n) → X(n) over a perfect complex M over C/Lpn classifies two step filtrations Fil•M on

M with griM perfect for all i, and griM ≃ 0 for i ̸= −1, 0. Giving such a datum is equivalent to specifying the

map f : Fil0M → Fil−1M =M with Fil0M perfect over C/Lpn.

This shows that the tangent space of the map at M is canonically isomorphic to the space of maps Fil0M →
gr−1M , which is of course the C-module (Fil0M)∨ ⊗C gr−1M . Taking duals and using Corollary 8.8.3 now gives

the desired cotangent complex. □

Corollary 8.11.2. Given R ∈ CRingp-nilp, write Perfsyn{0},n(R) for the ∞-groupoid of perfect F -gauges with Hodge-

Tate weights 0. Then there is a canonical equivalence

Perfsyn{0},n(R)
≃−→ Db

lisse(SpecR,Z/pnZ)

where the right hand side is the bounded derived category of lisse Z/pnZ-sheaves over SpecR.

Proof. We can view Perfsyn{0},n as the open substack of Perfsyn{0,1},n parameterizing objectsM such that gr−1
HdgMtaut ≃

0. Moreover, the description of the cotangent complex shows that this substack is étale over Spf Zp. In particular,

it is determined completely by its restriction to perfect Fp-algebras R.
For perfect R, the left hand side in the statement can be identified with the ∞-groupoid of perfect complexes M

of Wn(R)-modules equipped with an isomorphism φ∗M
≃−→ M. We can now conclude by a classical result of Katz,

as formulated in [12, Proposition 3.6]. □

Remark 8.11.3. Explicitly, the equivalence is given by sendingM to RΓsyn(M), where the latter is seen to be an

étale stack over R by Theorem 8.10.1.

9. The algebraicity conjecture of Drinfeld

We can finally introduce the main protagonist of this paper. Fix a smooth affine group scheme G over Zp and a

1-bounded cocharacter µ : Gm,O → GO defined over the ring of integers O in a finite unramified extension of Qp
with residue field k.

9.1. Definitions. There is a canonical map Zsyn
p → BGm classifying the Breuil-Kisin twist from §6.6. The restric-

tion to ON lifts to a map BGm,O, which does not descend to Osyn; however, we do have a map of pointed graded

p-adic formal stacks

Osyn → (BGm × Spf Zp, ιO).

Therefore, we can pull the 1-bounded stack B(G,µ) from Definition (4.10.4) back over Osyn.
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Definition 9.1.1. For any R ∈ CRingp-comp
O/ , we set BTG,µn (R) = Γsyn(B(G,µ)⊗ Z/pnZ)(R). Set

BTG,µ∞ = lim←−
n

BTG,µn .

For any R ∈ CRingp-comp
O/ , an n-truncated (G,µ)-aperture over R is an object of the ∞-groupoid BTG,µn (R).

A (G,µ)-aperture over R is an object of BTG,µ∞ (R).

Remark 9.1.2. For R ∈ CRingf,p-nilpO/ , BTG,µn (R) can be described as the ∞-groupoid of G-torsors Q over RN ⊗
Z/pnZ such that it is equipped with an equivalence j∗dRQ

≃−→ j∗HTQ of G-torsors over R∆ ⊗ Z/pnZ, satisfying the

following condition: If Qµ is the associated G{µ}-torsor, then, for every geometric point R → κ of Spf R, the

restriction of (xNdR)
∗Qµ over BGm × Specκ is trivial.

Remark 9.1.3. Suppose that (A, ζ) is a filtered prism. Then pullback along the map ι(A,ζ) from Proposi-

tion 6.10.3—or better along the map ιid:A→A from Corollary 6.10.8—gives us a canonical arrow

BTG,µn (RA)→WindG,µn,A(RA).

More generally, if B → A⊗ Z/pnZ is any map of frames, we obtain a functor from BTG,µn (RA) to the ∞-groupoid

of windows over B. In particular, when A = W (R) is the Witt vector frame associated with R ∈ CRingFp/, and

B =Wn(R) is the n-truncated Witt frame, we obtain a canonical map BTG,µn (R)→ DispG,µn (R), underlying a map

of formal prestacks over k.

Remark 9.1.4. When µ is defined over Zp, Drinfeld gives a different definition of BTG,µn in [25], which isn’t quite

the same as the one we give here, though it is isomorphic to ours.

To begin, he views µ as a cocharacter of the automorphism group Aut(G) acting on G. Since µ is defined over

Zp, G{µ} lives over BGm and hence it makes sense to talk about G{µ}-torsors over Rsyn for any R ∈ CRingp-nilp.

Drinfeld’s definition of BTG,µn (R) is as the∞-groupoid of G{µ}-torsors whose restriction to BGm×Specκ is trivial

for any map R→ κ to an algebraically closed field κ.

We can include this in our framework, though the definition of the 1-bounded stack B(G,µ) will then have to

be adjusted slightly: We will take it to be given by the pair (BG{µ}, BMµ) living over the tautologically pointed

graded stack BGm,Zp , where BMµ is still the trivial 1-bounded locus described in Lemma 4.9.6. If we define BTG,µn

in the same way with this adjusted definition, we now recover Drinfeld’s definition and Theorem 9.3.2 and its proof

below hold verbatim. In particular, we obtain a proof of [28, Conjecture C.3.1].

If we have a cocharacter µ of G, then the stacks obtained from our definition and from Drinfeld’s, viewing µ as

a cocharacter of Aut(G) instead, are canonically isomorphic, since we have an equivalence between G{µ}-torsors
and G-torsors preserving the corresponding 1-bounded loci.

However, there is the following phenomenon: When, for instance, G is a torus, since a cocharacter of G will

always act trivially, Drinfeld’s definition would yield a stack that is independent of the cocharacter µ, since G{µ}
would always be G× BGm. But, in p-adic Hodge theory, it is important to keep track of the cocharacter, since it

knows about the Hodge-Tate weights of étale or Galois realizations. For this reason, we have chosen the definition

and presentation used here.

More importantly, as pointed out to us by the authors of [37], Drinfeld’s description does not generalize directly

when µ is only defined over some (unramified) ring of integers of Zp. See §10.4 below for more discussion of the

case of tori, and note the role played by the cocharacter in Proposition 10.4.3.

9.2. The semiperfectoid case.

Lemma 9.2.1. Suppose that R is semiperfectoid and that R→ S is étale. Then S is also semiperfectoid. Moreover,

the canonical map of frames ∆R → ∆S is (p, IR)-completely étale, and we have

∆S ⊗∆R Fil•N ∆R
≃−→ Fil•N ∆S .

Proof. Choose a perfectoid ring R0 and a surjection R0 ↠ R, lifting to a map Ainf(R0) = ∆R0
→ ∆R.
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By [66, Tag 04D1], and by the equivalence of the étale sites of R and π0(R), there exists a p-completely étale

map R0 → R′
0 such that S = R′

0 ⊗R0 R. We therefore reduce the first statement to showing that ∆R0 → ∆R′
0
is

(p, IR0)-completely étale. This follows from the fact that R′
0 is also perfectoid,40 and the associated map of tilts

R♭0 → R
′,♭
0 is also étale, which implies that the map

∆R0
=W (R♭0)→W (R

′,♭
0 ) = ∆R′

0

is (p, IR0
)-completely étale.

For the second assertion, first note that by Proposition 6.12.1, SN → RN is (p, IR)-completely étale. The proof

is now completed by combining Proposition 5.4.23 and Theorem 6.11.7. □

The next two results tell us that BTG,µn can be understood in terms of the (G,µ)-windows from §5.5

Proposition 9.2.2 (Quasisyntomic descent). If R→ R∞ is as in Corollary 6.12.3, then we have:

BTG,µn (R)
≃−→ Tot

(
BTG,µn (R⊗R•+1

∞ )
)

Proof. This is essentially immediate from the definitions and Proposition 6.12.2. □

Lemma 9.2.3. If R is semiperfectoid, as sheaves on the small étale site Rét of Spf(R), we have a canonical

equivalence

BTG,µn |Rét

≃−→WindG,µn,∆R

Proof. This is immediate from Lemma 9.2.1, Theorem 6.11.7 and Remark 9.1.3. □

Remark 9.2.4. Combining Proposition 9.2.2 and Lemma 9.2.3 with Proposition 5.5.2, we see that BTG,µn (R) can

also be described as the∞-groupoid of G-torsors Q over RN ⊗Z/pnZ equipped with an equivalence j∗dRQ
≃−→ j∗HTQ

of G-torsors over R∆⊗Z/pnZ, and satisfying the following equivalent conditions on the associated G{µ}-torsor Qµ:
(1) For every geometric point R→ κ of Spf R, the restriction of (xNdR)

∗Q over BGm × Specκ is isomorphic to

Pµ, the torsor classified by Bµ : BGm,O → BGO;

(2) For every geometric point R→ κ of Spf R, the restriction of (xNdR)
∗Qµ over BGm × Specκ is trivial;

(3) The restriction of Qµ over RN ⊗ Z/pnZ is trivial locally in the p-quasisyntomic topology on Spf R;

(4) The restriction of Qµ over RN ⊗ Z/pnZ is trivial flat locally on Spf R.

If Spf R is connected, then these conditions are also equivalent to: For some geometric point R→ κ, the restriction

of (xNdR)
∗Q over BGm × Specκ is isomorphic to Pµ.

9.3. Representability. If we view X = B(G,µ) ⊗ Z/pnZ as a 1-bounded stack over Osyn ⊗ Z/pnZ, then the

associated attractor X−,(n) → SpecO is BP
−,(n)
µ , and the stack X(n) is the Weil restricted classifying stack BG

(n)
µ .

9.3.1. If X1 = B(G,µ)⊗Fp, then ΓFZip(X1) is a quasicompact smooth 0-dimensional Artin stack over k with affine

diagonal. Indeed, it is not difficult to see using Remark 4.9.7 and (8.5.1.1) that this is just the stack of F -zips

with G-structure of type µ; that is, of tuples F = (F ,F+,F−, η+, η−, α) where:

• F is a G-torsor over R;

• F+ is a P+
µφ -torsor over R;

• F− is a P−
µ -torsor over R;

• η+ : F+ → F is a P+
µφ-equivariant map;

• η− : F− → F is a P−
µ -equivariant map;

• α : F+/U+
µφ

≃−→ φ∗ (F−/U−
µ

)
is an isomorphism of Mµφ -torsors.

The conclusion now follows from [65, §3.3]; see also the discussion in [25, §3.2], where it is denoted DispG1 . In the

notation of this paper, we have ΓFZip(X1) ≃ DispG,µ1 .

The next result proves Theorems D and G

40This is a much easier assertion than the almost purity theorem for perfectoid algebras over fields!

https://stacks.math.columbia.edu/tag/04D1
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Theorem 9.3.2. BTG,µn is a quasicompact smooth 0-dimensional p-adic formal Artin stack over O with affine

diagonal. For every nilpotent divided power thickening (C ′ ↠ C, γ) of p-complete O-algebras, we have a Cartesian

square

BTG,µn (C ′) > BP
−,(n)
µ (C ′)

BTG,µn (C)

∨
> BP

−,(n)
µ (C)×BG(n)(C) BG

(n)(C ′).

∨

Moreover, the transition maps BTG,µn+1 → BTG,µn are smooth and surjective.

Proof. Theorem 8.5.5 and the discussion above show that BTG,µn is a quasi-compact finitely presented derived p-adic

formal Artin stack over O with affine diagonal.

The existence of the stated Cartesian square for nilpotent divided power thickenings follows from Corollary 8.8.2.

Since BP
−,(n)
µ → BG(n) is smooth, this also shows that BTG,µn is a smooth p-adic formal Artin stack over O.

The smooth surjectivity of the transition maps can be checked mod-p and here it is a special case of Corollary 8.6.3.

Note that we can actually say a bit more: BTG,µ1 ⊗ Fp is a torsor over DispG,µ1 under a group stack S0(X1) by (2)

of Theorem 8.5.5. In fact, from Corollary 7.2.3, one sees that S0(X1) is the classifying stack of a certain finite flat

group scheme of height one. This is nothing but the Lau group scheme from [28]. In particular, one sees that

BTG,µ1 ⊗ Fp is a gerbe over DispG,µ1 banded by the Lau group scheme: this recovers the main result of loc. cit. for

smooth inputs.

Over BTG,µ1 ⊗Fp, we now have a canonical F -gaugeM1(g) obtained by twisting the adjoint representation of G

by the tautological G-torsor over (BTG,µ1 ⊗ Fp)syn. Then we find that BTG,µn ⊗ Fp → BTG,µn−1 ⊗ Fp is a torsor under

Γsyn(M1(g[1])), which, by assertion (2) of Corollary 8.5.6 is a smooth, surjective Artin 1-stack over BTG,µ1 ⊗Fp. □

Remark 9.3.3. Remark 4.10.5 shows that the stacks BTG,µn depend only on the conjugacy class of µ.

Remark 9.3.4. The smooth map BTG,µ1 ⊗Fp → DispG,µ1 appearing in the proof above is nothing but the canonical

one from Remark 9.1.3. One can also consider the pullback maps BTG,µn ⊗ Fp → DispG,µn for all n ≥ 1 associating

an n-truncated (G,µ)-display to every n-truncated (G,µ)-aperture in characteristic p. Following Lau [47] and [26],

one would expect that this map is a gerbe for a finite flat group scheme killed by the n-th power of Frobenius.

Remark 9.3.5. If G is a connected group scheme, BTG,µn is a connected p-adic formal Artin stack over O. To

begin, DispG,µ1 is connected by the quotient presentation from [65, Proposition 3.11]. Since BTG,µ1 ⊗ Fp is a gerbe

over DispG,µ1 banded by a finite flat group scheme, we find that it is also connected.

The description in the proof of Theorem 9.3.2 now shows that it is enough to know the following: If F is a vector

bundle F -gauge over R of level 1 and Hodge-Tate weights {0, 1}, then Γsyn(F [1]) is a connected algebraic stack

over R. Once again, it is a gerbe banded by a finite flat group scheme over ΓFZip(F [1]), where F is the associated

vector bundle F -zip, and the desired connectedness can be checked directly for the latter stack.

In fact, the argument shows that in general we have a bijection

π0(BT
G,µ
n ⊗ Fp)

≃−→ π0(Disp
G,µ
1 ),

where the target is a certain quotient of π0(G⊗ Fp).

Remark 9.3.6. Let BTG,µ,nilpn → BTG,µn be the nilpotent locus defined in Remark 8.8.14: This satisfies a

Grothendieck-Messing theory for not necssarily nilpotent divided power thickenings. One sees that this is the

locus where the Lau group scheme has connected dual. Allowing n → ∞, what one has here is the syntomic

analogue of the adjoint nilpotent locus considered in [17, §3.5].
In fact, Remark 8.8.14 tells us that pulling back to the Witt frame produces a map of smooth formal stacks

BTG,µ∞ → DispG,µ∞ that is an isomorphism over the nilpotent locus. Therefore, the theory explained here recovers

exactly that of Bültel-Pappas over the adjoint nilpotent locus.
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More can be said: Let (A, ζ) be a filtered prism. Then we have natural maps (see Remark 9.1.3)

BTG,µn (RA)→WindG,µn,A(RA)→ DispG,µn (RA).

Remark 8.7.5 shows that all these maps are equivalences when restricted to the adjoint nilpotent locus. One can

use this observation to recover the main result of [16].

9.4. The case of trivial µ. When µ = 0 is the trivial cocharacter z 7→ 1, then we have P−
µ = G, and Theorem 9.3.2

tells us that BTG,0n is an étale p-adic formal stack over Zp with affine étale diagonal.

Proposition 9.4.1. Suppose that G is connected. Then there is a canonical equivalence

BTG,0n
≃−→ BG(Z/pnZ),

where the right hand side is the classifying stack of the locally constant group scheme G(Z/pnZ).

Proof. Suppose that we have Q ∈ BTG,0n (R). Consider the assignment Γsyn(Q) on CRingp-nilpR/ given by:

C 7→ MapBG(Csyn⊗Z/pnZ)(G|Csyn⊗Z/pnZ,Q).

This is represented over R by

SpecR×G,BTG,0n ,Q SpecR,

which is the pullback along (G,Q) of the diagonal of BTG,0n and is hence affine and étale over R.

We claim that this is an étale G(Z/pnZ)-torsor over R, and hence gives a canonical map

BTG,0n → BG(Z/pnZ)(9.4.1.1)

To see this, it suffices to know that it is faithfully flat and that the natural map G(Z/pnZ) → Γsyn(G) of étale

schemes is an equivalence.

Both assertions can be checked over algebraically closed fields κ overR. Here, using Remark 5.5.5 and Lemma 9.2.3,

we see that we have

BTG,0n (κ) ≃ [G(∆κ/p
n∆κ) �σ id G(∆κ/p

n∆κ)],

where σ : G(∆κ/pn∆κ) → G(∆κ/pn∆κ) is pullback under the Frobenius lift. Using the connectedness of G and

Lang’s theorem, one sees that the natural map of groupoids

[∗/G(Z/pnZ)]→ [G(∆κ/p
n∆κ) �σ id G(∆κ/p

n∆κ)]

is an equivalence. This proves both assertions, and also shows that the canonical map (9.4.1.1) is an equivalence. □

9.5. Special étale loci. In this subsection, we will assume that we have a smooth subgroup scheme H ⊂ G such

that µ factors through HO, so that we have maps BTH,µn → BTG,µn and DispH,µn → DispG,µn . We will also make the

following ‘versality’ assumption:

LieH + LieP−
µ = LieG⇔ LieU+

µ ⊂ LieH.

Proposition 9.5.1. Under these assumptions:

(1) The map BTH,µn → BTG,µn is étale.

(2) Suppose that P+
µ ⊂ H. Then DispH,µ1 → DispG,µ1 is an open immersion and the diagram

BTH,µn ⊗ Fp > BTG,µn ⊗ Fp

DispH,µ1

∨

> DispG,µ1

∨

is Cartesian. In particular, BTH,µn is an open substack of BTG,µn .
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Proof. Let us check that BTH,µn → BTG,µn is étale. By Grothendieck-Messing theory, this comes down to checking

that the map

B(H ∩ P−
µ )→ BH ×BG BP−

µ

is étale. Looking at tangent complexes, this reduces to knowing that the map of complexes41

Lie(H ∩ P−
µ )[1]→ (LieH)[1]×(LieG)[1] (LieP

−
µ )[1]

is an isomorphism. This translates to the concrete claim that LieH + LieP−
µ = LieG, which is of course our

assumption.

Now, consider (2): Suppose that F = (F ,F+,F−, η+, η−, α) is a tuple corresponding to a point of DispG,µ1 . Since

P+
µφ ⊂ H, we can consider the H-torsor FH obtained from F+: this gives a reduction of structure group for F .

Unwinding definitions, one sees that the fiber of DispH,µ1 over F parameterizes compatible reductions of structure

group for F− to an H ∩ P−
µ -torsor. However, our assumption Lie algebras shows that the map

F−/(H ∩ P−
µ )→ F/H

is an open immersion. This shows that DispH,µ1 is an open substack of DispG,µ1 .

Now, the map BTH,µ1 ⊗ Fp → (BTG,µ1 ⊗ Fp)×DispG,µ1
DispH,µ1 is an isomorphism, since they are both gerbes over

DispH,µ1 banded by the same finite flat group scheme.

To finish, it suffices to know that the natural map

BTH,µn+1 ⊗ Fp → (BTG,µn+1 ⊗ Fp)×BTG,µn ⊗Fp (BT
H,µ
n ⊗ Fp)

is an isomorphism for all n ≥ 1. By the proof of Theorem 9.3.2, the source (resp. target) is a torsor under

Γsyn(M1(LieH)[1]) (resp. Γsyn(M1(LieG)[1])). Therefore, it suffices to know that the map

Γsyn(M1(LieH)[1])→ Γsyn(M1(LieG)[1])

of group stacks over BTH,µ1 ⊗Fp is an equivalence. In turn, this comes down to knowing that Γsyn(M1(LieG/LieH)[1])

is the trivial group stack. Now, the condition LieP+
µ ⊂ LieH ensures thatM1(LieG/LieH)[1] is a perfect F -gauge

over BTH,µ1 ⊗ Fp of Hodge-Tate weights ≤ −1, so we are done by Lemma 9.5.2 below. □

Lemma 9.5.2. Suppose thatM is a perfect F -gauge of level 1 over R ∈ CRingp-nilp with Hodge-Tate weights ≤ −1.
Then Γsyn(M) ≃ 0.

Proof. By Theorem 8.10.1, Γsyn(M) is represented by a derived Artin stack with cotangent complex given by the

pullback of (gr−1
HdgM1)

∨. Our conditions on the Hodge-Tate weights ensure that this last perfect complex is trivial,

and so we find that Γsyn(M) is étale over R. To check that it is trivial, it suffices now to check on points valued in

an algebraically closed field κ. Here, the complex from which Γsyn(M)(κ) is computed is of the form M
φ0−id−−−−→M

where M is a perfect complex over κ. The hypothesis on Hodge-Tate weights tells us that φ0 is divisible by p, and

is hence nullhomotopic. Therefore, Γsyn(M)(κ) is trivial as desired. □

Remark 9.5.3. Here is a key example: Suppose that µ is defined over Zp. Then it is easy to see that P+
µ satisfies

the assumptions. The open locus BT
P+
µ ,µ
n ⊂ BTG,µn is the ordinary locus of BTG,µn , and assertion (2) of the

proposition is the analogue of fact that the ordinariness of an n-truncated Barsotti-Tate group in characteristic p

can be checked by considering the 1-truncated display associated with it. In fact, via Theorem 11.3.3 below, this

last statement is basically a special case of the proposition. We should note however that the proof of that theorem

uses a priori knowledge of this density for the moduli of F -gauges; see Lemma 11.4.4.

Remark 9.5.4. Suppose that G is reductive, and that we have a maximal torus T of G along with a Borel B

containing T . If we choose µ to be a dominant (with respect to B) cocharacter of TO, then the sum of its Galois

conjugates gives a cocharacter ν of T defined over Zp. It can be checked now that the subgroup P+
ν ⊂ G satisfies

the assumptions above. The corresponding étale locus is the µ-ordinary locus, studied in [62] in the context of

41The fiber product involved here is the homotopy fiber product.
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p-divisible groups with additional endomorphisms. This will be explored in more detail in forthcoming work of the

second author [55].

10. Explicit descriptions of BTG,µn (R)

In this section, we will see, following the deformation-theoretic method of Ito [38], that the above theory yields

explicit descriptions for BTG,µn (R) in certain cases as the groupoid of n-truncated (G,µ)-windows over some quite

concrete frames. All objects in this subsection will be discrete, unless otherwise noted, so we are back on firm

classical ground.

We will also find that the deformation rings constructed by Faltings in [30], and which play a key role in the

construction of integral canonical models in [42] admit a clean interpretation as universal deformation rings for

BTG,µ∞ .

These results address conjectures formulated by Ito in [38, §7].

10.1. An explicit description over some classical rings.

10.1.1. We will put ourselves in the following situation (compare with [46, §6]):

• (S, I ′ = (E)) will be an oriented prism, flat over Zp, with associated Frobenius lift φ : S → S;

• J ⊂ S will be a finitely generated ideal such that φ(J) ⊂ J2;

• We will assume that that S is J-adically complete, and that E and p map to non-zero divisors in S/Jm for

all m ≥ 1.

For m ≥ 1, set Sm = S/Jm. Then φ descends to an endomorphism of Sm.

We will associate with this data the following filtered prisms that are special cases of Example 5.4.14: We set

I = φ(I ′) ⊂ S. For each m ≥ 1, we define Sm to be the frame with underlying non-negatively filtered ring Fil•I′ Sm

with filtered Frobenius Fil•I′ Sm → Fil•I Sm. Set Rm
defn
= S/(Jm + I) = Sm/Fil

1
I′ Sm and R = S/I, so that we have

R = lim←−mRm.

Repeating the above construction with Sm replaced with S gives a frame S with RS = R. We then have maps

of frames Sm+1 → Sm for each m ≥ 1, and also

S
≃−→ lim←−

m

Sm.

Proposition 10.1.2. There is a canonical map

BTG,µn (Rm)→WindG,µSm,n
(Rm),

and the square

BTG,µn (Rm+1) > WindG,µSm+1,n
(Rm+1)

BTG,µn (Rm)

∨
> WindG,µSm,n

(Rm)

∨

is Cartesian. In particular, we have

BTG,µn (R) ≃ BTG,µn (R1)×WindG,µS1,n
(S1)

WindG,µS,n (R)
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Proof. For every m ≥ 1, we have a canonical map BTG,µn (Rm) → WindG,µSm,n
(Rm) obtained from Example 5.4.14

and Proposition 6.10.3 via pullback along the map ιSm . We claim now that there exists a commuting diagram

BTG,µn (Rm+1) > WindG,µSm+1,n
(Rm+1) > BP

−,(n)
µ (Rm)

BTG,µn (Rm)

∨
> WindG,µSm,n

(Rm)

∨

> BP−,(n)(Rm)×BG(n)(Rm) BG
(n)(Rm+1)

∨

(10.1.2.1)

where the outside rectangle is the Cartesian square obtained from Theorem 9.3.2 (and the trivial divided powers

on Rm+1 ↠ Rm), and where the square on the right is also Cartesian. This will of course prove the first part of the

proposition. The last part will follow by taking the limit over m on the equivalence

BTG,µn (Rm)
≃−→ BTG,µn (R1)×WindG,µS1,n

(S1)
WindG,µSm,n

(Rm).

That this limit yields the desired equivalence follows from [9, Corollary 1.5].

To prove the claim, first note the following explicit description of the Rees algebra for Fil•I Sm+1:

Sm+1[u, t]/(ut− E)
u7→Et−1,t7→t−−−−−−−−→

≃

⊕
i

FiliI Sm+1 · t−i.

Via this description, the map σ : Spf Sm+1 → R(Fil•I Sm+1) corresponds to the map of Sm+1-algebras given by

Sm+1[u, t]/(ut− E)
u7→φ(E),t7→1−−−−−−−−→ φ∗Sm+1.

Since φ(J) ⊂ J2, this map factors through Sm[u, t]/(ut− E), which shows that σ factors through a map

σ : Spf Sm+1 → R(Fil•I Sm).

Therefore, the existence of the right Cartesian square in (10.1.2.1) is now due to Proposition 5.9.32.

To finish, we only need to verify that the map BTG,µn (Rm)→ BG(n)(Rm+1) arising from the composition of the

bottom horizontal arrows in (10.1.2.1) agrees with that showing up in Theorem 9.3.2. In turn, this comes down to

knowing that the composition

Spf Rm+1 → Spf Sm+1
σ−→ R(Fil•I Sm)

ιSm−−→ RN
m

agrees with the map

Spf Rm+1

x̃dR,Rm+1−−−−−−→ R∆
m

jHT−−→ RN
m

obtained from the trivial divided powers on Rm+1 ↠ Rm. This is an easy check from the constructions. □

Example 10.1.3. Let κ be a perfect field in characteristic p, with associated ring of Witt vectors W (κ). We set

S =W (κ)[|t1, . . . , tr|] for some n ≥ 0, and take φ to be the Frobenius lift with φ(ti) = tpi . Take J = (t1, . . . , tn), so

that we have φ(J) ⊂ Jp. Suppose that E satisfies φ(E) ≡ Ep (mod p), and is such that S/(E) is p-torsion free.

Here, Rm = S/((E) + Jm) with R1 = S/((E) + J) = W (κ)/(p) = κ, and S1 is isomorphic to the frame ∆κ. In

particular, the map

BTG,µn (κ) = BTG,µn (R1)→WindG,µS1,n
(κ)

is an equivalence, and so we conclude that we have

BTG,µn (R)
≃−→WindG,µS,n (R).

Note that the argument actually shows that we have

BTG,µn (Rm)
≃−→WindG,µSm,n

(Rm)

for all m ≥ 1.

Using Remark 5.5.9, we can give a quite explicit description of WindG,µSm,∞
(Rm): If Hµ is the dilatation of GS

along P−
µ ⊗ R, viewed as an étale sheaf over S, along with the natural map τ : Hµ → GS as well as the map
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σ = φ ◦ int(E), then an object in WindG,µSm,∞
(Rm) is an Hµ-torsor over Sm along with an isomorphism of G-torsors

σ∗P ≃−→ τ∗P.
The case where n = 1 and E is an Eisenstein polynomial is the context for the classical story of Breuil-Kisin

modules. In this case, R = S/(E) is a totally ramified ring of integers over W (κ), and Rm = R/(πm) where π ∈ R
is a uniformizer with minimal polynomial E.

This proves part (1) of [38, Conjecture 7.1.2].

Example 10.1.4. We have a non-Noetherian analogue of the previous example by taking S = ∆R for a perfectoid

ring R, E = ξ a generator for ker(θ : ∆R → R), and J = ([ϖ1], [ϖ2], . . . , [ϖm]) to be an ideal generated by

Teichmüller lifts of topologically nilpotent elements ϖi ∈ R♭ that form a regular sequence. Suppose in addition

that [ϖ1], . . . , [ϖm], ξ also forms a regular sequence in W (R♭). Then we are in a special case of the situation above

with S1 = ∆R/J , and R1 = R/θ(J).

In this case, we already know that BTG,µn (R) ≃ WindG,µS,n (R) by Lemma 9.2.3. But Proposition 10.1.2 tells us

that we also have

BTG,µn (R) ≃ BTG,µn (Rm)×WindG,µn,Sm
(Rm) WindG,µn,S (R).

Since BTG,µn (R)→ BTG,µn (Rm) is an effective epimorphism, this tells us that we in fact have

BTG,µn (Rm) ≃WindG,µn,Sm
(Rm).

for all m ≥ 1. This proves part (2) of [38, Conjecture 7.1.2]

It also recovers—via Theorem 11.1.4 below—a description of p-divisible groups over Rm which was first observed

by Ito [38, Theorem 6.3.6] in the following situation: R = OC is the ring of integers in a perfectoid field C, m = 1

and ϖ = ϖ1 ∈ OC♭ is a topologically nilpotent non-zero element. See Remark 11.1.9 below.

Example 10.1.5. Let S and J be as in Example 10.1.3, but assume now that E = p, so that we have a crystalline

prism (S, (p)). In this case, and we obtain an equivalence

BTG,µn (κ[|t1, . . . , tr|])
≃−→WindG,µS,n (κ[|t1, . . . , tr|])×WindG,µS1,n

(κ) BT
G,µ
n (κ).

But note that S1 is simply the frame ∆κ, and so as in loc. cit. the map BTG,µn (κ)→WindG,µS1,n
(κ) is an equivalence.

This gives us an equivalence:

BTG,µn (κ[|t1, . . . , tr|])
≃−→WindG,µS,n (κ[|t1, . . . , tr|]).

By Remark 5.5.9, we obtain a rather explicit description of the limiting groupoid WindG,µS,∞(κ[|t1, . . . , tr|]): Its

objects are Hµ-torsors P over S equipped with an isomorphism σ∗P ≃−→ τ∗P of G-torsors. Here, Hµ is the dilatation

of GO along P−
µ ⊗ k and σ = φ ◦ int(µ(p)), while τ is the natural map as usual.

10.2. Relationship with Faltings deformation rings. Here we will find that the deformation rings of BTG,µ∞
can be described explicitly using results from the beginning of this subsection, combined with a construction of

Faltings [30, §7]. Compare with the main result of Ito in [38], where one finds a version of such a result. There,

however, the Faltings deformation space is only shown to have good descriptions for particular inputs from ArtW (κ);

but, in [37], the authors combine Ito’s work with ours here to give a different proof.

10.2.1. Maintain the notation from the previous subsection, but assume now that I = (p); for instance, this is the

case in the situation of Example 10.1.5. We can then also define frames S̃ and S̃m, where we take the underlying

filtered commutative ring to be S (resp. Sm) with the trivial filtration. We then have maps of frames S̃m+1 → S̃m
for each m ≥ 1, and also

S̃
≃−→ lim←−

m

S̃m.

In this case, we have S̃m/Fil
1 S̃m = Sm and S̃/Fil1 S̃ = S.
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Let us now use Remark 5.5.10. It tells us that WindG,µ
∞,S̃m

(Sm) can be described quite explicitly: Giving an object

here is equivalent to giving a P−
µ -torsor P ′ over Sm along with an isomorphism σ∗P ′ ≃−→ τ∗P ′ of G-torsors. Here,

τ : P−
µ → GO is the natural map and σ = φ ◦ int(µ(p)).

In other words, we have

WindG,µ
∞,S̃m

(Sm)
≃−→WindG,µ∞,Sm

(Rm)×BP−
µ (Rm)×BG(Rm)BG(Sm) BP

−
µ (Sm).(10.2.1.1)

10.2.2. We now have a canonical map

BTG,µ∞ (Sm)→WindG,µ∞,Sm
(Rm)×BP−

µ (Rm)×BG(Rm)BG(Sm) BP
−
µ (Sm) ≃WindG,µ

∞,S̃m
(Sm)

where the first coordinate is obtained from the composition

BTG,µ∞ (Sm)→ BTG,µ∞ (Rm)→WindG,µ∞,Sm
(Rm),

while the second is pullback along xNdR,Sm . From Proposition 10.1.2 and Grothendieck-Messing theory for BTG,µ∞ ,

one finds that, for each m ≥ 1, there is a Cartesian square:

BTG,µ∞ (Sm+1) > WindG,µ
S̃m+1,∞

(Sm+1)

BTG,µ∞ (Sm)

∨
> WindG,µ

S̃m,∞
(Sm)

∨

(10.2.2.1)

Remark 10.2.3. When p > 2, one can use Grothendieck-Messing theory to show that in fact all the horizontal

arrows in the above square are equivalences. If p = 2, then this assertion fails already for m = 1.

10.2.4. Let κ be a perfect field, and suppose that we have a point x ∈ BTG,µ∞ (κ). We can then consider the

deformation problem on the usual category ArtW (κ) of Artin local W (κ)-algebras with residue field κ:

Defx : ArtW (κ) → Spc

A 7→ fibx(BT
G,µ
∞ (A)→ BTG,µ∞ (κ)).

Grothendieck-Messing theory now tells us that, if A′ ↠ A is a square-zero thickening in ArtW (κ), then we have

a Cartesian square

BTG,µ∞ (A′) > BP−
µ (A′)

BTG,µ∞ (A)

∨
> BP−

µ (A)×BG(A) BG(A
′).

∨

Using this, we find:

Lemma 10.2.5. For each A ∈ ArtW (κ), Defx(A) is equivalent to a set, and Defx is prorepresented by Spf Rx with

Rx ≃W (κ)[|t1, . . . , td|] where d = dimG− dimP−
µ .

10.2.6. We begin by reformulating Faltings’s construction in the language of torsors. Choose a lift x′ ∈ BTG,µ∞ (W (κ)),

which in turn yields a window (or more precisely a compatible family of n-truncated windows) over the frame S̃1

associated with the trivial filtration on W (κ).

Explicitly, this means the following: Let Hµ be the dilatation of GO along P−
µ ⊗ k. Under the equivalence

BTG,µ∞ (κ)
≃−→ lim←−

n

WindG,µn,∆κ
(κ),
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and Remark 5.5.9, x corresponds to an Hµ-torsor Px over W (κ), equipped with an isomorphism σ∗Px
≃−→ τ∗Px of

G-torsors over W (κ). The lift x′ gives rise to an object of WindG,µ
∞,S̃1

(W (κ)), which, by Remark 5.5.10, amounts to

refining the Hµ-torsor Px to a P−
µ -torsor Px′ over W (κ).

10.2.7. Set Gx = Aut(τ∗Px) and P−
x = Aut(Px′), so that Gx is a pure inner form over W (κ) of G, and P−

x ⊂ Gx
is associated with a cocharacter µx : Gm → Gx that is conjugate to µ, via the process explained in §4.9.

For such a choice of cocharacter, we can look at the ‘opposite’ unipotent U+
x ⊂ Gx: this is a commutative

unipotent group scheme over W (κ) (see Lemma 4.10.2). We now define RFal
x to be the complete local ring of U+

x

at the identity: this is abstractly isomorphic to W (κ)[|t1, . . . , td|] as a W (κ)-algebra.

We equip RFal
x with the Frobenius lift φ arising from the p-power map on U+

x , and take Jx ⊂ RFal
x to be the

augmentation ideal: note that we have φ(Jx) ⊂ Jpx .

10.2.8. We can now apply the setup from the beginning of the subsection with (S, I ′) = (RFal
x , (p)) and J = Jx,

and we find that we have:

fibx′(BTG,µ∞ (RFal
x )→ BTG,µ∞ (W (κ)))

≃−→ fibPx′ (WindG,µ
S̃,∞

(RFal
x )→WindG,µ

S̃1,∞
(W (κ))).

One way to get an object on the right is as follows: Let j : W (κ) → RFal
x be the structure map: this actually

underlies a map of frames S̃1 → S̃, and so we can pull Px′ back to get the ‘constant’ lift Pcon
x′ over S̃. More precisely,

this corresponds to the P−
µ -torsor Pcon

x′ over RFal
x , along with an isomorphism of G-torsors ξconx′ : σ∗Pcon

x′
≃−→ τ∗Pcon

x′ .

All of this data is obtained simply via pullback from the corresponding data over W (κ).

In U+
x (RFal

x ), we have the tautological element gx. We now define a new display PFal
x′ by keeping the P−

µ -torsor

Pcon
x′ , but replacing ξconx′ with the composition ξFalx′ = gx ◦ ξconx′ .

As explained above, this yields an object xFal ∈ BTG,µ∞ (RFal
x ) lifting x′ ∈ BTG,µ∞ (W (κ)), and so corresponds to a

unique map Rx → RFal
x .

The next result implies [38, Conjecture 7.2.2].

Proposition 10.2.9. The map Rx → RFal
x is an isomorphism.

Proof. Let Ûx (resp. ÛFal
x ) be the deformation functor on ArtW (κ) represented by Rx (resp. RFal

x ). If κ[ϵ] is the

ring of dual numbers, we obtain maps of tangent spaces

ÛFal
x (κ[ϵ])→ Ûx(κ[ϵ])

≃−→ fib(Px′ ,σ∗Px′ )(BP
−
µ (κ[ϵ])→ BP−

µ (κ)×BG(κ) BG(κ[ϵ])),

where the second arrow is the isomorphism from Grothendieck-Messing theory.

The source of this composition is simply ϵκ[ϵ] ⊗W (κ) LieU
+
x , and one can check that the map takes a tangent

vector ϵN to exp(−ϵN) · Px′ . In particular, it is an isomorphism onto its image.

Since both complete local rings are normal of the same dimension, the proposition now follows from Nakayama’s

lemma. □

10.3. The case of central µ. Suppose that µ is central in G. For instance, this is the case whenever G is a torus

over Zp. In this case, we have P−
µ = G, and so Theorem 9.3.2 shows that BTG,µn is an étale p-adic formal stack over

O.

10.3.1. We will now show that BTG,µ∞ (O) is non-empty. Objects here will be called Lubin-Tate (G,µ)-apertures.

This terminology is partially justified by Proposition 11.7.6 below.

By Example 10.1.3, this is equivalent to writing down objects in WindG,µS,∞(O) where S = W (k)[|u|] is equipped
with the structure of a Breuil-Kisin frame associated with I ′ = (u− p).

In the notation of that example, we have Hµ = G, and so a choice of trivialization of the module S{1} now

further identifies this groupoid with the groupoid of G-torsors Q over S equipped with an isomorphism φ∗Q ≃−→ Q.
Clearly, the trivial G-torsor has such structure, and so gives us an object in BTG,µn (O); note that the object that

it corresponds to is not canonical and depends on all the choices we made, including that of the frame S as well as

the trivialization of the module S{1}.
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Remark 10.3.2. Alternatively, we could have first constructed objects in BTG,µ∞ (k) and then used the formal

étaleness of BTG,µ∞ to obtain Lubin-Tate (G,µ)-apertures.

Remark 10.3.3. It would be interesting to give a direct construction of these G-torsors over Osyn. When µ is

defined over Zp, one can use the composition

Zsyn
p → BGm

Bµ−−→ BG

where the first map classifies the Breuil-Kisin twist.

Note that this gives a canonical Lubin-Tate (G,µ)-aperture over Zp. This is related to the fact that over Zp we

have a canonical choice of a Lubin-Tate formal group given by µp∞ .

Proposition 10.3.4. Suppose that G is connected. Then there is a non-canonical isomorphism

BTG,µn
≃−→ BG(Z/pnZ)

of p-adic formal stacks over Spf O. More precisely, BTG,µn is a gerbe over Spf O banded by G(Z/pnZ) that is

non-canonically trivial.

Proof. The proof is the same as that of Proposition 9.4.1. Instead of the trivial G-torsor, one uses one of the

Lubin-Tate (G,µ)-apertures constructed above. □

10.4. The case of tori. As mentioned above, one special case is when G = T is a torus. Here is a reinterpretation

of Proposition 10.3.4:

Proposition 10.4.1. BTT,µn is a non-canonically trivial BT (Z/pnZ)-torsor over Spf O.

10.4.2. As is well-known, there is an initial instance of data (T, µ) with µ defined over O. Take T0 = ResO/Zp Gm
and µ0 : Gm,O → T0,O obtained as follows: We have T0,O ≃

∏h−1
i=0 Gm,O, where h = [O[1/p] : Qp], and the

isomorphism is obtained from the map of O-algebras

O ⊗Zp O
≃−→

h−1∏
i=0

O

a⊗ b 7→ (aφi(b))0≤i≤h−1.

We now take µ0 to be the inclusion in the first factor.

For any other Zp-torus T with cocharacter µ : Gm,O → TO, we now see that the composition

Gm,O
µ0−→ T0 = ResO/Zp Gm

ResO/Zp µ−−−−−−→ ResO/Zp TO
NmO/Zp−−−−−→ T

is equal to µ.

We can understand BTT0,µ0
∞ somewhat explicitly. The following will be used to reinterpret it in terms of Lubin-

Tate O-modules in Proposition 11.7.6.

Proposition 10.4.3. Giving a (T0, µ0)-aperture over R ∈ CRingp-nilpO/ is equivalent to giving a line bundle F over

Rsyn × Spf O with the following property: For any algebraically closed field κ over R, the restriction of F to

BGm × Spec(κ⊗Zp O) ≃
h−1∏
i=0

BGm × Specκ

corresponds to a graded projective module of rank 1 over
∏h−1
i=0 κ that is in graded degree 1 for i = 0 and in graded

degree 0 for i > 0.

Proof. This is simply a reinterpretation of the definition using the fact that we have BT0 ≃ ResO/Gm BGm. Note

that the action of BT0(Zp) under this optic is just given by tensor product of line bundles, where we use Proposi-

tion 10.3.4 to view BT0(Zp) as the stack of line bundles over Rsyn×Spf O whose restrictions to
∏h−1
i=0 BGm×Specκ

have graded degree 0 in every coordinate. □
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11. The classification of truncated Barsotti-Tate groups

11.1. The statement of the theorem.

11.1.1. Recall that an n-truncated Barsotti-Tate group scheme over a discrete ring R ∈ CRingp-nilp♡ is a finite

flat commutative group scheme G over R with the following properties:

(1) G is pn-torsion;

(2) The sequence G
pn−1

−−−→ G
p−→ G is exact in the middle;

(3) If n = 1, over R/pR, we have kerF = imV ⊂ G⊗Fp, where F : G⊗Fp → (G⊗Fp)(p) and V : (G⊗Fp)(p) →
G⊗ Fp are the Frobenius and Verschiebung homomorphisms, respectively.

See for instance [36, §I].
These organize into a category BT n(R), and we will write BTn(R) for the underlying groupoid obtained by

jettisoning the non-isomorphisms. For 1 ≤ r ≤ n, sending G to G[pr] yields a functor BT n(R)→ BT r(R).
An important role will be played by the following fundamental result of Grothendieck [36]:

Theorem 11.1.2. The assignment R 7→ BTn(R) on CRingp-nilp is represented by a finitely presented smooth

0-dimensional p-adic formal Artin stack with affine diagonal.

11.1.3. There is a canonical involution

BT n(R)
G7→G∗

−−−−→ BT n(R)
induced by Cartier duality, with G∗ = Hom(G, lµ.. pn).

Let Vect{0,1}(R
syn ⊗ Z/pnZ) be the ∞-category of vector bundles on Rsyn ⊗ Z/pnZ with Hodge-Tate weights

{0, 1}. There is once again a canonical involution

Vect{0,1}(R
syn ⊗ Z/pnZ) M7→M∗

−−−−−→ Vect{0,1}(R
syn ⊗ Z/pnZ),

withM∗ =M∨{1} is the twist of the dual vector bundle by the Breuil-Kisin twist Osyn
n {1}. In analogy with the

involution on BT n(R), we will refer toM∗ as the Cartier dual ofM.

We can now state the main result of this section.

Theorem 11.1.4. Suppose that R belongs to CRing. Then there is a canonical equivalence of ∞-categories

Gn : Vect{0,1}(R
syn ⊗ Z/pnZ) ≃−→ BT n(R)

compatible with Cartier duality, so that for everyM∈ Vect{0,1}(R
syn ⊗ Z/pnZ), there is a canonical isomorphism

Gn(M)∗
≃−→ Gn(M∗).

Remark 11.1.5. The theorem implies in particular that Vect{0,1}(R
syn⊗Z/pnZ) is a classical category. This fact

is not evident from the definitions, since the derived stack Rsyn ⊗ Z/pnZ is in general not classical.

Remark 11.1.6. When R is quasisyntomic, by sending n → ∞, Theorem 11.1.4 recovers the main result of

Anschütz and Le Bras from [1] classifying p-divisible groups over R in terms of admissible prismatic Dieudonné

crystals over R (see [1, Def. 4.10]). Indeed, when R is qrsp, we use Remark 5.7.7, and the general quasisyntomic

case then follows by descent.

Note however that, though our eventual argument for establishing the equivalence is fundamentally different, we

still make use of the work of Anschütz-Le Bras (via its reinterpretation by Mondal) to construct the inverse to our

functor Gn.

Remark 11.1.7. When R = κ[|x1, . . . , xn|], using Example 10.1.5 and an argument such as the one used in §5.7,
one recovers de Jong’s description [21] of p-divisible groups over power series rings over perfect fields k in terms of

certain filtered φ-modules Fil•M over W (κ)[|x1, . . . , xm|] equipped with the Frobenius lift satisfying xi 7→ xpi (see

also [30, §7]). A priori, de Jong’s description is in terms of F -crystals, and so also requires a topologically nilpotent

integrable connection on M compatible with the φ-semilinear structure; however, as observed by Faltings [30,

Theorem 10], with this choice of Frobenius, the integrable connection is actually uniquely determined by the rest

of the data.
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Remark 11.1.8. When R = OK is a totally ramified ring of integers over W (κ) for some perfect field κ with

uniformizer π, then, combining the theorem with Example 10.1.3 and Remark ??, one can recover a classification

of p-divisible groups due to Kisin (the case p > 2 for OK) [41], W. Kim (the case p = 2 for OK) [40], and Lau (the

general case of both OK and OK/πm) [46].

Remark 11.1.9. Suppose that R′ is a perfectoid ring, and J = ([ϖ1], . . . , [ϖm]) ⊂ ∆R′ an ideal satisfying the

hypotheses in Example 10.1.4. If R = R′/θ(J), then combining loc. cit. with Remark 10.1.3 and Theorem 11.1.4

shows that p-divisible groups over R are classified by finite projective ∆R′/J-modules N equipped with a map

φ∗N → N whose cokernel is finite projective over R. In fact, the argument gives similar descriptions of the

category of truncated p-divisible groups over each quotient R′/θ(J)n. This is a special case of results of Lau [43,

§5].

11.2. Height and dimension.

11.2.1. The height of an n-truncated Barsotti-Tate group G over R is the Z≥0-valued locally constant function

on SpecR such that G[p] has degree ph over R. The dimension d is the Z≥0-valued locally constant function such

that kerF ⊂ G[p]⊗ Fp has degree pd over R/pR.

These are locally constant invariants of G, and yield decompositions

BTn =
⊔
d≤h

BTh,dn ,

of p-adic formal Artin stacks, where h ranges over the non-negative integers, d over the non-negative integers

bounded by h, and BTh,dn is the locus of n-truncated Barsotti-Tate groups G of height h and dimension d.

11.2.2. On the F -gauge side of things, we have ∞-subgroupoids

Vecth,d(R
syn ⊗ Z/pnZ) ⊂ Vect{0,1}(R

syn ⊗ Z/pnZ)≃

spanned by vector bundlesM over Rsyn ⊗ Z/pnZ of rank h and Hodge-Tate weights 0, 1 such that the associated

graded R/Lpn-module gr−1
HdgM is locally free of rank d.

Let us note the following:

Lemma 11.2.3. Cartier duality yields equivalences

Vecth,d(R
syn ⊗ Z/pnZ) ≃−→ Vecth,h−d(R

syn ⊗ Z/pnZ)

11.2.4. For 0 ≤ d ≤ h, let µd : Gm → GLh be the cocharacter given by the diagonal matrix

µd(z) = diag(z, z, . . . , z︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
h−d

).

Associated with this, we have the smooth Artin stacks BTGLh,µd
n over Zp.

Proposition 11.2.5. For R ∈ CRingp-nilp, there is a canonical equivalence of groupoids

BTGLh,µd
n (R)

≃−→ Vecth,d(R
syn ⊗ Z/pnZ).

Proof. One can see this by combining Lemma 9.2.3 with Propositions 5.6.8 and 9.2.2. □

Remark 11.2.6. Via the above proposition and Lemma 11.2.3, we find that there is a Cartier duality equivalence

∗ : BTGLh,µd
n

≃−→ BTGLh,µh−d
n .

We now have:

Theorem 11.2.7. There is a canonical equivalence of smooth p-adic formal Artin stacks

G : BTGLh,µd
n

≃−→ BTh,dn
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such that the following diagram commutes up to canonical isomorphism:

BTGLh,µd
n

G
≃

> BTh,dn

BTGLh,µh−d
n

∗

∨
≃
G
> BTh,h−dn .

G7→G∗

∨

Assuming this theorem, we can easily deduce Theorem 11.1.4 via a standard argument.

Proof of Theorem 11.1.4. Theorem 11.2.7, combined with Proposition 11.2.5, gives us an isomorphism of∞-groupoids

Vect{0,1}(R
syn ⊗ Z/pnZ)≃ ≃−→ BTn(R)

compatible with Cartier duality. To get an equivalence of ∞-categories, one now uses a graph construction: For

M1,M2 in Vect{0,1}(R
syn ⊗ Z/pnZ), the space of maps M1 → M2 is equivalent to the space of isomorphisms

M1 ⊕M2
≃−→M1 ⊕M2 that are ‘upper triangular’ and project onto the identity endomorphisms ofM1 andM2.

A similar description holds for G1 and G2 in BT n(R). □

Remark 11.2.8. Combined with Remark 9.3.6, the proof above shows that we can recover Zink and Lau’s clas-

sification of connected p-divisible groups (equivalently, p-divisible formal groups) by Witt vector displays [70, 47]

from our main theorem here.

11.3. From F -gauges to Barsotti-Tate groups. Suppose that we haveR ∈ CRingp-nilp andM in Vect{0,1}(R
syn⊗

Z/pnZ).

11.3.1. Set Gn(M) = Γsyn(M). Then by Theorem 8.10.1 Gn(M) is locally finitely presented and quasi-smooth

over R with cotangent complex given by OGn(M) ⊗R gr−1
HdgM [1]. More generally, for all r ≤ n, set

Mr
defn
= M

∣∣
Rsyn⊗Z/prZ ; Gr(M) = Γsyn(Mr).

11.3.2. By tensoringM with the canonical short exact sequence

0→ Z/prZ a7→pn−ra−−−−−−→ Z/pnZ→ Z/pn−rZ→ 0,

we obtain a fiber sequence in Perf(Rsyn ⊗ Z/pnZ):

Mr →M→Mn−r.

Taking derived global sections yields a fiber sequence

RΓsyn(Mr)→ RΓsyn(M)→ RΓsyn(Mn−r)(11.3.2.1)

of ModZ/pnZ-valued quasisyntomic sheaves over R.

Theorem 11.3.3. Suppose that R is discrete and that M is in Vecth,d(R
syn ⊗ Z/pnZ), then Gn(M) is a relative

truncated Barsotti-Tate group scheme over R of height h and dimension d. In particular, for each n ≥ 1, we have

a canonical map of p-adic formal Artin stacks

Gn : BTGLh,µd
n → BTh,dn .

Moreover, if r < n, there is a canonical short exact sequence of truncated Barsotti-Tate group schemes

0→ Gr(M)→ Gn(M)→ Gn−r(M)→ 0

obtained by taking the connective truncation of (11.3.2.1).

Proof. Let us begin by considering the case n = 1, and let us also suppose that R is an Fp-algebra. Here, we can

consider the F -zip M underlyingM, which is given explicitly by the following data:
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(1) A locally free R-module M equipped with direct summands Fil0HdgM ⊂M and Filconj1 M ⊂M of codimen-

sion d and h− d, respectively;
(2) Isomorphisms

ξ1 : Filconj1 M
≃−→ φ∗(M/Fil0HdgM) ; ξ0 : grconj0 M =M/Filconj1 M

≃−→ φ∗ Fil0HdgM.

Now, consider the functor

G(M) = τ≤0RΓFZip(M) : CRingR/ → ModcnFp
Unwinding definitions, one finds

G(M)(C) = {m ∈ C ⊗R Fil0HdgM : ξ0(m) = φ∗m},

where M
m7→m−−−−→ grconj0 M is the natural quotient map. Viewing m 7→ ξ0(m) as a map ξ0 : Fil0HdgM → φ∗ Fil0HdgM ,

we see that we have

G(M) = ker(V((Fil0HdgM)∨)
ξ0−F−−−→ V((φ∗ Fil0HdgM)∨)),

so that G(M) is the Cartier dual to a height one finite flat group scheme over R of rank ph−d.

By Theorem 8.10.1, with input from Corollary 7.2.3, we see that the natural map G1(M) → G(M) presents the

source as a torsor over the target under the finite flat height 1 group scheme G(gr−1
HdgM,ψM), which has rank pd.

Therefore, we have a short exact sequence of finite flat group schemes

0→ G(gr−1
HdgM,ψM)→ G1(M)→ G(M)→ 0.(11.3.3.1)

In particular, we see that G1(M) is finite flat over R of rank ph.

We can now consider the general case of R ∈ CRingp-nilp♡ and n ≥ 1. Taking connective truncations of (11.3.2.1)

shows that we have an isomorphism

Gr(M)
≃−→ hkercn (Gn(M)→ Gn−r(M))(11.3.3.2)

of ModcnZ/pnZ-valued quasisyntomic sheaves over R.

If R = κ is an algebraically closed field, then this isomorphism, combined with a simple induction on r shows that

Gn(M)(κ) is a finite set. Therefore, applying the following lemma to Y = Gn(M) shows that Gn(M) is quasi-finite

and flat over R

Lemma 11.3.4. Suppose that Y is a finitely presented quasi-smooth algebraic space over R ∈ CRing of virtual

codimension 0. Set S = SpecR. Then the following are equivalent:

(1) Y is flat over R;

(2) Y ⊗R π0(R) is flat and classicaly lci over π0(R);

(3) For every x ∈ S(κ) with κ algebraically closed, x∗Y → Specκ is flat and classically lci;

(4) For every x ∈ S(κ) with κ algebraically closed, π0((x
∗Y )(κ)) is a finite set.

Proof. Since Y is quasi-smooth of virtual codimension 0, étale locally on Y we can present it as a derived complete

intersection subscheme of some affine space AnR over R cut out as the derived zero locus of n polynomials f1, . . . , fn. If

R is discrete, then such a derived zero locus is flat over R if and only if the animated ring R[x1, . . . , xn]/
L(f1, . . . , fn)

has no higher homotopy groups. This is precisely equivalent to this ring being a classical lci algebra over R. Since

flatness can be tested after derived base-change over the classical truncation, we see that (1) and (2) are equivalent.

If R = κ is an algebraically closed field, then π0((x
∗Y )(κ)) is finite precisely when the classical truncation Ycl

is 0-dimensional and of finite type over κ. We now note that κ[x1, . . . , xn]/(f1, . . . , fn) is 0-dimensional precisely

when f1, . . . , fn form a regular sequence. This shows the equivalence of (3) and (4).

To see the equivalence of (1) and (3), we now only have to make the additional observation that M ∈ ModR is

flat over R if and only if its derived base-change over every algebraically closed field over R is flat. □

Now, by considering the isomorphism (11.3.3.2) twice, first as given, and then again with r replaced by n − r,
we find that we have

im

(
Gn(M)

pn−r

−−−→ Gn(M)

)
= Gr(M) = ker

(
Gn(M)

pr−→ Gn(M)
)
.
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In particular, for every r, Gn(M) is a Gr(M)-torsor over Gn−r(M). An inductive argument now shows that Gn(M)

is a finite flat group scheme over R that is also a flat Z/pnZ-module. Note that this also proves the last assertion

of the theorem.

It still remains to verify that, when n = 1, G1(M) is truncated Barsotti-Tate of height h and dimension d. From

what we have just seen, to check that G1(M) is a truncated Barsotti-Tate group scheme, it suffices to observe that,

étale locally on SpecR,M can be lifted to Vect(Rsyn ⊗ Z/p2Z) by Theorem D and Proposition 11.2.7.

The last thing to check is that G1(M) has dimension d. Once again, we can assume that n = 1 and that R is an

Fp-algebra. Let F : G1(M)→ G1(M)(p) be the Frobenius map and let V : G1(M)(p) → G1(M) be the Verschiebung.

Then, since the Verschiebung on G(M) is identically zero (its Cartier dual is the Frobenius homomorphism for a

height one group scheme), we have

imV ⊂ G(gr−1
HdgM,ψM) ⊂ kerF.

Since the outer subgroups are equal, it follows that they must equal the one in the middle, which has rank d over

R by construction. □

11.4. Cartier duality. Let On be the structure sheaf of Rsyn ⊗ Z/pnZ. We will have use for the following result,

which is due to Bhatt-Lurie:

Proposition 11.4.1. We have canonical isomorphisms

Gn(On)
≃−→ Z/pnZ ; Gn(On{1})

≃−→ lµ.. pn
in BTn(R).

Proof. Unwinding definitions, the first isomorphism follows from [10, Theorem 8.1.9], while the second follows

from [10, Theorem 7.5.6]

We can also give alternate proofs using the methods of this paper. As we already know from what we have seen

above, Gn(On) (resp. Gn(On{1})) is an n-truncated Barsotti-Tate group schemes over R, height 1 and dimension 0

(resp. dimension 1).

We can assume that R = Z/pmZ for some m ≥ 1. Note that Gn(On) is étale over Z/pmZ, so it suffices to give a

map Z/pnZ→ Gn(On) that is an isomorphism over Fp. This is given by the structure map Z/pnZ→ On.
For the case of the Breuil-Kisin twist, note that Gn(On{1}) is of multiplicative type. Once again, it suffices to

give a canonical map lµ.. pn → Gn(On{1}) that is an isomorphism over Fp. In fact, since the scheme parameterizing

such maps is finite étale over Z/pmZ, we can assume that m = 1. In this case, by quasisyntomic descent, we only

have to construct a canonical map

lµ.. pn(C)→ (Fil1 ∆C/p
n)φ=p = Gn(On{1})(C)(11.4.1.1)

for qrsp Fp-algebras C. This is obtained using the isomorphism ∆C
≃−→ Acrys(C) from (6.9.5.1), and assigning to

each α ∈ lµ.. pn(C) the image of the logarithm log([α̃]p
n

) ∈ Acrys(C), where α̃ ∈ C♭ is a lift of α and [α̃] is its

Teichmüller lift; see [10, §7.1].
To finish, it is enough to know that the map (11.4.1.1) is injective for all qrsp Fp-algebras C. In fact, it suffices

to verify that, when C = Fp[x1/p
∞
]/(x) and n = 1, the element log([1 − x]) ∈ Acrys(C) is not divisible by p. But

one has (see displayed equation (37) in [10, p. 168]):

log([1− x]) ≡ −
p∑
d=1

[x]d

d
(mod p).

To see that the right hand side is non-zero, we only have to note that the element

x+
x2

2
+ . . .+

xp−1

p− 1
+ (p− 1)! · x[p] ∈ Fp⟨x⟩

in the standard divided power Fp-algebra is non-zero.

□
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Construction 11.4.2. For every vector bundleM over Rsyn ⊗ Z/pnZ with Hodge-Tate weights 0, 1, we will now

define a canonical map

Gn(M∗)→ Gn(M)∗.(11.4.2.1)

This is obtained as follows: For every x : R→ C, we have

Gn(M∗)(C) ≃ MapQCoh(Csyn⊗Z/pnZ)(x
∗M,On{1}),

and evaluation on global sections now yields a map

Gn(M∗)(C)→ Hom(Gn(x∗M),Gn(On{1})) ≃ Hom(x∗Gn(M), lµ.. pn) ≃ Gn(M)∗(C).

Here, we have used Proposition 11.4.1 for the penultimate isomorphism.

Theorem 11.4.3. The map (11.4.2.1) is an isomorphism.

Proof. Let’s begin with the following easy observation that is immediate from Proposition 11.4.1: The map is an

isomorphism for anyM that is an extension of Oh−dn by On{1}d.
Denote the map (11.4.2.1) by αn, and view it as a map of n-truncated Barsotti-Tate group schemes over the

smooth p-adic formal algebraic stack BTGLh,µd
n of the same height and dimension. Taking the limit over n gives us

a map α∞ of p-divisible groups over BTGLh,µd
∞ . We will actually show that α∞ is an isomorphism: this is enough

since BTGLh,µd
∞ → BTGLh,µd

n is a limit of smooth surjective maps.

LetR be a universal deformation ring for BTGLh,µd
∞ ⊗Fp at a geometric point valued in a field κ (see Lemma 10.2.5):

this is isomorphic to κ[|t1, . . . , td(h−d)|] and is in particular normal. It is enough to know that the restriction of α∞
over Spf R is an isomorphism. By [21, Lemma 2.4.4], this restriction algebraizes to a map of p-divisible groups over

SpecR. The observation from the beginning of the proof—combined with Lemma 11.4.4 below—shows that this map

is generically an isomorphism. Therefore, we find from [20, Corollary 1.2]—and the subsequent discussion—that it

is an isomorphism on the nose. □

Lemma 11.4.4. Let P+
µd
⊂ GLh be the opposite parabolic associated with µd.

42 Then, for all n ≥ 1:

(1) BT
P+
µd
,µd

n → BTGLh,µd
n is a dense open immersion parameterizing precisely those F -gaugesM that are étale

locally on the base extensions of Oh−dn by On{1}d.
(2) The square

BT
P+
µd
,µd

n > BTGLh,µd
n

BT
P+
µd
,µd

1

∨

> BTGLh,µd
1

∨

is Cartesian.

Proof. This is of course the counterpart of the well-known statement that a versal n-truncated Barsotti-Tate group

scheme is generically ordinary.

Given the connectedness of BTGLh,µd
n (see Remark 9.3.5), the lemma is essentially immediate from Proposi-

tion 9.5.1. The only thing to be remarked upon is the explicit description of the image of BT
P+
µd
,µd

n , but this is

immediate from the definitions. □

Remark 11.4.5. The proof of Theorem 11.4.3 ultimately relies on the results of de Jong in [20] and hence also on

his results from [21] in the form of a fully faithfulness result for the classical Dieudonné functor of Berthelot-Breen-

Messing [5] for complete DVRs in characteristic p. This use can be circumvented by a more careful study of the

map αn.

11.5. From Barsotti-Tate groups to F -gauges.

42Explicitly, it consists of the upper triangular invertible matrices with respect to the decomposition Zh
p = Zd

p ⊕ Zh−d
p .
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11.5.1. Let R be p-complete, p-quasisyntomic and either p-torsion free or an Fp-algebra. These conditions ensure

that there exist quasisyntomic covers R → R′ with R′ qrsp, and also that ∆R′ is p-completely flat for such covers.

In particular, the derived stacks RN ⊗ Z/pnZ and Rsyn ⊗ Z/pnZ are actually classical.

Let

ϵn : (Rsyn ⊗ Z/pnZ)fl → Rqsyn

be the map of (classical) topoi arising via the functor C 7→ Csyn⊗Z/pnZ on p-quasisyntomic R-algebras. Here, the

left hand side (resp. the right hand side) is the topos of sheaves on the ind-fppf site over Rsyn ⊗ Z/pnZ (resp. the

small p-quasisyntomic site over Spf R).

We can view On as a sheaf of rings on (Rsyn⊗Z/pnZ)fl, and On{1} as a quasicoherent sheaf with respect to On.

11.5.2. For G ∈ BTn(R), set

M(G) = Hom(Rsyn⊗Z/pnZ)fl(ϵ
−1
n G∗,On{1})

where on the right we are considering the internal Hom sheaf over (Rsyn ⊗ Z/pnZ)fl. Note that by construction

M(G) is a module over On.
To alleviate notation, we will now drop the subscript n and write G for the functor Gn. The next result can be

found in a certain form in Anschütz-Le Bras [1], though this formulation (and most of the proof, though we give a

different approach to Cartier duality) is due to Mondal [60]:

Proposition 11.5.3. (1) M(G) is a vector bundle over On and yields an F -gauge in Vect{0,1}(R
syn⊗Z/pnZ).

(2) The functors

M : BTn(R)→ Vect{0,1}(R
syn ⊗ Z/pnZ);

G : Vect{0,1}(R
syn ⊗ Z/pnZ) Theorem 11.3.3−−−−−−−−−−→ BTn(R)

form an adjoint pair.

(3) The unit id→ G ◦M is an isomorphism.

(4) There is a natural isomorphismM(G∗)∗ →M(G).

Proof. Most of the proof that we present here can be found in [60, §3].
For claim (1), via quasisyntomic descent we reduce to the case where R is qrsp. Here, the result follows from [60,

Props. 3.56, 3.80, 3.81].

For the second claim, given G ∈ BT n(R) andM∈ Vect{0,1}(R
syn ⊗ Z/pnZ), we find canonical isomorphisms:

HomOn(M,M(G)) ≃ HomOn

(
M,Hom(Rsyn⊗Z/pnZ)fl(ϵ

−1
n G∗,On{1})

)
≃ Hom(Rsyn⊗Z/pnZ)fl

(
ϵ−1
n G∗,HomOn(M,On{1})

)
≃ HomRqsyn

(
G∗, ϵn,∗HomOn(On,M

∗)
)

≃ HomRqsyn
(G∗,G(M∗))

≃ HomBT n(R)(G
∗,G(M)∗)

≃ HomBT n(R)(G(M), G).

Here, in the penultimate isomorphism, we have used Theorem 11.4.3.

For claim (3), suppose that we are given G ∈ BTn(R). We then find:

G(M(G))(R) ≃ HomOn(On,M(G))

≃ HomBT n(R)(G(On), G)
≃ HomBT n(R)(Z/pnZ, G)
≃ G(R).

Here, in the penultimate isomorphism, we have used Proposition 11.4.1. Since this isomorphism is valid with R

replaced by any p-quasisyntomic R-algebra, claim (3) has been verified.
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Finally, let us consider claim (4): We have

HomOn(M(G∗)∗,M(G)) ≃ HomBT n(R)(G(M(G∗)∗), G)

≃ HomBT n(R)(G(M(G∗))∗, G)

≃ HomBT n(R)((G
∗)∗, G)

≃ HomBT n(R)(G,G).

Here, the first isomorphism uses claim (2), the second uses Theorem 11.4.3 and the third uses claim (3). The

identity endomorphism of G corresponds via these isomorphisms to the canonical arrow involved in claim (4).

That this arrow is an isomorphism is a consequence of the next lemma, applied with M1 = M(G∗)∗ and

M2 =M(G):

Lemma 11.5.4. Suppose that M1 and M2 are two perfect F -gauges of level n over R with Hodge-Tate weights

0, 1. Set N ∗ = N∨{1} for any perfect F -gauge N : this underlies an anti-involution on the ∞-category of perfect

F -gauges of Hodge-Tate weights 0, 1. Suppose that f :M1 →M2 is an arrow such that

Γsyn(f) : Γsyn(M1)→ Γsyn(M2) ; Γsyn(f
∗) : Γsyn(M∗

2)→ Γsyn(M∗
1)

are equivalences of derived stacks over R. Then f is an isomorphism.

Proof. Set N = hker(f); then we see that Γsyn(N )(C) = 0 for all C ∈ CRingR/. Similarly, Γsyn(N ∗[−1])(C) = 0

for all C ∈ CRingR/. Theorem 8.10.1 now tells us that, if Fil•HdgN and Fil•HdgN
∗ are the filtered perfect complexes

over R obtained from N and N ∗ via pullback along xNdR, then we have

gr−1
HdgN ≃ 0 ≃ gr−1

HdgN
∗ ≃ (Fil0HdgN)∨.

Since N has Hodge-Tate weights 0, 1, this shows that griHdgN ≃ 0 for all i, and hence that Fil•HdgN ≃ 0.

This implies that N ≃ 0: To see this, we can assume that R is semiperfectoid, in which case it follows from the

observation that the map

π0(∆R/
L(p, I))→ π0(R/

L(p, I))

has nilpotent kernel; see for instance the end of the proof of Proposition 4.12.3. □

□

We are now ready to prove Theorem 11.2.7

Proof of Theorem 11.2.7. We first note that Proposition 11.5.3 gives us a left inverse M : BTh,dn → BTGLh,µd
n to

the map G from Theorem 11.3.3. Indeed, by Theorem 11.1.2, BTh,dn is smooth, and therefore is a left Kan extension

of its restriction to p-completely smooth Zp-algebras. This means that, to obtain the mapM and verify that it is

a left inverse to G, it suffices to do so on such inputs, where it follows from the proposition.

From the same proposition, we find, for allM ∈ BTGLh,µd
n (R), a canonical map of F -gaugesM→M(G(M)).

To finish the proof of the theorem, we have to verify that this map is an isomorphism.

For this, we can assume without loss of generality that R is p-quasisyntomic. Now, we begin by observing that

we also have a corresponding canonical map of Cartier dual F -gauges

M∗ →M(G(M∗)) ≃M(G(M)∗),

where the last isomorphism using Theorem 11.4.3. Taking Cartier duals again yields a map

M(G(M)∗)∗ →M.

and the composition

M(G(M)∗)∗ →M→M(G(M))

is the canonical isomorphism in claim (4) of Proposition 11.5.3 applied with G = G(M). Alternatively, instead of

using Cartier duality in this form, one can argue directly using Lemma 11.5.4.

This shows thatM→M(G(M)) is an epimorphism, and since it is a map of vector bundles of the same rank

over Rsyn ⊗ Z/pnZ, we conclude that it is in fact an isomorphism. □
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Remark 11.5.5. We have attempted, within reasonable bounds, to minimize our reliance on existing classification

results: In essence, the only serious input we need along these lines is a full faithfulness result for the Dieudonné

functor over a complete DVR in characteristic p with algebraically closed residue field. This can be found in [6,

§4.1] and is used (indirectly) in the proof of Theorem 11.4.3.

It is possible to streamline the proof quite a bit by making stronger use of existing results.

To begin with, we could of course directly appeal to the equivalence established for quasisyntomic inputs in [1].

In fact, since we already have the map G, to verify that it is an equivalence, it suffices to do so over the special

fiber. In particular, logically speaking, we only need Proposition 11.5.3 in the case where R is an Fp-algebra. In

this case, the verification of claim (1) of that proposition only requires the computations from [5] of the crystalline

cohomology of abelian schemes in characteristic p. Formulating the proof this way would make it completely

independent of the results of [1] or [60], though it wouldn’t shed much light on what the inverse functor is, away

from characteristic p.

Alternatively, one could use Grothendieck-Messing theory on both sides of the purported equivalence—via a

truncated refinement of Remark 11.7.5 below—to further reduce to checking that G is an equivalence on points

valued in algebraically closed fields. This would reduce us to classical Dieudonné theory over perfect fields as

explicated, say, in [31]. However, here one would have to compare our construction of finite flat group schemes here

with that used by Fontaine, which involves Witt covectors.

In fact, one could even abbreviate even this process quite a bit by directly appealing to the general classification

results of Lau [44]. This would establish the equivalence without using the smoothness of the stack of truncated

Barsotti-Tate groups, and so would give another proof of Grothenieck’s theorem.

Another strategy is to reduce to the case of power series rings and then invoke the results of de Jong [21].

Remark 11.5.6. Combined with Theorem G, we find that BTh,dn also enjoys a Grothendieck-Messing type defor-

mation theory. This should be a special case of a very general lifting result of Faltings [29, Theorem 17], but we

have not verified the requisite compatibility with the constructions of Faltings.

11.6. A polarized variant. In this subsection, R will always denote a derived p-complete discrete ring in CRing♡.

Definition 11.6.1. Suppose that G is a finite flat commutative pn-torsion group scheme over R. Then, given a

Z/pnZ-local system L over SpecR, we will write G⊗L for the finite flat group scheme obtained by tensor product

of fppf sheaves of abelian groups: that this is indeed such an object is clear from étale descent.

Alternatively we can also view G ⊗ L as the internal Hom sheaf Hom(L∨, G) in fppf sheaves of abelian groups.

This perspective shows:

Observation 11.6.2. We have a canonical isomorphism (G ⊗ L)∗ ≃ G∗ ⊗ L∨, where ∗ denotes the Cartier dual

as usual, and L∨ is the dual local system.

Definition 11.6.3. Fix an integer g ≥ 1. A principal quasi-polarization on G ∈ BT2g,g
n (R) is the provision of

the following data:

(1) A rank 1 Z/pnZ-local system L over Spf R;

(2) An isomorphism λ : G
≃−→ G∗ ⊗ L such that the composition

G∗ ≃−→ (G⊗ L)∗ ⊗ L λ∗⊗1−−−→ G∗ ⊗ L

is equal to −λ.
We will call the tuple (G,L, λ) a principally quasi-polarized n-truncated Barsotti-Tate group (of height

2g), and denote the groupoid of such tuples by BT2g,qpol
n (R).

A principal polarization on G is a tuple (G,L, λ) as above satisfying the following additional condition: Étale

locally on Spf R, there exists a lift (G̃, L̃, λ̃) to BT2g,qpol
n+1 (R). We will call such tuples principally polarized

n-truncated Barsotti-Tate groups and write BT2g,ppol
n (R) for the groupoid spanned by them.
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Remark 11.6.4. In the literature—see for instance [64] or [18]—one finds a definition of a principal quasi-

polarization of p-divisible groups that is essentially the notion above (in the limit over n), except that L is taken

to be trivial.

At finite level, we find a definition for the case n = 1 in [61, §2.6], which uses Dieudonné theory, and applies at

the level of geometric points: it corresponds to our notion of a principal polarization given above. This is however

a pointwise condition, and its moduli-theoretic interpretation is a little unclear. We have ‘solved’ this issue above

via the lifting-based condition, which is justified primarily by Proposition 11.6.6 below. See also Remark 11.6.7.

11.6.5. Let GSp2g be the generalized symplectic group over Zp associated with the ‘standard’ symplectic space

over Zp of rank 2g, and let µg : Gm → GSp2g be the minuscule cocharacter splitting a Lagrangian subspace, and is

such that the standard representation of GSp2g yields a map of pairs (GSp2g, µg)→ (GL2g, µg). Note that we have

the similitude character ν : GSp2g → Gm = GL1 satisfying ν ◦ µg = µ1. This yields a map

(GSp2g, µg)→ (GLg ×Gm, µg × µ1).

By Proposition 10.4.3 applied to the case O = Zp, we see that BTGm,µ1
n is the stack of line bundle F -gauges

of the form L0{1}, where L0 is a line bundle F -gauge with Hodge-Tate weight 0, associated with a Z/pnZ-local
system L = Γsyn(L0) of rank 1 over Spf R. We will identify the stack of such local systems with the classifying

stack B(Z/pnZ)×.

Proposition 11.6.6. There exists a canonical commuting diagram of p-adic formal classical Artin stacks over Zp
where the horizontal arrows are equivalences:

BT
GSp2g,µg
n

≃
> BT2g,ppol

n

BTGL2g,µg
n × BTGm,µ1

n

∨

≃
> BT2g,g

n ×B(Z/pnZ)×.

(G,L,λ)7→(G,L)

∨

Proof. All the formal stacks involved are smooth over Zp43, so it suffices to construct such a diagram on p-torsion

free qrsp inputs R. Since Rsyn ⊗ Z/pnZ is a classical stack, using standard arguments, we find that BT
GSp2g,µg
n (R)

is the groupoid of tuples (M,L, ψ), where:
• M is in BTGL2g,µg

n (R);

• L is in BTGm,µ1
n (R);

• ψ : ∧2M→ L is a map inducing an isomorphism of F -gauges

fψ :M ≃−→M∨ ⊗ L.
Here, the exterior power ∧2M is of vector bundles over the classical stack Rsyn ⊗ Z/pnZ, constructed as a

quotient ofM⊗M in the usual way.

Note that fψ has the property that the composition

M ≃−→ (M∨ ⊗ L)∨ ⊗ L
f∨
ψ⊗1
−−−→

≃
M⊗L

is equal to −fψ. When p > 2, this condition on fψ is enough to recover the symplectic form ψ.

In general, we can say the following: Suppose that f :M→M∨ ⊗ L can be lifted to an isomorphism

f̃ : M̃ ≃−→ M̃∨ ⊗ L̃
of vector bundle F -gauges of level n+1 satisfying the anti-symmetry property above. Then f = fψ for a unique form

ψ : ∧2M→ L. This is because, for any flat Z/pn+1Z-algebra A, any 2-torsion element a ∈ A maps to 0 in Z/pnZ

43For BT2g,ppol
n , this is a ‘well-known’ result, for which we could not find a specific reference, though one should certainly be able

to extract it from the results of Faltings in [29, §7]. In any case, the argument shows an unconditional result for smooth inputs, and so

at least yields a canonical map BT
GSp2g,µg
n → BT2g,ppol

n , which is an equivalence as soon as we know the smoothness of the target.
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(this is valid for all primes p!). Conversely, if f = fψ for some ψ, then by the smoothness of BT
GSp2g,µg
n+1 → BT

GSp2g,µg
n

we see that it admits an étale local lift of level n+ 1.

Now, L ≃ L0{1} for some L0 of Hodge-Tate weight 0 associated with a Z/pnZ-local system L of rank 1. Therefore,

we have

M∨ ⊗ L ≃M∗ ⊗ L0.

Moreover, we have a canonical isomorphism

G(M∗ ⊗ L0)
≃−→ Hom(L∨,G(M)∗),

which is clear from the full faithfulness part of Theorem 11.1.4.

Theorem 11.2.7 now tells us that there is an equivalence of groupoids between tuples (M,L, f ′) and (G,L, λ′),

where (M,L) and (G,L) are as before, and f ′ : M ≃−→ M∨ ⊗ L and λ′ : G → G∗ ⊗ L are isomorphisms. As

discussed above, the first kind of tuple lifts (uniquely) to BT
GSp2g,µg
n (R) if and only if it can be lifted, étale locally

on Spf R, to a tuple (M̃, L̃, f̃) of level n+ 1. We now conclude from the definition of BT2g,ppol
n (R). □

Remark 11.6.7. Frank Calegari has pointed out to us a different notion of polarization due to Hopkins and

Lurie [53, §3], which gives a clean moduli-theoretic definition even when p = 2. More precisely, for every finite

flat group scheme G over some ring R, they produce (see Definition 3.2.5 of loc. cit.) a group scheme Alt
(2)
G of

alternating 2-forms on G that is a subscheme of the scheme Skew
(2)
G of alternating bilinear maps G×G→ Gm, and

is equal to the latter when 2 is invertible in R. We can then define a polarization on G as a section of Alt
(2)
G whose

associated alternating pairing is non-degenerate.

Now, suppose that R is p-nilpotent and that G is an n-truncated Barsotti-Tate group associated with an F -

gaugeM ∈ BTGL2g,µg
n ; then F defn

= (∧2M)∨{1} has Hodge-Tate weights {−1, 0, 1}. Therefore, by Theorem 8.10.1,

Γsyn(F) is a derived affine scheme over R, and its classical truncation is a group scheme whose points parameterize

maps of F -gauges ∧2M→On{1}.
We now expect that this group scheme is isomorphic to Alt

(2)
G .

Remark 11.6.8. Here is a further aside: Hopkins and Lurie also define, for any d ≥ 2, the group scheme of

alternating d-forms Alt
(d)
G , and show in [53, Theorem 3.5.1] that, when G is an n-truncated Barsotti-Tate group

of height h and dimension 1, then Alt
(d)
G is represented by an n-truncated Barsotti-Tate group of height

(
h
d

)
and

dimension
(
h−1
d

)
. This should correspond simply to the fact that, with the notation of the previous remark,

(∧dM)∨{1} is a vector bundle F -gauge of level n and Hodge-Tate weights {0, 1} with height
(
h
d

)
and dimension(

h−1
d

)
.

11.7. The crystalline and de Rham realizations. Suppose that R is discrete and in CRingp-comp. Given an

F -gauge M in BTGLh,µd
∞ (R), we obtain a p-divisible group G defn

= G(M) over R of height h and dimension d, and

the crystalline Dieudonné theory of [5] associates with the Cartier dual G∗ a crystal of vector bundles D(G∗) over
the classical big crystalline site (R/Zp)crys relative to the standard divided powers on pZp ⊂ Zp.

On the other hand, Remark 6.8.2 tells us that M gives us a crystal of vector bundles over the big (animated)

crystalline site of R. In particular, we can restrict this to (R/Zp)crys to obtain another crystal of vector bundles

D(M) over (R/Zp)crys.

Theorem 11.7.1. There is a canonical isomorphism D(G∗) ≃−→ D(M).

Proof. This is essentially a reinterpretation of the discussion in [1, §4.3]. Here are the details.

Since BTGLh,µd
∞ is pro-smooth, we can reduce to the consideration of p-completely smooth R. Replacing R with

R/pR does not affect the category of crystals, so we can assume that R is a smooth Fp-algebra.
Let (R/Zp)crys,pr be the big crystalline site for SpecR equipped with the pr topology given by extracting p-th

roots: the definition of this site is due to Lau [44] and is used in [1, §4.3]. There is a map of topoi

ucrys : Shv ((R/Zp)crys,pr)→ Shv(Rpr)
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such that the classical Dieudonné functor of [5] can be reinterpreted as the inner Ext

D(G∗) ≃ lim←−
n

Ext1((ucrys)−1G∗[pn],Ocrys),

where Ocrys is the structure sheaf over (R/Zp)crys,pr.
To compare this with our constructions, let us begin by invoking the explicit inverse constructed in Proposi-

tion 11.5.3. This shows thatM is given by

lim←−
n

Hom(G∗[pn],∆ /Lpn) ≃ lim←−
n

Ext1(G∗[pn],∆ ).

Here, we are looking at Hom (or Ext) between complexes of pr sheaves on SpecR, where ∆ is the sheafification—as a

derived p-complete complex—of the assignment R′ 7→ ∆R′ on quasisyntomic qrsp R-algebras. The final isomorphism

holds because ∆ takes values in p-completely flat objects on qrsp inputs, while G∗[pn] is of course killed by pn.

To finish, therefore, we only need to know that we have a canonical isomorphism of complexes of pr sheaves

Rucrys∗ Ocrys
≃−→ ∆ .

It suffices to compare their values on qrsp quasisyntomic R-algebras. Here, this is a consequence of Remark 6.9.5: For

any qrsp R-algebra R′, we have a canonical isomorphism ∆R′ ≃ Acrys(R
′). On the other hand, θR′ : Acrys(R

′)→ R′

with its divided powers is also the (pro-)initial object in (R′/Zp)crys,pr. □

11.7.2. Let P−
h,d ⊂ GLh be the parabolic subgroup associated the cocharacter µd, so that BP−

h,d parameterizes

filtered vector bundles Fil• V with

rank gri V =


d if i = −1;
h− d if i = 0;

0 otherwise.

Consider the natural map

BTGLh,µd
∞ → BP−

h,d,

obtained by taking the limit over n from the diagram in Theorem 9.3.2.

This associates with every F -gauge M in BTGLh,µd
∞ (R) over a derived p-complete ring R a filtered locally free

R-module Fil•HdgM .

11.7.3. On the other hand, we have a short exact sequence

0→ ωG∗ → D(G∗)(R)→ Lie(G)→ 0(11.7.3.1)

of locally free R-modules, where ωG∗ (resp. Lie(G)) has rank h− d (resp. d); see Corollaire 3.3.5 of [5].

Proposition 11.7.4. There is a canonical isomorphism of R-modules M
≃−→ D(G∗)(R) inducing isomorphisms

Fil0HdgM
≃−→ ωG∗ ; gr−1

HdgM
≃−→ Lie(G).

Proof. We can view D(G∗)(R) as being a filtered locally free R-module supported in degrees −1, 0. From this

perspective, we see that we have written down two maps from BTGLh,µd
∞ to BP−

h,d, and we would like to know that

they are isomorphic.

By derived descent and the pro-smoothness of the source, it suffices to verify this on qrsp Fp-algebras R. The

proof now proceeds just as that of Theorem 11.7.1, except one now keeps track of filtrations.

The Hodge filtration on the crystalline Dieudonné module is given (up to degree shift) by

Fil0 D(G∗) ≃ lim←−
n

Ext1((ucrys)−1G∗[pn],Jcrys),

where Jcrys is the kernel of the natural surjection Ocrys → (ucrys)−1Ga. When evaluated on the trivial divided

power thickening R
id−→ R, this yields the short exact sequence (11.7.3.1).
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Furthermore, the explicit inverse constructed in Proposition 11.5.3 shows that the restriction of M to RN

corresponds to a filtered Fil•N ∆R-module Fil• M admitting the following description: We have

FiliM = lim←−
n

Hom(G∗[pn],Fili+1
N ∆ /Lpn) ≃ lim←−

n

Ext1(G∗[pn],Fili+1
N ∆ ).

The filtered module Fil•HdgM is now obtained via filtered base-change along the map Fil•N ∆R → Fil•trivR

To finish, therefore, we only need to know that we have canonical isomorphisms of complexes of pr sheaves

Rucrys∗ Ocrys
≃−→ ∆ ; Rucrys∗ Jcrys

≃−→ Fil1N ∆ .

We have already verified the first. The second is a consequence of the discussion in § 6.11: For any qrsp R-algebra

R′, let R′
0 = R

′,♭ be the inverse perfection of R′ with prism structure given by IR′
0
⊂W (R′

0) = ∆R′
0
. Then we have

canonical isomorphisms

FiliN ∆R′ ≃ {x ∈ Acrys(R
′) : φ(x) ∈ IiR′

0
Acrys(R

′)} ⊂ Acrys(R
′).

On the other hand, Fil1N ∆R′ is identified with the kernel of θR′ : Acrys(R
′)→ R′ (see for instance [10, Proposition

5.3.6]). □

Remark 11.7.5. Combining Theorem 11.7.1 and Proposition 11.7.4 shows that classical Grothendieck-Messing

theory is compatible, via the equivalence in Theorem 11.1.4, with the Grothendieck-Messing theory for vector

bundle F -gauges of Hodge-Tate weights 0, 1 given to us by Theorems 9.3.2 or 8.11.1.

Proposition 11.7.6. Let O and (T0, µ0) be as in § 10.4. Then, for any discrete, derived p-complete O-algebra R
in CRing, BTT0,µ0

∞ (R) is canonically equivalent to the groupoid of Lubin-Tate formal O-modules over R of height h

and dimension 1.

Proof. It is well-known that the stack of Lubin-Tate formal O-modules of height h and dimension 1 is represented

by a pro-finite étale stack over Spf O that is isomorphic to the trivial gerbe banded by T0(Zp), the automorphism

group of any such Lubin-Tate formal O-module over Spf O.
Therefore, it suffices to establish the stated equivalence on p-completely étale O-algebras R. Here, it is essentially

immediate from Proposition 10.4.3, except that we have to show the following: Given F as in that proposition, the

Lie algebra Lie(G(F)) of G(F) = Γsyn(F) has rank 1, and the resulting action of O⊗Zp O on the Lie algebra factors

through the structure map O → R. This is immediate from Proposition 11.7.4. □

Remark 11.7.7. More generally, Theorem 11.2.7 can be applied to give a description of p-divisible groups of

unramified ‘EL type’ with a Kottwitz condition in terms of apertures for appropriate group-theoretical data.

11.8. The étale realization. For completeness, we will finish by reviewing a result of Mondal.

11.8.1. Let R be a quasisyntomic ring. Then Bhatt shows that there is a canonical functor [8, Construction 6.3.1]

Tét : Perf(R
syn)→ Db

lisse(Spf(R)
ad
η ,Zp)

where the right hand side is the bounded derived category of lisse Zp-sheaves on the adic generic fiber Spf(R)η
defn
=

Spa(R[1/p], R).

In particular, givenM∈ Vectsyn{0,1},n(R), viewed as a perfect complex over Rsyn, we obtain an object Tét(M) on

the right hand side. On the other hand, we can also consider the finite flat pn-torsion group scheme G
defn
= G(M)

over R, and take its adic generic fiber Gad
η , which can also be viewed as a perfect complex of lisse Zp-sheaves. The

next result follows from [60, Proposition 3.99]; see also [1, Proposition 5.25].

Proposition 11.8.2. There is a canonical isomorphism Tét(M)
≃−→ Gad

η .
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Appendix A. Some completeness results

A.1. Tannaka duality. We will need the following result of Bhatt and Halpern-Leistner [9, Theorem 5.1, Lemma

3.13] (see also the discussion in Step 2 of the proof of [33, Proposition 5.1.13]).

Theorem A.1.1 (Tannakian reconstruction). Suppose that X is a classical Noetherian Artin n-stack with quasi-

affine diagonal; then, for any classical prestack S, there is an equivalence of ∞-groupoids

Map(S,X)
f 7→f∗

−−−−→
≃

Func⊗(APerfcn(X),APerfcn(S)).

Here the right hand side is the space of symmetric monoidal functors that preserve finite colimits. In particular, if

S′ → S is a map of classical prestacks inducing an equivalence of symmetric monoidal ∞-categories

APerfcn(S)
≃−→ APerfcn(S′),

then the natural map

Map(S,X)→ Map(S′, X)

is an equivalence.

A.2. Completeness.

Proposition A.2.1. Suppose that R is a complete Noetherian local ring with maximal ideal m. Then, for any

relatively locally almost finitely presented derived Artin stack X → BGm × SpecR with quasi-affine diagonal, the

map

Map/BGm×SpecR(BGm × SpecR,X )→ lim←−
m

Map/BGm×SpecR(BGm × SpecR/mm,X )

is an equivalence.

Proof. We can replace X with its classical truncation X
defn
= Xcl. By Theorem A.1.1, we are now reduced to the

easy observation that the functor

APerfcn(BGm × SpecR)→ lim←−
m

APerfcn(BGm × SpecR/mm)

is an equivalence. □

Proposition A.2.2. Suppose that we have R ∈ CRing and a relatively almost locally finitely presented derived

Artin stack X → A1/Gm× SpecR with quasi-affine diagonal. Then for any Noetherian B ∈ CRing♡,R/ the natural

map

Map/A1/Gm×SpecR(A1/Gm × SpecB,X )→ lim←−
n

Map/A1/Gm×SpecR((A1/Gm)(tn=0) × SpecB,X )

is an equivalence.

Proof. Once again, we can replace X with its classical truncation, and so it suffices to know that the map

APerfcn(A1/Gm × SpecB)→ lim←−
n

APerfcn((A1/Gm)(tn=0) × SpecB)

is an equivalence.

This boils down to the fact that filtered almost perfect complexes over B are complete for their filtration, since

they are inverse limits of complexes Fil•M with FiliM ≃ 0 for i sufficiently large. □

Lemma A.2.3. Let M• be a graded almost perfect module over a non-positively graded animated commutative ring

B•. Write

M• = B0 ⊗B• M•

for the graded base-change of M•. Then M• admits a functorial increasing, exhaustive and complete filtration

Filwt
• M• in GrModB• with

grwt
−iM• ≃ B•(−i)⊗B0

M i.
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Proof. Once we have such an increasing and exhaustive filtration, it will automatically be complete: Indeed, the

map

M• → hcoker(Filwt
−iM• →M•)

is an isomorphism in graded degrees ≤ (i− 1).

To obtain the filtration, let’s make the assertion a bit more precise. We have a functor from almost perfect

graded B•-modules to doubly graded almost perfect B•-modules M• 7→
⊕

iB•(−i) ⊗B0 M i, which geometrically

can be seen as the functor

APerf((SpecB•)/Gm)→ APerf(BGm × (SpecB•)/Gm)

via pullback along the maps

BGm × (SpecB•)/Gm → BGm × SpecB0 → (SpecB•)/Gm.

Here, the first map is obtained from the structure morphism (SpecB•)/Gm → SpecB0, and the second map from

the map of graded rings B• → B0. The claim then is that this pullback functor admits a canonical lift

APerf((SpecB•)/Gm)→ APerf(A1
+/Gm × (SpecB•)/Gm)

whose composition with the functor

APerf(A1/Gm × (SpecB•)/Gm)→ APerf((SpecB•)/Gm)

induced by the open immersion Gm/Gm × (SpecB•)/Gm → A1
+/Gm × (SpecB•)/Gm is equipped with an isomor-

phism to the identity.

It suffices to prove the claim with APerf replaced everywhere with Modcn. Here, via the process of animation

(or more precisely, the compatibility of the existing functors with sifted colimits), we can also replace Modcn with

Vect.

The proof now proceeds as in [32, Theorem 2.44]. Since we are dealing with finite locally free modules, there

exist a, b ∈ Z such that Mk ≃ 0 for k /∈ [a, b]. We now claim that Mk ≃ 0 for k > b and that the natural map

Mb →M b is an equivalence. To see this, observe that we have a fiber sequence

B≤−1 ⊗B• M• →M• →M•,

and note that the left hand side is a graded module supported in degrees ≤ b − 1. This last observation can be

checked using the bar resolution as in [32, Lemma 2.45].

The proof will now proceed by induction on b− a. We can use the equivalence Mb
≃−→M b to obtain a canonical

map

B• ⊗B0
M b(−b)

≃−→ B• ⊗B0
Mb(−b)→M•

whose cofiber M ′
• is supported in degrees < b. Graded base-change to B0 yields a cofiber sequence

M b(−b)→M →M
′
,

which shows that M i
≃−→ M

′
i for i ≤ b− 1 and M

′
i ≃ 0 for i > b− 1. In particular, if a = b, then M

′ ≃ 0, and the

argument from the previous paragraph implies that in fact M ′ ≃ 0. This verifies the base step of the induction.

For the inductive step, our hypothesis implies that M ′
• admits an increasing filtration Filwt

• M ′
• with

grwt
−iM

′
• ≃ B• ⊗B0

M
′
i(−i) ≃ B• ⊗B0

M i(−i)

for i ≤ b− 1.

We now obtain our desired filtration on M• by setting

Filwt
−iM• =

{
0 if i > b

Filwt
−iM

′
• ×M ′

•
M• if i ≤ b.

□
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Proposition A.2.4. Suppose that B• is a non-positively graded discrete commutative ring and that X → Y defn
=

Spec(B•)/Gm is a relatively locally almost finitely presented derived Artin stack with quasi-affine diagonal. Then

the natural map

Map/Y(Y,X )→ lim←−
m

Map/Y(Spec(B≥−m)/Gm,X )

is an equivalence.

Proof. We can replace X with its classical truncation, and by Noetherian approximation, we can also assume that

X is the base-change over Y along a map Y → Y ′ of a locally finitely presented map of classical Noetherian stacks

X ′ → Y ′ with quasi-affine diagonal. Thus, we are reduced via Theorem A.1.1 to knowing that the functor

APerfcn(Y)→ lim←−
m

APerfcn(Ym)

is an equivalence, where Ym = (SpecB≥−m)/Gm.

Let us first check full faithfulness: we need to know that, for M•, N• on the left hand side, the natural maps

MapB•
(M•, N•)→ lim←−

m

MapB≥−m
(B≥−m ⊗B• M•, B≥−m ⊗B• N•)

≃−→ lim←−
m

MapB•
(M•, B≥−m ⊗B• N•)

≃−→ MapB•
(M•, lim←−

m

B≥−m ⊗B• N•)

are isomorphisms. This comes down to knowing that the natural map

N• → lim←−
m

B≥−m ⊗B• N•

is an isomorphism. Using Lemma A.2.3, we can reduce to the case where N• ≃ B• ⊗B0 N
′, where N ′ is an almost

perfect connective complex of B0-modules. This reduces us to knowing that

B• ⊗B0 N
′ → lim←−

m

B≥−m ⊗B0 N
′

is an equivalence. Comparing degree-by-degree, we are reduced to the case where N ′ ≃ B0, where the assertion is

clear.

For essential surjectivity, suppose that we are given an object on the right yielding a compatible sequence

(M
(m)
• )m of graded almost perfect connective B≥−m-modules M

(m)
• . We need to check that M• = lim←−mM

(m)
• is a

graded almost perfect connective B•-module, and that its graded base-change to B≥−m yields M
(m)
• . Once again,

using Lemma A.2.3, we can reduce to the case where the compatible sequence is of the form (B≥−m ⊗B0
M)m for

some almost perfect connective complex of B0-modules M . Here, the claim is obvious. □

Definition A.2.5. Suppose that X → Z is a map of prestacks over BGm. We will say that X is graded

integrable if, for all non-positive graded rings B• as above, and for all maps Y defn
= (SpecB•)/Gm → Z over BGm,

the conclusion of Proposition A.2.4 holds for the base-change X ×Z Y → Y.

A.2.6. Suppose that Fil• S is a non-negatively filtered animated commutative ring and that Fil• I ⊂ Fil• S is a

filtered ideal with the following properties:

• Fili S is discrete for all i ∈ Z;
• Film I = 0 for m ≤ 0; in particular, the map Fil1 I → Fil1 S → S is identically zero.

Consider the ideal J ⊂ Rees(Fil• S) of the Rees algebra given by

J =

∞⊕
i=1

Fili I · t−i ⊂
⊕
i∈Z

Fili S · t−i = Rees(Fil• S).
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This is a homogeneous ideal, and so, for each m ≥ 1, we can consider the quotient Rees(Fil• S)/Jm: it corresponds

to a filtered animated commutative ring structure Fil•(m) S on S with

Fili(m) S = Fili S/

 ∑
k1+...+km=i

ki≥1

im(Filk1 I ⊗S · · · ⊗S Filkm I)

 .

Proposition A.2.7. Suppose that we have a relatively locally almost finitely presented derived Artin stack X → Z)
with quasi-affine diagonal. Then the natural map

Map/Z(Z,X )→ lim←−
m

Map/Z(R(Fil
•
(m) S),X )

is an equivalence.

Proof. As above, we reduce to knowing that

APerfcn(R(Fil• S))→ lim←−
m

APerfcn(R(Fil•(m) S))

is an equivalence, which in turn follows easily from the observation that the map Fili S → Fili(m) S is an equivalence

for all i < m. □

Definition A.2.8. Suppose that X → Y is a map of prestacks over A1/Gm. We will say that X is filtered

integrable if, for all pairs (Fil• S,Fil• I) satisfying the above conditions, and for all maps Z defn
= R(Fil• S) → Y

over A1/Gm, the conclusion of Proposition A.2.7 holds for the base-change X ×Y Z → Z.
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[2] Johannes AnschÃ¼tz et al. “On the p-adic theory of local models”. In: (2022). arXiv: 2201.01234 [math.AG].

url: https://arxiv.org/abs/2201.01234.

[3] M. Artin and J. S. Milne. “Duality in the flat cohomology of curves”. In: Invent. Math. 35 (1976), pp. 111–129.

[4] Sebastian Bartling. “G-µ-displays and local shtuka”. In: (2022). url: https://arxiv.org/abs/2206.13194.

[5] Pierre Berthelot, Lawrence Breen, and William Messing. Théorie de Dieudonné cristalline. II. Vol. 930.
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[17] O. Bültel and G. Pappas. “(G,µ)-displays and Rapoport-Zink spaces”. In: J. Inst. Math. Jussieu 19.4 (2020),

pp. 1211–1257.

[18] Bryden Cais, Jordan S. Ellenberg, and David Zureick-Brown. “Random Dieudonné modules, random p-
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