RINGED SPACES

KEERTHI MADAPUSI

CONTENTS
1. Ringed spaces and Sheaves of Modules| 1
I1.1.  Gluing Ringed Spaces| 4
|2. Operations on Sheaves of Modules| 5
2.1, Sheaf Homl 5
2.2, Tensor Productl 7
12.3. The Direct and Inverse Image Functors| 11
2.4.  Extensions by Zero, Restrictions and Sections with Local Support) 14
3. Locally Free Sheaves ot Modules| 16
4. Quasicoherent and Coherent Sheaves of Modules| 18
[£.1. Modules of Finite € 18
A2 Quasicoherent and Finitely Presented Modules| 19
4.3. Coherent Modules| 20
[4.4. Sheat Hom and Tensor Product of Quasicoherent Modules| 23
4.5. Coherent Sheaves of Rings| 24
4.6. uotient Rings 25
5. ocally Ringed Spaces 26
[5.T. Tocally Free Modules over a Coherent Sheaf of Rings| 27
9.2.  Invertible Modules and the Picard Group| 27
6. Graded Modules and Multilinear Algebra on Sheaves| 29
[6.1. Algebrag 29
[6:2._Graded Algebras and Graded Modules| 29
[6.3. ultilinear Algebr 31

1. RINGED SPACES AND SHEAVES OF MODULES

A primary concept leading to the definition of schemes is the notion of a ringed
space.

Definition 1.1. A ringed space is a pair (X, Ox ), where X is a topological space,
and Ox € Shf(X, Ring).

More interesting is the notion of a morphism between ringed spaces.

Definition 1.2. If (X, Ox) and (Y, Oy) are ringed spaces, then a morphism be-
tween them is a triple (f, f¥, f°), where f : X — Y is a continuous map, f*: Oy —
f+Ox is a morphism in Shf(Y,Ring), and f° : f~'0y — Ox is the morphism
corresponding to f* under the adjunction betwen f~' and f.. This gives us the
category of ringed spaces
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Put more concretely, f* is a collection of maps f(ﬁ] : Oy (U) — Ox(f~Y(U)) for
open subsets U C Y.

Remark 1.3. Of course, f” is determined by f* (and vice versa); so most of the time
we will represent a morphism of ringed spaces by the pair (f, f¥). Also, suppose we
had morphisms (f, f#) : (X, 0x) — (Y, 0y) and (g,¢%) : (Y, Oy) — (Z,0%), then
we see that ff o ¢* defines a map 0y — g.f.Ox = (9o f)*Ox. Thus, composition
of maps of ringed spaces is well-defined.

Notice that for any topological space X, we have a natural ringed structure given
by the pair (X,Z).

Remark 1.4. Sometimes this map f* can be naturally obtained from f. For example,
if we take Ox and Oy to be the sheaves of continuous functions over X and Y, then
f% can be obtained by postcomposition by f. As we’ll see in the case of schemes,
the map f* must be specified separately.

We also have an analogue for modules over ringed spaces.

Definition 1.5. A sheaf of modules over a ringed space (X, Ox) is a pair (A, ¢),
where .# € Shi(X, Ab), and ¢ : Ox — End(.#) is a morphism of rings of sheaves.
To conserve effort, we may also say that .# is a Ox-module.

Note that this equivalent to giving a ’ring action’ map of sheaves ¢ : Ox x M —
A that’s a morphism of sheaves of abelian groups in each co-ordinate, satisfying
the following commutative diagram:

1
ﬁXXﬁXxJV—>mX X Ox x N

1ﬁ’xx¢ (b

Ox x N — > F

where m : Ox x Ox — Ox is the multiplication morphism.
In either case, we say that ¢ is the defining morphism of .4 .

Remark 1.6. There are advantages to both definitions. With the first, it is very
easy, as we'll see later, to show that certain sheaves are &x-modules. With the
second, other things are easier to show; for example, the fact that if an additive
functor F' takes a ring of sheaves € to another ring of sheaves ., then it will take
a module over & to a module over ., because it will preserve all the diagrams that
define a module of sheaves.

The first definition is the same as saying that End(.#), in a suitable sense, is an
algebra over Ox. Since this sense is easy to clarify, let’s do it now.

Definition 1.7. An algebra over a ringed space (X, Ox) is a pair (&, ¢), where
&/ is a sheaf of rings over X, and ¢ : Ox — & is a morphism of sheaves of rings.
In this case, we’ll say that <7 is an Ox-algebra.

Remark 1.8. Observe that if & is an Ox-algebra, then any «/-module is automat-
ically an x-module.

Remark 1.9. Note that any sheaf of abelian groups over any space X is a module
over the ringed space (X,Z).
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Now that we have modules, we want morphisms between them. This is easy: we
just sheafify the usual definitions for module homomorphisms.

Definition 1.10. If we have two Ox-modules, .# and .4, then a a morphism of
Ox -modules from .# to A is a map ¢ : A4 — A such that the following diagram
commutes:

Ox X M —> M

1ﬁXX¢ (b

ﬁxxe/i/%,/i/

Definition 1.11. The category Ox-mod, or the category of Ox-modules, is the
category whose objects are &x-modules with the morphisms between modules as
defined above.

We will use Homg, (4, .4) to refer to the group of morphisms between .# and
A in this category.

The next Proposition should be predictable.
Proposition 1.12. The category Ox-mod is abelian.

Proof. Follows for pretty much the same reason that regular R-mod is abelian:
namely, the direct sums and products have a natural &'x-module structure, and
the kernels and cokernels of &x-module morphisms are also naturally &'x-modules.

The first statement is easy to check, but ugly. To see why the second is true,
suppose ¢ : A — A is a morphism of &x-modules; then we have the following
diagram for the ring actions in Shf(X, Ab):

O%ﬁxxkergb%ﬁxx%éﬁxxﬂ/éﬁxxcoker¢*>0

; v
0 ———> ker¢ M N cokerp ———> 0
where we get the dotted maps from the universal properties of kernels and cokernels.

It is these dotted maps that give us the natural &x-module structures on ker ¢ and
coker ¢. ([l

We’ll now make a few standard definitions analogous to those in the study of
modules over rings.

Definition 1.13. A Ox-submodule of an Ox-module .# is simply a subsheaf .4
of 4 such that the composition 0x — End(.#) — Hom(.4", #) factors through
End(.A).

In other words, the ring action map Ox x A — .# factors through .4 .

Definition 1.14. An ideal or a sheaf of ideals of Ux is just a Ox-submodule .¥
of ﬁx.

It’s clear with these definitions that for every open set U, A" (U) is an Ox (U)-
submodule of .Z (U) in the usual sense, and that . (U) is an ideal of Ox (U), again,
in the usual sense.
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Now, for any Ox-module .#, the kernel of the defining morphism ¢ : Ox —
End(.#) is a sheaf of ideals in Ox.

Definition 1.15. For any Ox-module .#, the kernel of the defining morphism
¢: Ox — End(A) is called the annihilator of .#. We denote it by Ann(.#).

1.1. Gluing Ringed Spaces. Just as we can glue sheaves together, we can also
glue ringed spaces along morphisms.

Proposition 1.16. Suppose V = {V;} is an open cover for X, and suppose that,
for each i, V; has a ringed space structure (V;, Oy,), and, for every pair i, j, we have
isomorphisms of ringed spaces (¢, qﬁgj) (VinVy, Ov,lvinv;) — (VinVy, Ov, lviav;)
such that two conditions hold:

(1) (i1, 6%) = (1., 1oy, )-

(2) For each triple i, j, k, ¢i = ¢k © ¢ij on V;NV; N V.
Then, there is, upto isomorphism, a unique ringed space structure (X, Ox) on X,
and isomorphisms (1;, wf) : (Vi, Ox
have ¥; = ¢;j 0 ;.

The next proposition is an easy, technical argument, but very essential.

v,) = (Vi, Ov,), such that for each pair i,j, we

gluing-morphisms ‘ Proposition 1.17 (Gluing Morphisms). Suppose (X, Ox) and (Y, Oy) are two ringed

spaces. Then, to give a morphism X — Y is equivalent to choosing an open cover
V ={Vi} of X and giving morphisms f; : Vi =Y such that filv.nv, = filvinv;-

Proof. It’s clear that a morphism between X and Y will give rise to such data.
Conversely, suppose we're given such data. Then, we have continuous maps f; :
Vi — Y, and maps of sheaves ff : Oy — fi,Oy,. If we can manage to glue a
global map from all this data, then it will have to be unique, because, as a map of
topological spaces, it’s definitely determined by the f;, and as a map of sheaves it’s
determined by the fiﬂ, since they already determine how the glued together map is
going to act on stalks. So it’s enough to show the existence of such a gluing. For
the map of topological spaces, we can just glue together the f; in the usual fashion
to get a global continuous map f: X — Y, such that f|y, = f;.

It remains to glue together a map of sheaves. Given an openset U C Y, ff gives
amap Oy (U) — Ox(f~1(U)NV;). Let ¢ : Ox(U) — WNU)(Cx) be the natural
isomorphism, where W is the weak covering sieve generated by V. By the condition
on the maps ff, we see that we get a map f: Oy — f.7, where % is the sheaf
U — (WnNU)(Ox) (see [NOS,ZT]), given by taking the direct limits over the f7.
Coupled with the natural isomorphisms Ox — %, we get the following picture for
opensetsU CV CY.

fv -1 = -1
Oy(V) — Z(f7(V)) = Ox(f(V))

resy,u resy,u resy,u
oy () I 7 = -
y(U) — Z(f(U)) — ox(f(U))
We set the horizontal composition of maps to be ff. The diagram tells us that it’s

a morphism of sheaves. Moreover, if V' C V;, then it’s easy to see that f‘ﬁ/ = (ff)v.
This finishes our gluing process. (I
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2. OPERATIONS ON SHEAVES OF MODULES

In this longish section, we’ll define a few main operations on sheaves of modules
and explore the relationships between them.

2.1. Sheaf Hom.

Proposition 2.1. For any sheaf of abelian groups .# and any Ox-module N, the
sheaf hom Hom(.#,.4") has a natural Ox-module structure.

Proof. This follows from the fact that we have a natural morphism of rings of
sheaves End(.#") — End(Hom(.#,.4")) given on open sets V C U C X by

End(A|y) — End(Hom(4|v, A |v))

T — (¢ — resy,v () 0 @)

In other words, End(Hom(.#,.4)) is an algebra over End(.#"), which in turn is
an algebra over Ox. O

Just as in the category modules over a ring, we have a specialization of the sheaf
hom to &x-mod.

Proposition 2.2. If .#, ./ € Ox-mod, then the subpresheaf Hom, (A4, N) of
Hom(.#, /) defined on an open set U by Hom, (A, N )(U) = Homg, |, (A |v, N |v)
is also a sheaf.

Proof. Suppose we have an open set U with a weak covering sieve ¥V = {V;}, and
suppose (¢;) € V(Hom,, (.#,.4")). Then, since Hom(.#,.4") is a sheaf, we have a
unique ¢ € Hom (4 |y, -4 |y) such that the following diagram commutes for every
W cU.

~

Ox (W) x M(W) ——> (VAW Ox x M) —> (VOW) M) —> (W)
loxowy X dw | (Loxwnvy) X dwnv;) (éwnv;) dw
Ox(W) x N (W) > (VAW)(Ox x N) —> (VAW)(AH) > N (W)

Hence ¢ is a morphism of &'x-modules, and we’re done. ([l

Till now, we’ve made no commutativity assumptions on Ox. If we do, then we
can say more about Hom .

sheaf-hom—module\ Proposition 2.3. If Ox is a sheaf of commutative rings, then Hom g (A, N) is
an Ox -submodule of Hom (.4, N).

Before we show this, we need a lemma.

commring-defining-map | Lemma 2.4. With the hypotheses of the proposition, the defining morphism of an

Ox-module # is actually a morphism from Ox into End, (.4).
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Proof. We want to show that, for every open subset U C X, and every r € Ox (U),
the following diagram commutes:

Ox(U) x M(U) —> A (V)

<

1ﬁx(U) Xr

Ox(U)x A(U) — #(U)
But this follows immediately from commutativity of €x (U) O

Proof of Proposition[2.3 This follows immediately from the lemma, because the
composition

Endg, (/) — End(Hom(.#, .#")) — Hom(Hom, (4, .4"), Hom (.4, .4"))

factors through End(Hom,, (.#,.#")). This follows since the composition of two
O'x-module morphisms is again an &x-module morphism. (I

Definition 2.5. The sheaf hom between two &x-modules .# and .4 is the sheaf
Hom, (A, ).

Hom, (—,--) : Ox-mod® x Ox-mod — Shf(X, Ab) gives us a functor, which is
left exact in both variables. In case Ox is a sheaf of commutative rings, then it is
actually a functor into &x-mod.

Note on Notation 1. From now on, when we refer to the sheaf hom between two
Ox-modules, this is the object we will be referring to.

We also have the notion of a bimodule. For this, we assume that the space X
has two different ringed structures, (X, Ox) and (X, %x).

Definition 2.6. An (%, Ox)-bimodule is a sheaf .# over X that is both a .x-
module and a right &x-module, such that the defining morphism ¢ : /x —
End(.#) actually factors through End gor (7).

Proposition 2.7. Suppose now that A is an (Ox,.Sx)-bimodule and AN is an
Ox -module. Then the sheaf hom Hom, (A, AN) has a natural .-#x -module struc-
ture.

Proof. We have a natural map End, (.#)” — End(Hom, (.#,./), given on
open sets V C U C X by:

EndﬁX|U(///|U)Op — End(HOHlﬁXh/(.//lv,e/V‘v))
T (¢ do(resy,y (7))

As noted above, the defining map for the right .#x-module .#Z factors through
End,, (), thus making it an .#y’-algebra. Thus, since the map above gives
Hom, (.#,./))aright End, (.#)-module structure, it also makes it into a right
Z¢’-module and hence into an .%“x-module. O

Here’s another property of sheaf hom that’s completely analogous to the situation
in the case of R-mod.

Proposition 2.8. For any Ox-module 4", Hom, (Ox,.A) is canonically iso-
morphic to N .
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Proof. Consider, for any open U C X, the map
Homg, |, (Ox|v, A |v) — A (U)
¢ du(loxw))

We have a map going in the other direction also. Given n € A (U), let ¢¥(n) €
Homg, |, (Ox|vu, A |v) be the map that acts on open sets V' C U in the following
fashion:

Ox(V) = A (V)
Loy vy — resy,v(n)

It’s easy to check that these maps are inverses of each other. (I

2.2. Tensor Product. Any reasonable category of modules should have a notion
of a tensor product, and we have such a notion for &x-modules. Before we do that,
let’s define the equivalent of a right R-module.

Definition 2.9. Given a ringed space (X, Ox ), we define the opposite ringed space
(X, 0%F) to be the space X equipped with the sheaf of rings 0% that assigns to
every open set U, the opposite ring &x (U)°P.

Remark 2.10. Note that if Ox is commutative, then the ringed space (X, Ox) is
equal to its opposite.

Definition 2.11. A right Ox-module is a pair (4, %), such that .4 is a sheaf of
abelian groups on X and ¢ : 0 — End(./") is a morphism of rings of sheaves.

Observe that this just turns every A (U) into a right @x(U)-module. We’ll
usually think of ¢ as defining a ’ring action map’ ¢ : A x Ox — A . In effect, a
right 'x-module is just a &'-module.

Note on Notation 2. In general, when we use the term Ox-module without any
qualification, we will still be referring to our original definition.

Definition 2.12. Given an Ox-module .#Z and a right &x-module .4, we define
their tensor product A ®¢, M to be the sheafification of the presheaf ¢ that
assigns to every open set U C X, the abelian group A (U) ®¢, () 4 (U).

Just like the regular tensor product in R-mod, this one also satisfies a universal
property. But before that, a definition.

Definition 2.13. Let (4, ¢) be an &x-module, let (.#Z, 1) be a right x-module,
and let .% be a presheaf of abelian groups. Then an Ox -balanced map o : M X N —
Z is a morphism of presheaves a, which is a morphism of sheaves of abelian groups
in each co-ordinate, and is also such that the following diagram commutes:

Hx O x N XL oy
’L/JXlN (07

MY SN —————= F
«
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Observe that if # @, A = Shf¥ (see Definition [2.12), then the natural map
LM X N — M Rp, N given by the composition & x N — G — M Q¢ N
is Ox-balanced. This follows from the fact that the corresponding property holds
for the tensor product of modules over a ring.

Proposition 2.14. The natural map v : M X N — M Qp, N satisfies the fol-
lowing universal property:

For any other Ox -balanced map o : M x N — F, there is a unique morphism
a: MR N of sheaves of abelian groups such that acot = a.

Proof. Tt’s enough to show that with ¢ as in Definition there is a unique
presheaf morphism o’ : 4 — .% such that the bottom half of this diagram com-

mutes:

MR N

Shf

MY N ———> F

(0%

Then, by the universal property of sheafification (see [NOS, 213 ]), we get the
unique map & that makes everything work. But we get the map o’ simply from the
corresponding universal property of tensor products for modules over rings! ([

Suppose now that we have a (#x, Ox)-bimodule .# and a &x-module .4#". Ob-
serve that if we set Bal‘gf(x‘/V(U) to be the group of Ox|y-balanced maps |y x
Ny — My x Ny, then we get a presheaf of abelian groups Balgij”, which
has a natural inclusion into the sheaf End(.# ®g¢, -#) given to us by the univer-
sal property of the tensor product (Proposition . Moreover, we have a map
mﬁip(M) — Bal‘gix‘/v given by 7 +— 7 X 1_4. Putting all this together, we find
that we have a natural map

Sx — End(A# @6, N).

The last paragraph can be condensed into the following proposition.

Proposition 2.15. Given an (Sx, Ox)-bimodule # and an Ox-module N, the
tensor product # Q¢ N has a natural x-module structure. Moreover, let « :
MX N — F be an Ox-balanced map, and let F be an Sx-module, such that the
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following diagram commutes.

1 X
Yxx%xﬂyk—%yxxﬁz

¢ x1y »

MY SN — > F
(0%

where ¢ and 1 are the defining morphisms of M and F respectively.
Then the lifting o : M Roy N — F is in fact a map of Sx-modules.

Proof. The proof of the first part is contained in the above discussion. For the
second part, observe that we can insert # ®¢, -4 into the commutative diagram
above quite simply:

1 s, X @
I x Mx N -LZL g 0o, N -2 E e F

b x 1y ¢ ¥

M SN ——————— MRy N —————— F
L (6

where ;5 is the defining morphism for .# ® ¢, 4. The square on the left commutes;
so we find that

Godo(ly, x1) =10 (ly xa)o(ly, x 1)
Then, by the uniqueness of liftings, we see that we must have
Gog=1po(ly, X a),
which shows that « is a morphism of .#x-modules. O
Here’s another analogue from the world of R-mod.

Proposition 2.16. For any Ox-module 4, the sheaf Ox Q¢ M is also an Ox-
module, and it’s naturally isomorphic to A .

Proof. The first part of the proposition follows from Proposition and the fact
that Ox is naturally an (O, Ox)-bimodule. For the second part, observe that the
defining map ¢ : Ox x M — M is Ox-balanced. This lifts uniquely, by Proposition

2.15] to a map of @x-modules, ¢ : Ox ®eyx M — A (Observe that the diagram

that ¢ has to satisfy is simply expressing the associativity of the ring action). Now,
we also have a natural map in the other direction given by the composition

Vil Ox x ML Ox @6, M

At the level of open sets it’s easy to check that these two maps are inverses to
each other. |

Now we are ready to explore the relationship between tensor product and sheaf
hom. The next result should be familiar from the study of modules over a ring. But
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before we do that, let’s fix some notation. Suppose .# is an (Lx, Ox)-bimodule.
Then .# induces a functor
M Re, - Ox-mod — Lx-mod
by Proposition and a functor
Hom g (A, _.):.#x-mod — Ox-mod
by Proposition This leads us to the following proposition.

tensor-shfhom-adj ‘ Proposition 2.17. The functor #® e - is left adjoint to the functor Hom o (A, ).

Proof. Given an Ox-module 4 and an .x module &, we need to construct a
natural isomorphism

Hom g (M @ oy N, P) = Homp, (N ,Hom (M, P)).

To do this, it’ll be easier if we introduce the category of presheaves of modules
over .x. All the definitions are the same, with the word ’sheaf’ replaced everywhere
by ’presheaf’. What also remains true is that the sheafification functor is still a
left adjoint to the forgetful functor from the category of presheaves of modules
to Ox-mod. So to find our natural isomorphism, it will suffice to find a natural
isomorphism of groups

Hom o, (4, 2) = Homey (A, Hom . (A, D)),

where ¢ is as in Definition Note that we implicitly used this principle in the
proof of Proposition [2.14]

Suppose we're given a ¢ on the left hand side. This is a collection of #x (U)-
module homomorphisms ¢y : A (U) @¢, vy A (U) — P(U), for each open set
U C X. Given such a natural transformation, we send it to the morphism ¥(¢) :
A — Hom . (#,2) that, for an open set U, sends each n € 4 (U) to the
following morphism ¥(¢)y(n) : A |y — P|u

(Y(Q)u(nm)v : (V) — 2(V)

m— ¢y (m resy,yv(n))

Now, suppose we’re given ¢ on the right hand side. This is a collection of &x (U)-
module homomorphisms 9y : A (U) — Homg |, (A |, P|v), for each open set
U C X. We send this ¢ to the morphism ®(v¢) : 4 — & that, for an open set U,
sends each m®n € 4(U) to (Yy(n))y(m).

In one direction, we have

(QUP)y(m@n) = ((¥¢)u(n))u(m)
=¢y(memn)
In the other direction, we have

((T2p)y(n))v (m) = (P¢P)v (m @ resy,v (n))
= (Yv(resy,v(n)))v(m)
= (resy,v (Yu(n)))v(m)
= (Yu(n))v(m)

Hence, ¥ and ® are inverses of each other, and we have the isomorphism that
we sought. (I
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Corollary 2.18. With the notation as in the Proposition, we have
Hom, (4 ©py N, P) = Hom, (A, Hom, (4,2P)).

Proof. Just observe that, by the Proposition, there are natural isomorphisms be-
tween each side specialized to an open set U. ([

Corollary 2.19. For any right Ox-module # , the functor
M Q¢ —-: Ox-mod — Shf(X, Ab)
is right exact.

Proof. Recall from Remark that Shf(X, Ab) is the same as the category Z-mod.
Now, from the Proposition, we have a right adjoint to .# ®¢, -- given by:

Hom(.#,__) : Shf(X, Ab) — Ox-mod
From this, the Corollary follows. (]
Now, for the associativity of the tensor product.

Proposition 2.20. Given an Ox-module A, a right Sx-module A, and an
(Fx, Ox)-bimodule P, there is a canonical isomorphism of sheaves of abelian
groups

(N @y P)Rpy M — N R, (P Rey M).

Proof. This is proved most easily by specializing on an open set and noting that
we have a canonical isomorphism there that we get from module theory. O

Note on Notation 3. Given this canonical isomorphism, we’ll usually write the
tensor product as A @, & Q¢ A, without any parantheses.

Just as in the case for sheaf hom, if we impose some commutativity constraints,
then we can get some stronger results.

Proposition 2.21. If Ox is a sheaf of commutative rings, then, for any Ox-
modules A and A, the tensor product # @¢, N has a natural Ox-module struc-
ture. Moreover, we have a canonical isomorphism

MRy N % N Reyx M
Proof. The first part follows from Proposition 2.15 and the fact that over any com-

mutative sheaf of rings Ox, an &x-module is automatically an (€x, Ox )-bimodule.
For the second, simply note that we have a canonical isomorphism

M (U) @) N (U) = N (U) oy w) A U).
on any open set U C X. O

2.3. The Direct and Inverse Image Functors. Of course, there’s no reason
why we need to stick with one topological space. If .# is an 0x-module, and we
have a morphism of ringed spaces (f, f*) : (X, 0x) — (Y, Oy), then we can treat
fe as an Oy-module via the composition

:
Oy = f.0x — f.(End(M)) = End(f.M).
See [NOS, [@0.6]] for the last equality.
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Definition 2.22. The functor f, : Ox-mod — Oy-mod given by # +— f..# will
from now on be called the direct image functor.

We can now specialize [NOS, 0.0 |.
Proposition 2.23. If 4,V € Ox-mod and f : X — Y is a continuous map,

then we have a natural isomorphism:

fxHomg, (A, AN) — Homy o (fstl, foAV).
Proof. If we go back to the proof of [NOS, ], then we’ll see that the only thing
that needs proving is, given an open set U C X, the isomorphism

Homgy |, ., (v, A |u) = Homy, gy (frtl|u, fo |0)-

Just as in that proof, we have a natural map easily defined in one direction. The
map in the other direction is defined as in the earlier proof. We just have to check
that the map we get is a map of &x-modules. Given a ¢ on the right hand side, we
get a 1) on the left, so that this diagram commutes (the notation is from the proof
of the earlier proposition.).

Ox (W) x (W) —> (VAW Ox x M) —> (VOAW)(AM) —> (W)

Loy w) X Yw Loy (s-1(vy) X V) (ov) hw

~ ~

Ox(W) x N (W) = (VNW)(Ox x N) —> VAW)(AN) —> N (W)

The square in the middle commutes, precisely because ¢ is a morphism of
f+Ox|u-modules. This tells us that the whole diagram commutes, and so ¥ is
indeed a morphism of &'x-modules. O

Now we turn to the inverse image functor. Fix for now a map of ringed spaces
(f,f4, ") : (X,0x) — (Y,0y). Observe that f~! gives a functor €y-mod —
f~'0y-mod. And f, gives a functor f~'€y-mod — @y-mod. The adjunction
between them is still maintained. So let’s record that in the following proposition.

Proposition 2.24. Given an Oy-module .# and an f~'Oy-module N, there is
a natural isomorphism

Homfflﬁy (fil%ﬂ/i/) i Homﬁy (%7 f’“/V)
Proof. |

Corollary 2.25. With the hypotheses as in the Proposition, we have the following
natural isomorphism:

fe(Hom, 1 (f7Ltt, N)) = Homy, (M, f.N)

Proof. Specializing on an open set U C Y on either side, we find that we have to
show:

Hom 1.0y, 0, (F )] g2y A 1)) = Homgy 1 (A |y, (fo)0r)-

But this is just the situation of Proposition [2.24] with f being replaced by the
map f|f—1(U) fﬁl(U)HU [l
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Just as the direct image functor commutes with Hom, the inverse image functor
commutes with tensor products.

Proposition 2.26. Given an Oy-module A and a right Oy -module A , we have
a natural isomorphism

7Nl @0y [N S M 0y N).
Proof. Note that since f~! is additive, we have a natural map f~'.Z x f~' A4 —
Y @6, N), given by the composition
FUMX TN = M) N) = M B0y N).
Now, this lifts to a unique map
[l @10y [N = UM R0, N).

And the easiest way to see that this map is an isomorphism is to descend to
stalks. For a point x € X, this will just be the identity map

Mi2) D0y 0y Ni@) = ([THM @0y N))w = Mp@) @0y (o) N ()-
So the isomorphism is proved. O
Notice that the map f° : f~'0y — Ox gives Ox an (Ox, f~'Oy)-bimodule

structure. So given an Oy-module .#, we can consider the &y-module Ox ® ;-14,
f~Y. Given an Ox-module ./, we have the following sequence of isomorphisms:

Homg, (Ox @s-14, M, N) 2 Homs-14, (f 'Oy, Hom, (Ox,.N))
g Homﬁ}/(ﬁY?f*’/V)

where the first isomorphism follows from Proposition [2.17] and the second follows

from Propositions and
This suggests a definition.

Definition 2.27. The inverse image functor f* : Oy-mod — Ox-mod is the
functor that assigns to every Oy-module .#, the Ox-module Ox ®@;-1¢, f~ta.

Remark 2.28. From now on, whenever we talk about direct and inverse image
functors, these are the ones we’ll be referring to.

We’ve proved an important fact about f* above.

Proposition 2.29. The functor f, : Ox-mod — Oy -mod is right adjoint to the
functor f* : Oy-mod — Ox-mod. In particular, f. is left exact and f* is right
exact.

Proof. Found above. U

Example 2.1. Although f~! was exact, f* need not necessarily be exact, for the
simple reason that tensor product is not exact. For example take any topological
space X and put two ringed structures on it, corresponding to Z, and Z. Then,
the identity map I from (X, Z,) to (X,Z) is a morphism of ringed spaces, and in
the latter, we have an exact sequence:

02452 —-72,—0.
When we act upon this with I*; we get

0= Zy = Zy — Ly — 0,

which is definitely not exact on the left.
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With this adjointness property, we can use the same proof as in [NOS, [[.I0] to
get the following proposition.

Proposition 2.30. If (f, f*) : (X, 0x) — (Y, Oy) and (g,9%) : (Y, Oy) — (Z,07%)
are morphisms of ringed spaces, then (go f)* = f*g*.
Corollary 2.31. IfV C Y is an open set, and # is an Oy -module, then
(f* )| g vy = (flp—00) (A V)
where flp-py : fTHV) = V.
Proof. Note that we have the following commutative diagram:
V) ——X

fly—10v) f

Ve——>Y
Now, just use the Proposition, noting that for an inclusion j : V. — Y, j*.# =

My . O
We can also strengthen Proposition [2.26]in the case where Oy is commutative.

Proposition 2.32. If Oy is a sheaf of commutative rings, then, for any Oy -
modules A and A, we have a canonical isomorphism

[ M ©oy N)E ' M R0y [*N
Proof. We have the following sequence of isomorphisms:
[ M @y N)=Ox @10, fHM @6y N)
S O0x Qprpy [T M Qp-10, [N
M @16y Ox Rp-10, [N
> M @10, Ox ®oy Ox @f-16, N
="M Qe [N

where we used Proposition for the third and last steps, Proposition [2.16]in the
second to last step, Proposition [2.26] in the second step, and Proposition [2:20] just
about in every step. (I

2.4. Extensions by Zero, Restrictions and Sections with Local Support.
Here we’ll investigate the relationships between the functors i, j., ji and S22 (_.)
defined earlier, and the tensor product and sheaf hom over Ox that we’ve defined
in this section.

The functor j; will be easiest to handle, mainly because of the following propo-
sition that follows immediately from [NOS, Bg]].

Proposition 2.33. For any open set U C X, any Ox|y-module # and any Ox-
module A, we have a natural isomorphism

Homg, (jid, N) =, Homg |, (A, N |v).
where j : U — X 1is the inclusion map.

Proof. Just as in the proof of [NOS, B3 ]. O
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Corollary 2.34. With the hypotheses as above, we have an isomorphism of sheaves:
Mﬁx (jl%7 JV) — j*(@ﬁx\u(%v JV|U))

Proof. Follows from the Proposition and the same kind of argument that was used

in Corollary O

Now, we’re ready to say everything we want in the following proposition.

Proposition 2.35. Suppose U C X is open, with inclusion map j : U — X, and
suppose i : Z — X 1is the inclusion of Z = X \ U into X. Suppose also that
M € Ox-mod. Then, we have the following natural isomorphisms:

(1) Homg (1(Ox|v), #) = j.(Av)

(2) 4(Ox|v) @ex M = ji(M|v)
(3) Homg  (ix(Ox|z), M) = A (M)

(4) ix(Ox|z2) ®ox M = i(Mv)

Proof. (1) We have the following sequence of isomorphisms
Homg, (71(Ox|v), #) = j.(Hom, |, (Ox|v, #|v))
= ju(Av)
where the first isomorphism follows from Corollary and the second
from Proposition |2.8

(2) We will use Yoneda’s Lemma ([CT, ]). Let .4 be any Ox-module.
Then we have the following sequence of isomorphisms

Homg, (i(Ox|v) ®6y A, N) = Homg, (A ,Home, (ji(Ox|v), A ))
= Homgy (A, j(A |v))
= Homgy |, (A v, N |v)
= Homg, (ji(#|v), N)
where the first isomorphism follows from Proposition [2.17} the second from
part (1), the third from Propositionand the last from Propositionm

Yoneda’s Lemma does the rest of the work for us.
(3) Observe that if we apply the functor Hom, (--,.#) to the exact sequence

0— j(Ox|v) = Ox — i.(Ox|z) — 0,

and if we use part (1) and Proposition then we get an exact sequence:
0 — Hom,, (i«(Ox|z) — Ox — j«(Ox|v).

Comparing this sequence with the one in [NOS, |, we find the isomor-
phism that was claimed.

(4) Start with the same exact sequence as in the last part, but this time apply
the functor .- ®¢, 4 to get the exact sequence

where exactness on the left is checked by descending to stalks.
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Comparing this with the exact sequence from [NOS, |, we find the
isomorphism we need.
(]

3. LocALLY FREE SHEAVES OF MODULES

We'll define an important class of Ox-modules in this section, and explore its
properties as a first step towards coherence.

Definition 3.1. A free Ox-module is an &x-module that is isomorphic to &%, for
some indexing set I, where ﬁ)I( is the direct sum ®;c;O0x .

In this case, if I is finite, we say that the rank of .# is #1. Otherwise, we say
that it has infinite rank.

But for sheaves, as always, it’s more useful to define things on a local level.

Definition 3.2. A locally free Ox-module is an &x-module .# such that for every
point x € X, there is a neighborhood U 3 x such that .|y is isomorphic to a free
Ox |y-module.

The rank of .# in such a neighborhood U is just the rank .#|y as a free Ox|y-
module. We say that a locally free sheaf .# is of finite rank if the rank in every
such neighborhood is finite.

Suppose now that . is a locally free &'x-module, and suppose U and V are two
open sets such that .# is free when restricted to both. If U NV # ¢, then the rank
of A in U is the same as the rank of .# in V, since the ranks must agree on UNV.
So, in particular, the rank of .# is well defined on any connected open set.

Locally free &'x-modules are projective in a sense that’s made precise by the
following Proposition.

free—modules—projective‘ Proposition 3.3. Given an # % #" — 0, and a morphism ¢ : O% — M",

we can find an open neighborhood U C X of any point x € X, and a morphism
¢: Ox|ly — M|u, such that gly o ¢ = ¢|u.

Proof. Observe that Homg, |, (Ox|i, #|v) = 4 (U)" (see Proposition [2.8). So to
prove the assertion, it’s enough to show that for every set of n elements {s; : 1 <
i <n}in I'(X,.#"), we can find an open set U, such that {resx y(s;): 1 <i<n}
is contained in the image of gyy. We’ll do this by induction on n; for n = 1, this is
[NOS, [£8]]. Suppose we can do this for n — 1 elements; then we’re essentially back
to the case of one element, and so we’re done again. O

Proposition 3.4. If (f, f*) : (X,0x) — (Y, Oy) is a morphism of ringed spaces,
then the following statements hold:
(1) If A is a free Oy-module, then f*.# is a free Ox-module.
(2) If A is alocally free Oy -module, then f* 4 is a locally free Ox-module.

Proof. (1) This follows from two facts: f*0y = Ox and f* is additive.
(2) This follows from (1) and Proposition [2.31]
O

Definition 3.5. The dual .# of an €x-module .# is the right &x-module Hom, (A,0x).
If # is actually a right 0x-module, then the dual becomes an x-module struc-
ture.
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The dual is very useful in exploring the properties of locally free modules of finite
rank, mainly because of the two propositions that follow.

Proposition 3.6. If ./ is a locally free Ox-module of finite rank, then 4 is
isomorphic ; that is, # = A .

Proof. We have a natural map
M — Hom, (Homg, (A,0x),Ox)

given by the usual double dual construction. Since locally . is free of finite rank,
it’s easy to see that this natural map is actually a local isomorphism, which is
sufficient for it to be an isomorphism. In more detail, since this is a local question,
we can assume . = 0%, for some n € N, and so we get the following commutative
diagram:

M —— Hom,, (Homg (A, 0x), Ox)

o~ o~

ﬁ;é ~ mﬁx (I—Ioimﬁ’x(ﬁ?(’ﬁ)()vﬁ)()

The bottom row is a canonical isomorphism, since
Hom,, (Hom, (0%, 0x),0x) = Homg, (O%,Ox)
~ gn
where we used the isomorphism from Proposition twice, along with the addi-
tivity of sheaf hom.

Thus, the map on the top is also an isomorphism, which is what we had claimed.
O

Proposition 3.7. If # is locally free of finite rank, then, for any Ox-module AN,
we have an isomorphism

Hom, (M, N)2 M @0y N
Proof. We have a natural map
Hom, (AM,0x) @6y N — Homg (M, N).

that’s induced by the natural map on the level of &x(U)-modules. We prove just
as above, using Propositions and that this map is a local isomorphism,
and is thus an isomorphism. O

This proposition has an important corollary. For this, we specialize now to the
case where Ox is commutative, and make the following definition.

Definition 3.8. An invertible Ox-module .# is one for which we can find an
Ox-module 4 such that # ®g, N = Ox.
A is then known as an inverse for .

Corollary 3.9. Any locally free Ox-module .4 of constant rank 1 is invertible,
with inverse its dual A .
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Proof. From the Proposition, it suffices to show that
@ﬁx(e//f’%) gLMﬁX(%) = 0x.

Now, since Ox is commutative, the defining morphism for .# factors through
End, (A) (See Lemma. Just as before, we just need to check that this gives
a local isomorphism. But this is clear, since, locally, .# = 0x, and End,, (Ox) =
OUx canonically. O

While locally free 0x-modules are very nice, unfortunately they impose too
strict a constraint. As a subcategory of &'x-mod, they’re not closed under taking
of kernels, cokernels and extensions. To remedy this we need the unbelievably
important notion of a coherent &'x-module. This corresponds roughly to the notion
of a finitely presented module over a ring.

4. QUASICOHERENT AND COHERENT SHEAVES OF MODULES

quasicoherent-sheaves

This section is based largely on Serre’s exposition in his famous Faisceaux Algébriques
Cohérents.

4.1. Modules of Finite Type.

Definition 4.1. An Ox-module . is of finite type if, for ever x € X, there is a
neighborhood U of z such that .|y is generated locally by global sections over U,
in the sense that there is an exact sequence of the following form

Ox|yy — M —0
for some n € N.

Note that n is dependent on U.

One sees with this definition that if © € U, and {(s;), : 1 < ¢ < n} are the

images in ./, of a basis for Ox|};, and thus form a generating set for .4, over
O,. This in fact characterizes modules of finite type, as one can see by applying
Proposition In this case, we say that the sections {s; : 1 < i < n} generate
My .
Example 4.1. Here’s Grothendieck’s example of an & x-module that’s not of finite
type: Take X = R, and Ox = Zy. Now, let U = X — {0}, and consider .#Z =
J1(Ox|y). For every open set V containing 0, we have .Z (V) = 0, but clearly
M|y # 0. So A cannot be generated locally by global sections, and is thus not of
finite type.

Finite type modules are very local, as the next proposition will show.

e—type—stalkgen—localgen‘ Proposition 4.2. Suppose A4 is an Ox-module of finite type, and suppose for

some x € X the stalk 4, is generated by germs {sgf) : 1 <i < n}, for some section
of M7, over some neighborhood U of . Then, we can find a neighborhood V' of x
such that A |v is generated by {resy v (s®)}.

Proof. Since . is of finite type, we can find a neighborhood W of z and a section
(t0)) of 4| that generates .# |y . But then the germs {tg)} will be generated
by {355)} So, for every j, we can find a neighborhood V; of z, and sections {a("7) :
1 < i < n} of Ox|y, such that resw,y, (t;) = >, al® resy,y, (sV). If we take V to
be the intersection of the V}, then on V we can express the restrictions of the (@)
as linear sums of restrictions of the s(*), which proves our statement. [
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Corollary 4.3. Suppose A is an Ox-module of finite type, and for some x € X,
suppose M, = 0. Then we can find a neighborhood V' of x such that 4|y = 0.

Proof. Clear. (]
Definition 4.4. The support of an &x-module .# is the set

Supp# ={xeX: M #0} C X
Corollary 4.5. If 4 is an Ox-module of finite type, then Supp .# is closed in X .
Proof. Follows from the Corollary above. (]

4.2. Quasicoherent and Finitely Presented Modules. A quasicoherent mod-
ule is actually a very simple notion. It’s just something that locally looks like an
honest module. The definition will make this vague characterization clearer.

Definition 4.6. An Ox-module .#Z is quasicoherent if, for every x € X, there
is a neighborhood U of z such that .#|y is the cokernel of a morphism of free
Ox|y-modules. In other words, if there exists an exact sequence of the following
form
ﬁx|{] — ﬁ)dé — %‘U — 0.
We say that .# is finitely presented if, for every such U, we can find finite
indexing sets I and J for which the above sequence is exact.

It follows easily from this definition that any locally free &'x-module is quasico-
herent, and that any locally free &x-module of finite rank is finitely presented.

Proposition 4.7. If (f, f*) : (X,0x) — (Y, Oy) is a morphism of ringed spaces,
then the following statements hold:

(1) If A is a quasicoherent Oy -module, then f*.# is a quasicoherent Ox -
module.

(2) If A is a finitely presented Oy -module, then f*.# is a finitely presented
O x -module.

In particular, if U C X is an open set, and M is quasicoherent (resp. finitely
presented), then A |y is also quasicoherent (resp. finitely presented).

Proof. (1) Suppose x € X; then there is a neighborhood U C Y of f(z) and
an exact sequence of the following form:

ﬁy|{] — ﬁy|é — ./f|U — 0.

Now, use Corollary and the fact that f* is a right exact functor (since
it’s a left adjoint) to get the following exact sequence:

(1) (v [6) = (fly-2 ) (Ov ) = (F* )| -1y — O
Now, apply Proposition to see that this is indeed expressing f*M
locally as the cokernel of a morphism between free modules.

(2) Same as above, with I and J finite everywhere.
O

Quasicoherent sheaves, as a subcategory of @x-mod, are not necessarily closed
under extensions. This will not be a problem with coherent sheaves, as we’ll see
below. But in the case that we’ll be most concerned with-modules over the structure
sheaf of a scheme-we’ll see that quasicoherent modules are indeed stable under
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extensions. For the rest of these notes, we’ll assume that we’re in a situation where
this is true.

Note on Notation 4 (Standing Assumption). From now on, we’ll assume that qua-
sicoherent O'x-modules are stable under extensions, and also that they form an
abelian subcategory of Ox-mod: that is, if ¢ : # — .4 is a morphism of quasico-
herent &x-modules, then ker ¢, coker ¢ and im ¢ are all quasicoherent.

4.3. Coherent Modules. We finally arrive at our destination.

Definition 4.8. An Ox-module .# is coherent if the following conditions hold:

(1) A is of finite type.
(2) For every open set U, and every homomorphism ¢ : Ox|}, — 4, with
n € N, ker ¢ is also of finite type.

An immediate corollary to this definition is that a coherent module .Z is quasi-
coherent and is in fact finitely presented.

If we consider Grothendieck’s example above, then we see that Zy /.# is not
coherent, since the kernel of the map from Zy is not of finite type.

Here’s an easy characterization of coherent sheaves that will be used a lot.

Proposition 4.9. An Ox-module 4 is coherent iff it is of finite type and every
morphism ¢ : N — M|y, where N is an Ox|y-module of finite type, has a kernel

of finite type.

Proof. One direction is trivial. So assume .# is coherent, and we have a morphism
¢ as in the statement. Then, since .4 is of finite type, we can find a neighborhood
V C U, and a surjection ¢ : Ox|}y — 4|y, giving us the following commutative
diagram with exact rows:

0 —— ker(o ) —> Oxfi 22y

é /l/}

0 —— ker |y Ny M|y

where we get the dotted map from the universal property of ker ¢ (note that re-
striction is an exact functor). Since the map in the middle is surjective, and the
map on the right is injective, the 4-lemma tells us that the dotted map is surjective.
But, since . is coherent, ker(¢ o 1)) is of finite type. So ker ¢|y is the image of a
module of finite type, and is thus itself of finite type. [

Here’s the reason coherent sheaves are worth it.
Proposition 4.10. Suppose we have an exact sequence
N RN
of Ox-modules. Then, if any two of the modules in the sequence are coherent, so is

the third. In other words, the subcategory of coherent Ox -modules is closed under
extensions.

Proof of Proposition[4.10. We’ll do the three cases separately
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Suppose first that .# and .#" are coherent, and suppose we have a mor-
phism ¢ : Ox | — #'|y. Then, since f is injective, we see that ker(fo¢) =
ker ¢. But f o ¢ is a morphism to .# from a free Ox|y-module, and thus
has kernel of finite type. This implies that ker ¢ is of finite type. This
shows that .#’ satisfies the second condition for coherence.

Now, we want to show that .#’ is of finite type. So suppose z € X;
then we want to find a neighborhood U of x and a surjection from a free
Ox|y-module onto .#’|y. Since, .4 is of finite type, we can always find
a neighborhood U, for which we have the following commutative diagram
with exact rows:

0—— ker(goz/J) — ﬁxl;} —_— %H|U —— 0

(8
v

0 My

///|U — .//”|U ——=0
f g
where ¢ : Ox |}, — |y is an epimorphism, and the dotted map is obtained
from the universal property of kernels (in this case .#’ = ker g). Since the
map in the middle is a surjection, and the map on the right is an injection,
we see by the 4-lemma that the dotted map is a surjection.

But then, since .#" is coherent, & = ker(g o ¢) is of finite type, and so
we can find a smaller neighborhood V' on which there is a surjection of a
free Ox|y-module onto J# |y, which gives us a surjection of a free module
onto ']y, thus showing that .#’ is of finite type and so satisfies both
conditions for coherence.

Suppose now that .#’ and .#" are coherent, and suppose we have a mor-
phism ¢ : Ox|}, — #|y. Then, we have the following commutative dia-
gram with exact rows:

goo

0 —> ker(go ¢) —> Ox[p 2% |y

% ¢
0 %/|U .///|U*>.//N|U—>0
9

f

where we get gzNS from the universal property of kernels, just as above. N

From this, we find that ker ¢ = ker ¢. So it suffices to show that ker ¢
is of finite type. But since .#Z" is coherent, we see that # = ker(g o ¢) is
of finite type. So, applying Proposition to the map (E = My,
we see that kerg is of finite type. This finishes the first part of showing
coherence of . .

Now, to show that .# is of finite type, given an € X, we take a
neighborhood U of x such that we have a surjection ¢ : Ox|}, — 4" |u,
and a surjection ¢ : Ox |} — A'|y. Then, by Proposition we see that
we can lift ¥ to a map {/; 1 Ox|¢ — A v, for some neighborhood V- C U
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of x. So we get the following diagram with exact rows:

0 ——— Oxly —— Ox|y™" —— x|y} ———0

0F (foo)+d v

¥
0 — 'y f—> My ———> My —— 0

Since the two maps on the right and left are surjective, it follows that the
map in the middle is also surjective, and so . is also of finite type.

Now, assume .#’ and .# are coherent. It’s easy to see that any quotient
of a module of finite type is also of finite type, and so .#" is of finite type.
It remains to prove that it satisfies the second condition for coherence. So
suppose we have a map ¢ : Ox|; — #"|y. Then we get the following
commutative diagram with exact rows:

0 ker(8) —> ox[p —Ds oy 0
o ”
;
0 My My M|y 0
f g

where & is the pullback of the maps g and ¢. By an easy diagram chase, we
can see that the dotted map (found as always by the universal property of
kernels) is an isomorphism. So by the Snake Lemma we get ker v 2 ker ¢.
But .# is coherent, and &7 is of finite type by Lemma ??. So by Proposition
we see that ker « is of finite type, which means that ker ¢ is of finite
type.

O

We discovered a useful fact in the course of the proof of part (1). Let’s record it

in the form of a corollary.

Corollary 4.11. Any submodule of finite type of a coherent module is itself coher-

ent.

As one would expect, the category of coherent sheaves is an abelian category.

Corollary 4.12. If ¢ : # — N is a map of coherent modules, then ker ¢, coker ¢
and im ¢ are all coherent. In particular, the category of coherent Ox-modules is

abelian.

Proof. Observe that im ¢ is a submodule of finite type of the coherent module .4
and hence by the last Corollary it is coherent. Now, we get the coherence of the
kernel and the cokernel from the Proposition and the two short exact sequences
below:

0—ker¢p —» . # — im¢p — 0
0—im¢ — A — coker ¢ — 0
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Morphisms between coherent sheaf are local in a very fundamental sense.

coherent—morphism—local‘ Proposition 4.13. Let ¢ : A4 — N be a morphism between coherent modules,
and let x € X. Then the following statements are true:

1) ¢z =0 iff ¢|v = 0 for some neighborhood V' of x.

2) @ is injective iff ¢|y is injective in some neighborhood V of x.

3) ¢. is surjective iff ¢|v is surjective in some neighborhood V' of x.

4) ¢, is an isomorphism iff ¢y is an isomorphism in some neighborhood V

of x.

Proof. Just use Corollary [£.12] and apply Corollary [£.3] to im ¢, ker ¢ and coker ¢
to get (1), (2) and (3) respectively. We get (4) by putting together (2) and (3). O

(
(
(
(

4.4. Sheaf Hom and Tensor Product of Quasicoherent Modules. Coherent
modules are rather stable under the taking of sheaf hom and tensor products, but
quasicoherent modules, since they’re not necessarily closed under extensions, need
not be so. But recall our Standing Assumption about Ox !

coherent-shfhom-coherent ‘ Proposition 4.14. Suppose A is a finitely presented, and AN is a (quasi)coherent
O'x -module; then Hom, (4 ,.A) is (quasi)coherent.

Proof. Since .# is finitely presented, for every z, we can find a neighborhood V' of
z and a finite presentation

Oxly — Ox|v — M|y — 0
of ./ |yv. Applying the functor Hom, | (-, -#'[v) to this sequence, we get an exact
sequence
0 — Hom, | (A|v, A |v) — Homg | (Ox|V, A |v) — Homg | (Ox|y, A]v).
Using Proposition this becomes the exact sequence
0 —Homg \, (Alv, N|v) = AT = Ay
Hence, Homg |, (#|v,#|v) is the kernel of a map between (quasi)coherent

modules, and is thus (quasi)coherent, by Corollary (Actually, quasicoherence
follows from our Standing Assumption, but we will not stress this point). (I

shfhom—stalks—coherent\ Proposition 4.15. Let # and A be Ox-modules, with .# finitely presented.
Then, for any x € X, we have

Hom, (A, N ), = Homg, (My, N;)
where O, stands for the stalk of Ox at x.
Remark 4.16. Compare with [IM, [[2].

Proof. Note that we have a natural map in one direction, where, if g € Hom, (4, A ),
is represented by ¢ : |y — A |y, then we take it to ¢, : M, — N, If
Y« M|y — Ay is another map such that resy w(¢) = resyw(¢) for some
open subset W C UNV, then ¢ and ¢ agree in neighborhood of z, and so ¥, = ¢,.
This tells us that the assignment is well-defined.

Moreover, if |y = Ox | is locally free, then this map is in fact an isomorphism,
since both sides are just 4,".

Now, suppose .# is finitely presented around x, with a finite presentation

Ox|yv — Ox|y — M|y — 0,
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then, applying the Hom, (__,.#") functor, followed by the stalk functor at x, we
get the following picture with exact rows.

0 ——— Homg, (My, Ny) —— Homg, (O, Ny) ———> Homg, (O3, Ny).

nt-ring-finpres-coherent ‘

invimage-coherent ‘

As we saw earlier, the two vertical maps on the right and in the middle are
isomorphisms, and, therefore, so it the map on the left. [l

Now, we turn to the tensor product.

Proposition 4.17. If # is a quasicoherent (Ox, Ox)-bimodule, and A is a (quasi)coherent

Ox -module, then M Q¢ N is also (quasi)coherent.

Proof. Since .# is quasicoherent, for every € X, we have a neighborhood U of x
and a free presentation

Oxly — Oxlly — My —0

of A |y. Now, tensor this sequence with 4|7, and use Propositions and
to see that we get an exact sequence

NG = Nl — (M @65 N)lo — 0
Now we see from Corollary [4.12] that .# ®¢, -4 is (quasi)coherent. O
4.5. Coherent Sheaves of Rings.

Definition 4.18. We say that Ox is a coherent ring of sheaves or, just coherent,
if it is coherent as an €x-module.

Proposition 4.19. Suppose Ox is a coherent sheaf of rings. Then, every sheaf of
ideals of Ox of finite type is coherent. Every locally free Ox-module is coherent.

Proof. Follows from Corollary and Proposition [4.10 d

Coherent modules over coherent rings of sheaves are more simply described.

Proposition 4.20. Suppose Ox is a coherent sheaf of rings. Then an Ox-module
M is coherent iff it is finitely presented.

Proof. One direction is clear. For the other, suppose .# is finitely presented. Then
it’s locally the cokernel of two coherent modules, by the last Proposition, and so is
itself coherent. O

Corollary 4.21. Suppose (f, f*) : (X,0x) — (Y, Oy) is a map of ringed spaces,
and suppose Ox is coherent. Then, for every coherent Oy -module M, f* M is a
coherent Ox -module.

Proof. Follows from the last Proposition and Proposition [£.7] since any coherent
module is finite presented, and so f*.# will be finitely presented, since f* preserves
that property. But then it will be coherent, since Oy is coherent. (I
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Example 4.2. The direct image functor is not quite so well-behaved. For example,
take any topological space X and give it the ringed structure (X,Zy ). Now, take
any singleton set p and endow it with the ringed structure given by the constant
sheaf Z,. If we take the constant map f from X to p, and take f* : Z, — f.Zy
to be the 0 map, then that makes f.Zy a module over Z,. We claim that f.Zx
is not coherent. Since we're over a one-point set, we can forget all about sheaves.
We're just looking at Z as a trivial module over Z,, and it’s clear that Z has no
finite presentation as a Zs-module.

4.6. Quotient Rings. Suppose now that we have a sheaf of ideals .# C @x. Then
the sheaf Ox /.7 is also a sheaf of rings. Moreover, any O /.#-module is naturally
an Ox-module. So we can wonder how the properties of &'x/I-modules translate
when they’re looked upon as &x-modules. This is especially important in geometry,
because the natural sheaf of rings on a subvariety (or subscheme, for that matter)
is a quotient of the sheaf of regular functions on its ambient variety.

Proposition 4.22. Suppose & C Ox is a quasicoherent sheaf of ideals, and let
Sx =0x/I. Let M be an Sx-module. Then M belongs to the following classes
of Sx -modules iff it belongs to the corresponding class of Ox-modules.

(1) Quasicoherent modules
(2) Modules of finite type

In addition, if & is of finite type, then this is also true for the class of coherent
modules.

Proof. (1) Suppose .# is a quasicoherent .#x-module. Since the question is
local, we can assume that we have a presentation of the form

Sy = A0

Observe that .#x is quasicoherent since it’s the cokernel of the map & —
Ox. That # is a quasicoherent &'x-module now follows from our Standing
Assumption. Conversely, suppose .# is quasicoherent as an & x-module;
then, again, we can assume that we have a free presentation of .#Z as an
Ox-module. Since every map from Ox to .# factors through .x, we get
the following picture

ok o3 M 0

L S M 0

with the top row exact. Now, it’s just an easy diagram chase to see that
the bottom row is exact, too.
(2) Similar argument as in (1); just note that .#x is of finite type as an Ox-
module.
Suppose now that @y is coherent, and let .#Z be an .¥x-module. We know that
A is of finite type as an Ox-module iff it’s of finite type as an tRegX-module,
by part (2) above. Let ¢ : 0% — .# be a morphism. As always, it has to factor
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through .#x, giving us the diagram:

0 ———> ker¢ 0% ¢ M
: 3
0 ——> kerg Ix M

Using the Snake Lemma, we get a short exact sequence
0— 7" —>ker¢—>ker$—>0.

Hence, ker ¢ is of finite type iff ker$ is of finite type, which means that .Z is
coherent as an Ox-module iff it’s coherent as an .“x-module O

Corollary 4.23. If Ox is coherent and & C Ox is a sheaf of ideals of finite type,
then Ox /.7 is also coherent.

Proof. Ox /I is coherent as an Ox-module since it’s the cokernel of a map & — Ox
between coherent @x-modules. That .# is coherent follows from Corollary
Now, apply the Proposition to see that &x /.7 is coherent over itself. O

5. LOCALLY RINGED SPACES

Till now, we’ve been working in such generality that we haven’t needed any real
tools for our results. The time has now come to impose some stricter conditions on
our ringed spaces, so that we can prove some deeper statements. In this section,
we’ll assume that all our rings are commutative.

Definition 5.1. A locally ringed space is a ringed space (X, Ox where, for every
x € X, the stalk &, is a local ring.

Remark 5.2. Note that this is not the same as a sheaf of local rings, but we will
indiscriminately abuse notation and sometimes call it just that.

Most of the ringed spaces we meet in real life: a manifold with its sheaf of smooth
functions, a variety with its sheaf of regular functions, or a Riemann surface with
its sheaf of holomorphic functions, are all locally ringed spaces. So this is a very
important sub-class of the class of ringed spaces.

Note on Notation 5. If we have a locally ringed space (X, Ox), then we’ll denote
the maximal ideal of &, by m,, and the residue field &, /m, by k(z), for every
rzeX.

Definition 5.3. The cotangent space at a point x € X of a locally ringed space is
the quotient m,/m2. The tangent space is the dual Homy,)(mg/m2, k(z)).

Definition 5.4. Suppose (X, Ox) and (Y, Oy ) are two locally ringed spaces; then a
morphism of locally ringed spaces is a morphism of ringed spaces (f, f*) : (X, Ox) —
(Y, Oy ), such that the map f;(z) : Of(z) — Op maps my(,) into m,. In other words,

the map induced on stalks by f” is a local homomorphism.
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Remark 5.5. It is clear that the composition of two morphisms of locally ringed
spaces is again a morphism of locally ringed spaces. So we indeed have a category
of locally ringed spaces.

Also observe that every map of locally ringed spaces induces maps on the residue
fields, the cotangent spaces and the tangent spaces at every point (in the other
direction, of course).

For the rest of this section, we’ll assume that (X, Ox) is a locally ringed space.

One main advantage of locally ringed spaces, is that, if we’re given a coher-
ent module over the space, then we can use Proposition [£.13] in conjunction with
Nakayama’s Lemma to transform statements on the stalk level to statements on a
more global level.

Here’s an example:

Proposition 5.6. Suppose # and AN are locally free Ox-modules of rank n, and
let ¢ : M — N be a map of Ox-modules. Let x € X; if ¢p : My — Ny is
surjective, then there is a neighborhood around x on which ¢ is an isomorphism.

Proof. Observe that, by Proposition [4.13] it suffices to show that ¢, is an isomor-
phism; or, equivalently, that ker ¢, = 0. Now, ¢, induces an isomorphism of vector
spaces My ® k(x) — A, @ k(x). This implies that ker ¢, C m,.#,. But since 4,
is free, we have a splitting map ¢ : A, — 4, such that

My =1m Y & ker ¢, = im Y + My M,
which implies, by Nakayama, that im = .#,, and so ker ¢, = 0. (I

5.1. Locally Free Modules over a Coherent Sheaf of Rings. In this section,
we’ll characterize locally free modules over coherent sheaves of local rings. So we’ll
be assuming throughout that &x is local and coherent.

Proposition 5.7. Suppose A is a coherent Ox-module, and suppose M, is a free
O-module of rank n, for some x € X. Then, there is a neighborhood V' of x such
that A |y is a free Ox|yv-module of rank n.

Proof. Suppose M, is a free module over the basis {m; : 1 < i < n}, and suppose
W is a neighborhood of x such that each m; is represented by some s; € T(W, .Z).
Define a map ¢ : Ox|}}, — A |w that, for every open U C W, sends the generators
of (U, 0% ) to the restrictions of the s; to U. Then, ¢, : OF — #,, is a surjection.
By ¢ is an isomorphism on a neighborhood of . This implies that .Z is free
on that neighborhood, and has rank n. (I

Corollary 5.8. A coherent Ox-module A is locally free iff M, is a free O,-
module, for every x € X.

Proof. Immediate from the Proposition. ([l

See [IM, [[7 ] for an analogous statement for finitely presented modules over a
ring.

5.2. Invertible Modules and the Picard Group. The following proposition
explains why locally free modules of rank 1 are usually called invertible modules
right off the bat.

Proposition 5.9. For a coherent Ox-module A , the following are equivalent:
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(1) A is invertible.
(2) A is locally invertible.
(3) A is locally free of rank 1.

Proof. (1) = (2) is trivial. (3) = (1) is Corollary So we only have to show
(2) = (3). But if .# is locally invertible, then for every x, we can find a neighbor-
hood U and an Ox|y-module .4 such that .#|y ®¢, |, A = Ox|y. This implies
that for every x € X, we can find a &,-module N, such that #, ®¢s, Ny = 0,. So
to finish our proof, it suffices to show, by Corollary that .#, is free of rank 1
for every z € X.

In sum, we only have to prove the following statement from commutative algebra:
If Ris a local ring, and M, N are R-modules with an isomorphism ¢ : M @ N — R,
then M = R. But this is easy: since R is local, there is an m € M and n € N such
that ¢(m ® n) = 1. (See also [SCN, 233]).

This means that M ® Rn = R. If we now show that ann(n) = 0, then we’ll see
that Rn =2 R and so M 2 M ® R~ R. But if a € ann(n), then

0=¢lam®@n) = ap(m®n) = a.
]

Compare this with the definition of an invertible module over a Noetherian ring
in [IM, 2], and the subsequent discussion of the Picard group in that context.

Observe that if .# is coherent then so is .4 = Hom, (.#,0x), by Proposition
4.14] So over a coherent ring of sheaves, every invertible coherent module has a
coherent inverse, since # Qg M = Ox, by Proposition This leads to a
definition.

Definition 5.10. The Picard group Pic(X) of a coherent, locally ringed space
(X, Ox) is the group of isomorphism classes of coherent, invertible sheaves (that is,
the group of isomorphism classes of locally free &x-modules of rank 1), with the
group operation given by tensor product.

The following Proposition gives a criterion for knowing when an invertible sheaf
is in fact isomorphic to Ox, and is thus represented by the identity in Pic(X).

Proposition 5.11. An invertible Ox-module A is isomorphic to Ox iff it has a
non-vanishing global section.

Proof. Clearly, Ox has a non-vanishing global section: just take the identity over
each open set. Conversely, if .Z has a non-vanishing global section s € T'(X, .#),
then we have a map ¢ : Ox — . that just takes the identity to s. On stalks, this
is a surjection ¢, : 0, — M. Now, 5.6, now implies that ¢, is an isomorphism.
Since this is true for all € X, we see, by [NOS, [H]], that ¢ is an isomorphism. O

Since the inverse image functor commutes with tensor products (Proposition
2.32)), the next proposition is immediate.

Proposition 5.12. If (f, f°) : (X, 0x) — (Y, Oy) is a morphism of coherent, lo-
cally ringed spaces, then f* induces a group homomorphism f* : Pic(Y) — Pic(X).

Proof. If ./ is an invertible Oy-module with inverse .4, then we see that
Ox =[Oy = f (M @6y N) = [ M @06y [*N.

Hence f*.# is also invertible, with inverse f*.4". Since f* commutes with tensor
products, it’s clear that it commutes with the group operation. (I
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6. GRADED MODULES AND MULTILINEAR ALGEBRA ON SHEAVES

This will mainly be a section of definitions.

6.1. Algebras.

Note on Notation 6. We'll use Zy to refer to the locally constant sheaf LCShfy €
Shf(X, Ring).

Recall that an Ox-algebra is a sheaf of rings 7 equipped with a morphism of
rings of sheaves ¢ : Ox — 7. Observe that with this definition every sheaf of rings
is a Zy-algebra. To see this, just take the natural map CShfz — &7, given by the
maps Z — 7 (U), and shealfify.

Definition 6.1. A morphism of Ox-algebras ¢ : &/ — &/’ is a morphism of Ox-
modules such that @ o ¢ = ¢'.

This gives us a category of Ox-algebras. We’ll call this Ox-alg. Note that
Zx-alg = Shf(X, Ring).

6.2. Graded Algebras and Graded Modules. As in usual module theory, we
have a notion of grading. In this section, we will assume that Ox is a sheaf of
commutative rings.

Definition 6.2. A Z-graded Ox-algebra <7 is a collection {47, : n € Z} of Ox-
modules, and a collection {¢, », : (m,n) € Z x Z} of morphisms of &x-modules
satisfying the following conditions:

(1) o is an Ox-algebra

(2) Qbm,n : dm ®ﬁx JZ{n - %ern

(3) The compositions

Ox oy A — Ao @oy Ty 222

<), Reox Ox —>42{n Koy 42{0 mﬂn

are both the canonical isomorphism.
(4) For (m,n,p) € Z3, the following diagram commutes:

¢m,n®1d

1ﬂfm ® ¢n,p ¢m+n,p

G Q6 *Q{n-&-p — fQ/m-i-n-‘rp
¢m,n+p
We'll usually just say that o = @,cz, is a graded Ox-algebra.
Note that we used the canonical isomorphism of Proposition [2.20|in writing the
triple tensor product. We will do this without comment from now on.

Definition 6.3. A morphism of graded Ox-algebras ¢ : & — &/’ is a collection
of morphisms of &x-modules {1, : n € Z} satisfying the following conditions:

(1) o : Ay, — A

(2) o : oA — o is a morphism of Ox-algebras.
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(3) For (m,n) € Z2, the following diagram commutes:

JZ7m Rox JZ{n M szyln Xex %7:

/
¢m,n m,n

/
—_— >
Mm-&-n ”Qfm—&-n
m—+n

Remark 6.4. Note that the set of morphisms between two graded Ox-algebras does
not form a group. Condition (2) will not hold for the sum of two morphisms.

So now we have a category of graded Ox-algebras with the morphisms defined
as above. We'll call this 0%-alg. We'll call Zé——alg the category of graded rings.
There’s also a notion of commutative graded algebra.

Definition 6.5. A commutative graded Ox-algebra o is a graded Ox-algebra
with the following additional constraint:
For every pair (m,n) € Z2, we have a commutative diagram

Ly Q5 G ‘>,527 Ry D,

djm\‘ %m
m+n

where 7 is the canonical isomorphism from Proposition
We also have graded modules over graded algebras.

Definition 6.6. A graded module .# over a graded Ox-algebra <7 is a collection
{4, : n € Z} of Ox-modules, and a collection {m, ., : (m,n) € ZxZ} of morphisms
of Ox-modules satisfying the following conditions:
(1) Tm,n * dm ®ﬁx %n - %m+n
(2) The composition
Ox Doy My — Sy @0y My = My,

is the canonical isomorphism.
(3) For (m,n,p) € Z3, the following diagram commutes:

¢mn® 1//[
’dm®ﬁx ‘gzjn@ﬁ)(% 4zfz{-l,-n(ge%p

lgfm & Tn,p Tm+n,p

L, Rex f//Zner %m+n+p

Tm,n+p
We'll simply say that 4 = ®ycz.#,, is a graded &/-module.

Definition 6.7. A morphism of graded «/-modules ¢ : .4 — #' is a collection
of morphisms of &x-modules {1, : n € Z} satisfying the following conditions:
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(1) Y : My — M,

(2) For (m,n) € Z2, the following diagram commutes:
l,ﬁzfm & ’l/)n

!
Ly, Qe M, L Qs M,
/
7Tm,n 7Tm7n
!
Mgy —————> My

m—+n

So with these morphisms, we have a category of «/-modules. We’ll call this
category &7-mod.

Proposition 6.8. The category </ -mod is abelian.

Proof. Suppose we have a morphism v : # — .#’ of o/-modules. Then, we have
the obvious candidates for the kernel and cokernel in &, keri,, and &®,, coker ,.
That these are indeed .2/-modules follows from the following commutative diagram:

lyy &
JZ{m ®ﬁx ker’(/)n — JZ{m ®ﬁx %n I djni :Q{m ®6’X %,; — ﬂm ®ﬁx COkeI"L/)n

Tm,n 7Tm,n

¥ ¥
ker ’(/Jn _— %mjtn _— ‘%7;1+n ——> coker wn
'l/)m+n

where the dotted maps arise from the universal properties of the kernel and cokernel.
|

6.3. Multilinear Algebra.
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