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Abstract. I use methods of Chai-Hida and ordinary p-Hecke correspondences to study the set of irreducible compo-
nents of special fibers of special cycles of sufficiently low codimension in integral models of GSpin Shimura varieties,

and apply this to prove irreducibility results for the special fibers of the moduli of polarized K3 surfaces. These

results are also applied in joint work with Howard on the modularity of generating series of higher codimension
cycles on GSpin Shimura varieties.

Introduction

The goal of this paper is to use p-Hecke correspondences—following in spirit a paper of de Jong [5]—to obtain
control over irreducible components of the special fibers of certain cycles on GSpin Shimura varieties. More precisely,
I show that, under some numerical constraints, each such component is the specialization of a unique component
in the generic fiber. This plays a key role in the proof of the main result in [12] on the modularity of generating
series of special cycles of higher codimension.

As a more immediate application, I study the moduli of polarized K3 surfaces. Fix a positive integer d ≥ 1, and
consider the moduli stack M◦

2d over Z that parameterizes primitively polarized K3 surfaces of degree 2d. I prove:

Theorem A. For every prime p, the fiber M◦
2d,Fp

is geometrically irreducible.

When p is odd and p2 ∤ d, this result was shown in [21]. In effect, what’s happening in this paper is a reduction
to this known case, by relating the ordinary locus of M◦

2d/p2 with that of M◦
2d using p-Hecke correspondences.

To state the somewhat technical main result I prove in this paper, we begin with a GSpin Shimura variety ShK
associated with a quadratic lattice VZ of signature (n, 2). On this variety, we have an infinite collection of special
cycles ZK(Λ)→ ShK associated with positive definite lattices Λ, which in the complex analytic fiber parameterize
Noether-Lefschetz type loci where the canonical family of polarized Z-Hodge structures V associated with VZ pick
up a collection of Hodge tensors generating a subspace isometric to Λ. As explained in the series of papers [22, 1,
2, 13, 12], the Shimura variety admits a natural integral model SK over Z, along with a cycle ZK(Λ) extending
ZK(Λ). Within ZK(Λ), we have a certain open ‘non-degenerate’ locus ◦ZK(Λ), whose complex fiber is the subspace
on which Λ spans a saturated submodule of the Z-Hodge structure V . Special cases of this construction include
classical Noether-Lefschetz loci on the moduli of polarized K3 surfaces, where ◦ZK(Λ) parameterizes isometric
embeddings of Λ as a direct summand in the primitive Picard lattice.

In any case, we are now ready for the main result:

Theorem B. Let p be a prime where VZ is self-dual, and suppose that rank(Λ) ≤ n−4
2 . Then:

(1) ◦ZK(Λ)Z(p)
is normal, flat, and equidimensional of dimension n− rank(Λ) + 1 = dimSK − rank(Λ).

(2) The special fiber ◦ZK(Λ)Fp
is geometrically normal and equidimensional of dimension n− rank(Λ).

(3) The natural map

π0
(◦ZK(Λ)Fp

) ≃−→ π0
(◦ZK(Λ)Q

)
.

is a bijection.

The first two assertions are already explained in [13, 12]. It is the last statement that is the focus of this paper.
The Hodge theoretic analogue of the essential idea of proof—which is by induction on the p-adic valuation of the

discriminant of Λ—is easy to explain. Let’s do so in the context of Theorem A. Suppose that (X, ξ) is a primitively
polarized K3 surface over C of degree 2d. Then the Betti cohomology H2(X,Z) is a pure Hodge structure of
weight 2, and the Poincaré pairing endows it with the structure of a quadratic space over Z that is isometric to
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U = H⊕3 ⊕ E⊕2
8 . Here, H is the hyperbolic plane, and E8 is the root lattice corresponding to its eponymous

Dynkin type.
We will distinguish one hyperbolic plane H ⊂ U , and choose a hyperbolic basis e, f for it satisfying e2 = f2 =

0, [e, f ] = 1. Let U ′ = H⊥ ⊂ U be its orthogonal complement, so that we can write U as the orthogonal direct sum

U = H ⊥ U ′.

We can choose the isometry

H2(X,Z) ≃−→ U

so that the Chern class of ξ maps to the element e+ df ∈H. Within H2(X,Q) we have a lattice corresponding on
the right hand side to the subspace

⟨p−1e, pf⟩ ⊥ U ′ ⊂ UQ.

The basic point is that this lattice corresponds to an ‘isogenous’ K3 surface X ′ equipped with an isometry

H2(X ′,Z) ≃−→ ⟨pe, p−1f⟩ ⊥ U ′,

and that it admits a canonical primitive polarization ξ′ of degree 2p2d, whose Chern class maps under the above
isometry to the element pe+ p2 · (p−1f).

If one does this carefully in families, one finds essentially a Hecke correspondence mapping the moduli of primi-
tively polarized K3 surfaces of degree 2p2d to that of degree 2d, and this allows the direct comparison between their
connected components.

Inspired by [5], I show that a similar argument can be made in the special fiber if we work over the ordinary
locus, and this gives us the proof of Theorem B. One can then easily deduce Theorem A as a special case where
rank(Λ) = 1 using the results of [21]. Here’s the line of reasoning for the former theorem:

• The stack ◦ZK(Λ)Z(p)
is a disjoint union of open subspaces ◦SK♭

g,(p)
of integral models SK♭

g,(p)
of GSpin

Shimura varieties associated with certain direct summands V ♭g,Z ⊂ VZ. When Λ is maximal at p, one can

delete the qualifier ‘of open subspaces’, and the compactifications from [24] now yield (3) of Theorem B.

• When Λ is contained in a positive definite lattice Λ̃, with [Λ̃ : Λ] = p, by restricting to the ordinary loci in
the mod-p fiber, I use ordinary Hecke correpondences, combined with the Hodge-theoretic idea explained
above, to show that there is a map

π : ◦Zord
K (Λ)Fp

→ ◦Zord
K (Λ̃)Fp

• I then use Serre-Tate deformation theory, a key argument of Chai-Hida for the irreducibility of monodromy
of the ordinary Igusa tower, and the inductive hypothesis to show that π induces a bijection on geometric
connected components.

• A comparison with the analogous construction in the generic fiber using classical Hecke correspondences
now finishes the job.

Here is the organization of this paper:

• The first two sections, which deal with ordinary loci in integral models of Shimura varieties and ordinary
Hecke correspondences, are covering ‘well-known’ ground, and are included for a lack of convenient reference
that works in the generality that I need.

• Section 3 reviews the use of a slick argument of Chai and Hida for the control of the monodromy of Igusa
towers, and applies it to the ordinary case we care about.

• In the first three sections, I work in the generality of Shimura varieties of Hodge type at primes with
non-empty ordinary loci. In Section 5, I specialize to the case of GSpin Shimura varieties and—after some
prerequisites on quadratic lattices and the group schemes associated with them covered in Section 4—apply
the results from the three initial sections to prove the main results.
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Conventions

(1) We will fix a prime number p for the entirety of this paper.
(2) Given a set X and any Grothendieck site, we will write X for the locally constant sheaf over the site

associated with the constant presheaf sending every object to X.
(3) Given a topos, a pro-finite group H presented as an inverse limit of finite quotients Hn, and an object S in

the topos, an H-torsor π : P → S is an inverse system

{πn : Pn → S}n∈Z≥1
,

where πn is a torsor under Hn). In particular, this applies to the situation where D is a smooth group

scheme over Zp with H = D(Zp) and Hn = D(Z/pnZ).
(4) Given an H-torsor P as above and a finite Hn-set Y , we set

PY = P ×H Y
defn
= (Pn × Y )/Hn,

where Hn acts diagonally on the product. If Y is a pro-finite set equipped with a continuous action of H,
we can similarly define a contraction product P ×H Y via an inverse limit of the construction applied at
finite levels.

(5) For any finite set of primes T , we will set

ATf =

′∏
ℓ/∈T

Qℓ,

the restricted product over all completions of Q at finite places not in T . If T = {ℓ} is a singleton, we will
write Aℓf instead.

(6) For any local or global field F in characteristic 0, we will write OF for its ring of integers.
(7) Suppose that X is a scheme or stack over a localization O of OF in which p is not invertible. For any place

v|p ∤ N of F , we will write X(v) (resp. Xv) for the base-change of X over the localization OF,(v) (resp. the
completion OF,v) at v. For M ∈ O, we will write X[M−1] for the base-change over O[M

−1].
(8) Suppose that R is a ring and suppose that C is an R-linear tensor category that is a faithful tensor sub-

category of ModR, the category of R-modules. Suppose in addition that C is closed under taking duals,
symmetric and exterior powers in ModR. Then, for any object D ∈ Obj(C), we will denote by D⊗ the
direct sum of the tensor, symmetric and exterior powers of D and its dual.

(9) All formal schemes over Zp will be p-adic: That is, they are functors on p-nilpotent rings.
(10) Given a connected reductive group G over a field F , we write Gder ⊂ G for its derived subgroup, ρG : Gsc →

G for the simply connected cover of its derived group and Gad for its adjoint quotient.
(11) Fix an algebraic closure F̄ for F . For any torus T over F , we set

X∗(T ) = Hom(Gm,F̄ , TF̄ ) ; X∗(T ) = Hom(TF̄ ,Gm,F̄ )

for the cocharacter and character groups of T , respectively.
(12) For a perfect field κ, we will write W (κ) for its ring of Witt vectors and denote by σ : W (κ) → W (κ) the

canonical lift of Frobenius.
(13) Given a product X1 × · · · ×Xk in a category with finite products, we will write pri for the projection onto

the i-th factor.

1. Ordinary loci of Shimura varieties

We will fix a Shimura datum (G,X). The purpose of this section is to recall and situate some results of Noot [26]
regarding the structure of the ordinary loci of integral models of Shimura varieties associated with this datum

1.1. Background on Shimura varieties of Hodge type.
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1.1.1. Given x ∈ X, we have the associated homomorphism of R-groups:

hx : S = ResC/R Gm,R → GR.

We also have the associated (minuscule) cocharacter:

µx : Gm,C
z 7→(z,1)−−−−−→ Gm,C ×Gm,C

≃−→ SC
hx−→ GC.

The G(R)-conjugacy class of hx, and hence the G(C)-conjugacy class {µX}∞ of µx, is independent of the choice
of x. Let E ⊂ C be the reflex field for (G,X): This is the field of definition of {µX}∞, and is a finite extension of
Q. This gives us a geometric conjugacy class [µ] ∈ (Hom(Gm, G)/G)(E). Given a place v|p of E we obtain in turn
a geometric conjugacy class [µv] defined over Ev

Construction 1.1.2. We will assume for the rest of the section that the Shimura datum is of Hodge type, so that
it is equipped with an embedding

(G,X) ↪→ (GSp(H), S±(H))

into a Siegel Shimura datum.1 We fix a Z-lattice HZ ⊂ H on which the symplectic form is Z-valued, and we take
Kp ⊂ G(Qp) to be the stabilizer of Hp = Zp ⊗Z HZ. Let K ⊂ G(Af ) be a compact open subgroup of the form

KpK
p for Kp ⊂ G(Apf ) stabilizing the prime-to-p lattice Ẑp ⊗Z HZ, and let K♯ ⊂ GSp(H)(Af ) be the stabilizer of

Ẑ⊗Z HZ. Then we obtain a finite unramified map of Shimura varieties (or rather stacks)

ShK
defn
= ShK(G,X)→ E ⊗Q ShK♯

defn
= ShK♯(GSp(H), S±(H)).

The Shimura variety ShK♯ has an integral model SK♯ over SpecZ as a certain moduli stack of polarized abelian
varieties. Using the symplectic representation H and the lattice HZ, we obtain a normal integral model SK for ShK
over OE by taking the normalization of OE ⊗Z SK♯ in ShK ; see for instance [16, (1.3.5)].

1.1.3. Suppose that GZp is a smooth group scheme over Zp with connected special fiber and with generic fiber GQp

such that Kp = GZp
(Zp). Suppose also that we have a collection of tensors {sα} ⊂ H⊗

Zp
such that their pointwise

stabilizer in GL(HZp
) is GZp

.

Lemma 1.1.4. The p-adic local system Hp = Tp(A)∨ over SK [1/p] is equipped with a canonical GZp
-structure.

More precisely, there exist canonical tensors {sα,p} ⊂ H0(SK [1/p],H⊗
p ) such that, at each geometric point x :

SpecF → SK [1/p], there is an isomorphism HZp

≃−→Hp,x carrying {sα} to {sα,p,x}.

Proof. See the discussion in [16, (1.3.4)]. □

Remark 1.1.5. The de Rham realization HdR = H1
dR(A/SK), when restricted to the generic fiber ShK , is also

equipped with a canonical G-structure as a filtered vector bundle with integrable connection. That is, HdR|ShK

is equipped with a two step Hodge filtration Fil•Hdg HdR|ShK
concentrated in degrees 0 and 1 and a Gauss-Manin

connection, and we have tensors {sα,dR} ⊂ Fil0(H⊗
dR|ShK

) that are parallel for this connection. Moreover, for any

point x : SpecL→ ShK with L algebraically closed, there exists an isomorphism L⊗QH
≃−→HdR,x carrying {1⊗sα}

to {sα,dR,x} such that the Hodge filtration pulls back to a filtration on L⊗QH that is split by a cocharacter in the
conjugacy class [µ−1].

Lemma 1.1.6. Fix a place v|p of E. Suppose that we have a perfect field κ of characteristic p and a point
x0 ∈ SK,v(k). Associated with this is the abelian variety Ax0 , as well as the p-divisible group Gx0 = Ax0 [p

∞]. Then
Gx0 is equipped with a canonical G-structure compatible with the GZp-structure over SK [1/p]. More precisely, the
following holds:

(1) If Hcris,x0
= D(Ax0

)(W (κ)) is the contravariant Dieudonné module associated with Ax0
, then there exist

Frobenius invariant tensors

{sα,cris,x0
} ⊂H⊗

cris,x0

and an isomorphism W (κ)[1/p]⊗Q H
≃−→Hcris,x0

carrying {1⊗ sα} to {sα,cris,x0
}.

1One can relax this to asking for (G,X) to be merely of abelian type, but I will restrict to the Hodge type case in this paper.
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(2) If L/W (κ)[1/p] is a p-adically complete discrete valuation field with residue field k and x ∈ SK(OL) is a
lift of x0 with image x ∈ ShK(L) for an algebraic closure L of L, then the p-adic comparison isomorphism

Bcris ⊗Zp
Hp,x

≃−→ Bcris ⊗W (κ) Hcris,x0

carries {sα,p,x} to {sα,cris,x0}.

Proof. This is shown in [16, Prop. 1.3.7]. □

Remark 1.1.7. In the situation of assertion (1) of Lemma 1.1.6, via a choice of isomorphismW (κ)[1/p]⊗Zp
HZp

≃−→
Hcris,x0

, the σ-semilinear isomorphism Hcris,x0

≃−→ Hcris,x0
underlying its structure of an F -isocrystal corresponds

to an element bx0
∈ G(W (κ)[1/p]) whose σ-conjugacy class [bx0

] ∈ B(GQp
) is independent of the choice of the

isomorphism. Moreover, this class is in fact [µ−1
v ]-admissible; see [16, Lemma 1.3.9].

Remark 1.1.8. In the situation of assertion (2) of Lemma 1.1.6, we also have the Berthelot-Ogus comparison
isomorphism

L⊗W (κ) Hcris,x0

≃−→HdR,x[p
−1]

This carries {1⊗ sα,cris,x0} to {sα,dR,x[p−1]}, and is compatible with the combination of the crystalline comparison
isomorphism with the de Rham comparison isomorphism

BdR ⊗Zp
Hp,x

≃−→ BdR ⊗OL
HdR,x0

.

In particular, the de Rham comparison isomorphism carries {sα,p,x} to {sα,dR,x} ⊂ H⊗
dR,x[1/p]. Further, for any

isomorphism L ⊗Q H
≃−→ HdR,x carrying {1 ⊗ sα} to {sα,dR,x}, the Hodge filtration Fil1Hdg HdR,x pulls back to a

filtration on L⊗Q H that is split by a cocharacter in the geometric conjugacy class [µ−1
v ].

Definition 1.1.9. In the situation of Lemma 1.1.6, we will say that Gx0
has aGZp

-structure if we have {sα,cris,x0
} ⊂

H⊗
cris,x0

and if there exists an isomorphism W (κ)⊗Zp HZp

≃−→Hcris,x0 carrying {1⊗ sα} to {sα,cris,x0}.

Remark 1.1.10. Suppose that GZp
is reductive, so that Kp is hyperspecial. Then, for any place v|p of E, SK,(v)

is the integral canonical model for ShK over OE,(v) constructed in [17, 15], and is in particular independent of the
choice of symplectic representation H and the lattice HZ. Moreover, in this case, for all x0 ∈ SK,(v)(k) as above,
Gx0

is equipped with a GZp
-structure; see [17, Corollary (1.4.3)] and [15, Theorem 2.5].

1.2. Deformation theory over the ordinary locus. Fix a place v|p of E such that Qp = Ev, so that [µv] is
defined over Qp. In this subsection, we will look at the deformation rings of SK,(v) at its ordinary points, under
some assumptions.

Assumption 1.2.1. The conjugacy class [µv] admits a representative µv : Gm,Zp → GZp whose centralizer MZp ⊂
GZp

is smooth with connected special fiber.

Remark 1.2.2. Under this assumption, we have a decomposition HZp
= H1

Zp
⊕H0

Zp
where Hi

Zp
is the eigenspace

on which µv(z) acts via z
−i. Moreover, for all α, we have µv(z)ṡα = sα.

Remark 1.2.3. If GZp is reductive, then a representative µv always exists. To see this, one chooses a maximal
torus T ⊂ GZp contained in a Borel subgroup of GZp . There is a unique representative µv of the conjugacy class [µv]
factoring through T and dominant with respect to the choice of Borel, and this does the job for us. The centralizer
of µv is a Levi subgroup of GZp

and is thus reductive with connected fibers.

Definition 1.2.4. Given an algebraically closed field κ in characteristic p, we will say that a point x0 ∈ SK,v(κ) is
µv-ordinary or simply ordinary if Gx0

admits aGZp
-structure, and if there exists an isomorphismW (κ)⊗Zp

HZp

≃−→
Hcris,x0 with the following properties:

(1) It carries {1⊗ sα} to {sα,cris,x0
}.

(2) The σ-semilinear endomorphism of Hcris,x0
arising from its structure of a Dieudonné module conjugates

under the isomorphism to the endomorphism 1⊗ µv(p)−1 of W (κ)⊗Zp
Hp. In other words, it acts as pi on

W (κ)⊗Zp
Hi

Zp
, for i = 0, 1.
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Remark 1.2.5. If x0 is an ordinary point, the abelian variety Ax0 is ordinary in the usual sense: We have
Gx0
≃ G étx0

× Gmult
x0

, where G étx0
(resp. Gmult

x0
) is an étale (resp. a multiplicative) p-divisible group. Under the

isomorphismW (κ)⊗Zp
HZp

≃−→Hcris,x0
as in the definition,W (κ)⊗Zp

H0
Zp

(resp. W (κ)⊗Zp
H1

Zp
) maps isomorphically

onto the Dieudonné module H ét
cris,x0

for G étx0
(resp. Hmult

cris,x0
for Gmult

x0
).

Remark 1.2.6. If GZp is reductive, then the converse of Remark 1.2.5 holds: If Ax0 is ordinary in the usual sense,
then x0 is ordinary in our sense here. Indeed, by Remark 1.1.10, Gx0 is equipped with a GZp -structure. Moreover,
there exists a choice of isomorphism witnessing the GZp

-structure such that the element bx0
from Remark 1.1.7 is

of the form ν(p) for some cocharacter ν : Gm,W (κ) → GW (κ) acting with weights 0, 1 on W (κ) ⊗Zp
HZp

. We can
further assume that ν factors through TW (κ), where T ⊂ GZp

is a maximal torus as in Remark 1.2.3, and that it is
dominant with respect to the choice of Borel made there. Now the condition that the σ-conjugacy class of ν(p) is
[µ−1
v ]-admissible forces the equality ν = µ−1

v .

Notation 1.2.7. Given an algebraically closed field κ in characteristic p, write ArtW (κ) for the category of Artin
local W (κ)-algebras with residue field κ. Given C ∈ ArtW (κ), write mC for its maximal ideal. Note that 1 +mC as
a group under multiplication is pn-torsion for n sufficiently large and so can be viewed as a Zp-module.

Definition 1.2.8. Given a Zp-module M , the associated formal torus with character group M is the functor

T̂M on ArtW (κ) given by

T̂M (C) = HomZp(M, 1 +mC).

We will call M∨ = HomZp
(M,Zp) the cocharacter group for T̂M .

Remark 1.2.9. Set
G ét0 = Hom(H0

Zp
,Qp/Zp) ; Gmult

0 = Hom(H1
Zp
, µp∞).

These are p-divisible groups over Zp.
Suppose that we have an ordinary point x0 ∈ SK,v(κ). Fix a choice of isomorphism witnessing the ordinariness

of x0: This gives rise via Dieudonné theory to isomorphisms of p-divisible groups

κ⊗Zp G ét0
≃−→ G étx0

; κ⊗Zp Gmult
0

≃−→ Gmult
x0

.

By classical Serre-Tate ordinary theory [14], the deformation functor DefGx0
on ArtW (κ) is now isomorphic to the

functor

Êxt(G ét0 ,Gmult
0 ) : C 7→ Êxt

1
(C ⊗Zp

G ét0 , C ⊗Zp
Gmult
0 )

≃−→ Hom(H1
Zp
, H0

Zp
)⊗Zp

Ĥ1(SpecC, µp∞)

≃−→ Hom(H1
Zp
, H0

Zp
)⊗Zp

(1 +mC).

Here, Ĥ1(SpecC, µp∞) is the set of isomorphism classes of extensions of µp∞ by Qp/Zp as fppf sheaves over SpecC
equipped with a trivialization over κ. The last isomorphism is obtained from Kummer theory.

In particular, DefGx0
is isomorphic to the formal torus T̂ over W (κ) with cocharacter group Hom(H1

Zp
, H0

Zp
).

This isomorphism is well-defined up to the action of MZp
(Zp) on the cocharacter group.

Remark 1.2.10. Let R be the coordinate ring of T̂ and let Guniv be the universal deformation of Gx0 over R.
Dieudonné theory over such formally smooth rings associates with Guniv its Dieudonné module M = D(Guniv)(R),
which is equipped with a topologically locally nilpotent integrable connection∇ and a φ-semilinear map F :M →M
that is horizontal for the connection. This can be described explicitly following de Jong [6, §4.3]: We have the
tautological element

quniv ∈ Hom(H1
Zp
, H0

Zp
)⊗Zp (1 +mR)

mapping to
dlog(quniv) ∈ Hom(H1

Zp
, H0

Zp
)⊗Zp

Ω̂1
R/W (κ) ⊂ End(HZp

)⊗Zp
Ω̂1
R/W (κ)

We now have M = R⊗Zp HZp . The connection ∇ is given by d⊗ 1 + dlog(quniv), and we have F = φ⊗ µv(p)−1.

Definition 1.2.11. For an ordinary algebraically closed point x0 ∈ SK,v(κ), the canonical lift of Gx0 is the lift

Gcanx0
over W (κ) corresponding to the identity section of the formal torus T̂ .
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Definition 1.2.12. Let LieU−
µv
⊂ LieGZp be the eigenspace on which the adjoint action of µp(z) is via z. We have

LieU−
µv

= LieG ∩Hom(H1
Zp
, H0

Zp
) ⊂ End(HZp)

where we are viewing Hom(H1
Zp
, H0

Zp
) as the space of endomorphisms of HZp

whose kernel contains H0
Zp

and whose

image is contained in H0
Zp
. Let T̂G be the formal torus with cocharacter group LieU−

µv
: This is a sub-formal torus

of T̂ .

Remark 1.2.13. Let RG be the ring of functions of T̂G: it is equipped with a canonical Frobenius lift φG given

by the p-power map. The map f : R → RG corresponding to T̂G ↪→ T̂ is compatible with Frobenius lifts. Via
base-change, we now see from Remark 1.2.10 that the Dieudonné module for the universal p-divisible group over
RG is given by MG = RG ⊗Zp

HZp
with connection given by ∇G = d ⊗ 1 + dlog(f(quniv)) and φG-semilinear

endomorphism FG = φG ⊗ µv(p)−1. Now, we have

f(quniv) ∈ LieU−
µv
⊗Zp

(1 +mRG
) ⊂ LieG⊗Zp

(1 +mRG
).

This shows that the tensors sα,RG
= 1 ⊗ sα,cris,x0

∈ M⊗
G are parallel for the connection. They are also invariant

under FG.

Proposition 1.2.14. Let x0 ∈ SK,v(κ) be ordinary, and let Ûx0 be the deformation space for SK,v at x0. If the

image of Ûx0
in DefGx0

≃−→ T̂ contains the canonical lift, then Ûx0
is isomorphic to T̂G ⊂ T̂ .

Proof. First, note that by construction and the Serre-Tate theorem for deformations of abelian varieties, the map

Ûx0
→ T̂ is finite. Moreover, Ûx0

= Spf Rx0
where Rx0

is a complete Noetherian local W (κ)-algebra of dimension

dimSK = dim T̂G. Moreover, by a theorem of Noot [26, Theorem 3.7], there is a finite extension L/W (κ)[1/p] such

that each irreducible component of Ûx0,OL

defn
= Spf(OL⊗W (κ) Rx0

) is isomorphic to the translate by a torsion point

of a formal sub-torus of T̂OL
.

Consider the logarithm map

ℓ : T̂ (OL) = Hom(H1
Zp
, H0

Zp
)⊗Zp

(1 +mL)
1⊗log−−−−→ Hom(H1

Zp
, H0

Zp
)⊗Zp

L.

I claim that we have
ℓ(Ûx0

(OL)) ⊂ LieU−
µv
⊗Zp

L.

For this, we will need the following interpretation of the map ℓ: Given a lift x ∈ T̂ (OL), we obtain a p-divisible

group Gx. As in Remark 1.1.8, we have a canonical isomorphism L⊗W (κ) Hcris,x0

≃−→HdR,x[1/p], and we therefore
have an isomorphism

L⊗Zp HZp

≃−→HdR,x[1/p]

by our choice of fixed isomorphism. The Hodge filtration arising from this identification is of the form

Fil1x(L⊗Zp HZp) = exp(Nx)(L⊗Zp H
1
Zp
),

for some Nx ∈ L ⊗Zp
Hom(H1

Zp
, H0

Zp
). It follows from a computation of Katz [7, A.3] that, at least up to sign, we

have
Nx = ℓ(x) ∈ Hom(H1

Zp
, H0

Zp
)⊗Zp

L.

Now, by Remark 1.1.8, if x ∈ Ûx0
(OL), then Fil1x(L ⊗Zp

HZp
) is split by a cocharacter conjugate to µ−1

v . In

particular, the parabolic subgroup Px ⊂ GL stabilizing Fil1x(L⊗ZpHZp) is G(L)-conjugate to the subgroup PL ⊂ GL
stabilizing L⊗Zp

H1
Zp
. That is, within the set Gr(L) of subspaces of middle dimension in HL, Fil

1
x(L⊗Zp

HZp
) is in

the image of G(L). However, the map

L⊗Zp
Hom(H1

Zp
, H0

Zp
)
N 7→exp(N)(L⊗ZpH

1
Zp )−−−−−−−−−−−−−−→ Gr(L)

is injective, with image isomorphic to the L-points of the open Bruhat cell, and the pre-image of the image of G(L)
is precisely L⊗Zp

LieU−
µv
. This proves the claim.

Now, it follows that the irreducible components of Ûx0,OL
are all translates by torsion points of T̂G,OL

. By our

hypothesis, one of these components must contain the identity section, and must therefore be isomorphic to T̂G,OL
.
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This shows that T̂G is in the iamge of Ûx0 , and by dimension considerations we see that we must in fact have

Ûx0

≃−→ T̂G. □

Remark 1.2.15. Maintain the hypotheses of Proposition 1.2.14. Let Ûan
x0

be the rigid analytic space overW (κ)[1/p]

associated with Ûx0 . The proposition shows that this is isomorphic to an open unit ball of dimension dimShK
contained in the rigid analytic space ShanK,W (κ)[1/p]. Over the latter, the restriction of the vector bundle HdR is

equipped with an integrable connection and parallel tensors {sα,dR}. On the other hand, under the isomorphism

Ûx0

≃−→ T̂G, the vector bundle with integrable connection MG over the latter constructed in Remark 1.2.13 pulls
back to the restriction of HdR, and the tensors {sα,RG

} constructed in loc. cit. pull back to horizontal tensors in

H0(Ûan
x0
,H⊗

dR). These tensors agree with the restrictions of {sα,dR}: Indeed, since both collections are parallel for
the connection, it suffices to verify that they agree at one point. One can do this at the point corresponding to the
canonical lift via Remark 1.1.8.

The following assumption will be in force for the rest of this section.

Assumption 1.2.16. For all κ algebraically closed and all ordinary points x0 ∈ SK,v(κ), the image of Ûx0 in
DefGx0

contains the canonical lift.

Remark 1.2.17. The above assumption—and hence the conclusion of Proposition 1.2.14—is always valid when
GZp

is reductive. See for instance [28, Theorem 6.5].

Corollary 1.2.18. The ordinary points form an open substack SordK,k(v) of the special fiber SK,k(v) = k(v)⊗OE,v
SK,v.

Proof. With the notation of Proposition 1.2.14 and its proof, it is enough to show that a geometric generic point of
SpecRx0

/(p) is ordinary in our sense. Write HdR,Rx0
for the finite free Rx0

-module associated with H⊗
dR|SpecRx0

.

Via the isomorphism Rx0

≃−→ RG, Rx0
is equipped with a Frobenius lift φ, and we have an isomorphism

F : φ∗HdR,Rx0
[p−1]

≃−→HdR,Rx0
[p−1].

By Remark 1.2.15, the restriction of {sα,dR} over SpecRx0
[p−1] gives a collection

{sα,dR,Rx0
} ⊂H⊗

dR,Rx0

that is invariant under F , and moreover there is an isomorphism

Rx0 ⊗Zp HZp

≃−→HdR,Rx0
(1.2.18.1)

carrying {1⊗ sα} to {sα,dR,Rx0
}, and is such that F pulls back to the automorphism 1⊗ µv(p)−1 of Rx0 ⊗Zp HZp .

If F is an algebraic closure of the fraction field of Rx0
/(p), we can lift Rx0

→ F uniquely to a map Rx0
→W (F )

that respects Frobenius lifts, and the base-change over W (F ) of (1.2.18.1) now witnesses the ordinariness of the
corresponding F -valued point of SK,(v). □

Corollary 1.2.19. Let ŜordK,v be the formal completion of SK,(v) along the (open) ordinary locus SordK,k(v), and let

Ŝord,anK,v ⊂ ShanK,Ev
be the corresponding rigid analytic tube. Then the restriction of {sα,dR} over Ŝord,anK,v extends

canonically to a collection of parallel tensors {sα,dR} ⊂ H0(ŜordK,v,Fil
0(H⊗

dR)).

Proof. Immediate from Remark 1.2.15. □

1.3. The ordinary Igusa tower. Here, we review the story of the Igusa tower over the ordinary locus.

Remark 1.3.1. Set G0
defn
= G ét0 × Gmult

0 , and note that it can be equipped with a canonical GZp
-structure in the

following sense: If we set H0 = D(G0)(Zp), then there is an isomorphism

H0
≃−→ H0

Zp
⊕H1

Zp
= HZp

well-defined up to the action of MZp(Zp), and we can use this to obtain F -invariant tensors {sα,0} ⊂ H⊗
0 , which

are carried to {sα} under any choice of such isomorphism.
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Definition 1.3.2. For an algebraically closed field κ in characteristic p, an automorphism of κ ⊗Zp G0 is GZp-
structure preserving if the induced automorphism of W (κ)⊗Zp

H0 fixes the tensors {sα,0}.
For a p-complete Zp-algebra R, an automorphism α of R ⊗Zp

G0 is GZp
-structure preserving its restriction

along any geometric point of Spf R is GZp
-structure preserving.

It is MZp-structure preserving if in addition it preserves the direct product structure R ⊗Zp G0 = (R ⊗Zp

G ét0 )× (R⊗Zp
Gmult
0 )

Notation 1.3.3. For a p-complete ring R, write AutG(R ⊗Zp
G0) (resp. AutM (R ⊗Zp

G0)) for the group of GZp
-

structure (resp. MZp -structure) preserving automorphisms. The functors

R 7→ AutG(R⊗Zp
G0) ; R 7→ AutM (R⊗Zp

G0)

will be denoted by AutG(G0) and AutM (G0), respectively.

Lemma 1.3.4. Consider the formal functors

AutG(G0),AutM (G0) : Spf R 7→ AutG(R⊗Zp
G0).

(1) There is an isomorphism AutM (G0)
≃−→MZp

(Zp) well-defined up to conjugation by an element of MZp
(Zp).

(2) Every α ∈ AutG(R⊗Zp
G0) carries R⊗Zp

Gmult
0 to itself.

(3) If R is Noetherian, the natural map

AutM (R⊗Zp
G0)→ AutG(R⊗Zp

G0)

is an isomorphism.

Proof. The first assertion follows from the definitions and the fact that the automorphism sheaf Aut(G ét0 × Gmult
0 )

of product structure preserving automorphisms of G0 is isomorphic up to conjugation by MZp
(Zp) to the locally

constant pro-finite sheaf of groups GL(H0
Zp
)×GL(H1

Zp
).

Assertion (2) amounts to the easy fact that there are no non-trivial homomorphisms µp∞ → Qp/Zp over a
p-nilpotent base.

Assertion (3) follows from the observation that, for any Noetherian ring R, the space of maps Qp/Zp → µp∞ is
trivial. □

Remark 1.3.5. The restriction of the p-divisible group G = A[p∞] over ŜordK,v is canonically an extension

0→ Gmult → G|Ŝord
K,v

→ G ét → 0,

where Gmult is of multiplicative type and G ét is étale. If x0 ∈ SordK,k(v)(κ) is an algebraically closed point, then we

have a canonical splitting Gx0

≃−→ G étx0
× Gmult

x0
.

Definition 1.3.6. For κ algebraically closed, an isomorphism κ ⊗Zp
G0

≃−→ G étx0
× Gmult

x0
≃ Gx0

is GZp
-structure

preserving if the associated isomorphism W (κ)⊗Zp H0
≃−→Hcris,x0 carries {sα,0} to {sα,cris,x0}

Definition 1.3.7. We define Îg
ord

K,v → ŜordK,v to be the formal scheme parameterizing, for each x : Spf R→ ŜordK,v, the

set of isomorphisms η : R⊗Zp G0
≃−→ G étx × Gmult

x such that:

(1) η preserves the product structure on both sides;
(2) The restriction of η over any algebraically closed point is GZp

-structure preserving.

Proposition 1.3.8. The map Îg
ord

K,v → ŜordK,v is a torsor under the locally constant pro-finite sheaf of groups

AutG(G0) ≃MZp
(Zp).

Proof. Given the natural action of AutM (G0) on Îg
ord

K,v, it suffices to check the assertion over the complete local ring

Rx0
at any Fp-point x0. In fact, it suffices to show that Îg

ord

K,v(Rx0
) is non-empty, and this can be deduced from

Proposition 1.2.14 and Remark 1.2.13. □
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1.4. The generic fiber of the Igusa tower.

Notation 1.4.1. Let P−
Zp
⊂ GZp

be the subgroup stabilizing the subspaceH0
Zp
⊂ HZp

: its generic fiber is a parabolic

subgroup of GQp
. We have a natural quotient map P−

Zp
→MZp

whose kernel is the commutative unipotent subgroup

U−
Zp
with Lie algebra LieU−

µv
. Write IG,p → ShK for the GZp(Zp)-torsor ShKp .

Construction 1.4.2. We have two MZp
(Zp)-torsors over the analytic space Ŝord,anK,v . First, we can take the ana-

lytification Îg
ord,an

K,v of the Igusa tower. The second MZp
(Zp)-torsor is obtained as follows: The filtration on G|Ŝord

K,v

from Remark 1.3.5 gives a corresponding filtration on the dual Tate module

Tp

(
G|Ŝord,an

K,v

)∨
≃Hp|Ŝord,an

K,v

yielding a short exact sequence 0 → H ét
p → Hp|Ŝord,an

K,v
→ Hmult

p → 0 of pro-finite étale sheaves over Ŝord,anK,v . This

yields a reduction of structure group of IG,v|Ŝord,an
K,v

to a P−
Zp
(Zp)-torsor, which we denote by Iord,anP−,v . Pushing out

via the quotient map P−
Zp
(Zp)→MZp

(Zp) now yields an MZp
(Zp)-torsor Iord,anM,v → Ŝord,anK,v .

Remark 1.4.3. By construction, Îg
ord,an

K,v is a subsheaf of the analytification Îg
big,an

v of the sheaf Îg
big

v over ŜordK,v

parameterizing for x : Spf R → ŜordK,v pairs of isomorphisms R ⊗Zp
G ét0

≃−→ G étx and R ⊗Zp
Gmult
0

≃−→ Gmult
x . This

analytification is simply the sheaf parameterizing pairs (α, β), where α (resp. β) is an isomorphism of pro-finite

étale Zp-local systems H0
Zp

≃−→ H ét
p (resp. H1

Zp
(1) = H1

Zp
⊗Zp

Zp(1)
≃−→ Hmult

p ). Here, Zp(1) = Tp(Gm)∨ is the
inverse cyclotomic tower.

Note that Îg
big,an

v is a GL(H0
Zp
)×GL(H1

Zp
)-torsor over Ŝord,anK,v .

Remark 1.4.4. Suppose that we have an algebraically closed point x0 ∈ SordK,k(v)(κ) and that x ∈ SordK,v(W (κ)) is

its canonical lift. Write x also for the associated SpecW (κ)[p−1]-point of ShK,Ev
. We have a canonical splitting

Hp,x
≃−→ H ét

p,x ⊕Hmult
p,x , which gives a reduction of structure for IG,v,x to an MZp(Zp)-torsor IcanM,v,x ⊂ Iord,anP,v,x that

maps isomorphically onto Iord,anM,v,x . Explicitly, if L is an algebraic closure of L = W (κ)[1/p] and x ∈ ShK(L) is the

associated geometric point, then IcanM,v,x(L) is the set of GZp
-structure preserving isomorphisms HZp

≃−→ Hp,x that

carry H0
Zp

onto H ét
p,x and H1

Zp
onto Hmult

p,x .

Remark 1.4.5. Similarly, one sees that Îg
ord,an

K,v,x (L) is also isomorphic to the same set, except that its Gal(L/L)-

structure is twisted by having the Galois group act on H1
Zp

via the inverse cyclotomic character. Indeed, a section

of (the non-empty set) Îg
ord

K,v,x(W (κ)) is an isomorphism W (κ) ⊗Zp
G0

≃−→ Gx that preserves GZp
-structure over κ.

Via the crystalline comparison isomorphism and assertion (2) of Lemma 1.1.6, the associated isomorphism

H0
Zp
⊕H1

Zp
(1) = Tp(G0)∨

≃−→Hp,x

of p-adic local systems over SpecL also preserves GZp
-structure. We now recover our desired assertion by restricting

this isomorphism over SpecL.

Construction 1.4.6. Let Zcycl
p be the Z×

p -torsor over SpecQp corresponding to the p-adic cyclotomic tower: this

parameterizes isomorphisms of p-adic local systems Zp
≃−→ Zp(1). There is a canonical MZp(Zp) × Z×

p -equivariant
map

Iord,anM,v × Zcycl
p → Îg

big,an

v(1.4.6.1)

over Ŝord,anK,v , where Z×
p acts trivially on the right hand side. This is constructed as follows: A section on the left

over x : Spa(R,R+)→ Ŝord,anK,v yields isomorphisms

α : H0
p

≃−→H ét
p,x ; β′ : H1

p
≃−→Hmult

p,x ; ζ : Zp
≃−→ Zp(1)
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of p-adic sheaves over Spa(R,R+). We can now combine the last two to get an isomorphism β′ ⊗ ζ−1 : H1
p(1)

≃−→
Hmult
p,x .

Proposition 1.4.7. The map (1.4.6.1) factors through an isomorphism of MZp
(Zp)-torsors

Iord,anM,v ×Z×
p Zcycl

p
≃−→ Îg

ord,an

K,v

where on the left we are using the action of Z×
p = Gm(Zp) on MZp

(Zp) via the central cocharacter µ−1
v : Gm,Zp

→
MZp

.

Proof. First, note that, because of the centrality of µ−1
v , the quotient on the left inherits the structure of anMZp

(Zp)-
torsor. The fact that (1.4.6.1) factors through this quotient is immediate from the construction, and amounts to
the observation that µv(z) acts on H

1
Zp

via multiplication by z−1. To see that it maps isomorphically onto the other

MZp
(Zp)-torsor Îg

ord,an

K,v , it suffices to test over a classical point in each connected component of Ŝord,anK,v . We can do

so over the canonical lifts of the Fp-points of SordK,k(v) where Remarks 1.4.4 and 1.4.5 do the job. □

2. Hecke correspondences

This section is a review of p-Hecke correspondences on Shimura varieties via isogenies of abelian varieties. We
will consider both the generic fiber and the ordinary locus. The setup will be as in § 1.1.

2.1. Isogenies and p-Hecke correspondences in the generic fiber.

Definition 2.1.1. Suppose that L is an algebraically closed field in characteristic 0 and that we have s, t ∈ ShK(L).

A p-quasi-isogeny 2 f : As 99K At preserves G-structure if the associated isomorphism f∗ : Hp,t[p
−1]

≃−→
Hp,t[p

−1] carries {sα,p,t} to {sα,p,s}. The type of such a p-quasi-isogeny is the unique class

[|g|] ∈ GZp
(Zp)\G(Qp)/GZp

(Zp) = Kp\G(Qp)/Kp

such that, for any choice of trivialization α : HZp

≃−→Hp,s (resp. β : HZp

≃−→Hp,t) carrying {sα} to {sα,p,s} (resp.
to {sα,p,t}), we have β−1 ◦ (f∗)−1 ◦ α ∈ [|g|] ⊂ G(Qp).

Definition 2.1.2. For s, t : SpecR → ShK arbitrary, a p-quasi-isogeny As 99K At preserves G-structure (and
has type [|g|]) if its restriction over every geometric point of SpecR does so.3

Notation 2.1.3. With s, y : SpecR → ShK as above, write QIsogG(s, t) for the space of p-quasi-isogenies from
As to At preserving G-structure. Write IsogG(s, t) for its subspace consisting of honest isogenies As → At and
QIsogG,[|g|](s, t) for the subspace consisting of quasi-isogenies of type [|g|]. If s = t, we will write Aut◦G(s) instead

of QIsogG(s, s). We will view each of QIsogG,QIsogG,[|g|], IsogG as presheaves over ShK × ShK
4 via the pair (s, t).

Remark 2.1.4. If GZp
is reductive, then, for a choice of maximal torus T ⊂ GZp

as in Remark 1.2.3, the Cartan
decomposition tells us that every double coset [|g|] admits a unique representative of the form λ(p) for some
dominant cocharacter λ ∈ X∗(T ) defined over Zp. In this situation, we will also write QIsogG,λ(s, t) instead of
QIsogG,[|g|](s, t).

Construction 2.1.5. For any double coset [|g|] ∈ Kp\G(Qp)/Kp and any choice of h ∈ [|g|] ⊂ G(Qp), set
Kg = K ∩ gKg−1. We have two maps sg, tg : ShKg

→ ShK where sg arises from conjugation by g−1 and tg from
the natural inclusion, using which we can view ShKg as a scheme over ShK × ShK .

Proposition 2.1.6. There is an isomorphism QIsogG,[|g|]
≃−→ ShKg

over ShK × ShK .

2By this, we mean an element f ∈ Hom(As,At)⊗ Q such that, for some m,n ≥ 0, pmf ∈ Hom(As,At) is an isogeny of degree pn.
3For connected SpecR it is enough to check at some geometric point.
4The product is over SpecE.



12 KEERTHI MADAPUSI

Proof. Let’s begin by constructing an isomorphism such that we have a commuting diagram

QIsogG,[|g|]
≃

> ShKg

ShK

tg

<

t

>

For this, set Kg,p = Kp ∩ gKpg
−1 and note that we have canonical bijections

K/Kg
≃−→ Kp/Kg,p

kKg,p 7→kgKp−−−−−−−−−→
≃

KpgKp/Kp.

From this one deduces: If ShKp → ShK is the Kp-torsor parameterizing trivializations of Hp with its GZp -structure,
then we have

ShKp ×GZp (Zp)[KpgKp/Kp]
≃−→ ShKg ,

so that we have a canonical isomorphism

ShKp ×ShK ,tg ShKg

≃−→ ShKp ×[KpgKp/Kp].

On the other hand, suppose that we have s, t : SpecR → ShK , a GZp -structure preserving trivialization β :

HZp

≃−→ Hp,t of p-adic local systems over SpecR, and a GZp
-structure preserving p-quasi-isogeny f : As 99K At of

type [|g|]. Consider the composition

γ : Hp,s
(f∗)−1

−−−−→Hp,t[p
−1]

β−1

−−→
≃

HZp
[p−1].

For any geometric point y : SpecL→ SpecR, since f has type [|g|], we have

γy(Hp,s◦y) = g−1
1 HZp

⊂ HQp

for some coset g1Kp ⊂ [|g|], which is locally constant on SpecR. In this way, we get a map

ShKp ×ShK ,tQIsogG,[|g|] → ShKp ×[KpgKp/Kp]
≃−→ ShKp ×ShK ,tg ShKg

.

One checks that it is Kp-equivariant and so descends to a map QIsogG,[|g|] → ShKg
.

To construct the inverse, suppose now that we have t : SpecR → ShK , β : HZp

≃−→ Hp,t and a locally constant

map γ : SpecR → Kpg
−1Kp/Kp. We want to show that this arises from a pair (s, f), where s ∈ ShK(R) and

f ∈ QIsogG,[|g|](s, t). Without loss of generality, we can assume that γ is constant and corresponds to a coset

g1Kp ⊂ [|g|]. We now get a p-adic local system

β[p−1](g1Kp) ⊂Hp,t[p
−1],

which is of the form (f∗)−1(Tp(A)∨) for a p-quasi-isogeny A 99K At of abelian schemes over SpecR. One checks
now that we have A ≃ As where s ∈ ShK(R) is the image of (t, β, γ) under the map

ShKp ×[KpgKp/Kp]
≃−→ ShKp ×ShK ,tg ShKg

pr2−−→ ShKg

sg−→ ShK .

This both completes the construction of the desired isomorphism and also shows that it is compatible with the
maps s and sg. □

2.2. Ordinary isogenies and p-Hecke correspondences. Fix a place v|p of E.

Definition 2.2.1. Suppose that κ is algebraically closed in characteristic p and that we have s0, t0 ∈ SK,(v)(κ).
A p-quasi-isogeny f : As0 99K At0 preserves G-structure if the associated isomorphism f∗ : Hcris,t0 [p

−1]
≃−→

Hcris,s0 [p
−1] carries {sα,cris,t0} to {sα,cris,s0}. In general, if we have s, t : Spf R→ SK,v for some p-complete ring R,

then a p-quasi-isogeny As 99K At preserves G-structure if its restriction over every algebraically closed point of
Spf R preserves G-structure.
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Notation 2.2.2. With s, t : Spf R → SK,v as above, write QIsogG(s, t) for the space of p-quasi-isogenies from As
to At preserving G-structure, and IsogG(s, t) for its subspace consisting of honest isogenies As → At. If s = t, we
will write Aut◦G(s) instead of QIsogG(s, s).

From here on, we will restrict ourselves to the completion along the ordinary locus ŜordK,v with Assumption 1.2.16
in force.

Definition 2.2.3. If we have s, t : Spf R → ŜordK,v for some p-complete ring R, a quasi-isogeny G éts × Gmult
s 99K

G étt × Gmult
t preserves M-structure if:

(1) It preserves the product structure on both sides;
(2) Its restriction over every algebraically closed point of Spf R preserves G-structure.

Remark 2.2.4. If R = κ is an algebraically closed field, then any G-structure preserving quasi-isogeny As0 99K At0
is automatically M -structure preserving. Here, we are using the property that, for all x0 ∈ SordK,k(v)(κ), we have a

canonical isomorphism Gx0

≃−→ G étx0
× Gmult

x0
.

Notation 2.2.5. With s, t : Spf R → SK,v as above, write QIsogM (s, t) for the space of quasi-isogenies from
G éts × Gmult

s to G étt × Gmult
t preserving M -structure, and IsogM (s, t) for its subspace consisting of honest isogenies

As → At.
Definition 2.2.6. If κ is algebraically closed and we have f ∈ QIsogM (s0, t0) = QIsogG(s0, t0) for s0, t0 ∈
SordK,k(v)(κ), the type of f is the double coset [|m(f)|] ∈ MZp

(Zp)\M(Qp)/MZp
(Zp) determined as follows. Choose

trivializations
α :W (κ)⊗Zp

HZp

≃−→Hcris,s0 ; β :W (κ)⊗Zp
HZp

≃−→Hcris,t0

witnessing the ordinariness of s0 and t0: these are each well-defined up to multiplication byMZp(Zp). Then [|m(f)|]
is the class of β ◦ (f∗)−1 ◦ α−1 ∈M(Qp).

Definition 2.2.7. If we have s, t : Spf R → ŜordK,v, f ∈ IsogG(s, t)
5 and [|m|] ∈ MZp

(Zp)\M(Qp)/MZp
(Zp) then we

will say that f has type [|m|] if its restriction to each algebraically closed point of Spf R has this property. We
will write QIsogG,[|m|](s, t) for the subspace consisting of such f . We also have the subspace QIsogM,[|m|](s, t) ⊂
QIsogG,[|m|](s, t) consisting of those f that are also M -structure preserving.

Example 2.2.8. Suppose thatR is an Fp-algebra and that we have s : SpecR→ SordK,k(v). Hitting s with the absolute

Frobenius of R gives another point s(1) ∈ SordK,k(v)(R) and we have the relative Frobenius map Fs : As → As(1) . This
is a p-isogeny, and is in fact M -structure preserving with type [µv(p)

−1].

Remark 2.2.9. Definition 2.2.7 gives something non-empty only when [|m|] is contained in M(Qp) ∩ End(HZp).
This will suffice for our purposes, but one can extend the definition usefully to all double cosets [|m|] in the following
way: Choose r ≥ 0 such that [|prm|] is contained in M(Qp) ∩ End(HZp

), and define QIsogG,[|m|](s, t) to be the

subspace of QIsogG(s, t) consisting of f such that prf lies in QIsogG,[|prm|](s, t). By definition, multiplication-by-pr,

gives an isomorphism QIsogG,[|m|](s, t)
≃−→ QIsogG,[|prm|](s, t). We have similar subspaces with G replaced with M

in the subscript.

Notation 2.2.10. Fix a double coset [|m|] ∈MZp
(Zp)\M(Qp)/MZp

(Zp). Let

Q̂Isog
ord

G,[|m|]
(s,t)−−−→ ŜordK,v × ŜordK,v

6 ; Q̂Isog
ord

M,[|m|]
(s,t)−−−→ ŜordK,v × ŜordK,v

be the formal presheaves given by QIsogG,[|m|](s, t) and QIsogM,[|m|](s, t), respectively.

Remark 2.2.11. If GZp
is reductive, then so is MZp

, and for the choice of maximal torus T ⊂ GZp
as in Re-

mark 1.2.3, the Cartan decomposition tells us that every double coset [|m|] admits a unique representative of the
form λ(p) for some cocharacter λ ∈ X∗(T ) defined over Zp and dominant with respect to MZp . In this situation,
we will replace the [|m|] in the subscript with λ, and write QIsogG,λ(s, t) and QIsogM,λ(s, t) instead. This notation
will also be used with λ replaced by any other cocharacter in its MZp

-conjugacy class.

5It is important to work with honest isogenies here, since we will have use for their deformation theory. Quasi-isogenies on the other

hand always deform uniquely.
6The product is of formal stacks over Spf OE,v .
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Construction 2.2.12. Suppose that we have s, t : Spf R→ ŜordK,v, f ∈ QIsogM,[|m|](s, t) and a section

β : R⊗Zp
G0

≃−→ G étt × Gmult
t

of Îg
ord

K,v(t). For any section α ∈ Îg
ord

K,v(s), the composition

R⊗Zp
G0

α−→
≃
G éts × Gmult

s 99K G étt × Gmult
t

β−1

−−→
≃

R⊗Zp
G0

is a self-quasi-isogeny that preserves M -structure, and so yields a locally constant map Spf R → M(Qp). The
induced map to M(Qp)/MZp

(Zp) is independent of the choice of α and lands in MZp
(Zp)mMZp

(Zp)/MZp
(Zp). In

this way, we obtain a canonical map

Îg
ord

K,v ×Ŝord
K,v,t

Q̂Isog
ord

M,[|m|] → Îg
ord

K,v ×MZp
(Zp)mMZp

(Zp)/MZp
(Zp).(2.2.12.1)

By noting that taking inverses of quasi-isogenies flips source and target and switches a type [|m|] to its inverse
[|m−1|], we also obtain a map

Îg
ord

K,v ×Ŝord
K,v,s

Q̂Isog
ord

M,[|m|] → Îg
ord

K,v ×MZp
(Zp)m−1MZp

(Zp)/MZp
(Zp).(2.2.12.2)

Notation 2.2.13. For a double coset [|m|] =MZp
(Zp)mMZp

(Zp), set

Îg
ord

[|m|]
defn
= Îg

ord

K,v ×MZp (Zp) MZp(Zp)mMZp(Zp)/MZp(Zp).

Proposition 2.2.14. The maps (2.2.12.1) and (2.2.12.2) descend to maps sitting in commuting diagrams of formal
stacks

Q̂Isog
ord

M,[|m|] > Îg
ord

[|m|]−1

ŜordK,v

<

s
>

;

Q̂Isog
ord

M,[|m|] > Îg
ord

[|m|]

ŜordK,v

<

t

>

where the diagonal maps are finite étale over ŜordK,v.
7

Proof. That the map descends amounts to checking Kp-equivariance, which is straightforward.

By construction, Q̂Isog
ord

M,[|m|] is isomorphic—for some k ≥ 1 sufficiently large—to an open and closed substack of

the formal stack Îsogpk over ŜordK,v × ŜordK,v whose fiber over a point (s, t) parameterizes product structure preserving
p-isogenies

G éts × Gmult
s → G étt × Gmult

t

of degree bounded by pk. Via the projection onto the factor via s (resp. t) this formal stack is simply parameterizing
pairs of finite flat subgroup schemes of (G éts ,Gmult

s ) (resp. (G étt ,Gmult
t )) of combined rank at most pk. This is

represented by a finite étale stack over ŜordK,v. □

Construction 2.2.15. Fix an algebraically closed field κ of characteristic p. For m ∈ M(Qp) ∩ End(HZp
), write

m0,m1 for the induced endomorphisms of H0
Zp

and H1
Zp
. We then get two maps

◦m1,m0 ◦ : LieU−
µv
→ Hom(H1

Zp
, H0

Zp
)

which in turn give us maps ψ1
m, ψ

0
m : T̂G → T̂ of formal tori over W (κ).

Let T̂G,m ⊂ T̂G × T̂G8 be the diagonalizable formal group sitting in an exact sequence

1→ T̂G,m
(sm,tm)−−−−−→ T̂G × T̂G

ψ1
m◦pr1−ψ

0
m◦pr2−−−−−−−−−−−→ T̂ .

7We will see in the next subsection that the top arrows are in fact isomorphisms.
8The product here is over Spf W (κ).
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Remark 2.2.16. The maps ◦m1,m0◦ are injective, and after inverting p one differs from the other by conjugation
by m. This implies that the maps sm and tm are both finite flat maps that are purely inseparable mod-p: Indeed,
the corresponding maps of character groups are isomorphisms of Qp-vector spaces after inverting p.

Proposition 2.2.17. Suppose that we have (s0, t0, f) ∈ Q̂Isog
ord

G,[|m|](κ), and let Û(s0,t0,f) be the deformation functor

for Q̂Isog
ord

G,[|m|] on ArtW (κ). Then we can choose isomorphisms T̂G
≃−→ Ûs0 and T̂G

≃−→ Ût0 as in Proposition 1.2.14
such that we have a commuting diagram

T̂G,m
(sm,tm)

> T̂G × T̂G

Û(s0,t0,f)

≃

∨

(s,t)
> Ûs0 × Ût0

≃

∨

where the left vertical arrow is also an isomorphism.

Proof. Choose isomorphisms

Gt0
β←−
≃
κ⊗Zp

G0
α−→
≃
Gs0

witnessing the ordinariness of t0 and s0 such that the G-structure preserving self-isogeny

β−1 ◦ f ◦ α : κ⊗Zp
G0 → κ⊗Zp

G0

corresponds to m ∈M(Qp) = Aut◦G(G0). By Proposition 1.2.14, we can use α and β to get isomorphisms T̂G
≃−→ Ûs0

and T̂G
≃−→ Ût0

Over T̂G × T̂G ≃ Ûs0 × Ût0 , we have two extensions Gs and Gt of G ét0 by Gmult
0 , and the locus Û(s0,t0,f) is where

the isogeny f lifts to an isogeny between these extensions. Now, the étale part f ét (resp. multiplicative part fmult)
of f lifts uniquely, and is given by

G ét0 = Hom(H0
Zp
,Qp/Zp)

◦m0

−−−→ Hom(H0
Zp
,Qp/Zp) = G ét0

(resp. Gmult
0 = Hom(H1

Zp
, µp∞)

◦m1

−−−→ Hom(H1
Zp
, µp∞) = Gmult

0 ).

We now obtain two further extensions over T̂G× T̂G: One by pulling back Gt along f ét and the other by pushing
forward along fmult. The locus where f lifts is the same as the locus where these two extensions are isomorphic.

To finish, one just checks that the first extension is obtained from the map ψ0
m : T̂G → T̂ , and the second from the

map ψ1
m : T̂G → T̂ , where we are using Serre-Tate ordinary theory to identify T̂ with the deformation space of such

extensions. □

Corollary 2.2.18. The map Q̂Isog
ord

G,[|m|] → Q̂Isog
ord

M,[|m|] is a finite flat homeomorphism.

Proof. By Remark 2.2.4, the map is an isomorphism on algebraically closed points. Moreover, by definition,

Q̂Isog
ord

G,[|m|] is an open and closed substack of the formal stack over ŜordK,v × ŜordK,v parameterizing isogenies between
pr∗1A and pr∗2A. Therefore, it is enough now to know that the map is a finite flat homeomorphism on completions
at algebraically closed points. This follows from Proposition 2.2.17 and Remark 2.2.16. □

2.3. Comparison between the two notions of p-Hecke correspondences. Here, we will look at the relation-
ship between p-Hecke correspondences over the generic fiber and over the ordinary locus.

Remark 2.3.1. Suppose that s0, t0 ∈ SordK,k(v)(κ) are algebraically closed points, that L/W (κ)[1/p] is a finite

extension and that s, t ∈ SK,v(OL) are lifts of s0, t0. Write sη, tη for the associated L-valued points of ShK .

Viewing s, t as Spf OL-valued points of ŜordK,v, we obtain the space QIsogG(s, t). On the other hand, we also have

the space QIsogG(sη, tη) from § 2.1.
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Proposition 2.3.2. There is a canonical isomorphism

IsogG(s, t)
≃−→ IsogG(sη, tη).

Furthermore, if s and t are the canonical lifts of s0 and t0, respectively, then the natural map QIsogG(s, t) →
QIsogG(s0, t0) is also an isomorphism.

Proof. Write Isog(As,At) (resp. Isog(Asη ,Atη )) for the space of p-isogenies from As to At (resp. between their
generic fibers). By the Néronian property of abelian schemes, the natural map

Isog(As,At)→ Isog(Asη ,Atη )

is a bijection. Therefore, we only have to check that the two a priori different notions of G-structure preservation,
one using the crystalline realization (on the source) and the other using the étale realization (on the target) are
compatible. This follows from assertion (2) of Proposition 1.1.6.

The second assertion follows from Serre-Tate ordinary deformation theory, which shows that the natural map

QIsog(As,At)→ QIsog(As0 ,At0)

is a bijection when s and t are canonical lifts. □

Remark 2.3.3. Let ι be the inverse of the first isomorphism from Proposition 2.3.2. Given [|g|] ∈ Kp\G(Qp)/Kp,
one sees, using Proposition 1.4.7, that we have

ι
(
QIsogG,[|g|](sη, tη)

)
⊂

⊔
[|m|]∈S([|g|])

QIsogG,[|m|](s, t)

where S([|g|]) ⊂ MZp
(Zp)\M(Qp)/MZp

(Zp) consists of those double cosets which admit representatives m in the
image of KpgKp ∩ P−(Qp).

Remark 2.3.4. We can globalize Proposition 2.3.2. Over Ŝord,anK,v × Ŝord,anK,v , we have the analytification Îsog
ord,an

G ,

and we also have the restriction of the rigid analytification IsoganG of the stack of G-structure preserving isogenies
in the generic fiber. These are both finite étale over each factor of the product, and so Proposition 2.3.2 shows that
we actually have an isomorphism

IsoganG |Ŝord,an
K,v ×Ŝord,an

K,v

≃−→ Îsog
ord,an

G .

Corollary 2.3.5. The top horizontal arrows in Proposition 2.2.14 are isomorphisms.

Proof. It is enough to check that the horizontal arrow in the second diagram is an isomorphism. Since both source

and target are finite étale over ŜordK,v, it is enough to know that the map is an isomorphism on κ = Fp-points.

Fix t0 ∈ SordK,k(v)(κ), and let QIsogordG,t0(κ) be the fiber of t : Q̂Isog
ord

G (κ) → ŜordK,v(κ) over t0. For a fixed choice of

isomorphism β :W (κ)⊗Zp HZp

≃−→Hcris,t0 as in Definition 2.2.6, we obtain a map

QIsogordG,t0(κ)→M(Qp)/MZp
(Zp)

f 7→ m(f)MZp(Zp),

where m(f) ∈M(Qp) is the class of β ◦ (f∗)−1 ◦ α−1 for any choice of isomorphism α as in the same definition. It
is now enough to know that this map is an isomorphism.

For this, let t ∈ SK(W (κ)) be the canonical lift of t0 and let tη ∈ ShK(L) with L =W (κ)[p−1] be its generic fiber.

We will now show that the map is injective. Indeed, if we have f ∈ QIsogG(s0, t0) and f̃ ∈ QIsogG(s̃0, t0) such that

m(f)MZp
(Zp) = m(f̃)MZp

(Zp), then, since m(f̃)−1m(f) ∈ MZp
(Zp), one finds that f̃−1 ◦ f ∈ QIsogG(s0, s̃0) is an

isomorphism As0
≃−→ As̃0 . If s, s̃ are the canonical lifts, the second assertion in Proposition 2.3.2 shows that this

isomorphism lifts to an element in QIsogG(s, s̃) that is an isomorphism of abelian schemes. One now finds from

Proposition 2.1.6 that this is only possible if s and s̃, along with the corresponding lifts of f and f̃ , yield the same
point of the fiber of t : QIsogG → ShK over tη.
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To show surjectivity, fix an algebraic closure L for L, and let QIsogG,tη (L) be the fiber of t : QIsogG(L)→ ShK(L)
over tη. We then have a commutative diagram

QIsogG,tη (L)
f 7→g(f)GZp (Zp)

≃
> G(Qp)/GZp

(Zp)

QIsogordG,t0(κ)

∨

f 7→m(f)M(Qp)
> M(Qp)/MZp

(Zp)
∨

Here, the top arrow is the isomorphism obtained by taking the fibers of the isomorphism from Proposition 2.1.6
over tη ∈ ShK(L) in the second factor and taking the disjoint union over all [|g|]. The vertical arrow on the left is
obtained from Remark 2.3.4 and the reduction map.

It is enough to show that the right vertical map is surjective. Unwinding definitions, and using Proposition 1.4.7,
one gets the following description of this map: Write tη for the points tη viewed as a L̄-valued point. Using the
Iwasawa decomposition

G(Qp) = U−
µv
(Qp)M(Qp)GZp

(Zp),
we can write g ∈ G(Qp) in the form n−(g)m(g)k(g), where the coset m(g)MZp

(Zp) is canonically determined. The
right vertical map sends gGZp

(Zp) to m(g)MZp
(Zp). This finishes the proof of surjectivity. □

3. An argument of Chai and Hida

The purpose of this section is to abstract some ideas due to Chai and Hida on a ‘pure thought’ study of the
monodromy of Igusa towers over Shimura varieties, and apply them to the particular situation of ordinary loci. All
the key ideas can already be found in [11] and [4]. It is also possible that the main statement here can be deduced
from the very general results of van Hoften and Xiao [30].

3.1. The abstract setup.

Proposition 3.1.1. Let H be a connected reductive group over Q such that HQp
contains a maximal torus that

splits over a cyclic extension of Qp (this hypothesis holds in particular when H is unramified at p). Then H satisfies
weak approximation with respect to {p,∞}; that is, H(Q) is dense in H(Qp)×H(R).
Proof. This is essentially contained in [27]. If H is semi-simple and simply connected, the result follows directly

from Theorem 7.8 of loc. cit. In general, let H̃ be the simply connected cover of the derived group of H. Then we
find from Proposition 2.11 of loc. cit. that there are quasi-trivial9 tori T1 and T2 over Q, and an integer m ≥ 1

such that there is a central isogeny: H̃m × T1 → Hm × T2. In fact, the proof of this result shows that we can
choose T1 and T2 to have the same splitting field as the maximal central torus of H. It is easy to see H satisfies
weak approximation with respect to {p,∞} whenever Hm × T2 does, so we can replace H by the latter group and
assume that it admits a central cover H1 → H where H1 is a product of a semi-simple, simply connected group
with a quasi-trivial torus.

Let F be the kernel of H1 → H: It is a central sub-group of H1, and so, by our hypothesis, splits over a cyclic
extension of Qp. The result now follows from Proposition 7.10 and Corollary 2 in Ch. 7 of loc. cit.. □

Corollary 3.1.2. Let the notation be as in the hypotheses of Proposition 3.1.1 above, and let HZ(p)
be a smooth

group scheme over Z(p) with generic fiber H. For any Z(p)-algebra R set H(R) = HZ(p)
(R). With the hypotheses

as in the proposition, for any integer n ≥ 1, the map

H(Z(p))→ H(Z/pnZ)
is surjective.

Proof. Let Pn = ker(H(Zp)→ H(Z/pnZ)). By (3.1.1), H(Q)Pn = H(Qp). We now have:

H(Zp) = H(Qp) ∩H(Zp) = H(Q)Pn ∩H(Zp) = H(Z(p))Pn.

The corollary now follows, since the map H(Zp)→ H(Z/pnZ) is surjective by the smoothness of HZ(p)
. □

9This means that the Galois representation attached to the character group is a permutation representation.
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Notation 3.1.3. Suppose that S is an algebraic or formal algebraic stack, and that we have an H(Zp)-torsor over S
given by a sequence P = {Pn}n≥1 of compatible finite étale H(Z/pnZ)-torsors Pn → S. If X is an HZp

-equivariant
scheme over Zp, for every n ≥ 1, we set

PX,n = PX(Z/pnZ).

3.1.4. Suppose now that G is a reductive group over Q, T is a finite set of primes containing p, and that S is a
scheme over Z(p) equipped with an action of G(ATf ). Assume that this action lifts to one on the H(Zp)-torsor P
that commutes with the H(Zp)-action. Suppose further that there is another reductive group J over Q with the
following properties:

• There exists an embedding
ψ : JAT

f
↪→ GAT

f
.

• There exists a (necessarily smooth) model JZ(p)
for J over Z(p), and an isomorphism

φ : JZ(p)
⊗Z(p)

Zp
≃−→ HZp

In particular, we have an embedding

Φ : J(Z(p))
m7→(φ(m),ψ(m))−−−−−−−−−−−→ H(Zp)×G(ATf ),

inducing for every n ≥ 1 a map

Φn : J(Z(p))
m7→(φn(m),ψ(m))−−−−−−−−−−−−→ H(Z/pnZ)×G(ATf ).

Notation 3.1.5. Suppose that Q ⊂ HZp
is a closed Zp-subgroup scheme such that X = HZp

/Q is represented by a

scheme. Let J̃Z(p)
(resp. H̃Zp

) be the normalization of JZ(p)
(resp. HZp

) in J̃ (resp. H̃), and let Q̃ be the pre-image

of Q in H̃Zp . Let ZH,p ⊂ HZp be the Zariski closure of the center ZH ⊂ H.

Proposition 3.1.6. Suppose that the following conditions hold:

(1) ρG(G̃(ATf )) acts trivially on π0(S);

(2) For all ℓ /∈ T , GQℓ
is isotropic;

(3) G(ATf ) acts transitively on π0(S);

(4) Φ(J(Z(p))) fixes a point ϖ ∈ π0(P);
(5) Q contains ZH,p;

(6) The Z(p)-group J̃Z(p)
(equivalently, the Zp-group H̃Zp

) and the Zp-group Q̃ are smooth with connected special
fiber.

Then, for every n ∈ Z≥1, the map π0(PX,n)→ π0(S) is a bijection.

Proof. We will need the following consequence of the Kneser-Tits conjecture (see [27, Theorem 7.6]): For any simply
connected isotropic group D over Qℓ, D(Qℓ) does not admit any finite index sub-groups.

This, combined with hypotheses (1) and (2), implies that ρG(G̃(Qℓ)) acts trivially on π0(PX,n) as well. Let ϖ
be as in hypothesis (4), and let Fϖ ⊂ π0(PX,n) be the fiber over the image of ϖ in π0(S). By hypothesis (3), it is
enough to show that Fϖ is a singleton: Any other fiber is a translate of this by an element of G(ATf ).

Hypothesis (4) implies that the subgroup

H̃n := {φn(m) : m ∈ J(Z(p)), ψ(m) ∈ ρG(G̃(ATf ))} ⊂ H(Z/pnZ)

fixes the image of ϖ in π0(PX,n) (which we once again denote by ϖ). Here, φn : J(Z(p))→ H(Z/pnZ) is obtained
by reduction-mod-pn from the map φ.

It is now enough to show that H̃n acts transitively on the fiber Fϖ ⊂ π0(PX,n). For this, it is enough to know

that it surjects onto X(Z/pnZ) via the map induced by φn. Note, however that H̃n contains ρJ(J̃(Z(p))). Therefore,
it is enough to show that the latter surjects onto X(Z/pnZ).

First, note that the natural map

H̃Zp
/Q̃→ HZp

/Q

is an isomorphism of fppf sheaves over Zp. Indeed, it is a monomorphism by definition, and hypothesis (5) implies
that it is also surjective.
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Now, hypothesis (6) ensures that H̃Zp and Q̃ are smooth over Zp with connected fibers. Therefore, by Lang’s
theorem [18], we have

X(Z/pnZ) = H̃(Z/pnZ)/Q̃(Z/pnZ).
It now follows from (3.1.2) that ρJ(J̃(Z(p))) maps surjectively onto X(Z/pnZ) via φn. □

3.2. Hecke action on connected components of Shimura varieties. Let (G,X) be a Shimura datum. Write
g 7→ gad for the natural map G→ Gad, and set

G(Q)+ = {g ∈ G(Q) : gad ∈ G(R)0}

where G(R)0 ⊂ G(R) is the topological connected component of the identity.

3.2.1. Fix a compact open subgroup Kp ⊂ G(Qp). For any sufficiently small compact open K ⊂ G(Af ) of the
form KpK

p with Kp ⊂ G(Apf ), we obtain a Shimura variety ShK = ShK(G,X) over the reflex field E with

ShK(C) = G(Q)\(X ×G(Af )/K).

We will be interested in the inverse limit

ShKp = lim←−
Kp⊂G(Ap

f )

ShKpKp ,

which is a scheme over Q. There is a natural action of G(Apf ) on ShKp
obtained over C via the right multiplication

action on G(Af ).

Lemma 3.2.2. Let π0(ShKp,Q) be the set of connected components of Shp,Q. Suppose that G(Q))+ is dense in

G(Qp); for instance, this is the case if G satisfies the hypotheses of Proposition 3.1.1. Then:

(1) G(Apf ) acts transitively on π0(ShKp,Q).

(2) ρG(G̃(Apf )) acts trivially on π0(ShKp,Q).

Proof. By [9, (2.1.3)], the set of connected components of ShK(C) is a torsor under the group

π0π(G)/K
defn
= G(Af )/ρG(G̃(Af ))G(Q)+K,

where G(Q)+ ⊂ G(Q) is the stabilizer of a connected component of X, the action being induced from that of G(Af )
on itself via right multiplication. This implies that π0(ShKp,Q) is a torsor under

G(Af )/ρG(G̃(Af ))G(Q)+Kp.

Assertion (2) follows immediately from this; and assertion (1) follows from the additional observation that, under
our hypotheses, G(Q)+Kp = G(Qp). □

3.3. Kisin’s analogue of Tate’s theorem. Suppose now that (G,X) is of Hodge type and fix a place v|p of E.

Construction 3.3.1. By Construction 5.1.2, for a given choice of symplectic representation H with lattice HZ, we
obtain an integral model SK over OE , and hence a model SK,(v) over OE,(v). If we vary K

p, then we obtain a tower

of such models SKpKp,(v) where the transition maps SKpKp,(v) → SKpK̃p,(v) for Kp ⊂ K̃p are finite étale, and we

can take the inverse limit

SKp,(v)
defn
= lim←−

Kp

SKpKp,(v).

The G(Apf )-action on ShKp
extends to one on SKp,(v): More precisely, over SKp,(v), we have a canonical isomorphism

of Apf -local systems

ϵp : Apf ⊗Q H
≃−→ V̂ p(A)∨,

where on the right hand side we have the dual of the prime-to-p adélic Tate module of A, and a functorial point x
of SKp,(v) gives rise to a pair (Ax, ϵx), where Ax is an abelian scheme and ϵx is a trivialization as above of its dual

prime-to-p adélic Tate module. For g ∈ G(Apf ), the functorial point g · x will be the unique one giving rise to the

pair (Ax, ϵx ◦ g−1).
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Construction 3.3.2. Let the notation be as in Lemma 1.1.6, but assume that κ is the algebraic closure of a finite
field k, and, for any m ∈ Z≥1, let km ⊂ κ be the unique degree m extension of k. Suppose also that x0 is defined
over k and write x0,m for the corresponding km-point of SKpKp . Let J◦

x0,m
= J◦

Gx0,m
be the algebraic group over

Qp such that J◦
x0
(Qp) = QIsogG(x0,m, x0,m). In more detail, if Hcris,x0,m , then the G-structure up to isogeny from

Lemma 1.1.6 gives us a subgroup GL(Hx0,m
) that can be identified with GW (km)[1/p], and, for any Qp-algebra R,

we have

J◦
x0
(R) = G(W (km)⊗Zp

R) ∩ (Aut◦F (Hcris,x0,m
))(R) ⊂ GL(R⊗W (km)Hcris,x0,m

),

where Aut◦F (Hcris,x0,m) is the algebraic group over Qp obtained as the group scheme of invertible elements in the
ring EndF (Hcris,x0,m

[1/p]) of endomorphisms of the F -isocrystal Hcris,x0,m
[1/p].

Let Aut◦(Ax0,m
) be the algebraic group overQ obtained as the group scheme of invertible elements in End(Ax0,m

)Q;
then we have a natural map of Qp-group schemes

Qp ⊗Q Aut◦(Ax0,m)→ Aut◦F (Hcris,x0,m)

We now define an algebraic group I◦x0,m
over Q such that for any Q-algebra R, we have

I◦x0,m
(R) = Aut◦(Ax0,m)(R) ∩ J◦

x0,m
(Qp ⊗Q R) ⊂ Aut◦F (Hcris,x0,m)(Qp ⊗Q R).

Proposition 3.3.3. With the notation as above:

(1) I◦x0,m
is a connected reductive group over Q.

(2) For m sufficiently divisible, the natural map

Qp ⊗Q I
◦
x0,m

→ J◦
x0,m

is an isomorphism of algebraic groups over Qp.
(3) The action of I◦x0,m

on the prime-to-p adélic Tate module V̂ p(Ax0
), via the trivialization

ϵx0 : Apf ⊗Z(p)
H(p)

≃−→ V̂ p(Ax0)
∨

gives rise to an embedding

Apf ⊗Q I
◦
x0,m

↪→ GAp
f
.

Proof. The reductivity of I◦x0,m
is a consequence of the fact that its real points are a compact Lie group modulo

scalars: see (2.1.3) of [16].

We can define a subgroup I◦,px0,m
⊂ I◦x0,m

as the largest Q-subgroup whose action on V̂ p(Ax0
)∨ gives rise, via ϵx0

,

to an embedding Apf ⊗Q I
◦,p
x0,m

↪→ GAp
f
.

Then Corollary 2.2.10 of [16] shows that, for m sufficiently divisible, the natural map Qp ⊗Q I
◦,p
x0,m

→ J◦
x0,m

is an

isomorphism, which a fortiori, implies that I◦,px0,m
= I◦x0,m

, and so verifies assertions (2) and (3). □

3.4. Monodromy over the ordinary loci of Shimura varieties. We will now put ourselves in the situation

of § 1.3 so that we have the formal Igusa tower Îg
ord

KpKp,v → ŜordKpKp,v with special fiber IgordKpKp,k(v) → SordKpKp,k(v).

Taking the limit over Kp gives an MZp(Zp)-torsor

IgordKp,k(v) → S
ord
Kp,k(v)

.

Proposition 3.4.1. Suppose that the following conditions hold:

(1) MZp
and M̃Zp

are smooth over Zp with connected special fiber.
(2) M admits a maximal torus splitting over a cyclic extension of Qp (see the hypotheses of Proposition 3.1.1).

(3) Q ⊂MZp is a closed subgroup scheme containing ZMZp
with Q̃ smooth with connected special fiber.

(4) If Zp ⊂ Qp is the subring of algebraic p-adic integers, then the map

π0(SordKp,Fp
)→ π0(SKp,Zp

) ≃ π0(ShKp,Qp
)

is a bijection.
(5) For every prime ℓ ̸= p, GQℓ

is isotropic.
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(6) There exists a finite field k ⊂ Fp, a compact open Kp ⊂ G(Apf ) and x0 ∈ SordKpKp
(k) such that the map

Aut◦G(Gx0)→ Aut◦G(Fp ⊗k Gx0)

is a bijection.

Then for X =MZp
/Q, and every n ∈ Z≥1, the natural map

π0(Ig
ord
Kp,k(v),X,n)→ π0(SordKp,(v)

)

is a bijection.

Proof. This is an application of Proposition 3.1.6. In the notation there, we will take S = SordKp,(v)
, H = J0, P = P̂,

G = G, and T = {p}.
By Lemma 3.2.2 and Assumption (4), G̃(Apf ) acts trivially on π0(Ĉ), which verifies Assumption 1 from (3.1.6).

Assumption (2) in (3.1.6) is Assumption (5) here.
Assumption (3) in (3.1.6) follows from Assumption (4) here and Lemma 3.2.2.
Assumptions (5) and (6) in (3.1.6) follow from Assumptions (1) and (3) here.
To finish, it remains to find the Z(p)-group scheme JZ(p)

as in (3.1.4) with generic fiber J satisfying Assumption (4).

Let x0 be as in Assumption (6). By replacing k with a suitable extension, we can assume that I◦x0
= I◦x0,1,

J◦
x0

= J◦
x0,1 are such that we have the isomorphism

Qp ⊗Q I
◦
x0

≃−→ J◦
x0

given to us by Proposition 3.3.3.
We will take J = I◦x0

and JZ(p)
to be the Zariski closure of J in the Z(p)-group Aut(Ax0

)(p) obtained as the

group scheme of invertible elements in the Z(p)-algebra End(Ax0)⊗Z(p). We can also interpret JZ(p)
as the largest

subgroup of J acting on Gx0
via automorphisms instead of self-quasi-isogenies.

Choose a lift η ∈ IgordKp,k(v)(Fp) of x0. This gives a G-structure preserving isomorphism Fp ⊗Zp
G0

≃−→ Fp ⊗k Gx0
,

which we also denote by η. Assumption 6 now gives us isomorphisms

φ : JQp

≃−→ J◦
x0

≃−→ Aut◦G(Fp ⊗k Gx0)
≃−→ Aut◦G(Fp ⊗Zp G0)

≃−→MQp ,

where the penultimate isomorphism is obtained via conjugation by η, and the last one is from Lemma 1.3.4. This
isomorphism maps Zp ⊗Z(p)

JZ(p)
onto MZp

.

Now, (3) of Proposition 3.3.3 shows that the action ofM(Apf ) on the prime-to-p adélic Tate module of Ax0
, along

with the trivialization ϵx0
, gives an embedding ψ : JAp

f
↪→ GAp

f
.

In this way, we get a map

Φ : J(Z(p))
(φ,ψ)−−−→MZp(Zp)×G(A

p
f ).

To verify Assumption (4), it is now enough to show that for all m ∈ J(Z(p)), Φ(m) fixes η. For this, note that

Φ(m)(η) corresponds to the same underlying abelian variety Ax0
but with ϵx0

replaced by ϵx0
◦ ψ(m)−1 and η

replaced by the point of Îg
ord

K,v above Φ(m)(x0) corresponding to the isomorphism φ(m) ◦ η.
This means that the isomorphism

m : Ax0

≃−→ AΦ(m)(x0) = Ax0

is G-structure preserving and carries η to the isomorphism φ(m) ◦ η. Therefore, arguing as in the proof of Corol-
lary 2.3.5, one sees that η = Φ(m)(η), thus finishing the proof of the proposition. □

Definition 3.4.2. We will say that x0 is hypersymmetric if it satisfies Assumption (6) above. The definition is
originally due to Chai [4] in the case where G = GSp(H).

Remark 3.4.3. Suppose that Ax0
is hypersymmetric as an abelian variety; that is, suppose that the natural map

Zp ⊗Z End(Ax0
)→ End(Fp ⊗k Gx0).

is an isomorphism. Then it is immediate that x0 is hypersymmetric in the sense of the definition above. In fact, it
is enough to assume that Ax0

is isogenous to a hypersymmetric abelian variety: any abelian variety isogenous to a
hypersymmetric one is itself hypersymmetric.
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Remark 3.4.4. Any ordinary elliptic curve E is hypersymmetric in the above sense: The right hand side is Zp×Zp,
and so it is enough to know that End(E) has rank at least 2 as a Z-module (since the image of the map in question
is saturated), which is clear, since Frobenius does not act as a scalar.

Remark 3.4.5. Suppose that we have an imaginary quadratic extension L/Q and a map TL
defn
= ResL/Q Gm → G

whose real fiber yields an element of X. Suppose also that L is split at p and that GZp(Zp) ⊂ G(Qp) contains the
image of (OL⊗ZZp)×. Then the mod-v reduction of the CM points arising from TL are all hypersymmetric points of
SordKp,k(v)

contains many hypersymmetric points: Indeed, the symplectic representation H, viewed as a representation

of TL, must be isomorphic to a direct sum of the tautological representation on L, for weight reasons. Therefore,
if x0 is a point of SK that is the reduction of a special point arising from TL, then Ax0

is isogenous to a power of
the CM elliptic curve associated with that point, which is ordinary, since we have assumed that p is split in L. By
Remark 3.4.4, x0 is hypersymmetric.

Remark 3.4.6. In [10], one finds a somewhat general criterion for when a Newton stratum in a Shimura variety
at a place of hyperspecial level contains a hypersymmetric point. Specialized to the ordinary case, it says that the
ordinary locus contains a hypersymmetric point precisely when G admits a subgroup I ⊂ G that is the centralizer
of an elliptic element and whose Dynkin diagram, when viewed as a Gal(Qp/Qp)-equivariant graph, is isomorphic
to that of MZp

.

4. Group schemes associated with quadratic lattices

In this section, we will prove some technical results about group schemes associated with quadratic lattices that
will be employed to prove our main irreducibility results. The reader can refer back to the results here as necessary.

4.1. Applications of Witt’s extension theorem. Fix a self-dual quadratic space (N,Q) over Zp: This is a
quadratic form

Q : N → Zp
on a finite free Zp-module N that is such that the associated bilinear form

[x, y]Q = Q(x+ y)−Q(x)−Q(y)

on N is non-degenerate. Note that when p = 2 this forces n to be even.
We have the reductive Zp-group scheme GSpin(N), sitting in two short exact sequences of reductive groups

1→ Gm → GSpin(N)→ SO(N)→ 1;

1→ Spin(N)→ GSpin(N)
ν−→ Gm → 1.

Here, ν : GSpin(N)→ Gm is the spinor norm. For more details, see [22, § 1].
In the first part of this section, we will see that the various lemmas from § 2 of [22]hold in quite some generality,

without in particular the hypothesis that p > 2.

Lemma 4.1.1. Suppose that F is a field over Zp. Suppose that we have two proper direct summands W1,W2 ⊂ NF
such that there is an isometry f : W1

≃−→ W2 of quadratic spaces (with their inherited quadratic forms) over F .
Suppose that W1 has codimension at least 2 in NF . Then there exists h ∈ SO(N)(F ) such that h(w1) = f(w1) for
all w1 ∈W1.

Proof. Let us make some preliminary observations:

• IfW1 is isotropic, then the lemma reduces to the transitivity of the action of SO(N)(F ) on the Grassmannian
parameterizing isotropic subspaces of NF of fixed rank.

• By Witt’s extension theorem [3, §4, Théoréme 1], there exists an element g ∈ O(N)(F ) such that g(w1) =
f(w1) for all w1 ∈W1. In particular, if we knew that there is an element of O(N)(F )\SO(N)(F ) restricting
to the identity on W1, then we would be done.

Now, suppose that W1 is itself self-dual with the inherited quadratic form. Then we have N =W1 ⊕W⊥
1 where

W⊥
1 = {n ∈ NF : [n,w] = 0 for all w ∈W1 }
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is also self-dual. We can now pick any element of O(W⊥
1 )(F )\ SO(W⊥

1 )(F ) to extend the identity on W1 to an
element g′ ∈ O(N)(F )\SO(N)(F ).

Next, suppose that W1 = F · u1 where Q(u1) ̸= 0. After scaling if necessary we can assume that Q(u1) = 1. If 2
is invertible in F , then this is a special case of the second paragraph. Assume therefore that F has charactersitic
2: in this case dimNF > 2 is even, and we can find e1 ∈ NF such that Q(e1) = 0 and [e1, u1]Q = 1, so that
u1 = e1+ e′1, where Q(e′1) = 0 and [e1, e

′
1]Q = 1. Now, e1, e

′
1 span a self-dual proper subspace of NF , and we return

to the situation from the previous paragraph.
Suppose now thatW1 is non-degenerate: this means that the projective quadric defined by the restriction of Q to

W1 is a smooth F -scheme. If 2 is invertible in F , then this is equivalent to saying thatW1 is self-dual, and we return
to a previously considered case. Otherwise, we have the possibility that there exists u1 ∈W1 such that Q(u1) = 1,
and such that (F ·u1)⊥ =W1. Choose a direct sum decompositionW1 = F ·u1⊕V1, and set V2 = f(V1) ⊂W2. Then
V1 ⊂ NF is self-dual, and so by the second paragraph of the proof, there is an h′ ∈ SO(N)(F ) with h′(v1) = f(v1)
for all v1 ∈ V1. If h′(u1) = f(u1), then we are done. Otherwise, note that V ⊥

2 has dimension at least 4. Therefore,
by the previous paragraph, we can find h′′ ∈ SO(V ⊥

2 )(F ) such that h′′(h′(u1)) = f(u1). We now take h to be the
composition of h′ with the element of SO(N)(F ) that restricts to the identity on V1 and to h′′ on V ⊥

1 .
Finally, let W1 be arbitrary, and, for i = 1, 2, let Vi ⊂ Wi be the subspace consisting of the isotropic vectors in

the radical Wi ∩W⊥
i . Then we have f(V1) = V2. Choose Witt decompositions

NF = V1 ⊕ U1 ⊕ V ′
1 = V2 ⊕ U2 ⊕ V ′

2 .

Note that we have Wi = Vi⊕ (Ui∩Wi) for i = 1, 2 and that Ui∩Wi ⊂ Ui is a non-degenerate subspace of a self-dual
quadratic space. With this, we can reduce to the situation in the previous paragraph. □

Lemma 4.1.2. Suppose that R is a Zp-algebra, and that W ⊂ NR is a direct summand. For any R-algebra S set

AW (S) = {φ ∈ HomS(WS , NS) : [φ(w), w]Q = 0, for all w ∈WS}
Then:

(1) AW (R) is locally free over R;
(2) For any R-algebra S, we have

S ⊗R AW (R) = AW (S) ⊂ HomS(WS , NS).

The map

S ⊗Zp
Lie SO(N)

X 7→X|WS−−−−−−→ AW (S)

is surjective.

Proof. Consider the surjective map of finite locally free S-modules:

πQ : HomS(WS , NS)→ HomS(WS ,W
∨
S )

induced by the dual surjection NS → W∨
S . Then we see that AW (S) is the pre-image under πQ of the locally free

sub-module consisting of maps φ such that φ(w)(w) = 0 for all w ∈WS .
10 From this, the first two assertions of the

lemma are immediate.
For the third and final assertion, it now suffices to prove it under the hypothesis that R = F is an algebraically

closed field, where we are essentially in the situation of Lemma 2.2 of [22]. The only modification one needs in that
proof is to consider the case where W ⊂ NF is non-degenerate but not self-dual—once again, a characteristic 2
phenomenon—which, as in the proof of Lemma 4.1.1 above, reduces to the case where W = F · u with Q(u) = 1.
That is, given a vector v ∈ W⊥ ⊂ NF , we must find X ∈ F ⊗Zp

Lie SO(N), such that X(u) = v. For this, we can
assume that v as in loc. cit., we can assume that u = e+ f , where e, f are isotropic vectors spanning a hyperbolic
plane U ⊂ NF ; then

φ : U
e7→e+v−u ; f 7→f−−−−−−−−−−−→ NF

is an element of AU (F ) satisfying φ(u) = v, and so we reduce the requisite surjectivity statement to the case where
W is itself self-dual, which is covered by the argument in [22]. □

10Concretely, if WS is free of rank n, then we can identify this sub-module with the space of n × n anti-symmetric matrices with
zeros along the diagonal.
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Lemma 4.1.3. Suppose that we have a surjection R → R of Zp-algebras with square-zero kernel I. Suppose that

we have direct summands W1,W2 ⊂ NR such that there is an isomorphism f :W1
≃−→W2 of quadratic spaces (with

their inherited quadratic forms) over R. Suppose also that there exists g′ ∈ SO(N)(R) such that

g′(w1)− f(w1) ∈ I ⊗Zp
N ⊂ NR, for all w1 ∈W.

Then there exists g ∈ SO(N)(R) such that g(w1) = f(w1) for all w1 ∈W1.

Proof. This is shown exactly as in [22, Lemma 2.8]: For G = SO(N), the point is to show that there exists
X ∈ I ⊗Zp

LieG such that X(w1) = w1 − g′−1f(w1) for all w1 ∈W1 using Lemma 4.1.2 above, and to then replace

g′ with g′ ◦ (1− X̃), where X̃ ∈ I ⊗Zp
LieG is a lift of X. □

Lemma 4.1.4. Let N0 be a non-degenerate quadratic space over a field k, and let W0 ⊂ N0 be a k-subspace of
codimension at least 2. Define subgroups

QW0
⊂ GSpin(N0) ; Q̃W0

⊂ Spin(N0) ; Q̄W0
⊂ SO(N0)

as above. Then QW0 , Q̃W0 , Q̄W0 are smooth connected k-algebraic groups.

Proof. It is enough to show this for Q̃W0 : Indeed, we have short exact sequences of group schemes:

1→ Gm → QW0
→ QW0

→ 1;

1→ Q̃W0
→ QW0

ν−→ Gm → 1.

The surjectivity of ν|QW0
follows from the surjectivity of its restriction to the central Gm in QW0 .

LetW ′
0 ⊂W0 be the radical for the restriction of the symmetric bilinear form toW0, let V0 ⊂W ′

0 be the subspace
consisting of all the isotropic vectors (we have V0 = W ′

0 unless k has characteristic 2), and let U0 = (V0)
⊥ be its

orthogonal complement. Let P0 ⊂ Spin(N0) be the parabolic subgroup stabilizing V0; its Levi quotient can be
identified with

GL(V0)× Spin(U0/V0).

Let M0 of the Levi quotient consisting of elements of the form (1, g), where g restricts to the identity on W0/V0,
and let P ′

0 ⊂ P0 be its pre-image. Note that M0 = Spin(W0/V0), where W0/V0 is a non-degenerate quadratic space.
In particular, it is connected, and so is its pre-image P ′

0.
We have P ′

0 ≃ U(P0)⋊M0, where U(P0) ⊂ P0 is the unipotent radical. It can now be checked that, under any

such isomorphism, Q̃W0 is mapped isomorphically onto the (smooth, connected) subgroup

V0 ⋊M0 ⊂ U(P0)⋊M0

where V0 ⊂ U(P0) consists of those elements g whose restriction to W0 is the identity. □

4.1.5. Suppose that we have a direct summand W ⊂ N . Let QW ⊂ GSpin(N) be the Zp-group scheme such that
for every Zp-algebra R, we have

QW (R) = {g ∈ GSpin(N)(R) : g · w = w, for all w ∈WR}.

Set Q̃W = Spin(N) ∩ QW = ker ν|QW
, and let QW ⊂ SO(N) be the image of QW . As an immediate consequence

of Lemma 4.1.4 we obtain:

Lemma 4.1.6. Suppose that rank(W ) ≤ rank(N)− 2. Then:

(1) We have two short exact sequences of group schemes:

1→ Gm → QW → QW → 1;

1→ Q̃W → QW
ν−→ Gm → 1.

(2) The group schemes QW and QW are smooth over Zp with geometrically connected fibers.

(3) The map ν|QW
is smooth and so Q̃W is also smooth over Zp.
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Lemma 4.1.7. Suppose that R is a Zp-algebra, that W has codimension at least 2 in N , and that we have another
embedding of quadratic spaces over R, j : WR ↪→ NR mapping onto a direct summand. Then the functor on
R-algebras

S 7→ {g ∈ GSpin(N)(S) : g−1(w) = j(w) for all w ∈WS}

is represented by a QW -torsor over SpecR. In particular, if R = Zp, then we always have g ∈ GSpin(N)(Zp) such
that g−1(w) = j(w) for all w ∈W .

Proof. Clearly, the functor is represented by a closed subscheme of GSpin(N)R. Moreover, QW acts on this
subscheme by left multiplication, and this action is simply transitive whenever the S-points of the subscheme
are non-empty.

It is now enough to show that the functor admits sections over any strictly henselian local ring of R. But this
is clear from Lemmas 4.1.1 and 4.1.3, which together show that the subscheme in question is faithfully flat and
smooth over R.

The second assertion now from Lang’s theorem [18], combined with the fact that QW is smooth with connected
special fiber: this implies that every QW -torsor over SpecZp admits a section. □

4.2. Certain subspaces of quadric Grassmannians.

Notation 4.2.1. Let {λ0} be the conjugacy class of minuscule cocharacters of GSpin(N) characterized by the
following properties:

• For the left multiplication action on the Clifford algebra C(N), λ0 has weights 0,−1.
• Via the action of λ0, N acquires a weight space decomposition of the form:

N = N1 ⊕N0 ⊕N−1,

where N±1 are complementary isotropic lines and N0 ⊂ N is the subspace orthogonal to both.

Definition 4.2.2. Let Parλ0
be the Grassmannian parameterizing isotropic lines in N . Given a Zp-algebra R, we

will call an isotropic line J ⊂ NR W -generic if the following conditions hold:

• J +WR ⊂ NR is a local direct summand of rank rank(W ) + 1; equivalently, J maps isomorphically onto a
local direct summand of NR/WR.

• The map

WR
t7→[t,·]Q−−−−−→ HomR(J,R)

is surjective.

W -generic isotropic lines are parameterized by an open subscheme Par◦λ0
(W ) of Parλ0

Definition 4.2.3. Let P(W ) be the projective space over Zp parameterizing hyperplanes in T . Then there is a
natural map Par◦λ0

(W )→ P(W ) sending an isotropic line J ∈ Par◦λ0
(W )(R) to the kernel of the associated surjection

from WR to HomR(J,R). Fix U ∈ P(W )(Zp), and let

Par◦λ0
(W,U) ⊂ Par◦λ0

(W )

be the fiber above it.

Lemma 4.2.4. Par◦λ0
(W,U) is a smooth scheme over Zp.

Proof. Note that we can identify this scheme with the open subscheme of the projective Zp-scheme Mloc param-
eterizing isotropic lines in U⊥ ⊂ N ; see [22, (2.10)]. The singular locus of any geometric fiber over a field k of
this scheme can be identified with the projective space of isotropic lines contained in the radical of Uk; but no line
arising from a point of Par◦λ0

(W,U)(k) can be contained in Uk ⊂ Wk, given that it has to be complementary to
Wk. □
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4.2.5. We will assume now that the quadratic form induced on WQp is non-degenerate, and that Par◦λ0
(W,U)(Zp)

is non-empty, and we will choose a point J0 in it. Let HZp
⊂ GSpin(N) be the closed Zp-subgroup scheme with

HZp(R) = {g ∈ GSpin(N)(R) : g · w = w, for all w ∈WR}
for any Zp-algebra R. Let Q ⊂ HZp be the stabilizer of J0: Since Q has to preserve the non-degenerate pairing of
J0 against W , it follows that Q actually fixes J0 pointwise, and is thus the pointwise stabilizer of J0 ⊕W ⊂ N . In
other words, in the notation of (4.1.5), we have HZp

= QW and Q = QJ0⊕W .

Lemma 4.2.6. Let Q̃ and H̃Zp be defined as above Proposition 3.1.6. Suppose that rank(W ) ≤ rank(N)− 3.

(1) HZp is a smooth Zp-group scheme with reductive generic fiber.
(2) HQp

admits a maximal torus that splits over a quadratic extension of Qp.
(3) Q is also a smooth Zp-group scheme.
(4) The quotient HZp

/Q is represented by a smooth scheme over Zp, and there is an isomorphism

HZp
/Q

≃−→ Par◦λ0
(W,U)

of smooth Zp-schemes.

(5) The Zp-group schemes H̃Zp
and Q̃ are smooth with connected special fibers.

(6) Let ν : GSpin(N)→ Gm be the spinor norm; then its restriction to Q is surjective. In particular, the map
on Fp-points

ν : Q(Fp)→ F×
p

is surjective.

Proof. Assertions (1), (3), (5), and the first part of assertion (6) are immediate from Lemma 4.1.6. Note that the
reductivity of the generic fiber HQp

is a consequence of the hypothesis that WQp
is a non-degenerate quadratic

space, so that we can identify
HQp

= GSpin(W⊥
Qp

) ⊂ GSpin(NQp
).

As for (2), note that W⊥
Qp

is isometric to the orthogonal sum of an anisotropic quadratic space of dimension

≤ 4 and copies of the hyperbolic plane. In particular, it suffices to show (2) under the additional assumption that

V
defn
= W⊥

Qp
is anisotropic. Here, an easy case-by-case analysis using the classification from [29, §25] does the job.

The second part of (6) is immediate from (5) and Lang’s theorem on connected groups over finite fields [18].
It only remains to prove (4), which, by Lemma 4.2.4, comes down to showing that the map

HZp

g 7→g·J0−−−−−→ Par◦λ0
(W,U)

induces an isomorphism of fppf sheaves HZp
/Q

≃−→ Par◦λ0
(W,U). This follows from Lemma 4.1.7, which shows that,

for any Zp-algebra R, and any J ∈ Par◦λ0
(W,U)(R), the scheme of sections g of HZp

(S) for R-algebras S such that

g(S ⊗R J0) = J

is a torsor over SpecR under the group scheme Q. □

Remark 4.2.7. The map

GSpin(N)(Zp)
h7→hλ0(p)GSpin(N)(Zp)−−−−−−−−−−−−−−−−→ GSpin(N)(Zp)λ0(p)GSpin(N)(Zp)/GSpin(N)(Zp)

yields a bijection

GSpin(N)(Zp)/(GSpin(N)(Zp)∩λ0(p)GSpin(N)(Zp)λ0(p)−1)
≃−→ GSpin(N)(Zp)λ0(p)GSpin(N)(Zp)/GSpin(N)(Zp).

On the other hand, using the minusculeness of λ0, one finds that

GSpin(N)(Zp) ∩ λ0(p)GSpin(N)(Zp)λ0(p)−1 ⊂ GSpin(N)(Zp)
is simply the pre-image of the Fp-points of the parabolic subgroup of GSpin(N) fixing the isotropic line N1. In
particular, we have a bijection

GSpin(N)(Zp)/(GSpin(N)(Zp) ∩ λ0(p)GSpin(N)(Zp)λ0(p)−1)
h7→hN1

Fp−−−−−−→
≃

Parλ0
(Fp),
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where Parλ0 is the quadric Grassmannian parameterizing isotropic lines in N .

Remark 4.2.8. Let Lat be the set of self-dual Zp-lattices in N [p−1]. Consider the map

GSpin(N)(Zp)
g 7→gλ0(p)N−−−−−−−→ Lat.

Its image is exactly the set Latλ0 of lattices of the form hN for h ∈ GSpin(N)(Zp)λ0(p)GSpin(N)(Zp) and is in
bijection with GSpin(N)(Zp)λ0(p)GSpin(N)(Zp)/GSpin(N)(Zp). By the discussion in Remark 4.2.7, we find that
there is a bijection

Parλ0
(Fp)

≃−→ Latλ0
(4.2.8.1)

This bijection is in fact canonical and can be described as follows: Suppose that we have an isotropic line N̄(−1) ∈
Parλ0(Fp). Pick any isotropic lift N(−1) ⊂ N of N̄(−1) and choose a complementary line N(1) ⊂ N . The lattice

Ñ = p−1N(−1)⊕N(0)⊕ pN(1),

where N(0) = N(−1)⊥ ∩N(1)⊥ is now the associated point in Latλ0
.

Lemma 4.2.9. Suppose that we have another Zp-lattice W̃ ⊂ W with [W : W̃ ] = p. Choose any hyperplane

U ∈ P(W )(Zp) such that W̃ = U + pW . Suppose that we have

rank(W ) ≤ rank(N)− 3

2
.

Then:

(1) Par◦λ0
(W,U)(Fp) is non-empty11 and, via (4.2.8.1), maps onto the set of self-dual Zp lattices Ñ ⊂ N [p−1]

such that Ñ ∩W [p−1] = W̃ ⊂W [p−1].

(2) Given Ñ as in (1), N ⊂ N [p−1] is the unique self-dual lattice such that

• N = hÑ for some h ∈ GSpin(N)(Zp)λ0(p)−1 GSpin(N)(Zp).
• N ∩W [p−1] =W ⊂W [p−1]

Proof. In this proof, if Y is a Zp-module, we will write Y for the Fp-vector space Y ⊗Zp
Fp.

We will need the following observation: If Y is a self-dual quadratic space over Zp of rank r ≥ 3, then Y is

isotropic. This means that the space of isotropic lines in Y is birationally isomorphic to Pr−2
Fp

, and so admits many

Fp-rational points. These in turn can be lifted to isotropic lines in Y via Hensel’s lemma. Moreover, these lines can
be chosen to lie outside the quadric associated with any proper direct summand of Y .

Fix a direct sum decomposition

W = U ⊕ Zpw0,

so that

W̃ = U ⊕ Zppw0.

Let V1 = U⊥ ⊂ N be the orthogonal complement to U . The radical of V 1 is isomorphic to that of U , which, by
our hypotheses, shows that V 1 admits a non-degenerate quadratic subspace of rank at least 3. In particular, by the
second paragraph, we can find an isotropic line N(−1) ⊂ N that is orthogonal to U , has trivial intersection with
W , and such that there exists y ∈ N(−1) with

[y, w0]Q ∈ Z×
p .

Any such N(−1) corresponds to a point in Par◦λ0
(W,U)(Zp), which is therefore non-empty.

Let Ñ ∈ Latλ0
be associated with an isotropic line N̄(−1) ∈ Parλ0

(Fp). We need to show that we have

Ñ ∩W [p−1] = W̃ precisely when N̄(−1) belongs to Par◦λ0
(W,U)(Fp).

Suppose first that N̄(−1) is in Par◦λ0
(W,U)(Fp); then we can lift it to a line N(−1) in Par◦λ0

(W,U)(Zp), and, using
the observation from the second paragraph once again, we can find an isotropic line N(1) ⊂ N that is orthogonal
to W , and which is complementary to N(−1).

11Note that this set only depends on the image of U in NFp , which is simply the image of W̃ and so is independent of the choice of

U .
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Let w0 ∈ W be as above. Then one sees that N(−1) must pair non-degenerately with w0, and so we have
w0(1) /∈ pN(1), where w0(i) is the component of w0 in N(i). Moreover, by construction, we have

W ⊂ N(1)⊥ = N(0)⊕N(1) ;U ⊂ N(−1)⊥ ∩N(1)⊥ = N(0).

This shows that we must have

Ñ ∩W [p−1] = (N(0)⊕ pN(1)) ∩W = U ⊕ Zp · pw0 = W̃ ⊂W.

For the converse, suppose that Ñ ∩ W [p−1] = W̃ . Then in particular, we find that, given a decomposition
N = N(−1)⊕N(0)⊕N(1) as above with

Ñ = p−1N(−1)⊕N(0)⊕ pN(1),

we must have U = U [p−1]∩Ñ , and w0(1) ∈ N(1)\pN(1) (where, once again, this is the projection of w0 onto N(1)).
The first condition implies that U is contained in N̄(−1)⊕ N̄(0), but does not contain N̄(−1) (the latter because

p−1u /∈ Ñ for u ∈ U\pU). This, together with the second condition, shows that N̄(−1) belongs to Par◦λ0
(W,U)(Fp).

For assertion (2), suppose that we have a decomposition

Ñ = Ñ(−1)⊕ Ñ(0)⊕ Ñ(1)

arising from a cocharacter λ : Gm → GSpin(Ñ) in the conjugacy class λ0 such that λ(p)−1Ñ ∩W [p−1] = W . Let

w̃0(i) be the projection of pw0 onto Ñ(i). Then since p−1w̃0(i) ∈ p−iÑ(i) by hypothesis, we see that

w̃0(−1) ∈ p2Ñ(−1) ; w̃0(0) ∈ pÑ(0) ; w̃0(1) ∈ Ñ(1).

This shows that the image of Ñ(1) in ÑFp
can only be the isotropic line spanned by the image of pw0. This means

that λ̃(p)−1Ñ = N . □

5. Cycles on GSpin Shimura varieties

In this section, we apply the above considerations to the special case of GSpin Shimura varieties associated with
quadratic spaces over Q, and show that the certain irreducible special cycles in their generic fibers continue to
have irreducible reduction over Fp. Combined with the methods of [21], this yields a proof of the irreducibility of
the moduli of primitively polarized K3 surfaces of fixed degree—and that of lattice polarized K3 surfaces—in any
characteristic.

5.1. Special cycles on orthogonal and GSpin Shimura varieties. We review the story of special cycles on
GSpin (and orthogonal) Shimura varieties associated with quadratic spaces over Q of signature (n, 2). Details can
be found in [22], [13], though the presentation here most closely hews to that found in [12, §2.1, 2.2, 3.2].

5.1.1. The starting point is a quadratic space (V,Q) over Q with signature (n, 2) for some n ≥ 4. The quadratic
form Q gives rise to a symmetric pairing

[x, y]Q = Q(x+ y)−Q(x)−Q(y)

on V .
Associated with this is the reductive group G = GSpin(V ) over Q, as well as a Hermitian symmetric domain

X that parameterizes the space of oriented negative definite planes in VR. The pair (G,X) is a Shimura datum of
Hodge type with reflex field Q; a choice of symplectic representation is given by the Clifford algebra H := C(V ),
on which G acts via left multiplication.

We will assume that the quadratic space has been chosen so that it admits a lattice VZ ⊂ V on which the
quadratic form Q is Z-valued and is such that the completion at p, VZp ⊂ VQp is a self-dual lattice. In this situation,
GQp admits a reductive model

GZ(p)
= GSpin(VZ(p)

).

Associated with VZ, we have a compact open subgroup KVZ =
∏
ℓKVZℓ

⊂ G(Af ), where, for each prime ℓ,

KVZℓ
⊂ G(Qℓ) is the largest compact open subgroup contained in C(VZℓ

)× and acting trivialy on V ∨
Zℓ
/VZℓ

.



CONNECTED COMPONENTS OF SPECIAL CYCLES 29

Construction 5.1.2 (Integral models). For a compact open subgroup K ⊂ G(Af ), we have the associated Shimura
variety (or more precisely stack) ShK := ShK(G,X) over Q. Suppose that K is of the form KpKVZp

, and let SK be

the set of primes such that, for ℓ /∈ SK , we have Kℓ = KVZℓ
. We then have a normal integral model SK over Z[S−1

K ]

characterized as follows: At any prime ℓ /∈ SK such that VZℓ
is self-dual, SK,Z(ℓ)

is the smooth integral canonical

model for ShK constructed in [17] and [15]. For arbitrary ℓ /∈ SK , we have the following characterization: Choose

an isometric embedding VZ ↪→ V ♯Z of quadratic lattices with the following properties:

(1) The embedding maps onto a direct summand of V ♯Z .

(2) V ♯Z has signature (n♯, 2).

(3) V ♯Zℓ
is self-dual.

Such an embedding always exists; see [12, Lemma B.1.1]. Let SK♯,Z(ℓ)
be the smooth integral canonical model for

the Shimura variety ShK♯ associated with V ♯. Then SK,Z(ℓ)
is the normalization of SK♯,Z(ℓ)

in ShK .

Note that this is a localization of Construction 5.1.2: One can choose V ♯Z such that it is self-dual at all finite
places, in which case ShK♯ admits an integral canonical model SK♯ over Z, and SK is obtained by taking the
normalization of this model in ShK and inverting the primes in SK .

5.1.3. Let ΣK be the set of primes ℓ such that either ℓ ∈ SK or VZℓ
is not self-dual: this excludes p by our

hypotheses. The lattice

HZ = C(VZ) ⊂ H = C(V )

gives us an abelian scheme A → SK [Σ−1
K ]. The lattice VZ ⊂ V gives rise to canonical sub-sheaves

V? ⊂ End
(
H?

)
for ? = B, ℓ,dR, cris. For every morphism x : T → SK [Σ−1

K ], we have a canonical Z-submodule

V (x) ⊂ End(Ax)

whose cohomological realizations are sections of V? for appropriate values of ?. The space V (x) has a canonical
positive definite quadratic form

Q : V (x)→ Z
characterized by the identity Q(f)idAx = f ◦ f ∈ End(Ax). This is the module of special endomorphisms of x.
All of this is explained in quite a bit more detail in [13].

5.1.4. Let Λ be a positive definite lattice over Z. Set

L(Λ) = {Z-lattices Λ′ ⊂ ΛQ : Λ ⊂ Λ′ ⊂ (Λ′)∨ ⊂ Λ∨},

We will consider the stack ZK(Λ)→ SK [Σ−1
K ] associating with x : T → SK [Σ−1

K ] the set

ZK(Λ)(x) = {isometric embeddings ι : Λ→ V (x)}.

The next result can be found in [12, §3.2].

Lemma 5.1.5. The stack ZK(Λ) is finite and unramified over SK [Σ−1
K ]. Moreover, if Λ′ ∈ L(Λ), then there is a

natural closed immersion ZK(Λ′) ↪→ ZK(Λ) obtained by restricting an isometric embedding to Λ ⊂ Λ′.

Remark 5.1.6. If we fix a basis Λ ≃ Zm, we obtain a map of SK [Σ−1
K ]-stacks ZK(Λ)→ End(A)m, where End(A)

is the endomorphism stack of A over SK [Σ−1
K ]. This latter stack is locally finite and unramified over SK [Σ−1

K ] by
standard facts about endomorphisms of abelian schemes, and ZK(Λ) is realized as an open and closed stack of
End(A)m.

Remark 5.1.7. Fix an embedding ΛQ ↪→ V , and let V ♭ = Λ⊥
Q ⊂ V . Let G♭ ⊂ G be the subgroup acting trivially

on ΛQ: this is isomorphic to GSpin(V ♭). Set

Υ(Λ) = {g ∈ G(Af ) : Λ ⊂ V ∩ gVẐ}.
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For each g ∈ Υ(Λ), we obtain a quadratic lattice V ♭g,Z = V ♭ ∩ gVẐ ⊂ V ♭ of signature (n − rank(Λ), 2). We can

associate with this a GSpin Shimura variety ShK♭
g
mapping to ShK , where K♭

g = gKg−1 ∩G♭(Af ). Then there is a

canonical isomorphism of ShK-stacks ⊔
g∈G♭(Q)\Υ(Λ)/K

ShK♭
g

≃−→ ZK(Λ).(5.1.7.1)

See the proof of [12, Lemma 3.2.3].

Remark 5.1.8. Consider the open substack

◦ZK(Λ) = ZK(Λ)∖
⋃

Λ′∈L(Λ),Λ⊊Λ′

ZK(Λ′) ⊂ ZK(Λ)

Set ZK(Λ) = ZK(Λ)Q and ◦ZK(Λ) = ◦ZK(Λ)Q. Let ◦Υ(Λ) ⊂ Υ(Λ) be the subset of element g such that Λ is a
direct summand of V ∩ gVẐ. Then the decomposition (5.1.7.1) restricts to an isomorphism⊔

g∈G♭(Q)\◦Υ(Λ)/K

ShK♭
g

≃−→ ◦ZK(Λ).(5.1.8.1)

Using this, we see that, for every Λ′ ∈ L(Λ), the morphism

ZK(Λ′)→ ZK(Λ)

is an open and closed immersion, and there is an isomorphism of Q-stacks⊔
Λ′∈L(Λ)

◦ZK(Λ′)
≃−→ ZK(Λ).

Remark 5.1.9. Suppose that Λ′ ∈ L(Λ) is such that p ∤ [Λ′ : Λ]. Then the map ZK(Λ′)Z(p)
→ ZK(Λ)Z(p)

is an open
and closed immersion. It is enough to know that it is étale after base-change to Fp, and this follows from the fact
that the deformation theory of ZK(Λ)Fp as a stack over SK,Fp depends only on ΛZp . This follows for instance from
the Serre-Tate theorem telling us that the deformation theory of abelian schemes in characteristic p is equivalent
to that of the corresponding p-divisible groups.

Proposition 5.1.10. Suppose that rank(Λ) ≤ (n− 4)/2.

(1) ◦ZK(Λ)Z(p)
is normal, flat, and equidimensional of dimension n− rank(Λ) + 1 = dimSK − rank(Λ).

(2) The special fiber ◦ZK(Λ)Fp
is geometrically normal and equidimensional of dimension n− rank(Λ).

(3) Let ◦Zord
K (Λ)Fp

⊂ ◦ZK(Λ)Fp
be the pre-image of SordK,Fp

. Then Zord
K (Λ)Fp

is open and dense in ZK(Λ)Fp

Proof. See [12, Proposition 3.2.4] for the first two assertions. The last one follows from [13, Proposition 7.1.21]:
This shows that the ordinary locus of a certain open substack Zpr

K (Λ)Fp
⊂ ◦ZK(Λ)Fp

is dense within it; but, as
argued in the proof of [12, Proposition 3.2.4], Zpr

K (Λ)Fp
is in turn dense in ◦ZK(Λ)Fp

. □

Remark 5.1.11. Suppose that we are in the situation of Proposition 5.1.10. For each g ∈ ◦Υ(Λ), we obtain
from (5.1.8.1), an open and closed immersion ShK♭

g
↪→ ◦ZK(Λ). Set ◦SK♭

g,(p)
to be the Zariski closure of ShK♭

g
in

◦ZK(Λ)Z(p)
. By the normality of the latter stack, we see that we have a decomposition⊔

g∈G♭(Q)\◦Υ(Λ)/K

◦SK♭
g,(p)

≃−→ ◦ZK(Λ)Z(p)
(5.1.11.1)

into open and closed (normal) substacks.
Note that, if SK♭

g
is the integral model for ShK♭

g
from Construction 5.1.2, then the map ◦SK♭

g,(p)
→ SK,(p) lifts to

an open immersion ◦SK♭
g,(p)

↪→ SK♭
g,(p)

. Indeed, this follows from the construction of SK♭
g,(p)

as the normalization

of SK,(p) in ShK♭
g
, and Lemma 5.1.12 below.

Lemma 5.1.12. Let f : X → Y be a quasi-finite separated map of normal Deligne-Mumford stacks flat over Z(p).
If the generic fiber fQ is an open immersion, then so is f .
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Proof. By [19, Théorème 16.5], we can write f as the composition of a finite map f : X → Y of Deligne-Mumford
stacks with an open immersion j : X ↪→ X. By replacing X with the flat closure of its generic fiber, we can also
assume that X is flat over Z(p). By the normality of Y , the finite map X → Y must be an isomorphism onto a
union of connected components, and hence f is indeed an open immersion. □

5.2. The ordinary loci of special cycles. We will now look at the ordinary locus ◦Zord
K (Λ)Fp

in more detail.

For the rest of this section, we will maintain the assumption rank(Λ) ≤ n−4
2 from Proposition 5.1.10. We will also

assume Λ ̸= 0.

Remark 5.2.1. The representatives µ : Gm → GZp
for the geometric conjugacy class associated with the Shimura

cocharacters of the GSpin Shimura datum are exactly those that yield weight decompositions

HZp = H1
Zp
⊕H0

Zp
; VZp = V −1

Zp
⊕ V 0

Zp
⊕ V 1

Zp
(5.2.1.1)

where µ(z) acts on Hi
Zp

via z−i and where V ±1
Zp
⊂ VZp

are complementary isotropic lines on which µ(z) acts via z∓1

and V 0
Zp

is their mutual orthogonal complement.

Remark 5.2.2. For every point x0 ∈ SK,Fp
(κ), we have a p-adic counterpart of the space of special endomorphisms:

Namely the F -invariant vectors V F=1
cris,x0

⊂ Vcris,x0
. These are precisely the elements of Vcris,x0

that are also crystalline

realizations of endomorphisms of Gx0
. When x0 is ordinary, there exist isomorphisms V 0

Zp

≃−→ V F=1
cris,x0

well-defined

up to an element of MZp
(Zp). In particular, for any point (x0, ι) ∈ ◦Zord

K (Λ)Fp
(κ), ι the crystalline realization of ι

gives an isometric embedding ΛZp ↪→ V F=1
cris,x0

onto a direct summand.

Remark 5.2.3. For g ∈ ◦Υ(Λ), we can apply the constructions of (4.1.5) with N = VZp
andW =Wg

defn
= g−1

p ΛZp
⊂

N . We set G♭g,Zp
= QWg

in the notation there: This is a smooth group scheme over Zp, clearly a subgroup of GZp
,

and conjugation by gp identifies its generic fiber with the subgroup G♭Qp
⊂ GQp

. Moreover, via this identification,

we have G♭g,Zp
(Zp) = K♭

g,p ⊂ G♭(Qp).

Lemma 5.2.4. Fix g ∈ ◦Υ(Λ). Then:

(1) We can choose the decomposition (5.2.1.1) so that the corresponding cocharacter factors through G♭g,Zp
.

(2) All such decompositions—and hence all such cocharacters—are conjugate under G♭g,Zp
(Zp).

(3) The centralizer of any such cocharacter is a smooth subgroup scheme M ♭
g,Zp
⊂ G♭g,Zp

such that M̃ ♭
g,Zp

12 is

also smooth.

Proof. This amounts to knowing that, if UZp
is the hyperbolic plane over Zp, then there is an isometric embedding

UZp
↪→ N that is orthogonal to Wg.

The numerical condition on rank(Λ) ensures that we have n ≥ 6, dimV ♭ ≥ n
2 + 4 and dimV ♭ − rank(Λ) ≥ 6. In

particular, for any g ∈ ◦Υ(Λ), the quadric of isotropic lines in W⊥
g is a flat local complete intersection over Zp of

relative dimension ≥ 5, whose special fiber is a rational variety. Moreover, the singular locus of the special fiber
consists of isotropic lines that are contained in the radical of W⊥

g,Fp
and has codimension ≥ 5; see [22, Lemma 2.11].

Using this geometric information, we see that we can first pick any isotropic line V −1
Zp
⊂W⊥

g in the smooth locus,

and then choose a complementary isotropic line V 1
Zp

also in the smooth locus of the quadric associated with W⊥
g .

That all such decompositions are conjugate under G♭g,Zp
(Zp) follows from Lemma 4.1.7, applied with W the

orthogonal direct sum UZp
⊕W⊥

g .

The group M ♭
g,Zp

is an extension of Gm,Zp
by the pointwise stabilizer of the direct summand V −1

Zp
⊕Wg ⊕ V 1

Zp
.

Therefore, assertion (3) follows from Lemma 4.1.6. □

Remark 5.2.5. Choose any cocharacter µg : Gm,Zp
→ G♭g,Zp

as in Lemma 5.2.4. Then Lemma 5.2.4 tells us that

Assumption 1.2.1 is valid, and so we can now consider the ordinary locus Sord
K♭

g,Fp
⊂ SK♭

g
. By (2) of the lemma, this

is independent of the choice of cocharacter.

12This is the Zariski closure of the derived subgroup of the generic fiber.
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Lemma 5.2.6. We have Sord
K♭

g,Fp
= ◦SK♭

g,Fp
×◦ZK(Λ)Fp

◦Zord
K (Λ)Fp . Moreover, Assumption 1.2.16 holds: the canonical

lift of any point of Sord
K♭

g,Fp
lifts to SK♭

g
.

Proof. We want to show that, for any algebraically closed point x0 ∈ ◦SK♭
g
(κ) with Ax0

ordinary, we can find a

G♭g,Zp
-structure preserving trivialization W (κ)⊗Zp HZp

≃−→ Hcris,x0 such that the Frobenius endomorphism on the

right hand side conjugates to the endomorphism 1 ⊗ µg(p)−1 of W (κ) ⊗Zp
Hp. That we can find a GZp

-structure

preserving isomorphism follows from Remark 1.2.6. We can then use Lemma 4.1.7 to modify this to a G♭g,Zp
-structure

preserving one.
The validity of Assumption 1.2.16 is a consequence of the fact that all endomorphisms of Ax0

deform to endo-
morphisms of its canonical lift. □

Remark 5.2.7. The Igusa tower Îg
ord

K,p over ŜordK,p, when restricted to Ŝord
K♭

g,p
acquires a reduction of structure group

to the subgroup M ♭
g,Zp

(Zp) ⊂ MZp
(Zp), given by its own Igusa tower Îg

ord

K♭
g,p

. This can be understood explicitly.

First, Remark 5.2.2 tells us that, for every algebraically closed point x0 ∈ ŜordK♭
g,p

(κ), the crystalline realization of

ι : Λ→ V (x0) yields an embedding as a direct summand

Wg
gp−→
≃

ΛZp
↪→ V F=1

cris,x0
.

The reduction of structure is now given by the subsheaf parameterizing for x : Spf R→ Ŝord
K♭

g,p
, trivializations

R⊗Zp G0
≃−→ G étx × Gmult

x

such that, at every geometric point s : Specκ→ Spf R, we obtain a commuting diagram

Wg ======= Wg

V 0
Zp

∨

∩

≃
> V F=1

cris,x◦s.
∨

∩

Lemma 5.2.8. Sord
K♭

g,Fp
contains a hypersymmetric point (see Definition 3.4.2).

Proof. This just amounts to the observation that there is a rank 2 negative definite lattice LZ ⊂ V ♭g,Z such that

LZp is isomorphic to the hyperbolic plane. Indeed, GSpin(L) will then be of the form ResF/Q Gm for an imaginary
quadratic extension F/Q that is split at p, and we can then conclude using Remark 3.4.5. □

Remark 5.2.9. Let U−
µg
⊂ GZp

be the opposite unipotent associated with µg, so that we have a canonical inclusion

LieU−
µg
⊂ Hom(H1

Zp
, H0

Zp
).(5.2.9.1)

This can be made explicit. Namely, let G0 = SO(VZp
)(Zp) be the special orthogonal quotient of GZp

. Then we can

also identify U−
µg

with the unipotent subgroup of G0 associated with the isotropic line V −1
Zp

. That is, we have

LieU−
µg

= {(φ,ψ) ∈ Hom(V 0
Zp
, V −1

Zp
)×Hom(V 1

Zp
, V 0

Zp
) : φ∨ + ψ = 0} ⊂ End(VZp

).

Here, we have used the non-degenerate bilinear form on VZp to identify V 0
Zp

with its own dual, and V 1
Zp

with the

dual of V −1
Zp

, and hence the dual φ∨ of φ with a map φ∨ : V 1
Zp
→ V 0

Zp
. In what follows, we can and will identify

LieU−
µg

with its image in Hom(V 0
Zp
, V −1

Zp
). Fix generators v± of V ±1

Zp
. Then, as explained in [22, §1], under the left

multiplication action of VZp
on HZp

, we have

H1
Zp

= ker(v+) = im(v+) ; H0
Zp

= ker(v−) = im(v−).
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The embedding (5.2.9.1) can now be described as follows: Suppose that we have a map φ : V 0
Zp
→ V −1

Zp
in LieU−

µg
.

There exists a unique v0φ ∈ V 0
Zp

such that, for all v ∈ V 0
Zp
, we have [v0φ, v]Q · v− = ψ(v). Now, one can check that,

up to sign, under (5.2.9.1), (φ,ψ) maps to left multiplication by the element v−v0φ in the Clifford algebra.

Remark 5.2.10. Now, let LieU ♭,−µg
= LieU−

µg
∩ LieG♭g,Zp

. One checks that this is identified with the subspace

Hom(V 0
Zp
/Wg, V

1
Zp
) ⊂ Hom(V 0

Zp
, V 1

Zp
).

Fix an algebraically closed point x0 ∈ SordK♭
g,Fp

(κ), and let Û ♭x0
(resp. Ûx0

) be the deformation spaces of Ŝord
K♭

g,p
(resp.

ŜordK,p). Using Lemma 5.2.6 and Proposition 1.2.14, we see that we have a diagram

Û ♭x0
> Ûx0

T̂G♭
g

≃

∨

> T̂G

≃

∨

where T̂G♭
g
(resp. T̂G) is the formal torus over W (κ) with cocharacter group LieU ♭,−µg

(resp. LieU−
µg
). This diagram

is uniquely determined up to the action of M ♭
µg,Zp

(Zp).

Remark 5.2.11. If we choose a generator v1 for V 1
Zp
, then we can compatibly identify the character groups of T̂G

and T̂G♭
g
with V 0

Zp
and its quotient V 0

Zp
/Wg, respectively.

5.3. Correspondences between special cycles in characteristic 0. We will now apply the theory of Hecke
correspondences from § 2.1 in the particular context of GSpin Shimura varieties.

Remark 5.3.1. Suppose that we have s, t : SpecR→ ShK and f ∈ QIsogG(s, t). Then conjugation by f−1 induces
an isomorphism

c(f)
defn
= f−1 ◦ (·) ◦ f : End(As)[p−1]

≃−→ End(At)[p−1]

carrying V (s)[p−1] onto V (t)[p−1].

Definition 5.3.2. A p-minimal pair or simply minimal pair Ξ = (Λ̃ ⊂ Λ) is a pair of positive definite lattices

(Λ, Λ̃) equipped with an isometric embedding Λ̃ ⊂ Λ such that [Λ : Λ̃] = p.

Definition 5.3.3. Suppose that Ξ is a minimal pair. Define a stack

QIsogG,µp,Ξ →
◦ZK(Λ)× ◦ZK(Λ̃)

whose fiber over ((s, ι), (t, ι̃)) ∈ ◦ZK(Λ)(R)× ◦ZK(Λ̃)(R) is given by

QIsogG,µp,Ξ((s, ι), (t, ι̃)) = {f ∈ QIsogG,µp
(s, t) : c(f) ◦ ι|Λ̃ = ι̃}

In other words, we are looking for p-quasi-isogenies of type µp that ‘shrink’ the isometric embedding of Λ onto a

direct summand of the space of special endomorphisms to that of Λ̃ onto a direct summand of the space of special
endomorphisms of an isogenous point. Write sµp,Ξ,K : QIsogG,µp,Ξ →

◦ZK(Λ) and tµp,Ξ,K : QIsogG,µp,Ξ →
◦ZK(Λ̃)

for the natural maps.

Remark 5.3.4. Suppose that we have g ∈ ◦Υ(Λ). Over ShK♭
g
, the p-adic realization of the tautological embedding

of Λ into the space of special endomorphisms gives an embedding

ιp : ΛZp
↪→ Vp|Sh

K♭
g

as a local direct summand. Using Lemma 4.1.7, we now see that the canonical K♭
g,p-torsor ShK♭,p

g
→ ShK♭

g
param-

eterizes GZp
-structure preserving trivializations HZp

≃−→Hp that carry the embedding Wg ↪→ VZp
onto ιp.

Proposition 5.3.5. (1) The map sµp,Ξ,K is finite étale and induces a bijection on geometric connected com-
ponents.
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(2) The map tµp,Ξ,K is an isomorphism.

Proof. Let Parµp
be the quadric Grassmannian over Zp parameterizing isotropic lines in VZp

. Fix g ∈ ◦Υ(Λ),
consider the map

QIsogG,µp,Ξ ×sµp,Ξ,K ,◦ZK(Λ) ShK♭
g
→ ShK♭

g

By Proposition 2.1.6 and its proof, combined with Remark 4.2.7, we obtain a commutative diagram

QIsogG,µp,Ξ ×sµp,Ξ,K ,◦ZK(Λ) ShK♭
g

> Sh
K♭,p

g
×G

♭
g,Zp (Zp)Parµp

(Fp)

ShK♭
g

<
>

Unwinding the definitions and using (1) of Lemma 4.2.9, one finds that the top arrow maps its source isomorphically
onto the substack

Sh
K♭,p

g
×G

♭
g,Zp (Zp)Parµp

(Wg, Ug)(Fp) ⊂ Sh
K♭,p

g
×G

♭
g,Zp (Zp)Parµp

(Fp),

where U ∈ P(Wg)(Zp) is any hyperplane such that g−1
p Λ̃Zp = U + pWg. Moreover, by Lemma 4.2.6, G♭g,Zp

(Fp) acts
transitively on Parµp

(Wg, Ug)(Fp), and the stabilizer Q(Fp) of any point in this set maps surjectively on F×
p via the

spinor norm.
To finish, we need to show that the right diagonal arrow induces a bijection on geometric connected components.

Since G♭ has simply connected derived subgroup, we find from [8, Théorème 2.4] that for any level K ′ ⊂ G♭(Af )
the spinor norm induces a bijection

π0(ShK′,Q)
≃−→ A×

f /Q>0ν(K
′).

Now, the discussion in the previous paragraph shows that we have

Sh
K♭,p

g
×G

♭
g,Zp (Zp)Parµp

(Fp) = ShK′

where K ′ ⊂ K♭
g is the pre-image of Q(Fp) ⊂ G♭g,Zp

(Fp). The surjectivity of the spinor norm Q(Fp) → F×
p shows

that we have ν(K ′) = ν(K♭
g), and hence that the map on connected components is a bijection as desired.

The proof of assertion (2) is along analogous lines and uses (2) of Lemma 4.2.9. □

5.4. Ordinary correspondences of minuscule type. Fix a cocharacter µp : Gm,Zp
→ GZp

as in Remark 5.2.1
with associated splittings (5.2.1.1). Let MZp ⊂ GZp be the centralizer of µp: This is an extension of Gm by

GSpin(V 0
Zp
). In this subsection, we will study in detail the structure of Q̂Isog

ord

G,λp
for the choice of a non-trivial

minuscule cocharacter λp of MZp
. Up to isomorphism as a formal stack over ŜordK,p × ŜordK,p, this will not depend on

the choice of the pair (µp, λp) in their GZp(Zp)-conjugacy class.

Definition 5.4.1. Consider the conjugacy class of cocharacters λp : Gm,Zp
→MZp

factoring through GSpin(V 0
Zp
),

acting via weights 0, 1 on the Clifford algebra C(V 0
Zp
) and giving a splitting

V 0
Zp

= V 0
Zp
(−1)⊕ V 0

Zp
(0)⊕ V 0

Zp
(1)(5.4.1.1)

where V 0
Zp
(±1) ⊂ V 0

Zp
are complementary isotropic lines and V 0

Zp
(0) is their mutual orthogonal complement.

Remark 5.4.2. For any cocharacter ϖ : Gm,Zp →MZp , set

Îg
ord

ϖ
defn
= Îg

ord

K,v ×MZp (Zp) MZp
(Zp)ϖ(p)MZp

(Zp)/MZp
(Zp).
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Then it follows from Proposition 2.2.14 and Corollaries 2.3.5 and 2.2.18 that we have diagrams

Q̂Isog
ord

G,λp
> Îg

ord

−λp

ŜordK,p

<

s

>

;

Q̂Isog
ord

G,λp
> Îg

ord

λp

ŜordK,p

<

t

>

where both top horizontal arrows are finite flat homeomorphisms. Moreover, one finds from Remark 4.2.7 that we
have

Îg
ord

−λp
≃ Îg

ord

λp
≃ Îg

ord

K,p ×MZp (Zp) Parλp(Fp),

where Parλp
(Fp) is the set of isotropic lines in V 0

Fp
.

Remark 5.4.3. The cocharacter λp breaks up LieU−
µp

and Hom(H1
Zp
, H0

Zp
) compatibly into eigenspaces

LieU−
µp

=

1⊕
i=−1

LieU−
µp
(i) ; Hom(H1

Zp
, H0

Zp
) =

1⊕
i=−1

Hom(H1
Zp
, H0

Zp
)(i),

where

LieU−
µp
(i) =


Hom(V 0

Zp
(1), V −1

Zp
) if i = −1;

Hom(V 0
Zp
(0), V −1

Zp
) if i = 0;

Hom(V 0
Zp
(−1), V −1

Zp
) if i = 1.

,

and

Hom(H1
Zp
, H0

Zp
)(i) =


Hom(H1

Zp
(1), H0

Zp
(0)) if i = −1;

Hom(H1
Zp
(0), H0

Zp
(0))⊕Hom(H1

Zp
(1), H0

Zp
(1)) if i = 0;

Hom(H1
Zp
(0), H0

Zp
(1)) if i = 1.

Remark 5.4.4. Recall the notation and setup from Remark 5.2.9. Consider the homomorphism

LieU−
µp
⊕ LieU−

µp

(φ1,φ2)7→v−vφ1
0λp(p)−λp(p)v

−v0φ2−−−−−−−−−−−−−−−−−−−−−−−→ Hom(H1
Zp
, H0

Zp
)(5.4.4.1)

If we restrict to each of the non-zero weight spaces for the action of λp, then one sees that we obtain

LieU−
µp
(−1)⊕ LieU−

µp
(−1) ⊂ Hom(H1

Zp
(1), H0

Zp
(0))×Hom(H1

Zp
(1), H0

Zp
(0))

(f1,f2)7→pf1−f2−−−−−−−−−−→ Hom(H1
Zp
, H0

Zp
)

LieU−
µp
(−1)⊕ LieU−

µp
(−1)Hom(H1

Zp
(0), H0

Zp
(1))⊕Hom(H1

Zp
(0), H0

Zp
(1))

((f1,f2)7→f1−pf2−−−−−−−−−−−→ Hom(H1
Zp
, H0

Zp
).

For the zero weight space, the restriction of both maps φ 7→ v−vφ
0λp(p) and φ 7→ λp(p)v

−vφ
0 can be identified

with the composition

LieU−
µp
(0)

φ7→v−v0φ−−−−−−→ Hom(H1
Zp
(0), H0

Zp
(0))⊕Hom(H1

Zp
(1), H0

Zp
(1))(5.4.4.2)

(id,p·id)−−−−−→ Hom(H1
Zp
(0), H0

Zp
(0))⊕Hom(H1

Zp
(1), H0

Zp
(1)),

which maps onto a direct summand of its target.

Remark 5.4.5. For any algebraically closed field κ, (5.4.4.1) gives a map of formal tori over W (κ), T̂G× T̂G → T̂ ,

and Proposition 2.2.17 now shows that the kernel T̂G,λp
of this map is the model for the completion of Q̂Isog

ord

G,λp

at any κ-valued point.
The weight decompositions of their cocharacter groups for the action of λp yield compatible splittings

T̂G =

1∏
i=−1

T̂G(i) ⊂
1∏

i=−1

T̂ (i) ⊂ T̂
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The discussion in Remark 5.4.4 shows that the map T̂G × T̂G → T̂ respects this decomposition, and its restrictions
take the following shape:

T̂G(−1)× T̂G(−1)
(x,y)7→xpy−1

−−−−−−−−→ T̂G(−1) ⊂ T̂ (−1);

T̂G(0)× T̂G(0)
(x,y)7→x−y−−−−−−−→ T̂G(0)

ϖ−→ T̂ (0);

T̂G(1)× T̂G(1)
(x,y)7→xy−p

−−−−−−−−→ T̂G(1) ⊂ T̂ (1).

Here ϖ is the closed immersion of formal tori arising from the map (5.4.4.2) on cocharacter groups.
Therefore, we obtain a decomposition

T̂G,λp
= T̂G,λp

(−1)× T̂G,λp
(0)× T̂G,λp

(1),

with

T̂G,λp
(i) =


{(x, xp) : x ∈ T̂G(−1)} if i = −1;
{(x, x) : x ∈ T̂G(0)} if i = 0;

{(xp, x) : x ∈ T̂G(1)} if i = 1.

(5.4.5.1)

The map sλp
(resp. tλp

) from T̂G,λp
to T̂G is therefore given by the identity on T̂G,λp

(−1) and T̂G,λp
(0) (resp.

T̂G,λp
(1) and T̂G,λp

(0) ) and by the p-power map on T̂G,λp
(1) (resp. T̂G,λp

(−1)).

Remark 5.4.6. Just as in Remark 5.2.11, via the choice of basis element v1 for V 1
Zp
, we can identify the character

group of T̂G,λp
with

⊕1
i=−1 V

0
Zp
(i) = V 0

Zp
, and the source and target maps are given on the level of character groups,

and for this splitting, by (p, 1, 1) and (1, 1, p), respectively.

5.5. Ordinary correspondences between special cycles. Here we give the ordinary counterpart to the story
from §5.3.

Remark 5.5.1. Suppose that we have s, t : Spf R→ ŜordK,Fp
and f ∈ Q̂Isog

ord

G (s, t). Then just as in the generic fiber

in Remark 5.3.1 conjugation by f−1 induces an isomorphism

c(f)
defn
= f−1 ◦ (·) ◦ f : End(As)[p−1]

≃−→ End(At)[p−1]

carrying V (s)[p−1] onto V (t)[p−1].

Definition 5.5.2. Suppose that Ξ = (Λ̃ ⊂ Λ) is a minimal pair. Define a formal stack

Q̂Isog
ord

G,λp,Ξ →
◦Ẑord

K (Λ)× ◦Ẑord
K (Λ̃)

whose fiber over ((s, ι), (t, ι̃)) ∈ ◦Ẑord
K (Λ)(R)× ◦Ẑord

K (Λ̃)(R) for R p-complete is given by

Q̂Isog
ord

G,λp,Ξ((s, ι), (t, ι̃)) = {f ∈ Q̂Isog
ord

G,λp
(s, t) : c(f) ◦ ι|Λ̃ = ι̃}.

Write sordλp,Ξ,K
: Q̂Isog

ord

G,λp,Ξ →
◦Ẑord

K (Λ) and tordλp,Ξ,K
: Q̂Isog

ord

G,λp,Ξ →
◦Ẑord

K (Λ̃) for the natural maps. For each

g ∈ ◦Υ(Λ) (resp. g̃ ∈ ◦Υ(Λ̃)), write sord
λp,Ξ,K♭

g
(resp. tord

λp,Ξ,K♭
g̃

for the restriction of sordλp,Ξ,K
(resp. tordλp,Ξ,K

) over the

open subspace Ŝord
K♭

g,p
(resp. Ŝord

K♭
g̃,p

)

Notation 5.5.3. Suppose that we have g ∈ ◦Υ(Λ). Set W̃g = g−1
p Λ̃Zp

⊂ Wg, and let Ug ∈ P(Wg)(Zp) be a

hyperplane such that pWg +Ug = W̃g. Associated with this is the scheme Par◦λp
(Wg, Ug) from Definition 4.2.3 that

parameterizes Wg-generic isotropic lines in V 0
Zp

such that U is the kernel of the pairing of Wg with J .

Remark 5.5.4. Suppose that we have an algebraically closed point

z = ((s0, ι), (t0, ι̃), f) ∈ Q̂Isog
ord

G,λp,Ξ(κ)
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such that (s0, ι) ∈ ŜordK♭
g,p

(κ) for g ∈ ◦Υ(Λ). We can choose a cocharacter µg as in Remark 5.2.5, so that it factors

through G♭g,Zp
, and a trivialization W (κ) ⊗Zp

G0
≃−→ Gs0 that is a section of IgordK♭

g,p
over s0. In particular, this

identifies V 0
Zp

with V F=1
cris,s0

in such a way that Wg = g−1
p ΛZp

is identified with the Zp-submodule generated by the

image of ι. Now, conjugation by the crystalline realization of f gives an isomorphism

V 0
Qp
≃ V F=1

cris,s0 [p
−1]

≃−→ V F=1
cris,t0 [p

−1].

By our hypotheses, the pre-image of the lattice V F=1
cris,t0

in V 0
Qp

is identified with a lattice of the form hV 0
Zp

with the

following properties:

(1) h ∈MZp(Zp)λp(p)MZp(Zp);
(2) hV 0

Zp
∩Wg[p

−1] = W̃g.

By (1) of Lemma 4.2.9, such lattices are in canonical bijection with Par◦λp
(Wg, Ug)(Fp).

Remark 5.5.5. Suppose that we have a point z ∈ Q̂Isog
ord

G,λp,Ξ(κ) as above with (t0, ι̃) ∈ ŜordK♭
g̃,p

(κ) for g̃ ∈ ◦Υ(Λ̃).

Choose the cocharacter µg̃ as in Remark 5.2.5, so that it factors through G♭g̃,Zp
. Set

W̃g̃ = g̃−1
p Λ̃Zp

⊂ V 0
Zp
.

Choose also a trivialization W (κ)⊗Zp
G0

≃−→ Gt0 that is a section of IgordK♭
g̃,p

over t0. Conjugation by the crystalline

realization of f now gives us an isomorphism V F=1
cris,s0

[p−1]
≃−→ V 0

Qp
such that the image of V F=1

cris,s0
is of the form h̃V 0

Zp

with the following properties:

(1) h̃ ∈MZp
(Zp)λp(p)−1MZp

(Zp);
(2) h̃V 0

Zp
∩ W̃g̃[p

−1] =Wg̃
defn
= g̃−1

p ΛZp
.

By (2) of Lemma 4.2.9, there is a unique such lattice.

Notation 5.5.6. Set X♭g
defn
= Par◦λg

(Wg, Ug) and

Îg
ord

X♭
g

defn
= Îg

ord

K♭
g,p
×M

♭
g,Zp (Zp) X♭g(Fp).

Proposition 5.5.7. Fix g ∈ ◦Υ(Λ) and g̃ ∈ ◦Υ(Λ̃). Then:

(1) The map sord
λp,Ξ,K♭

g
factors as

Q̂Isog
ord

G,λp,Ξ,g → Îg
ord

X♭
g
→ ŜordK♭

g,p

where the first map is a finite flat homeomorphism.
(2) The map tord

λp,Ξ,K♭
g̃

is an isomorphism

Proof. By Remark 5.4.2, we have a commuting diagram

Q̂Isog
ord

G,λp,Ξ
> Îg

ord

K♭
g,p
×M

♭
g,Zp (Zp) Parλg

(Fp)

Ŝord
K♭

g,p

<

s

>

Here Parλg (Fp) is the set of isotropic lines in V 0
Fp
. Remark 5.5.4 shows that, on κ-points for κ algebraically closed,

the top arrow maps isomorphically onto the κ-points of

Îg
ord

K♭
g,p
×M

♭
g,Zp (Zp) Par◦λg

(Wg, Ug)(Fp) = Îg
ord

X♭
g
.
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Since Îg
ord

X♭
g

is étale over the base, this shows that the top horizontal map actually factors through a map

Q̂Isog
ord

G,λp,Ξ,g → Îg
ord

X♭
g
.

that is an isomorphism on algebraically closed points. Similarly, Remark 5.5.5 shows that the map tord
λp,Ξ,K♭

g̃

is a

bijection on κ-points for κ algebraically closed.
To finish the proof, we can now work on the level of deformation rings. More precisely, suppose that we are in

the situation of Remark 5.5.4. If Ûz (resp. Û ♭s0 , Û
♭
t0) is the completion of Q̂Isog

ord

G,λp,Ξ at z (resp. Ŝord
K♭

g,p
at (s0, ι),

resp. Ẑord
K (Λ̃) at (t0, ι̃)), we want to show that the source map Ûz → Û ♭s0 is a finite flat homeomorphism and that

the target map Ûz → Û ♭t0 is an isomorphism.

By Remark 5.5.4 again, we can work with the cocharacter µg factoring throughG
♭
g,Zp

and choose the trivializations

Gt0
≃←−W (κ)⊗Zp

G0
≃−→ Gs0

such that the crystalline realization of f from Vcris,s0 [p
−1] to Vcris,t0 [p

−1] is carried via these isomorphisms to the
map

W (κ)⊗Zp
VZp

[p−1]
1⊗λg(p)−−−−−→W (κ)⊗Zp

VZp
[p−1],

where λg is a cocharacter of MZp that is conjugate to λp and whose −1-eigenspace maps to an isotropic line in

Par◦λp
(Wg, Ug)(Zp). That is, if V 0

Zp
= ⊕1

i=−1V
0
Zp
(i) is the weight space decomposition for λg, then Wg pairs non-

degenerately with V 0
Zp
(−1) (equivalently, its projection on V 0

Zp
(1) is surjective), and V 0

Zp
(−1) maps onto a direct

summand of V 0
Zp
/Wg. Furthermore, W̃g = λg(p)V

0
Zp
∩Wg[p

−1].

Combining this with Remarks 5.2.11 and 5.4.6, one sees that the map

Ûz → Û ♭s0 × Û
♭
t0

is isomorphic to a map of formal diagonalizable groups

T̂λg
→ T̂ ♭1 × T̂ ♭2

over W (κ), where T̂ ♭1 (resp. T̂ ♭2) has character group V 0
Zp
/Wg (resp. V 0

Zp
/λg(p)

−1W̃g) and the character group of

T̂λg
is the cokernel of the map

V 0
Zp

=

1⊕
i=−1

V 0
Zp
(i)→ V 0

Zp
/Wg ⊕ V 0

Zp
/λg(p)

−1W̃g

(z−1, z0, z1) 7→
(
(z−1, z0, pz1) +Wg, (pz−1, z0, z1) + λg(p)

−1W̃g

)
.

I now claim which shows that V 0
Zp
/Wg maps injectively onto an index p subgroup of M while V 0

Zp
/λg(p)

−1W̃g maps

isomorphically onto M . This will imply that the map T̂λg
→ T̂ ♭1 is a finite flat homeomorphism and that T̂λg

→ T̂ ♭2
is an isomorphism, and so will complete the proof of the proposition.

To prove the claim, note that the the elements of the kernel of V 0
Zp
/Wg → M have representatives of the form

(z−1, z0, pz1) where (pz−1, z0, z1) belongs to λg(p)
−1W̃g. But then

(z−1, z0, pz1) = λg(p) · (pz−1, z0, z1) ∈ W̃g ⊂Wg.

This shows the injectivity of V 0
Zp
/Wg → M . Similarly, the kernel of V 0

Zp
/λg(p)

−1W̃g → M consists of elements

represented by (pz−1, z0, z1) with (z−1, z0, pz1) ∈Wg. But then

(pz−1, z0, z1) ∈ V 0
Zp
∩ λg(p)−1Wg = λp(g)

−1W̃g.

Thus this map is also injective.
Now, since Wg projects surjectively onto V 0

Zp
(1), every element of V 0

Zp
/Wg can be represented by a tuple of the

form (z−1, z0, 0) and so has the same image in M as the element −(pz−1, z0, 0) + λg(p)
−1W̃g ∈ V 0

Zp
/λg(p)

−1W̃g.

This shows that V 0
Zp
/λg(p)

−1W̃g surjects onto M , and also shows that the image of V 0
Zp
/Wg has index p in M . □
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5.6. Unique specialization of connected components. Here we will prove the main technical result of this
paper, Proposition 5.6.5, and so complete the proof of Theorem B.

Remark 5.6.1. Let Ξ = (Λ ⊂ Λ̃) be a minimal pair, and write

πord
K : sordλ0,Ξ,K ◦ (t

ord
λ0,Ξ,K)−1 : ◦Ẑord

K (Λ̃)Fp → ◦Ẑord
K (Λ) ; πK : sµ,Ξ,K ◦ (tµ,Ξ,K)−1 : ◦ZK(Λ̃)→ ◦ZK(Λ).

We obtain a diagram:

π0
(◦ZK(Λ̃)Fp

) ≃
> π0

(◦Zord
K (Λ̃)Fp

)
> π0

(◦ZK(Λ̃)Q
)
;

π0
(◦ZK(Λ)Fp

)
≃
> π0

(◦Zord
K (Λ)Fp

)
πord
K,∗

∨
> π0

(◦ZK(Λ)Q
)
.

≃ πK,∗

∨

(5.6.1.1)

The horizontal maps are the natural ones, and the ones on the left are bijections because the ordinary locus
is dense in ◦ZK(Λ)Fp

; see (3) of Proposition 5.1.10. The vertical map on the right hand side is a bijection by
Proposition 5.3.5. One can verify that the square on the right commutes using Remarks 2.3.4 and 2.3.3.

Notation 5.6.2. Let P (Λ) be the assertion that the lower right horizontal arrow is bijective in the diagram above
for all prime-to-p levels Kp, and let Q(Ξ) be the assertion that the vertical arrow in the middle is bijective for all
prime-to-p levels Kp.

Proposition 5.6.3. P (Λ) is true if Λ is maximal at p.

Proof. The maximality at p here means (by definition) that, for all Λ′ ∈ L(Λ), [Λ′ : Λ] is prime to p. Therefore,
by Remark 5.1.9, we see that ◦ZK(Λ)Fp is an open and closed substack of ZK(Λ)Fp , and in particular is finite over
SK . Moreover, Proposition 5.1.10 tells us that ◦ZK(Λ)Z(p)

and ◦ZK(Λ)Fp
are normal. In particular, the irreducible

and connected components of the latter stack agree.
By Remark 5.1.11 and the finiteness of ◦ZK(Λ)Z(p)

→ SK,(p) , we have a decomposition into normal stacks

◦ZK(Λ)Z(p)
≃

⊔
g∈G♭(Q)\◦ΞK(Λ)/K

SK♭
g,(p)

finite over SK,(p).
Therefore [24, Corollary 4.1.11] shows that every connected component of its special fiber is the specialization of

a unique connected component of its generic fiber. □

Proposition 5.6.4. P (Λ) implies Q(Ξ) for all minimal pairs of the form Ξ = (Λ̃ ⊂ Λ).

Proof. By Proposition 5.5.7, this reduces to knowing that, for all g ∈ ◦ΞK(Λ), the map

π0

(
Îg

ord

X♭
g,Fp

)
→ π0(SordK♭

g,Fp
)

is a bijection. We will check this using Proposition 3.4.1. Assertions (1)-(3) are taken care of by Lemma 4.2.6.
Assertion (4) holds because we are assuming P (Λ) (and by (3) of Proposition 5.1.10). Our group G is already
isotropic over Q, so Assertion (5) is okay. The last Assertion (6) is also valid by Lemma 5.2.8. □

Proposition 5.6.5. For any Λ, we have a bijection

π0
(◦ZK(Λ)Fp

) ≃−→ π0
(◦ZK(Λ)Q

)
.

Proof. Using induction on the p-adic valuation of [Λ∨ : Λ], this follows from the diagram (5.6.1.1) and Proposi-
tions 5.6.3 and 5.6.4. □
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5.7. Application to the moduli of K3 surfaces. When Λ is a rank 1 lattice spanned by a vector v with
Q(v) = m, write ZK(m) for ZK(Λ), and similarly for all the sub-loci of the special cycle. For an integer d ≥ 1, let
M◦

2d,(p) be the moduli stack of primitively polarized K3 surfaces over Z(p) of degree 2d (see [21, §3]).

Proof of Theorem A. Let N be the self-dual quadratic Z-lattice U⊕3⊕E⊕2
8 , where U is the hyperbolic plane. Choose

a hyperbolic basis e, f for the first copy of U . Set

Ld = ⟨e− df⟩⊥ ⊂ N.
This is a quadratic space of signature (19, 2). We can choose our quadratic space V , and the Z-lattice VZ such that
V has signature (20, 2), VZ(p)

is self-dual, and such that there exists an isometric embedding as a direct summand

Ld ↪→ VZ.

Associated with the lattice VZ and a suitable neat level subgroup Kp ⊂ GSpin(V )(Apf ), we have the integral
model SKpKp,(p) over Z(p).

Let Msm
2d,(p) be the open smooth locus of M2d,(p): This is a fiber-by-fiber dense subspace. In particular, it suffices

to show that Msm
2d,Fp

is irreducible.

By the theory of [21, §5], extended to the case p = 2 in [15, Prop. A. 12] (see also the erratum at [25]), there is

a finite étale cover M̃sm
2d,K of Msm

2d,Z(p)
, and an étale period map

M̃sm
2d,K → ZK(2d)Z(p)

that is in fact an open immersion, since it is one in the generic fiber; see [21, Cor. 5.15]. This map lands
inside ◦ZK(2d)Z(p)

, and in fact inside the primitive locus Zpr
K (2d)Z(p)

where the de Rham realization of the special

endomorphism of degree 2d generates a direct summand of VdR.
13

Combined with Proposition 5.6.5, this shows that every irreducible component of M̃sm
2d,K,Fp

is the specialization

of a unique irreducible component of M̃sm
2d,K,Q. From this, we deduce the same assertion for the fibers of Msm

2d,(p).

However, it is well-known that this moduli stack is irreducible over C. For instance, this follows from the Torelli
theorem; see the proof of [21, Prop. 5.3]. □
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