CONNECTED COMPONENTS OF SPECIAL CYCLES ON SHIMURA VARIETIES

KEERTHI MADAPUSI

ABSTRACT. I use methods of Chai-Hida and ordinary p-Hecke correspondences to study the set of irreducible compo-
nents of special fibers of special cycles of sufficiently low codimension in integral models of GSpin Shimura varieties,
and apply this to prove irreducibility results for the special fibers of the moduli of polarized K3 surfaces. These
results are also applied in joint work with Howard on the modularity of generating series of higher codimension
cycles on GSpin Shimura varieties.

INTRODUCTION

The goal of this paper is to use p-Hecke correspondences—following in spirit a paper of de Jong [5]—to obtain
control over irreducible components of the special fibers of certain cycles on GSpin Shimura varieties. More precisely,
I show that, under some numerical constraints, each such component is the specialization of a unique component
in the generic fiber. This plays a key role in the proof of the main result in [12] on the modularity of generating
series of special cycles of higher codimension.

As a more immediate application, I study the moduli of polarized K3 surfaces. Fix a positive integer d > 1, and
consider the moduli stack M3, over Z that parameterizes primitively polarized K3 surfaces of degree 2d. I prove:

Theorem A. For every prime p, the fiber I\/ISCUFP is geometrically irreducible.

When p is odd and p? { d, this result was shown in [21]. In effect, what’s happening in this paper is a reduction
to this known case, by relating the ordinary locus of Mg, Jp2 with that of M3, using p-Hecke correspondences.

To state the somewhat technical main result I prove in this paper, we begin with a GSpin Shimura variety Shg
associated with a quadratic lattice V7 of signature (n,2). On this variety, we have an infinite collection of special
cycles Zx (A) — Shx associated with positive definite lattices A, which in the complex analytic fiber parameterize
Noether-Lefschetz type loci where the canonical family of polarized Z-Hodge structures V' associated with V7 pick
up a collection of Hodge tensors generating a subspace isometric to A. As explained in the series of papers |22} |1}
2, |13} |12], the Shimura variety admits a natural integral model Sk over Z, along with a cycle Zx(A) extending
Zr(A). Within Zx (A), we have a certain open ‘non-degenerate’ locus ° Zx (A), whose complex fiber is the subspace
on which A spans a saturated submodule of the Z-Hodge structure V. Special cases of this construction include
classical Noether-Lefschetz loci on the moduli of polarized K3 surfaces, where °Zx(A) parameterizes isometric
embeddings of A as a direct summand in the primitive Picard lattice.

In any case, we are now ready for the main result:

Theorem B. Let p be a prime where Vy is self-dual, and suppose that rank(A) < ”7_4. Then:

(1) °Zx(N)z,, is normal, flat, and equidimensional of dimension n —rank(A) + 1 = dim Sk — rank(A).
(2) The special fiber ° Zx (A)r, is geometrically normal and equidimensional of dimension n — rank(A).
(8) The natural map

™0 (OZK(A)ED) E—) 0 (OZK(A)@) .
is a bijection.

The first two assertions are already explained in |13} |12]. It is the last statement that is the focus of this paper.

The Hodge theoretic analogue of the essential idea of proof—which is by induction on the p-adic valuation of the

discriminant of A—is easy to explain. Let’s do so in the context of Theorem [A] Suppose that (X, ) is a primitively

polarized K3 surface over C of degree 2d. Then the Betti cohomology H?(X,Z) is a pure Hodge structure of

weight 2, and the Poincaré pairing endows it with the structure of a quadratic space over Z that is isometric to
1
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U=H%®g E?Q. Here, H is the hyperbolic plane, and Eg is the root lattice corresponding to its eponymous
Dynkin type.

We will distinguish one hyperbolic plane H C U, and choose a hyperbolic basis e, f for it satisfying e? = f2? =
0,le, f] = 1. Let U’ = H+ C U be its orthogonal complement, so that we can write U as the orthogonal direct sum

U=H LU

We can choose the isometry
H*(X,7) = U
so that the Chern class of £ maps to the element e + df € H. Within H2(X, Q) we have a lattice corresponding on
the right hand side to the subspace
(p~le,pf) LU C Up.

The basic point is that this lattice corresponds to an ‘isogenous’ K3 surface X’ equipped with an isometry
H(X',Z) = (pe,p™ ' f) LU,

and that it admits a canonical primitive polarization ¢’ of degree 2p?d, whose Chern class maps under the above
isometry to the element pe + p? - (p~1f).

If one does this carefully in families, one finds essentially a Hecke correspondence mapping the moduli of primi-
tively polarized K3 surfaces of degree 2p?d to that of degree 2d, and this allows the direct comparison between their
connected components.

Inspired by [5], I show that a similar argument can be made in the special fiber if we work over the ordinary
locus, and this gives us the proof of Theorem [B] One can then easily deduce Theorem [A] as a special case where
rank(A) = 1 using the results of [21]. Here’s the line of reasoning for the former theorem:

e The stack OZK(A)Z(p) is a disjoint union of open subspaces OSng(p) of integral models SKg7(p) of GSpin

Shimura varieties associated with certain direct summands V;Z C Vz. When A is mazimal at p, one can
delete the qualifier ‘of open subspaces’, and the compactifications from [24] now yield (3) of Theorem

e When A is contained in a positive definite lattice A, with []\ : A] = p, by restricting to the ordinary loci in
the mod-p fiber, I use ordinary Hecke correpondences, combined with the Hodge-theoretic idea explained
above, to show that there is a map

T 2PN, = °ZEY(A)s,

e [ then use Serre-Tate deformation theory, a key argument of Chai-Hida for the irreducibility of monodromy
of the ordinary Igusa tower, and the inductive hypothesis to show that 7 induces a bijection on geometric
connected components.

e A comparison with the analogous construction in the generic fiber using classical Hecke correspondences
now finishes the job.

Here is the organization of this paper:

e The first two sections, which deal with ordinary loci in integral models of Shimura varieties and ordinary
Hecke correspondences, are covering ‘well-known’ ground, and are included for a lack of convenient reference
that works in the generality that I need.

e Section |3 reviews the use of a slick argument of Chai and Hida for the control of the monodromy of Igusa
towers, and applies it to the ordinary case we care about.

e In the first three sections, I work in the generality of Shimura varieties of Hodge type at primes with
non-empty ordinary loci. In Section [5} I specialize to the case of GSpin Shimura varieties and—after some
prerequisites on quadratic lattices and the group schemes associated with them covered in Section [d—apply
the results from the three initial sections to prove the main results.
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CONVENTIONS

(1) We will fix a prime number p for the entirety of this paper.

(2) Given a set X and any Grothendieck site, we will write X for the locally constant sheaf over the site
associated with the constant presheaf sending every object to X.

(3) Given a topos, a pro-finite group H presented as an inverse limit of finite quotients H,,, and an object S in
the topos, an H-torsor 7w : P — S is an inverse system

{'/Tn . Pn — S}nezzla

where 7, is a torsor under H,). In particular, this applies to the situation where D is a smooth group
scheme over Z, with H = D(Z,) and H,, = D(Z/p"Z).
(4) Given an H-torsor P as above and a finite H,-set Y, we set

Py =P x"y L (P, xY)/H,,
where H,, acts diagonally on the product. If Y is a pro-finite set equipped with a continuous action of H,
we can similarly define a contraction product P xH Y via an inverse limit of the construction applied at
finite levels.
(5) For any finite set of primes T', we will set

af =11,

0¢T

the restricted product over all completions of Q at finite places not in 7. If "= {¢} is a singleton, we will
write Aff instead.

(6) For any local or global field F' in characteristic 0, we will write O for its ring of integers.

(7) Suppose that X is a scheme or stack over a localization € of O in which p is not invertible. For any place
v[pt N of F, we will write X, (resp. X,) for the base-change of X over the localization O () (resp. the
completion ) at v. For M € €, we will write X[M ] for the base-change over OjM ~!].

(8) Suppose that R is a ring and suppose that C is an R-linear tensor category that is a faithful tensor sub-
category of Modg, the category of R-modules. Suppose in addition that C is closed under taking duals,
symmetric and exterior powers in Modg. Then, for any object D € Obj(C), we will denote by D® the
direct sum of the tensor, symmetric and exterior powers of D and its dual.

(9) All formal schemes over Z, will be p-adic: That is, they are functors on p-nilpotent rings.

(10) Given a connected reductive group G over a field F, we write G4°* C G for its derived subgroup, pg : G5¢ —
G for the simply connected cover of its derived group and G?? for its adjoint quotient.
(11) Fix an algebraic closure F' for F. For any torus T over F, we set

X* (T) = Hom(Gm,F‘aTF‘) ; X*(T> = HOHl(TF, Gm,ﬁ')

for the cocharacter and character groups of T, respectively.

(12) For a perfect field &, we will write W (k) for its ring of Witt vectors and denote by o : W (k) — W (k) the
canonical lift of Frobenius.

(13) Given a product X X -+ X X} in a category with finite products, we will write pr; for the projection onto
the i-th factor.

1. ORDINARY LOCI OF SHIMURA VARIETIES

We will fix a Shimura datum (G, X). The purpose of this section is to recall and situate some results of Noot [26]
regarding the structure of the ordinary loci of integral models of Shimura varieties associated with this datum

1.1. Background on Shimura varieties of Hodge type.
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1.1.1. Given z € X, we have the associated homomorphism of R-groups:
hy:S= Res@/R Gm,]R — Gk.
We also have the associated (minuscule) cocharacter:

z(z,1)

~ ha
te 2 G Gm,c X Gyc — Sc — Gc.

The G(R)-conjugacy class of h,, and hence the G(C)-conjugacy class {ix } o 0f f1z, is independent of the choice
of z. Let E C C be the reflex field for (G, X): This is the field of definition of {ux }so, and is a finite extension of
Q. This gives us a geometric conjugacy class [p] € (Hom(G,,, G)/G)(FE). Given a place v|p of E we obtain in turn
a geometric conjugacy class [u,] defined over F,

Construction 1.1.2. We will assume for the rest of the section that the Shimura datum is of Hodge type, so that
it is equipped with an embedding

(G, X) < (GSp(H),S*(H))
into a Siegel Shimura datumﬂ We fix a Z-lattice Hz C H on which the symplectic form is Z-valued, and we take
K, C G(Qp) to be the stabilizer of H, = Z, ®z Hz. Let K C G(Ay) be a compact open subgroup of the form
K,K? for KP C G(A?) stabilizing the prime-to-p lattice ZP ®7 Hyz, and let K* C GSp(H)(Ay) be the stabilizer of

7 ®7 Hy. Then we obtain a finite unramified map of Shimura varieties (or rather stacks)

Shy <" Shy (G, X) = E ®g Shyes 2" Shyes (GSp(H), ST (H)).

The Shimura variety Shy: has an integral model Sk over SpecZ as a certain moduli stack of polarized abelian
varieties. Using the symplectic representation H and the lattice Hz, we obtain a normal integral model Si for Shx
over O by taking the normalization of O ®7 Sk+ in Shg; see for instance 16} (1.3.5)].

1.1.3.  Suppose that Gz, is a smooth group scheme over Z, with connected special fiber and with generic fiber G,
such that K}, = Gz,(Zy,). Suppose also that we have a collection of tensors {s.} C H%’D such that their pointwise
stabilizer in GL(Hz,) is Gz, .

Lemma 1.1.4. The p-adic local system H, = T,(A)" over Sk[1/p] is equipped with a canonical Gz, -structure.
More precisely, there exist canonical tensors {sap} C H°(Sk[1/p], HY) such that, at each geometric point x :

Spec F' — Sk [1/p], there is an isomorphism Hy, — Hy, , carrying {sa} to {sapu}-
Proof. See the discussion in (16| (1.3.4)]. O

Remark 1.1.5. The de Rham realization Hqr = H}(A/Sk), when restricted to the generic fiber Shy, is also
equipped with a canonical G-structure as a filtered vector bundle with integrable connection. That is, Hyg|sh
is equipped with a two step Hodge filtration Filfq, Har|[sn, concentrated in degrees 0 and 1 and a Gauss-Manin
connection, and we have tensors {sq,qr} C Fil’(HSy|sh,) that are parallel for this connection. Moreover, for any
point  : Spec L — Shg with L algebraically closed, there exists an isomorphism L®g H = Hgg , carrying {1®s,}
to {Sq,dr. } such that the Hodge filtration pulls back to a filtration on L ®g H that is split by a cocharacter in the
conjugacy class [u~1].

Lemma 1.1.6. Fiz a place vlp of E. Suppose that we have a perfect field k of characteristic p and a point
xo € Sk.v(k). Associated with this is the abelian variety Ay, , as well as the p-divisible group Gz, = Ay, [p°]. Then
Gz, 15 equipped with a canonical G-structure compatible with the Gz, -structure over Sk [1/p]. More precisely, the
following holds:
(1) If Heyis zy = D( Ay, ) (W (k)) is the contravariant Dieudonné module associated with Ay, then there exist
Frobenius invariant tensors
{Sa,cris,zo} C H®

cris,zg

and an isomorphism W (k)[1/p] @o H = Heris 2o carrying {1 ® sq} t0 {Sa.cris.oo }-

1One can relax this to asking for (G, X) to be merely of abelian type, but I will restrict to the Hodge type case in this paper.
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(2) If L/W (k)[1/p] is a p-adically complete discrete valuation field with residue field k and © € Sk (0L) is a
lift of x¢ with image T € Shy (L) for an algebraic closure L of L, then the p-adic comparison isomorphism

Bcris ®Zp Hp.i — Bcris ®W(I’€) Hcris,zo
carries {Sa,pz}; t0 {Sa,cris,zo }-

Proof. This is shown in |16, Prop. 1.3.7]. O

Remark 1.1.7. In the situation of assertion (1) of Lemma via a choice of isomorphism W (x)[1/p|®z, Hz, =

H_ 4, , the o-semilinear isomorphism Hyig, 4, = H_ s », underlying its structure of an F-isocrystal corresponds
to an element b,, € G(W(k)[1/p]) whose o-conjugacy class [b,,] € B(Gq,) is independent of the choice of the
isomorphism. Moreover, this class is in fact [y, !]-admissible; see [16, Lemma 1.3.9].

Remark 1.1.8. In the situation of assertion (2) of Lemma [1.1.6] we also have the Berthelot-Ogus comparison
isomorphism

L ®W(m) Hcris,ato — HdR,z[pil]
This carries {1 ® Sq cris,zg b O {Sa’dR7w[p—1]}, and is compatible with the combination of the crystalline comparison
isomorphism with the de Rham comparison isomorphism

Byr ®z, Hpz — Bar ®¢, Har,z,-

In particular, the de Rham comparison isomorphism carries {sa pz} t0 {Sa,ar,«} C Hig ,[1/p]. Further, for any

isomorphism L ®q H = Hgg , carrying {1 ® so} to {sq,dr,s}, the Hodge filtration Filhdg Hgg , pulls back to a
filtration on L ®g H that is split by a cocharacter in the geometric conjugacy class [, !].

Definition 1.1.9. In the situation of Lemma we will say that G, has a Gz, -structure if we have {Sa,cris,zo } C
H®

cris,zg

and if there exists an isomorphism W (x) ®z, Hz, = H.is o, carrying {1 ® so} t0 {Sa.cris,azo |-

Remark 1.1.10. Suppose that Gz, is reductive, so that K, is hyperspecial. Then, for any place v|p of E, Sk ()
is the integral canonical model for Shx over O (., constructed in [17,115], and is in particular independent of the
choice of symplectic representation H and the lattice Hyz. Moreover, in this case, for all g € S K,(v)(k‘) as above,
Gz, is equipped with a Gz, -structure; see [17, Corollary (1.4.3)] and [15, Theorem 2.5].

1.2. Deformation theory over the ordinary locus. Fix a place v|p of E such that Q, = E,, so that [u,] is
defined over Q,. In this subsection, we will look at the deformation rings of Sk (,) at its ordinary points, under
some assumptions.

Assumption 1.2.1. The conjugacy class [i,] admits a representative p, : Gy, z, — Gz, whose centralizer Mz, C
GZp is smooth with connected special fiber.

Remark 1.2.2. Under this assumption, we have a decomposition Hz,, = Hép @ ng where H%p is the eigenspace

i

on which p,(z) acts via z7*. Moreover, for all a, we have u,(2)$0 = Sa.

Remark 1.2.3. If Gz, is reductive, then a representative p, always exists. To see this, one chooses a maximal
torus T' C Gz, contained in a Borel subgroup of Gz, . There is a unique representative p,, of the conjugacy class [u,]
factoring through 7' and dominant with respect to the choice of Borel, and this does the job for us. The centralizer
of u, is a Levi subgroup of Gz, and is thus reductive with connected fibers.

Definition 1.2.4. Given an algebraically closed field « in characteristic p, we will say that a point zg € Sk (k) is
pw-ordinary or simply ordinary if G,, admits a Gz, -structure, and if there exists an isomorphism W (x)®z, Hz, =
H_,;s », with the following properties:
(1) It carries {1 ® s} to {Sa cris,zo -
(2) The o-semilinear endomorphism of Heyis 5, arising from its structure of a Dieudonné module conjugates
under the isomorphism to the endomorphism 1 ® g, (p) ' of W (k) ®z, Hy. In other words, it acts as p’ on
W (k) @z, Hy , fori=0,1.
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Remark 1.2.5. If z( is an ordinary point, the abelian variety A,, is ordinary in the usual sense: We have
Gao ~ G&& x GIME where ggg (resp. GIWIY) is an étale (resp. a multiplicative) p-divisible group. Under the
isomorphism W (k)®z, Hz, — Heris .z, as in the definition, W (x)®z, ng (resp. W(k)®z, Hép) maps isomorphically

for Q;g (resp. H™W for gg(;ult).

onto the Dieudonné module H¢! e
)

cris,zg
Remark 1.2.6. If Gz, is reductive, then the converse of Remark holds: If A, is ordinary in the usual sense,
then x( is ordinary in our sense here. Indeed, by Remark Gz, is equipped with a Gz, -structure. Moreover,
there exists a choice of isomorphism witnessing the G7z,-structure such that the element b,, from Remark @ is
of the form v(p) for some cocharacter v : Gy, w(x) — Gw(x) acting with weights 0,1 on W (k) ®z, Hz,. We can
further assume that v factors through Ty (,), where T' C Gz, is a maximal torus as in Remark and that it is
dominant with respect to the choice of Borel made there. Now the condition that the o-conjugacy class of v(p) is
[, 1]-admissible forces the equality v = !

Notation 1.2.7. Given an algebraically closed field x in characteristic p, write Arty(,) for the category of Artin
local W (k)-algebras with residue field x. Given C' € Artyy (), write me for its maximal ideal. Note that 1 +mc as
a group under multiplication is p"-torsion for n sufficiently large and so can be viewed as a Z,-module.

Peﬁnition 1.2.8. Given a Zy-module M, the associated formal torus with character group M is the functor
Tar on Artyy () given by

Tar(C) = Homg, (M, 1 + m¢).
We will call MY = Homg, (M, Z,) the cocharacter group for T

Remark 1.2.9. Set
ggt = @(H%pv(@p/zp) ) g(r)mllt = @(H%pvﬂpw)-
These are p-divisible groups over Z,,.
Suppose that we have an ordinary point zg € Sk (k). Fix a choice of isomorphism witnessing the ordinariness
of xg: This gives rise via Dieudonné theory to isomorphisms of p-divisible groups

k®z, G& S5 G 1 k@, G S gt
By classical Serre-Tate ordinary theory [14], the deformation functor Defg, ~on Arty (. is now isomorphic to the
functor

. . /
Ext(98t7 g(r)nult) : C' +— Ext (C ®Zp g8t7 C ®Zp g(r)nult)
= Hom(Hy, , Hy ) ®z, H'(Spec C, pipe)
= Hom(Hz,, HY ) ®z, (1+me).

Here, H 1(Spec C, iy ) is the set of isomorphism classes of extensions of e by Q,/Z, as fppf sheaves over Spec C
equipped with a trivialization over k. The last isomorphism is obtained from Kummer theory.

In particular, Defg, is isomorphic to the formal torus T over W (k) with cocharacter group Hom(H%p,ng).
This isomorphism is well-defined up to the action of Mz, (Z,) on the cocharacter group.

Remark 1.2.10. Let R be the coordinate ring of T and let GV he the universal deformation of Gy over R.
Dieudonné theory over such formally smooth rings associates with GV its Dieudonné module M = D(G""V)(R),
which is equipped with a topologically locally nilpotent integrable connection V and a ¢-semilinear map F' : M — M
that is horizontal for the connection. This can be described explicitly following de Jong [6, §4.3]: We have the
tautological element
¢"™ € Hom(Hy , Hp ) @z, (14 mg)

mapping to

dlog(¢"™") € Hom(Hy, , Hy ) ®z, Qg () C End(Hz,) @z, QU jw ()
We now have M = R ®z, Hz,. The connection V is given by d ® 1 + dlog(q"V), and we have F = ¢ ® yu,(p) L.

Definition 1.2.11. For an ordinary algebraically closed point zg € Sk (%), the canonical lift of G, is the lift

~

Gt over W (k) corresponding to the identity section of the formal torus 7',
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Definition 1.2.12. Let LieU,, C LieGy, be the eigenspace on which the adjoint action of tp(z) is via z. We have
LieU,, = LieG N Hom(Hy ,Hy ) C End(Hz,)

where we are viewing Hom(H%p7 H 2,,) as the space of endomorphisms of Hz, whose kernel contains H. 2,, and whose
image is contained in H(Z)p. Let fG be the formal torus with cocharacter group LieU,, : This is a sub-formal torus
of T.

Remark 1.2.13. Let Rg be the ring of functions of sz it is equipped with a canonical Frobenius lift ¢ given
by the p-power map. The map f : R — Rg corresponding to T — T is compatible with Frobenius lifts. Via
base-change, we now see from Remark [1.2.10] that the Dieudonné module for the universal p-divisible group over

Rg is given by Mg = Rg ®z, Hz, with connection given by Vg = d ® 1 + dlog(f(quniv)) and @g-semilinear
endomorphism Fg = pg ® i, (p) . Now, we have

f(quniv) € LieU, ®z, (14+mp,) C LieG ®z, (1 +mp).

This shows that the tensors so r, = 1 ® Sa,cris,zo € Mg are parallel for the connection. They are also invariant
under Fg.

Proposition 1.2.14. Let o € Sk.v(k) be ordinary, and let UIU be the deformatwn space for Sk, at xo. If the
image of UI0 m Defgz =y T contains the canonical lift, then UI0 is isomorphic to TG cT.

Proof First, note that by construction and the Serre-Tate theorem for deformations of abelian varieties, the map
UI0 — T is finite. Moreover, UgcO = Spf R,,, where R, is a complete Noetherian local W (k)-algebra of dimension

dim Sk = dim T¢;. Moreover, by a theorem of Noot |26, Theorem 3.7], there is a finite extension L/W (x)[1/p] such
that each irreducible component of UI0 oL defn Spf (0L @w (x) Ra,) is isomorphic to the translate by a torsion point
of a formal sub-torus of TgL.

Consider the logarithm map

(:T(61) = Hom(Hj,, HY ) @z, (1+mp) ~=% Ho m(Hyz,, Hp,) @z, L.

I claim that we have R
Uy (0L)) C LieU,, ®z, L.
For this, we will need the following interpretation of the map ¢: Given a lift x € f(ﬁ 1), we obtain a p-divisible
group G,. As in Remark we have a canonical isomorphism L ®vy () Heris,z, = Hgg ;[1/p], and we therefore
have an isomorphism
L ®Zp HZ:D — HdR7$[1/p]
by our choice of fixed isomorphism. The Hodge filtration arising from this identification is of the form
Fil} (L ®z, Hz,) = exp(N,)(L ®z, Hy ),

for some N, € L @z, Hom(H} , HY ). It follows from a computation of Katz |7, A.3] that, at least up to sign, we
have ’ ’
N, = ((x) € Hom(Hy, , Hy ) @z, L.

Now, by Remark ifre ﬁmo(ﬁL), then Fill (L ®z, Hz,) is split by a cocharacter conjugate to urt. In
particular, the parabolic subgroup P, C G, stabilizing Fill, (L ®z, Hz,) is G(L)-conjugate to the subgroup P, C G,
stabilizing L ®z, H%p. That is, within the set Gr(L) of subspaces of middle dimension in Hy,, Filglc(L ®z, Hz,) is in
the image of G(L). However, the map

Ni—exp(N)(L®z, Hle )

Gr(L)

is injective, with image isomorphic to the L-points of the open Bruhat cell, and the pre-image of the image of G(L)
is precisely L ®z, LieU, . This proves the claim.

L @z, Hom(Hy, , Hy )

Now, it follows that the irreducible components of ﬁxmm are all translates by torsion points of fa,m- By our
hypothesis, one of these components must contain the identity section, and must therefore be isomorphic to T, s, -
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This shows that TG is in the iamge of Ux and by dimension considerations we see that we must in fact have
Ugc0 —> TG J

Remark 1.2.15. Maintain the hypotheses of Proposition Let [7;‘3 be the rigid analytic space over W (x)[1/p]
associated with ﬁm. The proposition shows that this is isomorphic to an open unit ball of dimension dim Shyx
contained in the rigid analytic space Sh"}?W( )1/p]- Over the latter, the restriction of the vector bundle Hyg is
equlpped with an integrable connection and parallel tensors {s, dr}. On the other hand, under the 1somorph1sm

UgCO = Tg, the vector bundle with integrable connection Mg over the latter constructed in Remark (1 pulls
back to the restriction of Hgr, and the tensors {s r } constructed in loc. cit. pull back to horizontal tensors in

H O(U;‘S, HE,). These tensors agree with the restrictions of {s,ar}: Indeed, since both collections are parallel for

the connectlon it suffices to verify that they agree at one point. One can do this at the point corresponding to the
canonical lift via Remark [1.1.8§]

The following assumption will be in force for the rest of this section.

Assumption 1.2.16. For all £ algebraically closed and all ordinary points zo € Sk (k), the image of [71,0 in
Defg, contains the canonical lift.

Remark 1.2.17. The above assumption—and hence the conclusion of Proposition [1.2.14}—is always valid when
Gz, is reductive. See for instance [28, Theorem 6.5].

Corollary 1.2.18. The ordinary points form an open substack S}’g‘i(v) of the special fiber S j(v) = k(v) @6y, Sk,v-

Proof. With the notation of Proposition|1.2.14] and its proof, it is enough to show that a geometric generic point of
Spec Ry, /(p) is ordinary in our sense. Write Har,r,, for the finite free R;,-module associated with HS: spec Rag-

Via the isomorphism R, = Re, Ry, is equipped with a Frobenius lift ¢, and we have an isomorphism
F:¢*Har g, [p”'] = Har.r,,[p""]-
By Remark the restriction of {s,.ar} over Spec R, [p~!] gives a collection
{Sa,dR,RIO} c H((?R»Raco
that is invariant under F', and moreover there is an isomorphism
(1.2.18.1) Ry, ®z, Hz, = Hag,r,,

carrying {1 ® so} to {Sa,dR,Rzo }, and is such that F pulls back to the automorphism 1 ® p,(p)~1 of Ry, ®z, Hz,.

If F' is an algebraic closure of the fraction field of R, /(p), we can lift Rmo — F uniquely to a map Ry, — W (F)
that respects Frobenius lifts, and the base-change over W (F') of ( now witnesses the ordinariness of the
corresponding F-valued point of Sk (.. O

Corollary 1.2.19. Let Sord be the formal completion of Sk () along the (open) ordinary locus S}’g‘}f(?)), and let

S?;i " C Shi g, be the corresponding rigid analytic tube. Then the restriction of {saar} over Sord M extends
canonically to a collection of parallel tensors {sq.ar} C HO(S})gi,Fllo(HfR)).
Proof. Immediate from Remark O

1.3. The ordinary Igusa tower. Here, we review the story of the Igusa tower over the ordinary locus.
Remark 1.3.1. Set G defn Gst x Gt and note that it can be equipped with a canonical Gz,-structure in the
following sense: If we set Hy = ID(Gy)(Z,), then there is an isomorphism

Hy = Hy & Hj = Hy,

well-defined up to the action of Mz, (Z,), and we can use this to obtain F-invariant tensors {sa,0} C HY, which
are carried to {s,} under any choice of such isomorphism.
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Definition 1.3.2. For an algebraically closed field x in characteristic p, an automorphism of k¥ ®z, Go is Gz,-
structure preserving if the induced automorphism of W (k) ®z, Hy fixes the tensors {ss0}.

For a p-complete Z,-algebra R, an automorphism a of R ®z, Go is Gz,-structure preserving its restriction
along any geometric point of Spf R is Gz, -structure preserving.

It is Mz -structure preserving if in addition it preserves the direct product structure R ®z, Go = (R ®z,
g5') x (R®z, G5™")

Notation 1.3.3. For a p-complete ring R, write Autg(R ®z, Go) (resp. Auty (R ®z, Go)) for the group of Gz, -
structure (resp. Mz, -structure) preserving automorphisms. The functors

R— Autg(R Rz, go) ; R Auty (R Rz, go)
will be denoted by Aut(Go) and Aut,,(Go), respectively.
Lemma 1.3.4. Consider the formal functors

Aut(Go), Auty, (Go) : Spf R — Autg (R ®z, Go).

(1) There is an isomorphism Aut,, (Go) — My, (Zy) well-defined up to conjugation by an element of My, (Zy).

(2) Every a € Autg(R ®z, Go) carries R @z, G to itself.
(8) If R is Noetherian, the natural map

Autpr (R ®z, Go) — Autg(R ®z, Go)

is an isomorphism.

Proof. The first assertion follows from the definitions and the fact that the automorphism sheaf Aut(G§* x Gu!t)
of product structure preserving automorphisms of Gy is isomorphic up to conjugation by Mz, (Z,) to the locally
constant pro-finite sheaf of groups GL(H%p) X GL(H%I)).

Assertion (2) amounts to the easy fact that there are no non-trivial homomorphisms pp~ — Qp/Z, over a
p-nilpotent base.

Assertion (3) follows from the observation that, for any Noetherian ring R, the space of maps Q,/Z, — pipe is
trivial. 0

Remark 1.3.5. The restriction of the p-divisible group G = A[p°] over ‘SA‘?{T% is canonically an extension

0—gmlt 5 gl — —G%—0,

Sy
where G™! is of multiplicative type and G is étale. If zq € S})(r(]lc(v)(li) is an algebraically closed point, then we
have a canonical splitting G,, — Got x gmult,

ét
Zo

Definition 1.3.6. For k algebraically closed, an isomorphism & ®z, Go = gt x g;;;ult ~ Gy, 1S GZp-structure

preserving if the associated isomorphism W (k) ®z, Hy — Heris z, carries {sa,0} t0 {Sa,cris,zo }

~ord ~ ~
Definition 1.3.7. We define Ig(;(r’v — S}}r% to be the formal scheme parameterizing, for each z : Spf R — S}’g’%, the
set of isomorphisms 7 : R ®z, Go = G x GMUIt guch that:

(1) n preserves the product structure on both sides;
(2) The restriction of 1 over any algebraically closed point is Gz, -structure preserving.

—~ord ~
Proposition 1.3.8. The map Ig(;(yv — S%rfi is a torsor under the locally constant pro-finite sheaf of groups

Aut(Go) ~ Mg, (Zy).

~ord
Proof. Given the natural action of Aut,;(Go) on Ig(;v7 it suffices to check the assertion over the complete local ring

— ~ord
R, at any F,-point xo. In fact, it suffices to show that Ig;v(Rxo) is non-empty, and this can be deduced from

Proposition [T:2.14] and Remark [[.2.13 O
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1.4. The generic fiber of the Igusa tower.

Notation 1.4.1. Let PZ_,, C Gy, be the subgroup stabilizing the subspace H%p C Hz,: its generic fiber is a parabolic
subgroup of Gig,. We have a natural quotient map PZ; — Mz, whose kernel is the commutative unipotent subgroup
UZ_pWith Lie algebra LieU, . Write I, — Shi for the Gz, (Z,)-torsor Shiw.

S\ord,an

Construction 1.4.2. We have two My, (Z,)-torsors over the analytic space S, ™. First, we can take the ana-

~ord, . . .
lytification Ig(; van of the Igusa tower. The second My, (Z,)-torsor is obtained as follows: The filtration on G| go.
) K,v
from Remark gives a corresponding filtration on the dual Tate module

\%
Tp <g|§(1)(rci}an> ~ Hp |§?§i},an
oord,an

yielding a short exact sequence 0 — Hgt — Hy|gora,an — H;““lt — 0 of pro-finite étale sheaves over Sy . This
K,v 5

yields a reduction of structure group of /g v|goraan to a Py (Zp)-torsor, which we denote by If,rfi “". Pushing out
K,v )

oord,an

via the quotient map Py (Z) — Mz, (Z,) now yields an Mz, (Zy)-torsor Iﬁijan — Sk

~ord,an . . ~big, ~ bi ~
Remark 1.4.3. By construction, Ig(;{’van is a subsheaf of the analytification Ig, #* of the sheaf Ig, ® over S}}r’%

~

parameterizing for x : Spf R — S}’gﬂ) pairs of isomorphisms R ®z, G* = G and R ®z, Gt = Ggmult This
analytification is simply the sheaf parameterizing pairs («, 8), where a (resp. ) is an isomorphism of pro-finite
étale Zjy-local systems ﬂ%p = HE' (resp. ﬂ%p(l) = ﬂ%p ®z, Z,(1) = H™'"). Here, Z,(1) = T,(Gy,)" is the
inverse cyclotomic tower.
~ big,an | ~
Note that Ig, = is a GL(Hp ) x GL(Hy )-torsor over S’;(ri’an.

Remark 1.4.4. Suppose that we have an algebraically closed point zy € S?(ri(v)(lﬁl) and that z € S}?ﬂ,(W(n)) is
its canonical lift. Write z also for the associated Spec W (k)[p~!]-point of Shx g,. We have a canonical splitting
H,, = Hgtm ® H™ which gives a reduction of structure for I, . to an Mz, (Z)-torsor I§3h, . C T80 that

p,x P,z
maps isomorphically onto IX/}’df; . Explicitly, if L is an algebraic closure of L = W (x)[1/p] and T € Shi (L) is the

associated geometric point, then If\j’;)z(f) is the set of Gz, -structure preserving isomorphisms Hz, = H, 5 that
carry Hy onto Hy' and Hj onto H™'".

~ ord, T\ - . . . -+
Remark 1.4.5. Similarly, one sees that IgC;,UZn(L) is also isomorphic to the same set, except that its Gal(L/L)-
structure is twisted by having the Galois group act on H%p via the inverse cyclotomic character. Indeed, a section

~ord ~
of (the non-empty set) Ig;v)w(W(/ﬁ)) is an isomorphism W (k) ®z, Go — G, that preserves Gz, -structure over .
Via the crystalline comparison isomorphism and assertion (2) of Lemma the associated isomorphism
Hy, & Hy, (1) = Ty(Go)” = Hy

of p-adic local systems over Spec L also preserves Gz -structure. We now recover our desired assertion by restricting
this isomorphism over Spec L.

Construction 1.4.6. Let Z;yd be the Z; -torsor over Spec @, corresponding to the p-adic cyclotomic tower: this
parameterizes isomorphisms of p-adic local systems Z, = Z,(1). There is a canonical Mz, (Z,) x Z, -equivariant
map

~ big,
(1.4.6.1) Iy x 7yl — Ig, ™"
over §?§i’an, where Z acts trivially on the right hand side. This is constructed as follows: A section on the left

over x : Spa(R, R") — 5;’;%’&“ yields isomorphisms

a:Hy = Hylys ' Hy = H s (L, = Z,(1)
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of p-adic sheaves over Spa(R, RT). We can now combine the last two to get an isomorphism 8’ @ (=% : ﬂ;(l) -

mult
p,xr

Proposition 1.4.7. The map (1.4.6.1) factors through an isomorphism of My, (Z,)-torsors

ordan _ZX rpcycl = ~ord,an
IM,U X% 27" = 1g g

where on the left we are using the action of Y = Gy (Zy) on Mz, (Z,) via the central cocharacter py* = Gy, 7, —
Mz,

Proof. First, note that, because of the centrality of u; !, the quotient on the left inherits the structure of an Mz, (Zy)-
torsor. The fact that (1.4.6.1) factors through this quotient is immediate from the construction, and amounts to
the observation that u,(z) acts on H%p via multiplication by z~!. To see that it maps isomorphically onto the other

~ord,an . s o
Mz, (Zy)-torsor Ig(;,(van, it suffices to test over a classical point in each connected component of S}){r’i’an. We can do
so over the canonical lifts of the F,-points of S}’(r’(}c(v) where Remarks and do the job. |

2. HECKE CORRESPONDENCES

This section is a review of p-Hecke correspondences on Shimura varieties via isogenies of abelian varieties. We
will consider both the generic fiber and the ordinary locus. The setup will be as in § [[-1]

2.1. Isogenies and p-Hecke correspondences in the generic fiber.

Definition 2.1.1. Suppose that L is an algebraically closed field in characteristic 0 and that we have s,¢ € Shy (L).
A p-quasi-isogeny [| f : As --+» A; preserves G-structure if the associated isomorphism f* : H, [p~!] =
H, :[p~'] carries {4t} t0 {Sap.s}. The type of such a p-quasi-isogeny is the unique class

lgl] € Gz, (Z)\G(Qp)/ Gz, (Zp) = Kp\G(Qyp)/ Kp

such that, for any choice of trivialization « : Hy, — H,, s (vesp. 3 : Hy, — H,;) carrying {sa} to {Sap,s} (resp.
60 {S0.p,1}); we have B~ o (f*) 7 o av € [|g]] € G(Q@p).

Definition 2.1.2. For s,t: Spec R — Shy arbitrary, a p-quasi-isogeny As --+ A; preserves G-structure (and
has type [|g|]) if its restriction over every geometric point of Spec R does so

Notation 2.1.3. With s,y : Spec R — Shg as above, write QIsog.(s,t) for the space of p-quasi-isogenies from
As to A; preserving G-structure. Write Isogq(s,t) for its subspace consisting of honest isogenies As — A; and
Qlsog 114 (s, t) for the subspace consisting of quasi-isogenies of type [|g|]. If s = ¢, we will write Aut¢(s) instead

of Qlsogg (s, s). We will view each of Qlsoge, Qlsogg (14, Is0g as presheaves over Shy x Shkﬁ via the pair (s, ).

Remark 2.1.4. If Gz, is reductive, then, for a choice of maximal torus 7' C Gz, as in Remark [[.2.3] the Cartan
decomposition tells us that every double coset [|g|] admits a unique representative of the form A(p) for some
dominant cocharacter A € X.(T') defined over Z,. In this situation, we will also write QIsogg ,(s,t) instead of

Qlsogg 141 (s, 1)

Construction 2.1.5. For any double coset [|g]] € K,\G(Qp)/K, and any choice of h € [|g]] C G(Qp), set
K, =KnNgKg~'. We have two maps s, 1, : Shg, — Shx where s, arises from conjugation by g~! and t, from
the natural inclusion, using which we can view Shr, as a scheme over Shy x Shg.

Proposition 2.1.6. There is an isomorphism Qlsogg (14 = Shg, over Shx x Shg.

2By this, we mean an element f € Hom(As, A:) ® Q such that, for some m,n > 0, p™ f € Hom(As, A;) is an isogeny of degree p".
3For connected Spec R it is enough to check at some geometric point.
4The product is over Spec E.
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Proof. Let’s begin by constructing an isomorphism such that we have a commuting diagram

QISOgG gl *> ShK

N/

For this, set K4, = K, N ngg’l and note that we have canonical bijections

kKgy p—kgKy

K/K, = Kyp/Kgp p9Kp/ Kp.

From this one deduces: If Shx» — Shg is the K-torsor parameterizing trivializations of H, with its Gz, -structure,
then we have

Shyr x 92 ) [K, 9K,/ K,] = Shg,,
so that we have a canonical isomorphism

Shir Xshy,t, Shi, = Shir x[K,gK,/Kp).

On the other hand, suppose that we have s,t : Spec R — Shg, a Gz, -structure preserving trivialization f3 :
ﬂzp = H),; of p-adic local systems over Spec R, and a Gz -structure preserving p-quasi-isogeny f : As --» A; of
type [|g]]. Consider the composition

g U g o B 1
Vi Hys = Hpslp™"] — Hy [p™7].

For any geometric point y : Spec L — Spec R, since f has type [|g|], we have
Vy(Hp,soy) = gleZp C Hg,
for some coset g1K, C [|g|], which is locally constant on Spec R. In this way, we get a map
Sh[{p XShK,tQISOgG,HgH — Sth X[Kpng/Kp] i) Sth XSh,tg Sth .

One checks that it is Kj-equivariant and so descends to a map QIsogg 14 — Shk, -

To construct the inverse, suppose now that we have ¢ : Spec R — Shg, [ : ﬂzp = H, ; and a locally constant
map 7y : Spec R — K,g7'K,/K,. We want to show that this arises from a pair (s, f), where s € Shx(R) and
fe QIsogG7[|gH(s,t). Without loss of generality, we can assume that ~ is constant and corresponds to a coset
91K, C [|g]]. We now get a p-adic local system

Blp (g1 Kyp) € Hpylp~ '],

which is of the form (f*)~}(T,(A)Y) for a p-quasi-isogeny A --» A; of abelian schemes over Spec R. One checks
now that we have A ~ A, where s € Shi (R) is the image of (¢, 3,7) under the map

Shyer X[K,gKp/Kp] = Shier Xsn t, Shi, —2 Shg, - Sh .

This both completes the construction of the desired isomorphism and also shows that it is compatible with the
maps s and sg. O

2.2. Ordinary isogenies and p-Hecke correspondences. Fix a place v|p of E.

Definition 2.2.1. Suppose that x is algebraically closed in characteristic p and that we have sg,to € Sk (v)(%).
A p-quasi-isogeny f : A, --+ A;, preserves G-structure if the associated isomorphism f* : H sy, [p~1] =
H. i 5,[p™ "] carries {sq cristo } t0 {Sa.cris,so - In general, if we have s,t : Spf R — Sk ,, for some p-complete ring R,
then a p-quasi-isogeny A --+ A; preserves G-structure if its restriction over every algebraically closed point of
Spf R preserves G-structure.
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Notation 2.2.2. With s,¢: Spf R — Sk, as above, write QIsogq(s,t) for the space of p-quasi-isogenies from A
to A; preserving G-structure, and Isogs(s,t) for its subspace consisting of honest isogenies A, — A;. If s = ¢, we
will write Autg(s) instead of Qlsoge(s, ).

From here on, we will restrict ourselves to the completion along the ordinary locus Sord with Assumption [1.2.16
in force.

Definition 2.2.3. If we have s,t : Spf R — 3})("1 for some p-complete ring R, a quasi-isogeny G x gmult —_,
¢ x gmult preserves M-structure if:
(1) Tt preserves the product structure on both sides;

(2) Its restriction over every algebraically closed point of Spf R preserves G-structure.

Remark 2.2.4. If R = k is an algebraically closed field, then any G-structure preserving quasi-isogeny Ay, --+ Ay,
is automatically M-structure preserving. Here, we are using the property that, for all zg € S}’(“}C(U)(/i), we have a

canonical isomorphism G,, — G&& x gmult,

Notation 2.2.5. With s,¢ : Spf R — Sk, as above, write QIsog,,(s,t) for the space of quasi-isogenies from
GEt x gmult o Get x Gmult preserving M-structure, and Isog,,(s,t) for its subspace consisting of honest isogenies
.As — At-
Definition 2.2.6. If  is algebraically closed and we have f € QIsog;(so,t0) = QlIsogea(so,to) for sg,to €
ngi(v)(ﬁ)7 the type of f is the double coset [|m(f)|] € Mz, (Z,)\M(Qyp)/Mz,(Z,) determined as follows. Choose
trivializations

a W(H) z, HZ,, = Hcris,so ; B W(K/) Rz, HZp = H s 1,
witnessing the ordinariness of sy and o: these are each well-defined up to multiplication by Mz, (Z,). Then [|m(f)|]
is the class of Bo (f*)"toa™! € M(Q,).

Definition 2.2.7. If we have s,t: Spf R — S}}r%, fe IsogG(s,t) and [|m|] € Mz, (Z,)\M(Qp)/Mz,(Zy) then we
will say that f has type [|m]] if its restriction to each algebraically closed point of Spf R has this property. We
will write QIsog (j((s,t) for the subspace consisting of such f. We also have the subspace QIsogyy (jj(s,t) C
QIsogG“mH(s, t) consisting of those f that are also M-structure preserving.

Example 2.2.8. Suppose that R is an [F\,-algebra and that we have s : Spec R — S}}“}C(v). Hitting s with the absolute

Frobenius of R gives another point s e S%“}C( (R) and we have the relative Frobenius map Fy : Ay — A,). This

is a p-isogeny, and is in fact M-structure preserving with type [u, (p)~1].

Remark 2.2.9. Definition gives something non-empty only when [|m/|] is contained in M(Q,) N End(Hz, ).
This will suffice for our purposes, but one can extend the definition usefully to all double cosets [|m|] in the following
way: Choose r > 0 such that [[p"m|] is contained in M(Q,) N End(Hz,), and define QlIsogg j,)(s,t) to be the
subspace of Qlsog(s,t) consisting of f such that p” f lies in QIsoge [jyrpm (s, ). By definition, multiplication-by-p”,
gives an isomorphism QIsog: () (s, t) = QIsoge 1prmy) (5, t). We have similar subspaces with G replaced with M
in the subscript.

Notation 2.2.10. Fix a double coset [|m|] € Mz, (Z,)\M(Q,)/Mz,(Z, ) Let

_—ord _—ord

QISOgG [iml] —> Sord X Sord ; QISOgM,Hm\ Sord X Sord
be the formal presheaves given by QIsogg (1,,,1(s,t) and QIsogyy (i (s, t), respectively.

Remark 2.2.11. If Gz, is reductive, then so is Mz, , and for the choice of maximal torus 7' C Gz, as in Re-
mark the Cartan decomposition tells us that every double coset [|m|] admits a unique representative of the
form A(p) for some cocharacter A € X, (T) defined over Z, and dominant with respect to Mz,. In this situation,
we will replace the [|m|] in the subscript with A, and write Qlsogg )(s,t) and Qlsogy, ,(s,t) instead. This notation
will also be used with A replaced by any other cocharacter in its Mz, -conjugacy class.

51t is important to work with honest isogenies here, since we will have use for their deformation theory. Quasi-isogenies on the other
hand always deform uniquely.
6The product is of formal stacks over Spf O ,,.
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Construction 2.2.12. Suppose that we have s,t: Spf R — S}}r%, [ € Qlsogyy () (s, 1) and a section
B:R®z, Go = G* x gt
~ord . ~ord L.
of Ig ,,(t). For any section a € Igy ,,(s), the composition

, g1
R ®Zp go % g;et % g;nult s gt % gmult T> R ®Zp go

is a self-quasi-isogeny that preserves M-structure, and so yields a locally constant map Spf R — M(Q,). The
induced map to M(Q,)/Mz,(Z,) is independent of the choice of o and lands in Mz, (Z,)mMz, (Z,)/Mz,(Zy). In
this way, we obtain a canonical map

~ord _——_0O

ord
(2.2.12.1) Ig, ¥ 8ot QIS0g s, [jm[) — IgKU X Mz, (Zy)mMsz,(Zy)/ Mz, (Zy).

By noting that taking inverses of quasi-isogenies flips source and target and switches a type [|m|] to its inverse
[[m~1], we also obtain a map

~ord _———ord

~ord
(2.2.12.2) T3k, X ggra o QIO [jmi) = 1810 X Mz, (Zyp)m ™My, (Zy,) /Mg, (Zy).

Notation 2.2.13. For a double coset [|m|] = Mz, (Z,)mMz,(Z,), set

~ord defn ~ord

Ig ) = Tgg, x Mo ") My, (Zy)mMy, (Z,) /Mg, (Zy).

Proposition 2.2.14. The maps (2.2.12.1)) and (2.2.12.2)) descend to maps sitting in commuting diagrams of formal
stacks

_—_ o0 ~ord _——ord ~ord
Qlisozy, Qiml] = 18[mp—1 QIs0g s [jm)) — 18[m)
Sy Sy

where the diagonal maps are finite étale over 3}’;‘3)

Proof. That the map descends amounts to checking K-equivariance, which is straightforward.
_——ord
By construction, QIsog M [jm]] is isomorphic—for some k > 1 sufficiently large—to an open and closed substack of

the formal stack Isogpk over Sord Sord whose fiber over a point (s,t) parameterizes product structure preserving
p-isogenies
gc’t X gmult N g X gmult
s s t
of degree bounded by p*. Via the projection onto the factor via s (resp. t) this formal stack is simply parameterizing
pairs of finite flat subgroup schemes of (G, GMUIY) (vesp. (GSt, GMUY)) of combined rank at most p*. This is
represented by a finite étale stack over Sord |

Construction 2.2.15. Fix an algebraically closed field x of characteristic p. For m € M(Q,) N End(Hz,), write

m% m! for the induced endomorphisms of H‘Z) and Hy 1. 'We then get two maps

_om',m%o_ : LieU,, —>Hom(HZ ,HZ)

which in turn give us maps Ll Te: — T of formal tori over W (k).
Let TG m C TG X T be the diagonalizable formal group sitting in an exact sequence

1 o T ity B o iy YmoPra—¥mopra, 7

"We will see in the next subsection that the top arrows are in fact isomorphisms.
8The product here is over Spf W (k).
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Remark 2.2.16. The maps _om!, m®o_ are injective, and after inverting p one differs from the other by conjugation
by m. This implies that the maps s,, and t,, are both finite flat maps that are purely inseparable mod-p: Indeed,
the corresponding maps of character groups are isomorphisms of Q,-vector spaces after inverting p.

_—ord .
Proposition 2.2.17. Suppose that we have (so, to, f) € QIsog(g’“m”(ﬁ;), and let Uiy, 1., 1) be the deformation functor

_——ord

for QIsogGﬂmH on Artyy (). Then we can choose isomorphisms fG = ﬁsO and fG = fjto as in Proposition|1.2.14
such that we have a commuting diagram

A~ Smytm A~ A~
Tgﬂn (—)> TG X TG

12
12

~

Ulosto. ) e Yso X Uty
where the left vertical arrow is also an isomorphism.
Proof. Choose isomorphisms
Gto % K ®z, o % Gso
witnessing the ordinariness of ¢ty and sg such that the G-structure preserving self-isogeny
B lofoa:k®z, Go = k®z, Go

corresponds to m € M(Q,) = Autg(Go). By Proposition we can use o and 3 to get isomorphisms Ty —» [750
and f(; i) ﬁto

Over f(; X f(; ~ (750 X (7750, we have two extensions G, and G; of ggt by Q(‘)nult, and the locus ﬁ(SO,tO’f) is where
the isogeny f lifts to an isogeny between these extensions. Now, the étale part f (resp. multiplicative part fmult)
of f lifts uniquely, and is given by

é Omo &
gé* = Hom(HS ,Q,/Z,) =" Hom(H%,,Q,/Z,) = G"
(resp. Gt = @(H%p,ﬂpx) om!, @(H%p,upoo) = gmult),

We now obtain two further extensions over T x Tgz: One by pulling back G; along f¢* and the other by pushing
forward along f™*. The locus where f lifts is the same as the locus where these two extensions are isomorphic.
To finish, one just checks that the first extension is obtained from the map 9, : fG — f, and the second from the
map ¥} fG — f, where we are using Serre-Tate ordinary theory to identify T with the deformation space of such
extensions. O

_———ord _——ord
Corollary 2.2.18. The map QIsogg, [, — QIS0gpy () is a finite flat homeomorphism.

Proof. By Remark the map is an isomorphism on algebraically closed points. Moreover, by definition,
_———ord

QIsogg, [m() 18 an open and closed substack of the formal stack over 3‘}?% X 3‘}’;% parameterizing isogenies between
priA and pri A. Therefore, it is enough now to know that the map is a finite flat homeomorphism on completions
at algebraically closed points. This follows from Proposition and Remark [2.2.16 (]

2.3. Comparison between the two notions of p-Hecke correspondences. Here, we will look at the relation-
ship between p-Hecke correspondences over the generic fiber and over the ordinary locus.

Remark 2.3.1. Suppose that sg,ty € S}’g‘}c(v)(n) are algebraically closed points, that L/W(k)[1/p] is a finite
extension and that s,t € Sk ,(0r) are lifts of sg,tg. Write s,,t, for the associated L-valued points of Shg.

-~

ord

Viewing s, ¢ as Spf &-valued points of SF,, we obtain the space QIsog(s,t). On the other hand, we also have
the space Qlsogq(sy, t,) from §
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Proposition 2.3.2. There is a canonical isomorphism
Tsogg (s, t) — Isoge sy, ty)-

Furthermore, if s and t are the canonical lifts of so and to, respectively, then the natural map Qlsoge(s,t) —
QIsog(s0,to) is also an isomorphism.

Proof. Write Isog(As, A;) (vesp. Isog(As,,As,)) for the space of p-isogenies from A, to A; (resp. between their
generic fibers). By the Néronian property of abelian schemes, the natural map

Isog(As, Ay) — Isog(As, , Ay,)

is a bijection. Therefore, we only have to check that the two a priori different notions of G-structure preservation,
one using the crystalline realization (on the source) and the other using the étale realization (on the target) are
compatible. This follows from assertion (2) of Proposition m

The second assertion follows from Serre-Tate ordinary deformation theory, which shows that the natural map

Qlsog(As, Ar) — Qlsog(Asy, Asy)

is a bijection when s and ¢ are canonical lifts. a

Remark 2.3.3. Let ¢ be the inverse of the first isomorphism from Proposition Given [|g]] € K,\G(Qp)/ K,
one sees, using Proposition that we have

L (QIsogQHgH(sn, tn)> C |_| QIsog e fjm(s:t)
[Im|les([lgl])

where S([|g]]) € Mz, (Z,)\M(Qp)/Mz,(Z;) consists of those double cosets which admit representatives m in the
image of K,gK, N P~(Q,).

. cps oord,an oord,an . . ——ord,an
Remark 2.3.4. We can globalize Proposition [2.3.2 Over Sp, ™" X S, we have the analytification Isogs
and we also have the restriction of the rigid analytification Isogl' of the stack of G-structure preserving isogenies
in the generic fiber. These are both finite étale over each factor of the product, and so Proposition [2:3.2] shows that

we actually have an isomorphism

an ~ ——ord,an
Isog®| Syrtan Goron — Isogg

Corollary 2.3.5. The top horizontal arrows in Proposition [2.2.1]) are isomorphisms.

Proof. 1t is enough to check that the horizontal arrow in the second diagram is an isomorphism. Since both source
and target are finite étale over S‘;gg, it is enough to know that the map is an isomorphism on x = [Fp-points.

~

_———ord
Fix ty € S}}ri(v)(n), and let QIsog‘gio(n) be the fiber of ¢ : Qlsogy (k) — S}}r’%(/{) over ty. For a fixed choice of

isomorphism f : W (k) ®z, Hz, = H_,is 1, as in Definition we obtain a map

Qlsogls, (k) — M(Qp)/Mz, (Zy)
[ m(f) Mz, (Zy),

where m(f) € M(Q,) is the class of Bo (f*)~' oa™! for any choice of isomorphism « as in the same definition. It
is now enough to know that this map is an isomorphism.

For this, let t € S (W (x)) be the canonical lift of ¢y and let ¢,, € Shx (L) with L = W (x)[p~!] be its generic fiber.
We will now show that the map is injective. Indeed, if we have f € QIsogq(so, o) and f € Qlsog (30, to) such that
m(f)Mz,(Zy) = m(f)MZp (Zy), then, since m(f)~'m(f) € Mz, (Zy), one finds that f~'o f € Qlsoggs(so, 50) is an
isomorphism Ay, = Ajs,. If 5,5 are the canonical lifts, the second assertion in Proposition shows that this
isomorphism lifts to an element in QIsog. (s, §) that is an isomorphism of abelian schemes. One now finds from
Proposition that this is only possible if s and §, along with the corresponding lifts of f and f , yield the same
point of the fiber of ¢ : Qlsogy — Shg over t,,.
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To show surjectivity, fix an algebraic closure L for L, and let QIsogG’tn (L) be the fiber of t : Qlsog (L) — Shy (L)
over t,. We then have a commutative diagram

— f=9(f)Gz, (Zy)
Qlsogg,, (L) ~———"-"> G(Q,)/Gz, ()

ord S
QISOgG,tO (H) fem(f)M(Qp) M(Qp)/MZp (ZP)

Here, the top arrow is the isomorphism obtained by taking the fibers of the isomorphism from Proposition [2.1.6
over t, € Shg (L) in the second factor and taking the disjoint union over all [|g|]. The vertical arrow on the left is
obtained from Remark [2:3.4] and the reduction map.

It is enough to show that the right vertical map is surjective. Unwinding definitions, and using Proposition [[.4.7}
one gets the following description of this map: Write ¢ for the points ¢, viewed as a L-valued point. Using the
Iwasawa decomposition

G(Qp) = UH_U (@p)M(Qp)GZp (Zp)7
we can write g € G(Q,) in the form n™(g)m(g)k(g), where the coset m(g)Mz,(Z,) is canonically determined. The
right vertical map sends gGz,(Zy) to m(g) Mz, (Z,). This finishes the proof of surjectivity. O

3. AN ARGUMENT OF CHAI AND HIDA

The purpose of this section is to abstract some ideas due to Chai and Hida on a ‘pure thought’ study of the
monodromy of Igusa towers over Shimura varieties, and apply them to the particular situation of ordinary loci. All
the key ideas can already be found in |11] and [4]. Tt is also possible that the main statement here can be deduced
from the very general results of van Hoften and Xiao [30].

3.1. The abstract setup.

Proposition 3.1.1. Let H be a connected reductive group over Q such that Hg, contains a mazimal torus that
splits over a cyclic extension of Q, (this hypothesis holds in particular when H is unramified at p). Then H satisfies
weak approzimation with respect to {p,oc0}; that is, H(Q) is dense in H(Q,) x H(R).
Proof. This is essentially contained in [27]. If H is semi-simple and simply connected, the result follows directly
from Theorem 7.8 of loc. cit. In general, let H be the simply connected cover of the derived group of H. Then we
find from Proposition 2.11 of loc. cil. that there are quasi—triviaﬂ tori 71 and T over Q, and an integer m > 1
such that there is a central isogeny: H™ x Ty — H™ x Ty. In fact, the proof of this result shows that we can
choose T and Ty to have the same splitting field as the maximal central torus of H. It is easy to see H satisfies
weak approximation with respect to {p, 0o} whenever H™ x Ty does, so we can replace H by the latter group and
assume that it admits a central cover H; — H where H; is a product of a semi-simple, simply connected group
with a quasi-trivial torus.

Let F' be the kernel of H; — H: It is a central sub-group of H;, and so, by our hypothesis, splits over a cyclic
extension of Q,. The result now follows from Proposition 7.10 and Corollary 2 in Ch. 7 of loc. cit.. g

Corollary 3.1.2. Let the notation be as in the hypotheses of Proposition above, and let Hy, , be a smooth
group scheme over Z, with generic fiber H. For any Zy)-algebra R set H(R) = Hy,, (R). With the hypotheses
as in the proposition, for any integer n > 1, the map

18 surjective.
Proof. Let P, = ker(H(Z,) — H(Z/p"Z)). By , H(Q)P, = H(Q,). We now have:
H(Zp) = H(Qp) N H(Zp) = H(Q)P, N H(Zy) = H(Zp))Po.
The corollary now follows, since the map H(Z,) — H(Z/p"Z) is surjective by the smoothness of Hz . O

9This means that the Galois representation attached to the character group is a permutation representation.
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Notation 3.1.3. Suppose that S is an algebraic or formal algebraic stack, and that we have an H(Zj)-torsor over S
given by a sequence P = {P,, }n>1 of compatible finite étale H(Z/p"Z)-torsors P, — S. If X is an Hyz -equivariant
scheme over Z,, for every n > 1, we set
Px.n = Px@/prz)-
3.1.4. Suppose now that G is a reductive group over Q, T is a finite set of primes containing p, and that S is a
scheme over Z,) equipped with an action of G(A}:). Assume that this action lifts to one on the H(Z,)-torsor P
that commutes with the H(Z,)-action. Suppose further that there is another reductive group J over Q with the
following properties:
e There exists an embedding
P JA}" — GA}"-
e There exists a (necessarily smooth) model Jz ,, for J over Z,), and an isomorphism

@ g, Ony, Ly = Ha,
In particular, we have an embedding
m—(p(m),P(m))
O J(Lgy)) —— 0 H(Z) x G(AT),
inducing for every n > 1 a map
m—(on (m),1p(m)) n
®,, 1 (L))~ H(Z /P T x G(AT)

Notation 3.1.5. Suppose that Q C Hz, is a closed Z,-subgroup scheme such that X = Hz,_ /Q is represented by a
scheme. Let Jz , (resp. Hz,) be the normalization of Jz, (resp. Hz,) in J (resp. H), and let ) be the pre-image
of Q) in IA{TZF. Let Zy , C Hz, be the Zariski closure of the center Zy C H.

Proposition 3.1.6. Suppose that the following conditions hold:

PG acts trivially on mo(S);
1 G A? wiall S
or a 18 1sotropic;
(2) For all { ¢ T, Ga, is isotropic
(3) G(A?) acts transitively on mo(S);
(4) ®(J(Zyp)) fizes a point w € mo(P);
(5) Q contains Zp p;
(6) The Zyy-group Jz,,, (equivalently, the Z,-group Hz, ) and the Z,-group Q are smooth with connected special
fiber.

Then, for every n € Z>1, the map mo(Px.n) — mo(S) is a bijection.

Proof. We will need the following consequence of the Kneser-Tits conjecture (see |27, Theorem 7.6]): For any simply
connected isotropic group D over Q;, D(Qy) does not admit any finite index sub-groups.

This, combined with hypotheses and (2), implies that pa(G(Qy)) acts trivially on 7o(Px.) as well. Let w
be as in hypothesis ({]), and let F; C mo(Px,n) be the fiber over the image of w in m(S). By hypothesis (3)), it is
enough to show that Fi is a singleton: Any other fiber is a translate of this by an element of G(A?).

Hypothesis implies that the subgroup

Hy = {pn(m) : m € J(Zg)), ¥(m) € pa(G(AF))} C H(Z/p"Z)
fixes the image of @ in my(Px,,) (Which we once again denote by w). Here, ¢, : J(Z,)) — H(Z/p"Z) is obtained
by reduction-mod-p™ from the map .

It is now enough to show that H,, acts transitively on the fiber F., C mg (Px,n). For this, it is enough to know
that it surjects onto X(Z/p"Z) via the map induced by ¢,,. Note, however that H,, contains pJ(j(Z(p))). Therefore,
it is enough to show that the latter surjects onto X(Z/p"Z).

First, note that the natural map o

Hz,/Q — Hz,/Q
is an isomorphism of fppf sheaves over Z,. Indeed, it is a monomorphism by definition, and hypothesis implies
that it is also surjective.
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Now, hypothesis @ ensures that ﬁzp and é are smooth over Z, with connected fibers. Therefore, by Lang’s
theorem [18], we have

X(Z/p"Z) = H(Z/p"Z)|QZ/"T).
It now follows from ([3.1.2)) that pJ(j(Z(p))) maps surjectively onto X(Z/p"Z) via @.,. O

3.2. Hecke action on connected components of Shimura varieties. Let (G, X) be a Shimura datum. Write
g — ¢ for the natural map G — G*4, and set

GQ+ ={9€GQ: g € G[R)’}
where G(R)? C G(R) is the topological connected component of the identity.

3.2.1. Fix a compact open subgroup K, C G(Qp). For any sufficiently small compact open K C G(Ay) of the
form K,K? with K? C G(A?), we obtain a Shimura variety Shx = Shi (G, X) over the reflex field E with

Shi (C) = G(Q\(X x G(Ay)/K).
We will be interested in the inverse limit

Sth = l&n SthKp,
KrCG(AY)

which is a scheme over Q. There is a natural action of G (Aﬁ’c) on Shg, obtained over C via the right multiplication
action on G(Ay).

Lemma 3.2.2. Let mo(Shy ) be the set of connected components of Sh, 5. Suppose that G(Q))4 is dense in
G(Qp); for instance, this is the case if G satisfies the hypotheses of Proposition|3.1.1, Then:
(1) G(A?) acts transitively on wo(Sthy@).

(2) pc(G(AY)) acts trivially on Wo(ShKW@)‘
Proof. By |9, (2.1.3)], the set of connected components of Shy (C) is a torsor under the group

Tom(G) /K =" G(Ay)/pa(G(Ag))G(Q)4 K,

where G(Q)+ C G(Q) is the stabilizer of a connected component of X, the action being induced from that of G(Ay)
on itself via right multiplication. This implies that mo(Sh Kp@) is a torsor under

G(Ay)/pa(G(Af)G(Q)+ Ky
Assertion (2) follows immediately from this; and assertion (1) follows from the additional observation that, under
our hypotheses, G(Q)1+ K, = G(Q,). O

3.3. Kisin’s analogue of Tate’s theorem. Suppose now that (G, X) is of Hodge type and fix a place v|p of E.

Construction 3.3.1. By Construction for a given choice of symplectic representation H with lattice Hy, we
obtain an integral model Sk over O, and hence a model Sk (,) over O, (,). If we vary K7, then we obtain a tower
of such models Sk, kv () where the transition maps Sk, kv () — SK,,RP (v) for KP C KP are finite étale, and we

can take the inverse limit
defn ;.
Skp(v) = MMk, ko (v)-
KP

The G (A’})—action on Shp, extends to one on Sk, (,): More precisely, over Sk, (), We have a canonical isomorphism
of Ali-local systems

e’ A ®g H = VP(A)Y,
where on the right hand side we have the dual of the prime-to-p adélic Tate module of A, and a functorial point x

of S K,,(v) 8lves rise to a pair (Az, €:), where A, is an abelian scheme and €, is a trivialization as above of its dual
prime-to-p adélic Tate module. For g € G(A’f’), the functorial point g -  will be the unique one giving rise to the

pair (A, e, 0g71).
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Construction 3.3.2. Let the notation be as in Lemma but assume that x is the algebraic closure of a finite
field k, and, for any m € Z>1, let k,,, C x be the unique degree m extension of k. Suppose also that x is defined
over k and write g, for the corresponding ky,-point of Sk k». Let J7 =~ = Jézo be the algebraic group over
Qp such that J7 (Qp) = Qlsoge(Z0,m,To,m). In more detail, if Heyig s, ,,, then the G-structure up to isogeny from
Lemma gives us a subgroup GL(Hy, ) that can be identified with Gy (1,.)1/p], and, for any Qp-algebra R,
we have
Jzo(R) = G(W (km) @z, R) N (Auts (Heris,aq ., ) (R) C GLIROW (k0) Herie g, )»

where Auty (Heris,z,,) 8 the algebraic group over Q, obtained as the group scheme of invertible elements in the
ring Endp (Heris,zo.,, [1/P]) of endomorphisms of the F-isocrystal Heris e, ,, [1/7]-

Let Aut®(A,, ) be the algebraic group over Q obtained as the group scheme of invertible elements in End(Ay, ., )q;
then we have a natural map of Q,-group schemes

@P X0 Aut® (Amo,m) - M% (Hcris,ro,m)
We now define an algebraic group Iy over Q such that for any Q-algebra R, we have

I;OYM(R) = MO(AIO,WL)(R) nJ, (@p ®Q R) C M%(Hcris,zo,m)((@p ®q R)~

To,m
Proposition 3.3.3. With the notation as above:

(1) I3, is a connected reductive group over Q.
(2) For m sufficiently divisible, the natural map

QI,@QI; — J°

0,m Zo,m
is an isomorphism of algebraic groups over Q.

(3) The action of IS, on the prime-to-p adélic Tate module V?(Ay,), via the trivialization

0,m
€xo - Az; OZpy H,) = f/\'p(Amo)v

gives rise to an embedding
A?‘ ®Q I;(J,m — GA?

Proof. The reductivity of I3, . is a consequence of the fact that its real points are a compact Lie group modulo
scalars: see (2.1.3) of [16].

We can define a subgroup I7:P = C I7 — as the largest Q-subgroup whose action on Ve (Azy)Y gives rise, via €,
to an embedding A} ®q I5P  — Gy

Then Corollary 2.2.10 of [16] shows that, for m sufficiently divisible, the natural map Q, ®qg P = Jg . isan
isomorphism, which a fortiori, implies that I3;P = I7 . and so verifies assertions (2) and (3). O

3.4. Monodromy over the ordinary loci of Shimura varieties. We will now put ourselves in the situation

_—ord ~
of § so that we have the formal Igusa tower Ig(;pr)v — S}}ijpm with special fiber Ig}){erp’k(v) — S?;SK,,’,C(U).
Taking the limit over K” gives an Mz, (Z,,)-torsor

rd T
1% k() = S})(;i,k(vy

Proposition 3.4.1. Suppose that the following conditions hold:

(1) Mz, and MZP are smooth over Z, with connected special fiber.
(2) M admits a mazimal torus splitting over a cyclic extension of Q, (see the hypotheses of Proposition .
(3) Q C Mz, is a closed subgroup scheme containing Zsz with @ smooth with connected special fiber.

(4) If Zp C @p is the subring of algebraic p-adic integers, then the map
WO(S?;;{E) — WO(SKP,ZP) ~ Wo(Sth’@p)

s a bijection.
(5) For every prime £ # p, Gq, is isotropic.
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(6) There exists a finite field k C Fp, a compact open KP C G(A%) and o € S%SKp(k) such that the map

Autg (G, ) — Aut‘é(Fp QK Gap)
s a bijection.
Then for X = Mz, /Q, and every n € Z>1, the natural map

WO(Ig%ik(v),X,n) - 71—0(8?;5,(1)))

18 a bijection.

Proof. This is an application of Proposition In the notation there, we will take S = S}’(r;i (v)> H=Jy,P= 73,
G=G,and T = {p}.
By Lemma [3.2.2l and Assumption , G’(A” ) acts trivially on WO(CA), which verifies Assumption |1| from .
Assumption (2)) in (3.1.6]) is Assumption here.
Assumption (3]) in (3.1.6]) follows from Assumption here and Lemma
Assumptions (5) and @ in (3.1.6) follow from Assumptions (1) and here.
‘

To finish, it remains to find the Z;,)-group scheme Jz , as in (3.1.4)) with generic fiber J satisfying Assumption .
Let zg be as in Assumption @ By replacing k with a suitable extension, we can assume that I; = I7

x0,1
Jp, = Jz,.1 are such that we have the isomorphism

Q ®o I3, = Jp,
given to us by Proposition |3.3.3
We will take J = I3 and Jz, to be the Zariski closure of J in the Z,)-group Aut(Ays,)(,) obtained as the

group scheme of invertible elements in the Z,)-algebra End(Ay,) ® Z,). We can also interpret Jz,,, as the largest
subgroup of J acting on G,, via automorphisms instead of self-quasi-isogenies.

Choose a lift n € Ig%s) k(v)(?p) of z. This gives a G-structure preserving isomorphism F, ®z, Go =T, @k Gays
which we also denote by 7. Assumption [6] now gives us isomorphisms

¢ Jo, = Jo, = Aut(Fp @ Guy) — Auty(F, ®2, Go) — Mo, ,

where the penultimate isomorphism is obtained via conjugation by 7, and the last one is from Lemma This
isomorphism maps Z, ®z,, Jz,, onto Mz,.

Now, (3) of Proposition shows that the action of M(A%) on the prime-to-p adélic Tate module of Az, along
with the trivialization ez,, gives an embedding 1 : JAz}v — GA? .

In this way, we get a map

(o,%)
®: J (L)) —— Mz, (Zy) x G(A?).

To verify Assumption (), it is now enough to show that for all m € J(Z,)), ®(m) fixes 7. For this, note that

®(m)(n) corresponds to the same underlying abelian variety Az, but with ez, replaced by ez, o ¥ (m)~! and n
~ord

replaced by the point of Igc;,v above ®(m)(Ty) corresponding to the isomorphism ¢(m) o 7.

This means that the isomorphism

m: -AEO — Aq>(m)(50) = AEO

is G-structure preserving and carries 7 to the isomorphism ¢(m) o 7. Therefore, arguing as in the proof of Corol-
lary one sees that n = ®(m)(n), thus finishing the proof of the proposition. O

Definition 3.4.2. We will say that z( is hypersymmetric if it satisfies Assumption (@ above. The definition is
originally due to Chai [4] in the case where G = GSp(H).

Remark 3.4.3. Suppose that A;, is hypersymmetric as an abelian variety; that is, suppose that the natural map
Zp KRz End(Azo) — End(Fp Rk gwo)

is an isomorphism. Then it is immediate that zq is hypersymmetric in the sense of the definition above. In fact, it
is enough to assume that A;, is isogenous to a hypersymmetric abelian variety: any abelian variety isogenous to a
hypersymmetric one is itself hypersymmetric.
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Remark 3.4.4. Any ordinary elliptic curve £ is hypersymmetric in the above sense: The right hand side is Z, X Z,,
and so it is enough to know that End(€) has rank at least 2 as a Z-module (since the image of the map in question
is saturated), which is clear, since Frobenius does not act as a scalar.

Remark 3.4.5. Suppose that we have an imaginary quadratic extension L/Q and a map T}, 4 Res 1/QGm = G
whose real fiber yields an element of X. Suppose also that L is split at p and that Gz, (Z,) C G(Q,) contains the
image of (01, ®zZ,)*. Then the mod-v reduction of the CM points arising from T}, are all hypersymmetric points of

?(”:’ k(v) contains many hypersymmetric points: Indeed, the symplectic representation H, viewed as a representation
of Ty, must be isomorphic to a direct sum of the tautological representation on L, for weight reasons. Therefore,
if o is a point of Sk that is the reduction of a special point arising from 77, then A, is isogenous to a power of
the CM elliptic curve associated with that point, which is ordinary, since we have assumed that p is split in L. By

Remark xg is hypersymmetric.

Remark 3.4.6. In [10], one finds a somewhat general criterion for when a Newton stratum in a Shimura variety
at a place of hyperspecial level contains a hypersymmetric point. Specialized to the ordinary case, it says that the
ordinary locus contains a hypersymmetric point precisely when G admits a subgroup I C G that is the centralizer
of an elliptic element and whose Dynkin diagram, when viewed as a Gal(@p /Qp)-equivariant graph, is isomorphic
to that of Mz, .

4. GROUP SCHEMES ASSOCIATED WITH QUADRATIC LATTICES

In this section, we will prove some technical results about group schemes associated with quadratic lattices that
will be employed to prove our main irreducibility results. The reader can refer back to the results here as necessary.

4.1. Applications of Witt’s extension theorem. Fix a self-dual quadratic space (N, Q) over Z,: This is a
quadratic form

Q: N —=Z

on a finite free Z,-module N that is such that the associated bilinear form

[z,9]q = Qz +y) — Q(z) — Qy)

on N is non-degenerate. Note that when p = 2 this forces n to be even.
We have the reductive Z,-group scheme GSpin(V), sitting in two short exact sequences of reductive groups

1 — G, = GSpin(N) — SO(N) — 1,
1 — Spin(N) — GSpin(N) & G,, — 1.

Here, v : GSpin(N) — G,, is the spinor norm. For more details, see [22, § 1].
In the first part of this section, we will see that the various lemmas from § 2 of [22]hold in quite some generality,
without in particular the hypothesis that p > 2.

Lemma 4.1.1. Suppose that F' is a field over Z,. Suppose that we have two proper direct summands Wi, Wo C Np

such that there is an isometry f : Wi — Wa of quadratic spaces (with their inherited quadratic forms) over F.
Suppose that Wi has codimension at least 2 in Np. Then there ezists h € SO(N)(F) such that h(wy) = f(wy) for
all wi € Wq.

Proof. Let us make some preliminary observations:

o If W is isotropic, then the lemma reduces to the transitivity of the action of SO(N)(F') on the Grassmannian
parameterizing isotropic subspaces of Ny of fixed rank.

e By Witt’s extension theorem [3, §4, Théoréme 1], there exists an element g € O(N)(F) such that g(w;) =
f(wy) for all wy € Wi. In particular, if we knew that there is an element of O(N)(F)\SO(N)(F') restricting
to the identity on W7, then we would be done.

Now, suppose that W; is itself self-dual with the inherited quadratic form. Then we have N = W; @ Wi~ where
Wit ={n € Np: [n,w] =0 forall we W; }
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is also self-dual. We can now pick any element of O(Wji)(F)\ SO(Wi-)(F) to extend the identity on W; to an
element ¢’ € O(N)(F)\SO(N)(F).

Next, suppose that Wy = F - u; where Q(u1) # 0. After scaling if necessary we can assume that Q(uq) = 1. If 2
is invertible in F'| then this is a special case of the second paragraph. Assume therefore that F' has charactersitic
2: in this case dimNp > 2 is even, and we can find e; € Np such that Q(e1) = 0 and [e1,u1]g = 1, so that
ur = e1 +e}, where Q(e}) = 0 and [e1, €}]g = 1. Now, ey, €} span a self-dual proper subspace of N, and we return
to the situation from the previous paragraph.

Suppose now that Wi is non-degenerate: this means that the projective quadric defined by the restriction of @ to
W7 is a smooth F-scheme. If 2 is invertible in F', then this is equivalent to saying that W is self-dual, and we return
to a previously considered case. Otherwise, we have the possibility that there exists u; € Wy such that Q(uy) =1,
and such that (F-u1)* = Wj. Choose a direct sum decomposition Wy = F-u; © Vi, and set Vo = f(Vi) C Wa. Then
V1 C Np is self-dual, and so by the second paragraph of the proof, there is an h’ € SO(N)(F) with h'(v1) = f(v1)
for all vy € V4. If h'(u1) = f(u1), then we are done. Otherwise, note that V- has dimension at least 4. Therefore,
by the previous paragraph, we can find h” € SO(V5-)(F) such that h”(h/(u1)) = f(u1). We now take h to be the
composition of h’ with the element of SO(N)(F) that restricts to the identity on V; and to h” on Vit.

Finally, let W7 be arbitrary, and, for ¢ = 1,2, let V; C W; be the subspace consisting of the isotropic vectors in
the radical W; N W, Then we have f(V;) = Va. Choose Witt decompositions

NF:V1€BU1@V1/:V2@U2@VQI-
Note that we have W; =V, ® (U;NW;) for i = 1,2 and that U;NW; C U; is a non-degenerate subspace of a self-dual

quadratic space. With this, we can reduce to the situation in the previous paragraph. O

Lemma 4.1.2. Suppose that R is a Zy-algebra, and that W C Ng is a direct summand. For any R-algebra S set
Aw (S) = {¢ € Homg(Ws, Ng) : [p(w), w]g =0, for allw € Wg}

Then:

(1) Aw (R) is locally free over R;

(2) For any R-algebra S, we have

S ®r Aw(R) = Aw(S) C Homs(Ws,Ns).
The map
. X!—)XIWS
S ®Zp Lie SO(N) E— Aw(S)

18 surjective.

Proof. Consider the surjective map of finite locally free S-modules:
TQ - HOmS(WS, NS) — Homs(Ws, ng/)

induced by the dual surjection Ng — W¢. Then we see that Ay (S) is the pre-image under m¢ of the locally free
sub-module consisting of maps ¢ such that ¢(w)(w) = 0 for all w € WSH From this, the first two assertions of the
lemma are immediate.

For the third and final assertion, it now suffices to prove it under the hypothesis that R = F' is an algebraically
closed field, where we are essentially in the situation of Lemma 2.2 of [22]. The only modification one needs in that
proof is to consider the case where W C Ny is non-degenerate but not self-dual—once again, a characteristic 2
phenomenon—which, as in the proof of Lemma above, reduces to the case where W = F - u with Q(u) = 1.
That is, given a vector v € W+ C Np, we must find X € F ®z, Lie SO(N), such that X (u) = v. For this, we can
assume that v as in loc. cit., we can assume that u = e + f, where e, f are isotropic vectors spanning a hyperbolic
plane U C Np; then

0 U e—~etv—u ; f—f NF

is an element of Ay (F) satisfying ¢(u) = v, and so we reduce the requisite surjectivity statement to the case where
W is itself self-dual, which is covered by the argument in [22]. O

1OConcretely, if Wg is free of rank n, then we can identify this sub-module with the space of n X n anti-symmetric matrices with
zeros along the diagonal.
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Lemma 4.1.3. Suppose that we have a surjection R — R of Zy-algebras with square-zero kernel I. Suppose that

we have direct summands Wy, Wa C Ny such that there is an isomorphism f : Wy — Wa of quadratic spaces (with
their inherited quadratic forms) over R. Suppose also that there exists ¢ € SO(N)(R) such that

g (w1) = f(wy) € I ®z, N C Npg, for allw; € W.
Then there exists g € SO(N)(R) such that g(w1) = f(wi) for all wq € Wi.

Proof. This is shown exactly as in [22, Lemma 2.8]: For G = SO(N), the point is to show that there exists
X € I ®z, LieG s~uch that X~(w1) =w; — ¢ 1 f(wy) for all wy € Wy using Lemma above, and to then replace
g' with ¢’ o (1 — X), where X € I ®z, LieG is a lift of X. O

Lemma 4.1.4. Let Ny be a non-degenerate quadratic space over a field k, and let Wy C Ny be a k-subspace of
codimension at least 2. Define subgroups

Qw, C GSpin(Ny) ; Qw, C Spin(No) ; Qw, C SO(Np)

as above. Then QWO,QWO,QWO are smooth connected k-algebraic groups.
Proof. Tt is enough to show this for QWO: Indeed, we have short exact sequences of group schemes:

1= Gpm — Qw, = Qu, = L;

1—>QW0—>QW01>Gm—>1.
The surjectivity of V|Qw0 follows from the surjectivity of its restriction to the central G, in Qw,.

Let W) C Wy be the radical for the restriction of the symmetric bilinear form to Wy, let Vi C W/ be the subspace

consisting of all the isotropic vectors (we have Vy = W/, unless k has characteristic 2), and let Uy = (V;)* be its

orthogonal complement. Let Py C Spin(INg) be the parabolic subgroup stabilizing Vp; its Levi quotient can be
identified with

GL(Vp) x Spin(Uy/ Vo).

Let M of the Levi quotient consisting of elements of the form (1,g), where g restricts to the identity on Wy /Vp,
and let P} C Py be its pre-image. Note that My = Spin(Wy/Vj), where Wy /Vj is a non-degenerate quadratic space.
In particular, it is connected, and so is its pre-image PJ.

We have Pj ~ U(Py) x My, where U(Py) C Py is the unipotent radical. It can now be checked that, under any

such isomorphism, Qy, is mapped isomorphically onto the (smooth, connected) subgroup
%NM()CU(P())NMO

where Vy C U(P)) consists of those elements g whose restriction to Wy is the identity. O

4.1.5. Suppose that we have a direct summand W C N. Let Qw C GSpin(N) be the Z,-group scheme such that
for every Zy-algebra R, we have

Qw(R) ={g € GSpin(N)(R) : ¢g-w = w, for all w € Wg}.

Set Quw = Spin(N) N Qw = ker V|gw, and let Qy, C SO(N) be the image of Qw. As an immediate consequence
of Lemma [£.1.4] we obtain:

Lemma 4.1.6. Suppose that rank(W) < rank(N) — 2. Then:

(1) We have two short exact sequences of group schemes:
1= Gn—Qw —Quw — 1;
1= Qw — Qw > G, — 1.

(2) The group schemes Qw and Qyy; are smooth over Zy, with geometrically connected fibers.
(8) The map v|g, is smooth and so Qw 1is also smooth over Z,.
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Lemma 4.1.7. Suppose that R is a Zy-algebra, that W has codimension at least 2 in N, and that we have another
embedding of quadratic spaces over R, j : Wi — Np mapping onto a direct summand. Then the functor on
R-algebras

S+ {g € GSpin(N)(S) : g~ (w) = j(w) for all w € Ws}

is represented by a Qw -torsor over Spec R. In particular, if R = Z,, then we always have g € GSpin(N)(Z,) such
that g~ (w) = j(w) for allw € W.

Proof. Clearly, the functor is represented by a closed subscheme of GSpin(N)gr. Moreover, Quw acts on this
subscheme by left multiplication, and this action is simply transitive whenever the S-points of the subscheme
are non-empty.

It is now enough to show that the functor admits sections over any strictly henselian local ring of R. But this
is clear from Lemmas [4.1.1] and which together show that the subscheme in question is faithfully flat and
smooth over R.

The second assertion now from Lang’s theorem [18], combined with the fact that Qu is smooth with connected
special fiber: this implies that every Qw-torsor over Spec Z, admits a section. O

4.2. Certain subspaces of quadric Grassmannians.

Notation 4.2.1. Let {\o} be the conjugacy class of minuscule cocharacters of GSpin(NN) characterized by the
following properties:

e For the left multiplication action on the Clifford algebra C'(N), Ag has weights 0, —1.
e Via the action of \g, IV acquires a weight space decomposition of the form:

N=N'e NN,
where N*! are complementary isotropic lines and N° C N is the subspace orthogonal to both.

Definition 4.2.2. Let Pary, be the Grassmannian parameterizing isotropic lines in N. Given a Z,-algebra R, we
will call an isotropic line J C Np W-generic if the following conditions hold:

e J+ Wg C Npg is a local direct summand of rank rank(W) + 1; equivalently, J maps isomorphically onto a
local direct summand of Nr/Wg.
e The map

t [t
[t ]a

WR HOIIIR(J7 R)

is surjective.
W-generic isotropic lines are parameterized by an open subscheme Par$ o, (W) of Pary,

Definition 4.2.3. Let P(W) be the projective space over Z, parameterizing hyperplanes in 7. Then there is a
natural map Par§ (W) — P(W) sending an isotropic line J € Par§ (W)(R) to the kernel of the associated surjection
from Wr to Homg(J,R). Fix U € P(W)(Z,), and let

Par} (W,U) C Par} (W)
be the fiber above it.
Lemma 4.2.4. Par§ (W,U) is a smooth scheme over Z,.

Proof. Note that we can identify this scheme with the open subscheme of the projective Z,-scheme M°¢ param-
eterizing isotropic lines in U+ C N; see [22, (2.10)]. The singular locus of any geometric fiber over a field k of
this scheme can be identified with the projective space of isotropic lines contained in the radical of Uy; but no line
arising from a point of Par§ (W,U)(k) can be contained in U C W}, given that it has to be complementary to
Wy. O
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4.2.5.  We will assume now that the quadratic form induced on Wy, is non-degenerate, and that Par} (W,U)(Z,)
is non-empty, and we will choose a point .Jy in it. Let Hz, C GSpin(/N) be the closed Z,-subgroup scheme with

Hz,(R) = {g € GSpin(N)(R) : g-w = w, for all w € Wg}

for any Z,-algebra R. Let Q C Hz, be the stabilizer of Jy: Since @ has to preserve the non-degenerate pairing of
Jo against W, it follows that @ actually fixes Jy pointwise, and is thus the pointwise stabilizer of Jo @ W C N. In
other words, in the notation of (4.1.5)), we have Hz, = Qw and Q = Q j,ew -

Lemma 4.2.6. Let é and ﬁZP be defined as above Proposition . Suppose that rank(W) < rank(N) — 3.
(1) Hy, is a smooth Zy-group scheme with reductive generic fiber.
(2) Hg, admits a mazimal torus that splits over a quadratic extension of Q.
(3) Q is also a smooth Zy-group scheme.
(4) The quotient Hy, /Q is represented by a smooth scheme over Zy, and there is an isomorphism

Hz,/Q = Par} (W,U)

of smooth Zy,-schemes.
(5) The Z,-group schemes HZP and é are smooth with connected special fibers.
(6) Let v : GSpin(N) — G, be the spinor norm; then its restriction to Q is surjective. In particular, the map
on IFy-points
v:Q(Fp) — F)
18 surjective.

Proof. Assertions (1), (3), (5), and the first part of assertion (6) are immediate from Lemma Note that the
reductivity of the generic fiber Hg, is a consequence of the hypothesis that Wy, is a non-degenerate quadratic
space, so that we can identify
Hg, = GSpin(Wg, ) C GSpin(Ng, ).
As for (2), note that Wd;p is isometric to the orthogonal sum of an anisotropic quadratic space of dimension

< 4 and copies of the hyperbolic plane. In particular, it suffices to show (2) under the additional assumption that

y et W@ is anisotropic. Here, an easy case-by-case analysis using the classification from |29} §25] does the job.

The second part of (6) is immediate from (5) and Lang’s theorem on connected groups over finite fields [18§].
It only remains to prove (4), which, by Lemma comes down to showing that the map

Hy, 22900 parg (W, U)

induces an isomorphism of fppf sheaves Hz, /Q = Par} (W,U). This follows from Lemma 4.1.7: which shows that,
for any Z,-algebra R, and any J € Par} (W, U)(R), the scheme of sections g of Hz, (S) for R-algebras S such that
g(S KRR Jo) =J

is a torsor over Spec R under the group scheme Q. O

Remark 4.2.7. The map
hi—=hXo(p) GSpin(N)(Zp)

GSpin(N)(Zp)
yields a bijection
GSpin(N)(Z,)/(GSpin(N)(Z,)No(p) GSpin(N)(Z,) Ao(p) ™) = GSpin(N)(Z,) o (p) GSpin(N)(Z,)/ GSpin(N)(Z,,).
On the other hand, using the minusculeness of Ay, one finds that

GSpin(N)(Zy) N Ao (p) GSpin(N)(Zy)Ao(p) " C GSpin(N)(Zy)

is simply the pre-image of the F,-points of the parabolic subgroup of GSpin(NV) fixing the isotropic line N'. In
particular, we have a bijection

GSpin(N)(Zp)ro(p) GSpin(N)(Z,)/ GSpin(N)(Zy)

GSpin (V) (Z,)/(GSpin(N) (Z) N Ao(p) GSpin(N) (Zy)do(p) ™) — s Py, ().
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where Par), is the quadric Grassmannian parameterizing isotropic lines in N.

Remark 4.2.8. Let Lat be the set of self-dual Z,-lattices in N[p~!]. Consider the map

GSpin(N)(Z,) I2PWIN, g

Its image is exactly the set Laty, of lattices of the form AN for h € GSpin(IN)(Z,) o(p) GSpin(N)(Z,) and is in

bijection with GSpin(N)(Z,)o(p) GSpin(N)(Z,)/ GSpin(N)(Z,). By the discussion in Remark we find that
there is a bijection

(4.2.8.1) Pary, (F,) — Laty,

This bijection is in fact canonical and can be described as follows: Suppose that we have an isotropic line N(-1) €
Pary, (F,). Pick any isotropic lift N(—1) C N of N(—1) and choose a complementary line N(1) C N. The lattice

N =p 'N(-1) ® N(0) ® pN(1),
where N(0) = N(—1)+ N N(1)* is now the associated point in Laty,.

Lemma 4.2.9. Suppose that we have another Zy-lattice W c W with W : W] = p. Choose any hyperplane

U € P(W)(Z,) such that W = U + pW. Suppose that we have
rank(W) < %_

Then:
(1) Parl (W,U)(F,) is non—empt and, via ([£2.8.1)), maps onto the set of self-dual Z, lattices N C N[p~!]
such that NN W[p~'] =W c W[p~1].
(2) Given N as in (1), N C N[p~'] is the unique self-dual lattice such that
e N = hN for some h € GSpin(N)(Z,) \o(p)~* GSpin(N)(Z,).
e NNWp =W cW[p

Proof. In this proof, if Y is a Z,-module, we will write Y for the Fp-vector space Y ®z, ).

We will need the following observation: If Y is a self-dual quadratic space over Z, of rank r > 3, then Y is
isotropic. This means that the space of isotropic lines in Y is birationally isomorphic to Pg;z, and so admits many
F,-rational points. These in turn can be lifted to isotropic lines in Y via Hensel’s lemma. Moreover, these lines can
be chosen to lie outside the quadric associated with any proper direct summand of Y.

Fix a direct sum decomposition

W =U & Zpwy,
so that

W=U® Zppwy.
Let Vi = U+ C N be the orthogonal complement to UU. The radical of V; is isomorphic to that of U, which, by
our hypotheses, shows that V; admits a non-degenerate quadratic subspace of rank at least 3. In particular, by the
second paragraph, we can find an isotropic line N(—1) C N that is orthogonal to U, has trivial intersection with
W, and such that there exists y € N(—1) with

[y, wolq € Zy
Any such N(—1) corresponds to a point in Par§ (W,U)(Zy), which is therefore non-empty.
Let N € Laty, be associated with an isotropic line N(—1) € Pary,(F,). We need to show that we have
NNWI[p~'] = W precisely when N(—1) belongs to Par} (W, U)(F,).
Suppose first that N (—1) is in Par§ (W, U)(F,); then we can lift it to a line N(—1) in Par} (W, U)(Z,), and, using
the observation from the second paragraph once again, we can find an isotropic line N(1) C N that is orthogonal
to W, and which is complementary to N(—1).

LNote that this set only depends on the image of U in N]pp, which is simply the image of W and so is independent of the choice of
U.
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Let wg € W be as above. Then one sees that N(—1) must pair non-degenerately with wyg, and so we have
wo(1) ¢ pN(1), where wy (i) is the component of wy in N (). Moreover, by construction, we have

W c N1t =N(0)®N(1);U c N(-1)2nN(@1)* = N(0).
This shows that we must have
NnWp=NO0)@pNOANNW =U®Z, -pwy = W C W.

For the converse, suppose that N N Wip™1] = W. Then in particular, we find that, given a decomposition
N =N(-1)® N(0) ® N(1) as above with

N =p 'N(-1) ® N(0) ® pN(1),

we must have U = U[p~']NN, and wo(1) € N(1)\pN (1) (where, once again, this is the projection of wy onto N(1)).

The first condition implies that U is contained in N(—1) & N(0), but does not contain N(—1) (the latter because

p~'u ¢ N for u € U\pU). This, together with the second condition, shows that N(—1) belongs to Par§ (W, U)(F,).
For assertion (2), suppose that we have a decomposition

N =N(-1)@ N(0) @ N(1)

arising from a cocharacter A : G,, —>~GSpin(N) in the conjugacy class Ag such that Ap) NN WI[p~'] = W. Let
Wo (i) be the projection of pwy onto N(i). Then since p~11ig(i) € p~*N(i) by hypothesis, we see that

two(—1) € p>N(—1) ; 1in(0) € pN(0) ; wo(1) € N(1).

This shows that the image of N (1) in Nu«‘p can only be the isotropic line spanned by the image of pwy. This means
that A(p) !N = N. O

5. CYCLES ON GSPIN SHIMURA VARIETIES

In this section, we apply the above considerations to the special case of GSpin Shimura varieties associated with
quadratic spaces over Q, and show that the certain irreducible special cycles in their generic fibers continue to
have irreducible reduction over F,. Combined with the methods of [21], this yields a proof of the irreducibility of
the moduli of primitively polarized K3 surfaces of fixed degree—and that of lattice polarized K3 surfaces—in any
characteristic.

5.1. Special cycles on orthogonal and GSpin Shimura varieties. We review the story of special cycles on
GSpin (and orthogonal) Shimura varieties associated with quadratic spaces over Q of signature (n,2). Details can
be found in [22], [13], though the presentation here most closely hews to that found in [12] §2.1, 2.2, 3.2].

5.1.1. The starting point is a quadratic space (V, Q) over Q with signature (n,2) for some n > 4. The quadratic
form @ gives rise to a symmetric pairing

[z,9]q = Qz +y) — Q(z) — Qy)

on V.

Associated with this is the reductive group G = GSpin(V) over Q, as well as a Hermitian symmetric domain
X that parameterizes the space of oriented negative definite planes in Vg. The pair (G, X) is a Shimura datum of
Hodge type with reflex field Q; a choice of symplectic representation is given by the Clifford algebra H = C(V),
on which G acts via left multiplication.

We will assume that the quadratic space has been chosen so that it admits a lattice Vz C V on which the
quadratic form @ is Z-valued and is such that the completion at p, Vz, C Vg, is a self-dual lattice. In this situation,
G, admits a reductive model

Gz, = GSpin(Vz,,, ).

Associated with V7, we have a compact open subgroup Ky, = [[, Kv,, C G(Ay), where, for each prime ¢,
; 7o
KVle C G(Qy) is the largest compact open subgroup contained in C'(Vz,)* and acting trivialy on VZ\Z /Vz,.
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Construction 5.1.2 (Integral models). For a compact open subgroup K C G(Ay), we have the associated Shimura
variety (or more precisely stack) Sh := Shi (G, X) over Q. Suppose that K is of the form KKy, , and let Sk be
the set of primes such that, for ¢ ¢ Sy, we have Ky = Ky, . We then have a normal integral model Sk over AR
characterized as follows: At any prime £ ¢ Sk such that Vz, is self-dual, SKZ( 0 is the smooth integral canonical
model for Shg constructed in [17] and [15]. For arbitrary ¢ ¢ Sk, we have the following characterization: Choose
an isometric embedding Vz — VZﬁ of quadratic lattices with the following properties:

(1) The embedding maps onto a direct summand of VZﬁ.

(2) VZu has signature (nf,2).

(3) VZﬁg is self-dual.
Such an embedding always exists; see [12, Lemma B.1.1]. Let SK“,ZU_;) be the smooth integral canonical model for
the Shimura variety Shy: associated with V#. Then Sk 7, 18 the normalization of SKﬁ,Z@) in Shg.

Note that this is a localization of Construction One can choose VZﬁ such that it is self-dual at all finite
places, in which case Shg: admits an integral canonical model Sk over Z, and Sk is obtained by taking the
normalization of this model in Shx and inverting the primes in Sk.

5.1.3. Let Xk be the set of primes ¢ such that either ¢ € Sk or Vg, is not self-dual: this excludes p by our
hypotheses. The lattice

Hy; =C(Vz) CcH=C(V)
gives us an abelian scheme A — Sk [E;{l]. The lattice Vz C V gives rise to canonical sub-sheaves
V; C End(H?)
for 7 = B, ¢,dR, cris. For every morphism z : T — Sk [El_(l], we have a canonical Z-submodule
V(z) C End(Ay)

whose cohomological realizations are sections of V- for appropriate values of 7. The space V(x) has a canonical
positive definite quadratic form

Q:V(x)—>2Z
characterized by the identity Q(f)ida, = f o f € End(A;). This is the module of special endomorphisms of z.
All of this is explained in quite a bit more detail in |13].
5.1.4. Let A be a positive definite lattice over Z. Set
L(A) = {Z-lattices A" C Ag: AC AN C(A)Y C AV},
We will consider the stack Zx (A) — Sk[Xx'] associating with o : T — Sk [2 %] the set
Zi(A)(x) = {isometric embeddings ¢ : A — V (z)}.
The next result can be found in [12, §3.2].

Lemma 5.1.5. The stack Zx(A) is finite and unramified over Sk[Xx']. Moreover, if A € L(A), then there is a
natural closed immersion Zx(N') — Zx(A) obtained by restricting an isometric embedding to A C A'.

Remark 5.1.6. If we fix a basis A ~ Z™, we obtain a map of Sk [¥']-stacks Zx(A) — End(A)™, where End(.A)
is the endomorphism stack of A over Sg[¥%']. This latter stack is locally finite and unramified over Sk [¥5'] by

standard facts about endomorphisms of abelian schemes, and Zg(A) is realized as an open and closed stack of
End(A)™.

Remark 5.1.7. Fix an embedding Ag < V, and let V= A(J@ C V. Let G* C G be the subgroup acting trivially
on Ag: this is isomorphic to GSpin(V?). Set

T(A)={geGAy): ACVngVs}.
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For each g € T(A), we obtain a quadratic lattice V;Z =V’ NgV; C V® of signature (n — rank(A),2). We can
associate with this a GSpin Shimura variety Sth mapping to Shg, where Kg =gKg'nG’ (Ay). Then there is a
canonical isomorphism of Shg-stacks

(5.1.7.1) | | Shs = Zic(A).
gEG* (@\T(A)/K
See the proof of [12, Lemma 3.2.3].
Remark 5.1.8. Consider the open substack
Ze(\)=Zxk(M)~ | Zx() C Zk(A)
A EL(A),ACA’

Set Zx(A) = Zrx(A)g and °Zg(A) = °Zx(A)g. Let °Y(A) C T(A) be the subset of element g such that A is a
direct summand of V' N gV5. Then the decomposition ([5.1.7.1)) restricts to an isomorphism

(5.1.8.1) L] Shis = °Z(A).
gEGP (Q\°T(A)/K
Using this, we see that, for every A’ € L(A), the morphism

is an open and closed immersion, and there is an isomorphism of (Q-stacks

|| °Zx() = Zk ().
AEL(A)

Remark 5.1.9. Suppose that A’ € L(A) is such that p { [A’ : A]. Then the map Zx(A')z,, — Zx(A)z,, is an open
and closed immersion. It is enough to know that it is étale after base-change to F,, and this follows from the fact
that the deformation theory of Z K(A)FP as a stack over S KF, depends only on AZ,,- This follows for instance from
the Serre-Tate theorem telling us that the deformation theory of abelian schemes in characteristic p is equivalent
to that of the corresponding p-divisible groups.

Proposition 5.1.10. Suppose that rank(A) < (n —4)/2.
(1) °Zx(MN)z,, is normal, flat, and equidimensional of dimension n —rank(A) + 1 = dim Sk — rank(A).
(2) The special fiber ° Zx (A)r, is geometrically normal and equidimensional of dimension n — rank(A).
(3) Let °Z9(A)g, C °Zxk(A)g, be the pre-image of S}’{%p. Then ZE4(A)g, is open and dense in Zx (M),

Proof. See |12, Proposition 3.2.4] for the first two assertions. The last one follows from |13, Proposition 7.1.21]:

This shows that the ordinary locus of a certain open substack Z}(A)r, C °Zk(A)r, is dense within it; but, as
argued in the proof of [12, Proposition 3.2.4], Z1} (A)p, is in turn dense in °Zx (A)g, . O

P

Remark 5.1.11. Suppose that we are in the situation of Proposition [5.1.10} For each g € °T(A), we obtain
from (5.1.8.1]), an open and closed immersion Sth — °Zk(A). Set OSKZ,(p) to be the Zariski closure of Sth in

OZK(A)Z(m. By the normality of the latter stack, we see that we have a decomposition

(5.1.11.1) | ] °Sics ) — *Zx (N,
gEG" (Q\°T(A)/K
into open and closed (normal) substacks.
Note that, if SKb is the integral model for Sth from Construction 2| then the map SKb () — Sk (p) lifts to

an open immersion °S K5.(p) Sk (p) Indeed, this follows from the construction of S K, (p) 88 the normalization
of Sk (p) in ShKZ’ and Lemma 2| below.

Lemma 5.1.12. Let f : X =Y be a quasi-finite separated map of normal Deligne-Mumford stacks flat over Z,).
If the generic fiber fg is an open immersion, then so is f.
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Proof. By [19, Théoréme 16.5], we can write f as the composition of a finite map f: X — Y of Deligne-Mumford
stacks with an open immersion j : X < X. By replacing X with the flat closure of its generic fiber, we can also
assume that X is flat over Zpy- By the normality of Y, the finite map X — Y must be an isomorphism onto a
union of connected components, and hence f is indeed an open immersion. O

5.2. The ordinary loci of special cycles. We will now look at the ordinary locus °Z%4(A)p in more detail.
For the rest of this section, we will maintain the assumption rank(A) < 23% from Proposition [5.1.10] We will also
assume A # 0.

Remark 5.2.1. The representatives y : G, — Gz, for the geometric conjugacy class associated with the Shimura
cocharacters of the GSpin Shimura datum are exactly those that yield weight decompositions

(5.2.1.1) Hy, = Hy @ HY ; Vg, =V, '@ V) @Vy

where p(z) acts on H, %p via z~% and where VZip1 C Vz, are complementary isotropic lines on which p(2) acts via ZF!
and VZOP is their mutual orthogonal complement.

Remark 5.2.2. For every point 29 € Sk, (%), we have a p-adic counterpart of the space of special endomorphisms:
Namely the F-invariant vectors VCESZ;O C Viris,zo- These are precisely the elements of Vs 5, that are also crystalline

realizations of endomorphisms of G;,. When z is ordinary, there exist isomorphisms VZOP = Vs, well-defined

up to an element of Mz, (Z,). In particular, for any point (zo,t) € °Z¥4(A)r, (), ¢ the crystalline realization of ¢

gives an isometric embedding Az, — VE=1

eris,z, O1to a direct summand.

Remark 5.2.3. For g € °Y(A), we can apply the constructions of (4.1.5)) with N' = V2 and W = W, defn g, Az, C
N. We set GZ,Z;; = Qw, in the notation there: This is a smooth group scheme over Z,, clearly a subgroup of Gz,
and conjugation by g, identifies its generic fiber with the subgroup G(b@P C Gg,. Moreover, via this identification,
we have G;ZP (Zp) = Kz,p C G*(Qp).

Lemma 5.2.4. Fiz g € °Y(A). Then:
(1) We can choose the decomposition (5.2.1.1)) so that the corresponding cocharacter factors through GZ,ZP‘
(2) All such decompositions—and hence all such cocharacters—are conjugate under G;,Zp (Z,).

(8) The centralizer of any such cocharacter is a smooth subgroup scheme M;ZP C G;ZP such that M;Zp 18
also smooth.
Proof. This amounts to knowing that, if Uz, is the hyperbolic plane over Z,, then there is an isometric embedding
Uz, = N that is orthogonal to Wj.
The numerical condition on rank(A) ensures that we have n > 6, dimV®> > 2 + 4 and dim V" — rank(A) > 6. In
particular, for any g € °Y(A), the quadric of isotropic lines in ng is a flat local complete intersection over Z, of

relative dimension > 5, whose special fiber is a rational variety. Moreover, the singular locus of the special fiber
consists of isotropic lines that are contained in the radical of WQJ:FP and has codimension > 5; see [22, Lemma 2.11].

Using this geometric information, we see that we can first pick any isotropic line VZ;l C W; in the smooth locus,
and then choose a complementary isotropic line Vzl,, also in the smooth locus of the quadric associated with WgL.

That all such decompositions are conjugate under GZ,ZP (z,) follows from Lemma applied with W the
orthogonal direct sum Uz, ©® WgL.

The group M;,zp is an extension of G,, z, by the pointwise stabilizer of the direct summand VZ_p1 oW, ® Vzlp.
Therefore, assertion (3) follows from Lemma O

Remark 5.2.5. Choose any cocharacter g : Gz, — GZ,Zp as in Lemma Then Lemma tells us that
Assumption is valid, and so we can now consider the ordinary locus S’ . € Sgs. By (2) of the lemma, this

is independent of the choice of cocharacter.

K:.F,

12This is the Zariski closure of the derived subgroup of the generic fiber.
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ord _o o zord ; . ;
Lemma 5.2.6. We have SKEVFTJ = SKSJFP XoZi(A)e, ZK (A)g,. Moreover, Assumptzon holds: the canonical

lift of any point of S?(YEF lifts to SKE'
g P

Proof. We want to show that, for any algebraically closed point z¢ € °Sg» (k) with A, ordinary, we can find a
g

GZ’ZP—structurc preserving trivialization W (k) ®z, Hz, = H.,is o, such that the Frobenius endomorphism on the
right hand side conjugates to the endomorphism 1 ® p4(p)~" of W (k) ®z, H,. That we can find a Gz, -structure
preserving isomorphism follows from Remark We can then use Lemma to modify this to a GZ’ZP—structure
preserving one.

The validity of Assumption is a consequence of the fact that all endomorphisms of A, deform to endo-
morphisms of its canonical lift. O

-~

~ord ~
Remark 5.2.7. The Igusa tower Igig p over S;}“Ilﬁ when restricted to S}’(dep acquires a reduction of structure group
; : 5

~ord
to the subgroup M;Zp (Zyp) C Mz, (Zy), given by its own Igusa tower Ig K p- This can be understood explicitly.

First, Remark |5.2.2| tells us that, for every algebraically closed point xg € g}’(rbdp(fs), the crystalline realization of
b,

t: A= V(xg) yields an embedding as a direct summand

g _
Wg =2 AZp — VFfl

cris,zg "

The reduction of structure is now given by the subsheaf parameterizing for x : Spf R — ‘SA’?;SP, trivializations
b,

R ®z, Go = G x gt
such that, at every geometric point s : Spec kK — Spf R, we obtain a commuting diagram
Wy =——=W,

V) —— VizL
P ~

cris,zos"

Lemma 5.2.8. S‘;{TSF contains a hypersymmetric point (see Definition .
g P

Proof. This just amounts to the observation that there is a rank 2 negative definite lattice Ly C ng,z such that
Lz, is isomorphic to the hyperbolic plane. Indeed, GSpin(L) will then be of the form Resg/q Gy, for an imaginary
quadratic extension F/Q that is split at p, and we can then conclude using Remark U

Remark 5.2.9. Let U uy C Gz, be the opposite unipotent associated with 4, so that we have a canonical inclusion
- Tr— 1 0
(5.2.9.1) LieU, C Hom(Hy ,Hy ).

This can be made explicit. Namely, let Go = SO(Vz,)(Z,) be the special orthogonal quotient of Gz,. Then we can
also identify U, e with the unipotent subgroup of G associated with the isotropic line VZ;I. That is, we have

LieU, = {(¢,%) € Hom(VZ ,V; %) x Hom(Vz , V7)) : ¢" 4+ =0} C End(Vz,).

Here, we have used the non-degenerate bilinear form on Vz, to identify VZOP with its own dual, and VZI,, with the
dual of Vz_pl7 and hence the dual ¢V of ¢ with a map ¢ : Vzlp — VZOP. In what follows, we can and will identify
LieU, with its image in Hom(VZOp7 VZ_pl). Fix generators v+ of Vzil. Then, as explained in |22, §1], under the left
multiplication action of Vz, on Hz,, we have

H%p =ker(vt) = im(v") ; ng =ker(v™) = im(v7).
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The embedding ([5.2.9.1) can now be described as follows: Suppose that we have a map ¢ : VZOP — VZ;1 in Lie Uqu.

There exists a unique vg € VZOP such that, for all v € VZOP7 we have [vg,U}Q -v~ = 1(v). Now, one can check that,

up to sign, under (5.2.9.1)), (¢,%) maps to left multiplication by the element v’vg in the Clifford algebra.
Remark 5.2.10. Now, let Lie U, ng_ = LieU,, NLie GZ,ZP' One checks that this is identified with the subspace
Hom (V) /W,, V3 ) C Hom(VZ , V7 ).

Fix an algebraically closed point xzg € S?;SF (k), and let 030 (resp. (710) be the deformation spaces of 3\?;?17 (resp.
9P 'E

3?(“;) Using Lemma and Proposition [1.2.14] we see that we have a diagram

Ua:bg - UIO

N
where fGZ (resp. fg) is the formal torus over W (k) with cocharacter group Lie Uz’g ~ (resp. LieU iy ). This diagram

is uniquely determined up to the action of M EQVZP (Z).

Remark 5.2.11. If we choose a generator v' for Vzlp, then we can compatibly identify the character groups of fG

-~ . 0 . . 0 .
and TGZ with VZP and its quotient VZP /Wy, respectively.

5.3. Correspondences between special cycles in characteristic 0. We will now apply the theory of Hecke
correspondences from § 23] in the particular context of GSpin Shimura varieties.

Remark 5.3.1. Suppose that we have s,t : Spec R — Shx and f € Qlsog(s,t). Then conjugation by f~! induces

an isomorphism
defn

c(f) =" f o () o f: End(Ay)[p~"] = End(A)[p"]
carrying V (s)[p~!] onto V(t)[p~?].
Definition 5.3.2. A p-minimal pair or simply minimal pair = = (1~X C A) is a pair of positive definite lattices
(A, A) equipped with an isometric embedding A C A such that [A : A] = p.

Definition 5.3.3. Suppose that = is a minimal pair. Define a stack
Qlsogg ,, = — *Zx(A) x °Zk (M)

whose fiber over ((s,¢), (t,7)) € °Zx(A)(R) x °Zk(A)(R) is given by
QISOgG,Mp,E((S7 L)7 (tv Z)) = {f € QISOgG,HP(S7t) : C(f) © L|f\ = Z}

In other words, we are looking for p-quasi-isogenies of type p, that ‘shrink’ the isometric embedding of A onto a
direct summand of the space of special endomorphisms to that of A onto a direct summand of the space of special

endomorphisms of an isogenous point. Write s, = i : Qlsogg ,, = = °Zx(A) and t,,, = k : Qlsogg , = — *Zk(A)
for the natural maps.

Remark 5.3.4. Suppose that we have g € °T(A). Over Sthv the p-adic realization of the tautological embedding
of A into the space of special endomorphisms gives an embedding

iy = VblSth
as a local direct summand. Using Lemma we now see that the canonical K;p—torsor Sh Kor Sh Ky param-
eterizes Gz,-structure preserving trivializations Hy = H,, that carry the embedding W, < V7 onto ¢,.

Proposition 5.3.5. (1) The map s,, = K is finite étale and induces a bijection on geometric connected com-
ponents.
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(2) The map t,, =k is an isomorphism.

Proof. Let Par, be the quadric Grassmannian over Z, parameterizing isotropic lines in Vz,. Fix g € °T(A),
consider the map

Qlsogg ,, = X Sup.=. K, Zxc (A) Sth - Sth

By Proposition and its proof, combined with Remark we obtain a commutative diagram

QISOgG 2 S“p = 5,°Zr (A) Sth — Sh p X g ZP p)Par (Fp)

N

Unwinding the definitions and using (1) of Lemma one finds that the top arrow maps its source isomorphically
onto the substack

Shesn x %02 2 Par,,, (W, Ug)(Fy) € Shye x 02 2 Par,, (F,),

K”

where U € P(W,)(Zy) is any hyperplane such that g, ]\Zp = U + pW,. Moreover, by Lemma GZ,ZP (F,) acts
transitively on Par,, (W,,Uy)(F;), and the stabilizer Q(F,) of any point in this set maps surjectively on F)¢ via the
spinor norm.

To finish, we need to show that the right diagonal arrow induces a bijection on geometric connected components.
Since G* has simply connected derived subgroup, we find from [8, Théoréme 2.4] that for any level K’ C G”(Ay)
the spinor norm induces a bijection

mo(Shy g) = A7 /Qsov(K).

Now, the discussion in the previous paragraph shows that we have
Sh,i, x o2 @) Par, (F,) = Shyo

where K’ C K, Z is the pre-image of Q(F,) C GZ,ZP (Fp). The surjectivity of the spinor norm Q(F,) — T’ shows
that we have v(K') = Z/(Kg), and hence that the map on connected components is a bijection as desired.
The proof of assertion (2) is along analogous lines and uses (2) of Lemma [1.2.9] O

5.4. Ordinary correspondences of minuscule type. Fix a cocharacter y, : Gy, 7, — Gz, as in Remark
with associated splittings (5.2.1.1). Let Mz, C Gz, be the centralizer of p,: This is an extension of G,, by

_—ord
GSpin(VZOp). In this subsection, we will study in detail the structure of QIsogOC; a, for the choice of a non-trivial

minuscule cocharacter A, of Mz, . Up to isomorphism as a formal stack over g}}ﬁ% X g}}rg), this will not depend on
the choice of the pair (i, Ap) in their Gz (Z,)-conjugacy class.

Definition 5.4.1. Consider the conjugacy class of cocharacters A, : Gy, z, — Mz, factoring through GSpin(VZOP)7
acting via weights 0,1 on the Clifford algebra C' (VZOP) and giving a splitting

(5.4.1.1) Vi =Vp (1)@ Vg (0)® Vg (1)
where VZOP(:H) C VZOP are complementary isotropic lines and VZOP (0) is their mutual orthogonal complement.

Remark 5.4.2. For any cocharacter w : szp — Mgz, set

~ord n ~ord
Ig def I s « Mz, (Zp) Mz, (Zy)w(p) Mz, (Zy) Mz, (Zy).

W
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Then it follows from Proposition [2.2.14] and Corollaries and [2.2.18| that we have diagrams

_——ord ~ord _——ord ~ord
Qlsogg,\, — Ig_», Qlsogg\, — Iy,
Sord Sord

where both top horizontal arrows are finite flat homeomorphisms. Moreover, one finds from Remark [£:2.7] that we

have
~ord ~ord ~ord

Ig_y, ~1gy, ~lgk, x Mz (Zy) Pary  (Fp),

where Pary (IF,) is the set of isotropic lines in V]IQP.

Remark 5.4.3. The cocharacter A, breaks up Lie U, o and Hom(H%y ,Hg ) compatibly into eigenspaces

LieU, = @ LieU, (i) ; Hom(Hy , Hy ) = @ Hom(Hy, , Hy )(i),
i=—1 i=—1
where
Hom(Vy (1), V1) ifi=—1;
LieU, (i) = { Hom(V} (0),V, ') ifi=0; ,
Hom(Vy (=1),V; ) ifi=1.
and
Hom(H%p(l), H%p (0)) ifi =—1;
Hom(Hy, , Hy )(i) = { Hom(H; (0), Hy (0)) ® Hom(Hjz (1), HY (1)) if i = 0;
Hom(Hy (0), H7 (1)) if i = 1.

Remark 5.4.4. Recall the notation and setup from Remark [5.2.9] Consider the homomorphism

(p1,02) “Xp(P)—2p (P)
(5.4.4.1) LieUy & LielU, ~--r27" tex 20l 2wt "2, Hom m(H} | HY )

If we restrict to each of the non-zero weight spaces for the action of A, then one sees that we obtain

LieU, (~1) & LieU,, (~1) C Hom(H}, (1), HY (0)) x Hom(H}, (1), HY (0)) P20l yom (g | 1Y )

)) ((f1,f2)—=fi—pf2

LieU, (=1) & LieU,, (~1)Hom(Hy (0), Hy (1)) & Hom(Hy (0), Hy (1 Hom(Hj , H7 ).

For the zero weight space, the restriction of both maps ¢ — v v,"\,(p) and ¢ — A,(p)v v,? can be identified
with the composition

M) Hom(H%p (0), H(z)p (0)) ® Hom(H%p (1), ng(l))

(id,p-id)
R

(5.4.4.2) Lie U, (0)
Hom(Hz, (0), H (0)) © Hom(Hz, (1), H (1)),

which maps onto a direct summand of its target.

Remark 5.4.5. For any algebraically closed field &, (5.4.4.1]) gives a map of formal tori over W (&), Te xTe — IA",

ord

and Proposition [2.2.17| now shows that the kernel fG, A, Of this map is the model for the completion of (mG, A
at any k-valued point.
The weight decompositions of their cocharacter groups for the action of A, yield compatible splittings

Te= ] TetG)c [[ TG)c T

1=—1 i=—1
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The discussion in Remark shows that the map fg X TG -7 respects this decomposition, and its restrictions
take the following shape:

(z,y)—zPy "

Ta(-1) x Ta(-1) 2222 Ta(-1) € T(-1);
Te(0) x Ter(0) S22 T (0) 25 T(0);
Ta(1) x Ta(1) &7 " 7o) € T(1).

Here w is the closed immersion of formal tori arising from the map (5.4.4.2)) on cocharacter groups.
Therefore, we obtain a decomposition

Tan, = Ton, (—1) x Ta, (0) x T, (1),
with
~ {(z,2P): x € Tg(~1)} ifi=—1;
(5.4.5.1) Tapx, (@) = {(z,2): € Ta(0)} if ¢ = 0;
{(zP,2): z€Tg(l)} ifi=1.

The map sy, (resp. ty,) from fg’,\p to fg is therefore given by the identity on fG,AP(—l) and fG’Ap (0) (resp.
fg,)\p(l) and fc;)\p (0) ) and by the p-power map on fG’Ap(l) (resp. fc;)\p(—l)).

Remark 5.4.6. Just as in Remark [5.2.11] via the choice of basis element v! for Vzlp7 we can identify the character

group of fg, A, With @;:71 VZO,, (i) = VZO,,7 and the source and target maps are given on the level of character groups,
and for this splitting, by (p,1,1) and (1,1, p), respectively.

5.5. Ordinary correspondences between special cycles. Here we give the ordinary counterpart to the story

from

~ _——ord
Remark 5.5.1. Suppose that we have s,t: Spf R — S}’(r"[}p and f € QIsoge (s,t). Then just as in the generic fiber
in Remark conjugation by f~! induces an isomorphism

o) " f7 o (Vo S+ End(A)p™"] = End(A)p ]
carrying V (s)[p~!] onto V(t)[p~1].

Definition 5.5.2. Suppose that Z = (A C A) is a minimal pair. Define a formal stack

-

ord o Zord o Zord(}
Qlsogg a, = = 2K (A) x °ZK(A)

whose fiber over ((s,¢), (t,7)) € Oé%d(A)(R) X Oé’\fgd (A)(R) for R p-complete is given by

_——ord

Qlsozas, =((5,0), (6:7)) = {f € Qlogan, (5:1) : e(f) o1lz = 7}

_——ord ~ _——ord ~ ~
Write s‘)’fp‘fE,K : Qlsogg a, = = °Z¥4d(A) and tif}E’K : Qlsoggy, = — °Zod(A) for the natural maps. For each

g € °Y(A) (resp. g € °Y(A)), write SRZ%E,K_; (resp. t?\ﬁa,xg for the restriction of 5?\2%5,1( (resp. t‘j\;(fE’K) over the

~

ord )

open subspace S;’(r;ip (resp. S %o
5, s

Notation 5.5.3. Suppose that we have g € °T(A). Set Wg = g;ljizp C Wy, and let U, € P(W,)(Z,) be a
hyperplane such that pW, + U, = W,. Associated with this is the scheme Par} (W, Uy) from Definition that
parameterizes Wg-generic isotropic lines in VZOp such that U is the kernel of the pairing of W, with J.

Remark 5.5.4. Suppose that we have an algebraically closed point

_——ord

z = ((s0,¢), (to,7), f) € QISOgG,)\p,E(H)
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such that (sp,¢) € Sord (n) for g € °Y(A). We can choose a cocharacter p, as in Remark|5.2.5] so that it factors

through GZ,Z,)’ and a trivialization W(k) ®z, Go — — s, that is a section of Igord over so. In particular, this
identifies VZO,, with VESL in such a way that W, = g, ' Az, is identified with the Zp—submodule generated by the

image of . Now, conjugation by the crystalline realization of f gives an isomorphism

VQp ~ VF 1 [ —1] ; VF 1 [p—l].

cris so cris,tg

By our hypotheses, the pre-image of the lattice V.E=! in V0 is identified with a lattice of the form hVo with the

cris,tg
following properties:

(1) h e MZ,,(ZP))‘p(p)MZp(Zp)§
(2) WV, N Wy[p~!] = W,
By (1) of Lemma |4.2.9} such lattices are in canonical bijection with Par} (Wg,U,)(Fp).

_——ord ~
Remark 5.5.5. Suppose that we have a point 2z € Qlsogg 5 =(k) as above with (¢, 1) € S‘"d (/{) for g € °T(A).
Choose the cocharacter p; as in Remark so that it factors through G%,Zp' Set

F ~—1% 0
Wg =g, Azp - VZP'
Choose also a trivialization W (k) ®z, Go = Gt, that is a section of Ig%‘;p over tg. Conjugation by the crystalline
2,

realization of f now gives us an isomorphism V551 [p~!] = V(gp such that the image of VL1 'is of the form iLVZOp
with the following properties:
(1) h e MZP(ZP)/\p(p)_lMZp (Zp)§
7 x _ defn . _
(2) WV N Wylp~'] = W5 =" G, Az, .
By (2) of Lemma there is a unique such lattice.

Notation 5.5.6. Set Xb defe ary (Wg,Uy) and

~ord defn ~ord MP 7
ngb = Igw M.z, () XZ(Fp)~
Proposition 5.5.7. Fiz g € °Y(A) and § € °Y(A). Then:
(1) The map s)\‘" =K factors as

_———ord ~ord d
QISOgG,)\p,E,q — ngb — Sor
where the first map is a finite flat homeomorphism.
(2) The map t‘"dﬁ = kv U5 an isomorphism
g

Proof. By Remark we have a commuting diagram

/\ ord ~ord

Qlsogga, = — Tags , x M52 50 Pary (F,)

\m e

Here Pary, (IF,) is the set of isotropic lines in VBQP. Remark shows that, on x-points for x algebraically closed,
the top arrow maps isomorphically onto the k-points of

~ord ~ord

b
IgKg,p x Mo zp (Br) Parg\g (Wy,Ug)(Fy) = ngg .
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~ord
Since Ig;rb is étale over the base, this shows that the top horizontal map actually factors through a map
g

_——ord ~ord

QISOgG7>\p,E,g — ngz .

ord

that is an isomorphism on algebraically closed points. Similarly, Remark |5.5.5( shows that the map 12 g 18 @
pr=fi g

bijection on k-points for k algebraically closed.
To finish the proof, we can now work on the level of deformation rings. More precisely, suppose that we are in

the situation of Remark |5.5.41 If ﬁz (resp. Ub

So?

~

ET . _——ord d
Uz, ) is the completion of Qlsogg », = at 2 (resp. S?;Svp at (so, ),

resp. Z579(A) at (to, 7)), we want to show that the source map U, — ﬁsbo is a finite flat homeomorphism and that
the target map U, — Ut"0 is an isomorphism.
By Remark again, we can work with the cocharacter u, factoring through GZ,Z,, and choose the trivializations

Gio ~ W (k) ®z, Go = Gso

such that the crystalline realization of f from Vigis so[p '] t0 Veristo[p~'] is carried via these isomorphisms to the
map

_ 1®A _
W (k) @z, Vi, [p~Y] 229 W (k) @3, Va, [0,

where )\, is a cocharacter of Mz, that is conjugate to A, and whose —1-eigenspace maps to an isotropic line in
Pary (Wy,Uy)(Zy). That is, if V7 = @;__;V7 (i) is the weight space decomposition for Ay, then Wy pairs non-
degenerately with VZOp(fl) (equivalently, its projection on Vzop(l) is surjective), and Vzop(fl) maps onto a direct
summand of V) /W,. Furthermore, W, =\, (p)Vz, N Wyl[p~'].
Combining this with Remarks [5.2.11] and one sees that the map

U, — U xU,
is isomorphic to a map of formal diagonalizable groups

T, o 7 x 3
over W (k), where T7 (resp. T3) has character group VZO,,/ Wy (resp. VZOP/ Ag(p)~'W,) and the character group of

T )\, is the cokernel of the map

1
Ve =@ VE (i) = Vi /Wy & V5 [Ag(p)~ W,

i=—1
(271, 20, Zl) = ((2571, ZO7PZI) + Wg7 (pth 20, Zl) + )‘g(p)_lwg)'
I now claim which shows that VZOP /W, maps injectively onto an index p subgroup of M while VZOP /g (p)_lﬁ/g maps

isomorphically onto M. This will imply that the map ﬁ\g — ﬂ’ is a finite flat homeomorphism and that ng — ﬂ’
is an isomorphism, and so will complete the proof of the proposition.
To prove the claim, note that the the elements of the kernel of VZO,, /W4 — M have representatives of the form

(21, 20,p21) Where (pz_1, 20, 21) belongs to A,(p)~'W,. But then

(2-1,20,21) = Ag(p) - (P21, 20,21) € Wy C W
This shows the injectivity of V;) /W, — M. Similarly, the kernel of V7 JAg(p)'W, — M consists of elements
represented by (pz_1, 20, 21) with (z_1, z0,pz1) € W,. But then

(p-1,20,21) € V2 0 A (0)™' W, = Aylg) ™1,

Thus this map is also injective.

Now, since W, projects surjectively onto VZOP(l)7 every element of VZOP /W, can be represented by a tuple of the
form (z_1,20,0) and so has the same image in M as the element —(pz_1, 20,0) + Ay (p) "W, € VZOP/)\g(p)*Wg.
This shows that VZO,, /g (p)*lwg surjects onto M, and also shows that the image of VZOP/Wg has index p in M. O
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5.6. Unique specialization of connected components. Here we will prove the main technical result of this
paper, Proposition and so complete the proof of Theorem

Remark 5.6.1. Let = = (A C A) be a minimal pair, and write
P S o (2 ) ZRI (R, = CZRIA) 5 i sz o (bami) L Zuc(R) = k().

We obtain a diagram:

wo(OZK(A)?p) = Wo(oz%d(j\)ﬁp) - WO(OZK(A)@)5

(5.6.1.1) g T

1

Wo(OZK(A)?p) Z> Wo(OZ?(rd(A)FP) — Wo(OZK(A)@).

The horizontal maps are the natural ones, and the ones on the left are bijections because the ordinary locus
is dense in °Zg (A)r,; see (3) of Proposition [5.1.10f The vertical map on the right hand side is a bijection by
Proposition One can verify that the square on the right commutes using Remarks and

Notation 5.6.2. Let P(A) be the assertion that the lower right horizontal arrow is bijective in the diagram above
for all prime-to-p levels K?, and let Q(Z) be the assertion that the vertical arrow in the middle is bijective for all
prime-to-p levels KP.

Proposition 5.6.3. P(A) is true if A is maximal at p.

Proof. The maximality at p here means (by definition) that, for all A’ € L(A), [A’ : A] is prime to p. Therefore,
by Remark we see that °Zx (A)r, is an open and closed substack of Zx (A)g,, and in particular is finite over
Sk. Moreover, Proposition 5.1.10| tells us that °Zx (A)z,, and OZK(A)FP are normal. In particular, the irreducible

and connected components of the latter stack agree.

By Remark [5.1.11} and the finiteness of °Zx (A) — Sk,(p) » We have a decomposition into normal stacks

Z(p)

"Zr(Mzg, = |_| SK3.()
gEG* (Q\°Ex (N)/K

finite over Sk (p)-
Therefore |24, Corollary 4.1.11] shows that every connected component of its special fiber is the specialization of
a unique connected component of its generic fiber. O

Proposition 5.6.4. P(A) implies Q(Z) for all minimal pairs of the form = = (A C A).
Proof. By Proposition this reduces to knowing that, for all g € °Zx (A), the map
~ord
o (ng;,ﬁp) — To (5?;;7@)

is a bijection. We will check this using Proposition Assertions (1)-(3) are taken care of by Lemma
Assertion (4) holds because we are assuming P(A) (and by (3) of Proposition [5.1.10). Our group G is already
isotropic over Q, so Assertion (5) is okay. The last Assertion (6) is also valid by Lemma O

Proposition 5.6.5. For any A, we have a bijection
m0(°Zx (Mg, = mo(°Zk (M)g)-

Proof. Using induction on the p-adic valuation of [AY : A], this follows from the diagram (5.6.1.1) and Proposi-
tions £.6.3] and [£.6.41 O
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5.7. Application to the moduli of K3 surfaces. When A is a rank 1 lattice spanned by a vector v with
Q(v) = m, write Zx(m) for Zx(A), and similarly for all the sub-loci of the special cycle. For an integer d > 1, let
M3 d,(p) be the moduli stack of primitively polarized K3 surfaces over Z,) of degree 2d (see [21, §3]).

Proof of Theorem[4] Let N be the self-dual quadratic Z-lattice U @3@E§92, where U is the hyperbolic plane. Choose
a hyperbolic basis e, f for the first copy of U. Set

Lqg=(e—df)* CN.

This is a quadratic space of signature (19, 2). We can choose our quadratic space V, and the Z-lattice V7 such that
V has signature (20, 2), Vi, is self-dual, and such that there exists an isometric embedding as a direct summand

Lg— Vy.

Associated with the lattice 1z and a suitable neat level subgroup K? C GSpin(V)(A%), we have the integral
model Sk, kv, (p) OVer Zp).
Let M;I; ) be the open smooth locus of My (,): This is a fiber-by-fiber dense subspace. In particular, it suffices

to show that MsmF is irreducible.
»"p

By the theory of [21| §5], extended to the case p = 2 in [15, Prop. A. 12] (see also the erratum at [25]), there is
a finite étale cover M3 - of M;ﬂiz(m, and an étale period map

M;I(XK — ZK(Qd)Z(p)

that is in fact an open immersion, since it is one in the generic fiber; see |21, Cor. 5.15]. This map lands
inside °Zx (2d)z,,,, and in fact inside the primitive locus Z}’g(Zd)Z(p) where the de Rham realization of the special
endomorphism of degree 2d generates a direct summand of VdRE

Combined with Proposition , this shows that every irreducible component of M;I; KF 1S the specialization
A p

sm From this, we deduce the same assertion for the fibers of M5} )

2d,K,Q"
However, it is well-known that this moduli stack is irreducible over C. For instance, this follows from the Torelli

theorem; see the proof of |21, Prop. 5.3]. O

of a unique irreducible component of M
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