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1. Irreducibility
secn:irreducible

Definition 1.1. A topological space X is reducible if there exist proper closed
subsets Y1, Y2  X such that X = Y1 ∪ Y2. By convention, the empty set is
reducible.

A topological space X is irreducible if it is not reducible.

equiv-prps-irred Proposition 1.2. The following statements are equivalent:
(1) X is irreducible.
(2) Every open set U ⊂ X is dense in X.

Moreover, in this situation, every open subset U of X is also irreducible.

Proof. An open set ∅ 6= U ⊂ X is not dense in X iff U 6= X iff X = U ∪ Z, where
Z * U is a closed proper subset of X. The last implication needs some checking
in one direction. For this we just take Z = X − U ; this can’t be the whole of X,
since it doesn’t contain U .

For the second statement, suppose U = (U ∩ Z1) ∪ (U ∩ Z2), where the Zi are
closed proper subsets of X. Then, we see that

Z1 ∪ Z2 ⊃ U ∩ Z1 ∪ U ∩ Z2 = U = X,

which is a contradiction. �

irred-closure-img-irred Proposition 1.3. Let X be a topological space.
(1) A subspace Z ⊂ X is irreducible if and only if the closure Z is irreducible.
(2) The irreducible closed subsets of an open subset U ⊂ X are in bijective

correspondence with the irreducible closed subsets of X intersecting non-
trivially with U .
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(3) If f : X → Y is a continuous map of topological spaces, then f(Z) is
irreducible for every irreducible subspace Z ⊂ X.

Proof. (1) Suppose Z = Z1 ∪ Z2, where Z1, Z2 ⊂ Z are closed proper subsets.
Then, since Z is irreducible, we must have, without loss of generality, Z1 ∩
Z = Z. But in that case, Z ⊂ Z1, which is a contradiction. Now, suppose
Z is irreducible, but Z is not. Then Z = Z1 ∪ Z2, with, say, Z1 = Z, but
Zi 6= Z, for i = 1, 2. But observe that Zi ∩ Z is the closure of Zi in Z.
Since Z1 is closed, it follows that Z1 = Z.

(2) For any irreducible closed subset Z ⊂ X such that Z ∩ U 6= ∅, we see that
Z ∩U is dense in Z, and so it’s clear that if Z  W , then Z ∩U  W ∩U .

(3) Now, suppose Z is irreducible, and f(Z) = (W1 ∩ f(Z)) ∪ (W2 ∩ f(Z)),
where Wi ⊂ Y are closed. Then, we have

Z = f−1(f(Z)) ∩ Z = (f−1(W1) ∩ Z) ∪ (f−1(W2) ∩ Z).

So without loss of generality, we can assume that Z ⊂ f−1(W1), and so
f(Z) ⊂ W1, showing that f(Z) is also irreducible.

�

maximal-irreducible Corollary 1.4. Every irreducible subset of a space X is contained in a maximal
irreducible subset. Moreover, every such maximal irreducible subset is closed.

Proof. The first part is an application of Zorn’s lemma, observing that the union
of an increasing chain of irreducible subsets is still irreducible. For the second, if
Z ⊂ X is an irreducible subset, then so is Z. Therefore, if Z is maximal irreducible
then Z = Z. �

Definition 1.5. A maximal irreducible subset of X is called an irreducible compo-
nent of X.

2. Generic Points and Quasi-Zariski spaces
secn:generic-points

Definition 2.1. Let X be a topological space. For every element x ∈ X, we set
V (x) = {x}.

A generic point of a topological space X is a point x ∈ X such that V (x) is an
irreducible component of X.

specialization Definition 2.2. Let X be a topological space. Then, given points x, y ∈ X, we
say that x specializes to y, or, equivalently, that y generizes to x, if y ∈ V (x). We
denote this by x y.

open-closed-generization Lemma 2.3. Let X be a topological space. Then an open subset U ⊂ X contains all
generizations of its elements, and a closed subset Z ⊂ X contains all specializations
of its elements.

Proof. Pick an element x ∈ U , and suppose y is a generization of x. Then x ∈ V (y),
and hence every open neighborhood of x contains y; in particular, U contains y.
The case for the closed subset Z is similar. �

Definition 2.4. A topological space X is quasi-Zariski if every non-empty closed,
irreducible subspace has a unique generic point. In particular, for any quasi-Zariski
space, there is a bijection between its set of generic points and the collection of its
irreducible components.
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Remark 2.5. We will see in [AG, ?? ] that every scheme is quasi-Zariski.

quasi-zariski-prps Proposition 2.6. Let X be a quasi-Zariski space.
(1) X satisfies the T0 axiom.
(2) The relation ≤, defined on X by x ≤ y if and only if x ∈ V (y), defines a

partial ordering on X.
(3) If X is irreducible, then its generic point is contained in every non-empty

open subset of X.

Proof. (1) Let x, y ∈ X be two distinct elements. Suppose x ∈ V (y); we must
show that y /∈ V (x). But if this were true, then V (y) = V (x) would have
two distinct generic points, which is impossible.

(2) By the previous part, the relation is reflexive. We must show that it is
transitive. But if x ∈ V (y) and y ∈ V (z), then it follows that x ∈ V (z).

(3) This follows from (2.3).
�

Now, we’ll investigate a little more the relation that we defined in the Proposition
above.

specialization-ordering Proposition 2.7. Let X be a quasi-Zariski space given a partial ordering as in the
Proposition above.

(1) Any closed point of X is minimal in this ordering. Conversely, any minimal
element is a closed point.

(2) Any generic point of X is maximal in this ordering. Conversely, any max-
imal element is a generic point.

(3) If f : X → Y is a continuous map of quasi-Zariski spaces, then it is order
preserving.

Proof. (1) One implication is clear. Suppose y is a minimal element, and
suppose x ∈ V (y). Then, by minimality of y, x = y, which shows that
V (y) = {y}, and that y is therefore a closed point. Note, however, that
minimal elements need not exist.

(2) Again, one implication is clear. Now, let y be a maximal element; then
it follows that V (y) is a maximal irreducible subset of X and is thus an
irreducible component.

(3) Indeed if x ∈ V (y), then f(x) ∈ V (f(y)).
�

3. Noetherian Spaces
secn:noetherian

Definition 3.1. A topological space X is Noetherian if every descending chain of
closed subspaces stabilizes.

A topological space X is locally Noetherian if every point x ∈ X has a Noetherian
neighborhood U .

A topological space X is quasicompact if every open cover of X has a finite
subcover.

Remark 3.2. With this definition, it’s clear that every subspace of a Noetherian
space is also Noetherian.

equiv-noetherian Proposition 3.3. The following statements are equivalent for a topological space
X:
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(1) X is Noetherian.
(2) Every non-empty collection of closed subsets of X contains a minimal ele-

ment.
(3) Every open subset of X is quasicompact.

Proof. (1) ⇒ (2): Standard application of Zorn’s Lemma.
(2) ⇒ (3): Let U be an open subset of X, and let V = {Vi : i ∈ I} be an open

cover of U . Define
M = {U −

⋃
i∈F

Vi : F ⊂ I finite}.

Then, M has a minimal element Z. If Z 6= ∅, then there is some open set Vj that
it intersects non-trivially, in which case Z \ Vj would be a smaller element of M .
This contradicts the minimality of Z. So Z = ∅, and U can be covered by finitely
many of the Vi.

(3) ⇒ (1): Let Z1 ⊃ Z2 ⊃ . . . be a descending chain of closed sets in X. Let
Ui = X \ Zi; then we see that U = X \ (

⋂
i Zi) =

⋃
i Ui. Let {Ui1 , . . . , Uin

} be a
finite subcover of this open cover with Uik

⊂ Uik+1 ; then we see that⋂
i

Zi = X \ (
n⋃

k=1

Uik
) = Zin ,

showing that X is Noetherian. �

irred-decomp-noetherian Proposition 3.4. Every non-empty closed subset Y of a Noetherian space X can
be expressed as a finite union Y = Y1 ∪ . . . ∪ Yn, with Yi closed and irreducible. If
we require that Yi ! Yj, for i 6= j, then the Yi are uniquely determined: they will
be the irreducible components of Y . In particular, any Noetherian space has only
finitely many irreducible components.

Proof. Standard descent argument. �

noeth-iff-fin-irred-comp Corollary 3.5. A space X is Noetherian iff it has finitely many irreducible com-
ponents, each of which is Noetherian.

Proof. One direction follows from the Proposition; for the other, just observe that
a finite union of Noetherian spaces is again Noetherian (using characterization (3)
from (3.3) would seem to be the quickest way of doing it). �

noetherian-induction Proposition 3.6 (Noetherian Induction). Let P be a property of closed subsets of
a Noetherian space X. Suppose P satisfies the condition that whenever P is true
for all proper closed subsets of a closed subset Y ⊂ X, it’s true for Y . Then P is
true for every closed subset of X.

Proof. Let W be the collection of closed subsets of X for which P is not true, and
suppose this is non-empty. Let Z be the minimal element of W. Then P is true
for all proper closed subsets of Z, and hence it’s true for Z. Contradiction! Hence
W is empty, and the statement is proved. �

Finally, here’s a useful fact we’ll need later.

closed-points-qc-locnoeth Proposition 3.7. Let X be a quasi-Zariski space, and suppose X is either qua-
sicompact or locally Noetherian. Then every closed subset of X contains a closed
point.
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Proof. Since either of these conditions descends to all non-empty closed subsets
of X, it will suffice to show that any quasicompact (or locally Noetherian) quasi-
Zariski space contains a closed point. �

4. Zariski Spaces

Definition 4.1. A topological space X is Zariski if it’s Noetherian and if every
non-empty closed irreducible subset of X has a unique generic point.

prps-zariski-space Proposition 4.2. Let X be a Zariski space. Then, the following statements are
true:

(1) Any minimal nonempty closed subset of X is a singleton.
(2) X satisfies the T0 axiom.
(3) If X is irreducible, then its generic point is contained in every non-empty

open subset of X.

Proof. (1) It suffices to show that any non-singleton irreducible closed subset
has a proper nonempty closed subset. So let Z be an irreducible closed set
with generic point ξ such that Z 6= {ξ}. Let z be any other point in Z.
Then, since the generic point is unique, we see that V (z) * Z is a proper
closed subset, and we’re done.

(2) Let x, y ∈ X be two distinct points. Now, suppose y ∈ V (x); then we claim
that x /∈ V (y). Indeed, if this were the case, then we’d have

V (x) = V (y).

But, observe that y is a generic point of {y}, which is irreducible, by 1.3.
Hence, by uniqueness of generic points, we see that x = y, which is contrary
to our assumption. Hence x /∈ V (y), and so we can find an open set around
x that doesn’t contain y.

(3) Follows from the fact that the generic point is dense in X.
�

prps-specialization Proposition 4.3. The relation generated on the points of a Zariski space X by
x ≤ y if and only if x  y gives rise to a partial ordering. In this ordering, the
minimal elements are the closed points, and the maximal elements are the generic
points of X.

Proof. We showed in the proof of (2) of the proposition above that if x ≤ y and
y ≤ x, then y = x. So this is indeed is a partial ordering. An element x is minimal
in this ordering iff it is the only element satisfying x ∈ V (x). This happens iff x is
itself closed. An element y is maximal in this ordering iff there are no elements x
such that y  x. This can only happen iff V (y) is an irreducible component of X
iff y is a generic point of X. �

There’s a natural functor from the category of Noetherian spaces to the category
of Zariski spaces that is a generalization of the process of going from an affine variety
to the Spec of its co-ordinate ring. We’ll describe it now.

In fact, given any topological space X, let t(X) be the set of nonempty irreducible
closed subsets of X. For example, if X is an affine variety, then this set is in natural
bijection with the primes in A(X). We see easily, that if Y ⊂ X is a closed subspace,
then t(Y ) ⊂ t(X) (this corresponds to the fact that Spec R/I embeds into Spec R),
and that if Y1 and Y2 are two different closed subsets, then t(Y1∪Y2) = t(Y1)∪t(Y2)
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(V (I1 ∩ I2) = V (I1)∪ V (I2)). Moreover, in the same vein t(∩iYi) = ∩it(Yi). So we
can define a topology on t(X) by setting the closed subsets to be of the form t(Y ),
for Y ⊂ X closed. Now, suppose we have a continuous map f : X → Y . Then, we
can define a map t(f) : t(X) → t(Y ) that sends an irreducible subset to the closure
of its image in Y . Note that this is still an irreducible subset of Y , by 1.3. So t is
indeed a functor.

Moreover, observe that we have a natural continuous map αX : X → t(X) that
takes a point x to its closure V (x). The preimage of a closed set t(Y ) is exactly Y .
So the map is indeed continuous. In fact, α gives us a natural transformation from
the identity functor to the t-functor. Let X and Y be two Noetherian spaces, and
consider the following commutative diagram for a map f : X → Y

X
αX

> t(X)

Y

f

∨ αY
> t(Y ).

t(f)

∨

We see that x ∈ X maps to V (f(x)) no matter what route we take.

t-functor Proposition 4.4. The t-functor gives a right adjoint to the forgetful functor from
the category Noeth of Noetherian spaces to the full subcategory Zar of Zariski spaces.
In particular, every continuous map ϕ : X → Y from a Noetherian space to a
Zariski space factors uniquely through the natural map α : X → t(X).

Proof. We will first show that, whenever X is a Noetherian space, t(X) is Zariski.
The descending chains of closed sets in t(X) are in one-to-one correspondence with
the descending chains of closed sets of X. So we see that t(X) must be Noetherian.
So now we must show that every irreducible closed subset of t(X) has a generic
point. But this is easy: t(Y ) ⊂ t(X) is irreducible iff Y ⊂ X is irreducible.
Consider the point Y ∈ t(Y ); let V = t(X) \ t(Z) be an open subset containing a
point Y ′ ∈ t(Y ). Then, Y ′ * Z, and so Y * Z, which means that Y ∈ V . So we
see that V (Y ) = t(Y ), and is thus a generic point for t(Y ). If Y ′ ∈ t(Y ) is any
other point, then t(Y ′)  t(Y ) does not contain Y , and so Y is a unique generic
point.

Suppose ϕ : X → Y is a continuous map, with Y a Zariski space. Then, we have
the following diagram

X
αX

> t(X)

Y

ϕ

∨ αY
> t(Y ).

t(ϕ)

∨

We claim that αY is a homeomorphism. Since every irreducible closed subset of Y
has a generic point, it’s certainly surjective, and since that generic point is unique,
it’s also in fact injective. It’s also clear that a closed subset of Y maps to a closed
subset in t(Y ). This proves our claim. So ϕ factors through α via α−1

Y ◦ t(ϕ).
Uniqueness follows immediately. �
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5. Constructible Sets

Definition 5.1. The family of constructible sets on a topological space X is the
smallest family C of subsets of X which:

(1) contains all open sets of X,
(2) is closed under finite intersections,
(3) and contains the complement of each of its elements.

A subset of X is constructible if it belongs to C.

Let L be the collection of sets that are finite unions of locally closed subsets.
Then, it’s easy to see that it satisfies all three conditions above, and is moreover
contained in C. Hence, L = C; that is, a subset is constructible iff it is the finite
union of locally-closed subsets.

characterization-constble-sets Proposition 5.2. A subset Y of a Noetherian space X is constructible iff, for
every irreducible closed set Z ⊂ X, either Y ∩ Z is not dense in Z, or Y ∩ Z
contains a non-empty open subset of Z.

Proof. First, suppose Y is constructible. Then Y = ∪iLi, where Li is locally closed,
for every i. So we see that for every irreducible closed subset Z ⊂ X in which Y is
dense, we have

Z = Y ∩ Z = ∪i(Li ∩ Z).

Since Z is irreducible, we must have Z ⊂ Li, for some i. In that case, if Li =
Ui ∩ Ci, for Ui open and Ci closed, we see that Z ⊂ U i ∩ Ci ⊂ Ci. Hence, X ∩ Z
contains the open set Ui ∩ Ci = Ui ∩ Z of Z.

Now, for the converse, we’ll use Noetherian induction. So we can assume that
if Y satisfies the hypotheses, then Y ∩ Z is constructible, for every proper closed
set Z ⊂ X. If X is not irreducible, then it’s covered by finitely many proper closed
subsets Zi, such that Y ∩Zi is constructible for each i. In that case, Y = ∪i(Y ∩Zi)
is also constructible. Assume, therefore, that X is irreducible. Then, either Y
contains a non-empty open subset U ⊂ X, in which case, Y \ U is constructible,
since it’s contained in a proper closed subset; or, Y is not dense in X, in which case
it’s contained in a proper closed subset of X and is therefore constructible. �

preimage-constructible Corollary 5.3. If f : X → Y is a continuous map, then the preimage under f of
every constructible set in Y is constructible in X.

Proof. Immediate from the Proposition. �

generic-point-constructible Corollary 5.4. If X is an irreducible Noetherian space, then Y ⊂ X is a con-
structible, dense set iff Y contains an open subset of X. If X is Zariski and Y is
constructible, then Y is dense iff it contains the generic point of X.

Proof. The first statement was proved in the course of the proof of the proposition.
For the second statement, use Proposition 4.2. �

We also a get a similar criterion for open sets.

characterization-open-sets Proposition 5.5. A subset Y of a Noetherian space X is open iff, for every closed
irreducible subset Z of X, either Y ∩Z = ∅, or Y contains a non-empty open subset
of Z.
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Proof. One direction is trivial. For the other, again use Noetherian induction to
reduce to the case where X is irreducible, in which case, the statement is again
trivial. �

closed-stable-specialization Proposition 5.6. Let X be a Zariski space. Then a constructible subset of X is
closed iff it contains all specializations of its points. It is open iff it contains all
generizations of its points.

Proof. The second statement follows from the first. Indeed, suppose U ⊂ X con-
tains all generizations, and let y ∈ X − U . If y  x, then x ∈ X − U , for, if
x ∈ U , then y ∈ U , since U contains all its generizations. So X −U contains all its
specializations, and so will be closed by the first part.

Now, let’s prove the first statement. Suppose Z ⊂ X is constructible and con-
tains all specializations. First assume Z is irreducible; then we see from 5.4 above
that Z contains the generic point of Z. But since every point in Z is a specialization
of the generic point, we see that Z = Z is closed. Now, if Z =

⋃n
i=1 Zi, where Zi

are closed and irreducible in Z. Then, in each Zi is constructible and thus closed,
by the first part of the argument. Hence Z is also closed. Conversely, if Z is closed,
and x ∈ Z, then x y implies y ∈ V (x) ⊂ Z. �

Definition 5.7. A continuous map f : X → Y is constructible if the image under
f of every constructible subset of X is constructible in Y .

Definition 5.8. A map f : X → Y has the going down property if, for every
element x ∈ X, and every generization y ∈ Y of f(x), there is a generization
x′ ∈ X of x such that f(x′) = y.

going-down-equiv-prps Proposition 5.9. The following are equivalent for a map f : X → Y of quasi-
Zariski spaces:

(1) f has the going down property.
(2) For every irreducible closed subset Z ⊂ Y , f−1(Z) maps generically onto

Z, in the sense that every generic point of f−1(Z) maps on to the generic
point of Z.

Proof. First suppose f has the going down property, and let x be a generic point
of f−1(Z). Then f(x) ∈ Z is a specialization of the generic point z of Z, and so
by going down there is a generization y of x such that f(y) = z. But since x is
a generic point of f−1(Z), we must have y = x, and thus f(x) = z. Conversely,
suppose (2) is true, and let y ∈ Y be a generization of f(x) for some x ∈ X. Now,
let Z = {y}; then x ∈ f−1(Z), and, if x′ is any generic point of f−1(Z) that’s
a generization of x, then f(x′) = y, thus showing that f satisfies the going down
property. �

The next Proposition gives sufficient conditions for a continuous map to be open.

going-down-constble-open Proposition 5.10. Let f : X → Y be a constructible map between Zariski spaces.
Then f has the going down property if and only if f is an open map.

Proof. First suppose f is open. Let x ∈ X and y ∈ Y be such that y is a generization
of x, and let U ⊂ X be the subset consisting of all generizations of x. Then U is
open, since it contains all its generizations (5.6). This means that f(U) is also open,
and so contains all its generizations, which of course includes the generization y of
f(x).
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Conversely, suppose f is a constructible map with the going down property, and
let U ⊂ X be an open subset. We’ll use the criterion from (5.6) to show that f(U)
is open. Indeed, let x ∈ U ; we need to show that f(U) contains all generizations
of f(x). But this follows immediately from the going down property and the fact
that U contains all generizations of x. �

6. Dimension
secn:dimension

6.1. First Properties.

Definition 6.1. Let X be a topological space. The dimension dim X of X is the
supremum of all positive integers n ∈ N such that there exists a strictly ascending
chain

Z0  Z1  . . .  Zn

of closed, irreducible subspaces of X
A space X is finite dimensional if dim X < ∞.
A space X is equidimensional of dimension n if every irreducible component of

X has dimension n.

We record some basic consequences of our definition in the next Proposition.

dimension-prps Proposition 6.2. Let X be a topological space.
(1) If Z ⊂ X is any subspace, then

dim Z ≤ dim X,

with strict inequality holding whenever dim X is finite and Z does not con-
tain any irreducible component of X. In particular, dim defines an order
preserving function from the poset of subsets of X to N ∪ {∞}.

(2) If {Xi : i ∈ I} is the collection of irreducible components of X, then

dim X = sup
i∈I

dim Xi.

(3) If {Ui : i ∈ I} is an open cover of X, then

dim X = sup
i∈I

dim Ui.

(4) If {Yi : 1 ≤ i ≤ n} is a finite collection of closed subsets such that
⋃n

i=1 Yi =
X, then

dim X = sup
1≤i≤n

dim Yi.

Proof. (1) Suppose Z ⊂ Y is an irreducible closed subset; then we find that
Z ∩ Y = Z, and so given any chain of irreducible closed subsets in Y , we
obtain a chain in X by taking the closures of the chain’s constituents.

(2) This is clear.
(3) If dim Ui = ∞, for some i ∈ I, then dim X = ∞ and the equality holds. So

we can assume that dim Ui is finite, for all i ∈ I. In this case, suppose

Z0  Z1  . . .  Zn

is a chain of irreducible closed subsets of X. Then, there is i ∈ I, such that
Ui ∩ Z0 6= ∅. In this case, we get a chain

Z0 ∩ Ui  Z1 ∩ Ui  . . .  Zn ∩ Ui
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of irreducible closed subsets of Ui, and so n ≤ dim Ui. From this and part
(1), we obtain the equality.

(4) It suffices to show that every irreducible closed subset Z ⊂ X must be
contained in Yi, for some 1 ≤ i ≤ n. Indeed, if this weren’t the case, then
Z =

⋃
1≤i≤n (Z ∩ Yi) would be reducible.

�

Definition 6.3. Let X be a topological space and let x ∈ X be a point. Then
the dimension at x of X, denoted dimx X, is the limit limU3x dim U taken over the
poset of open subsets of X containing x. By the previous Proposition, this is well
defined, since dim is order preserving.

dimx-prps Proposition 6.4. Let X be a topological space and let x ∈ X be a point.
(1) There is an open neighborhood U of x such that dimx X = dim V , for all

neighborhoods V of x contained in U . Moreover, if X is locally Noetherian,
we may choose this U to be such that each of its irreducible components
contains x.

(2) Let U be a neighborhood of x and let {Yi : 1 ≤ i ≤ n} be a finite collection
of closed subsets such that U =

⋃
i Yi; then

dimx X = sup
1≤i≤n

dimx Yi,

where dimx Yi = −∞, if x /∈ Yi.
(3) dim X = supy∈X dimy X.
(4) If X is a Zariski space and X0 ⊂ X is the subset of its closed points, then

dim X = sup
y∈X0

dimy X.

(5) The function x 7→ dimx X is upper semicontinuous on X.

Proof. (1) Clearly, from definition, and from the discreteness of the poset N ∪
{∞},there is a neighborhood U of x such that dimx X = dim U . If X is
locally Noetherian, then U may be chosen to be Noetherian, in which case it
has only finitely many irreducible components. Removing the components
that don’t contain x gives us a neighborhood of x, all of whose irreducible
components contain x.

(2) Let N be the set of open neighborhoods of x in X; then we have, by part
(4) of (6.2):

dimx X = inf
V ∈N

sup
1≤i≤n

dim (V ∩ Yi) .

By (1), we can choose a neighborhood V0 of x such that, for 1 ≤ i ≤ n, and
every neighborhood V of x contained in V0, we have dimx Yi = dim (V ∩ Yi),
from which we obtain our result.

(3) Clearly dim X ≥ supy∈X dimy X; so it suffices to prove the reverse inequal-
ity. Consider a chain of closed irreducible subsets

Z0  Z1  . . .  Zn

in X, and choose any point y ∈ Z0. Then, for every open neighborhood U
of y, we have dimU ≥ n, and so dimy X ≥ n. From this the result follows.

(4) If X is Zariski, then we can choose y to be a closed point in part (3) above
(4.2).
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(5) Suppose dimx X ≤ n < ∞, and let U be a neighborhood of x as in (1); then,
for all y ∈ U , we have dimy X ≤ n. Hence, the set {x : dimx X ≥ n + 1}
is closed, for all n ∈ N. Clearly, then, the set {x : dimx X < ∞} is also
open, which finishes the proof.

�

Definition 6.5. If Z ⊂ X is an irreducible closed subspace, then the codimension
codim(Z,X) of Z in X is the supremum of positive integers n ∈ N such that there
exists a strictly ascending chain

Z = Z0  Z1  . . .  Zn

of closed, irreducible subspaces of X.
If Z ⊂ X is any closed subspace, then we define its codimension in X by the

formula:
codim(Z,X) = inf

i
codim(Zi, X),

where the inf is taken over the codimensions of the irreducible components of Z in
X.

A closed subset Z ⊂ X is of pure codimension n if, for all irreducible components
Zi ⊂ Z, codim(Zi, X) = n.

The space X is equicodimensional of codimension n if, for every minimal closed
irreducible subset Z ⊂ X, codim(Z,X) = n.

codim-prps Proposition 6.6. Let X be a topological space.
(1) If Z1 ⊂ Z2 is a tower of closed subsets of X, then

codim(Z1, X) ≥ codim(Z2, X).

(2) If Z ⊂ X is a closed subspace, then

dim X ≥ dim Z + codim(Z,X).

(3) We have
dim X = sup

x∈X
codim(V (x), X).

(4) If X is Zariski, and X0 is the set of closed points of X, then

dim X = sup
x∈X0

codim(V (x), X).

(5) If Z ⊂ X is irreducible, and U ⊂ X is any open subset such that U ∩Z 6= ∅,
then

codim(Z,X) = codim(U ∩ Z,U).

Proof. (1) This follows from definition.
(2) The inequality is clear in the case where Z is irreducible. In general, if

{Zi : i ∈ I} are the irreducible components of Z, then we have dim Zi ≤
dim X − codim(Zi, X), for all i ∈ I. Now, by taking the sup on both sides
over i ∈ I, and observing that dim Z = supi dim Zi and codim(Z,X) =
infi codim(Zi, X), we get our inequality.

(3) Again, this follows from definition, and the fact that, given any non-empty
closed subset Z ⊂ X, there is a closed subset of the form V (x) contained
in Z.

(4) In this case, we can always find a closed point in any closed subset of X.
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(5) Follows from the fact that there is a bijection between the irreducible closed
subsets of X intersecting non-trivially with U , and the irreducible closed
subsets of U (1.3).

�

We now consider the simplest case: zero-dimensional spaces.

zero-dimension Proposition 6.7. Let X be a topological space.
(1) If X is discrete, then dim X = 0.
(2) Conversely, if dim X = 0, and X is Zariski, then X is a discrete space,

and is thus finite.

Proof. (1) Follows from the fact that the only irreducible closed subsets are
(2) Since dim X = 0, for any x ∈ X, x is both a minimal and a maximal

element in the ordering defined on X. Hence x is both a closed and a
generic point of X. In particular, the set {x} contains the generizations
and specializations of all its elements and is thus both open and closed
(5.6). The finiteness follows from the fact that X has only finitely many
irreducible components.

�

Remark 6.8. There is a subtle point that we glossed over a little in the last part of
the proof. The Proposition that we quoted only applies when we already know that
the set under consideration is constructible. So a more legitimate line of reasoning
would be to first note that {x} is closed and then apply the Proposition to conclude
that it is also open.

6.2. Going Up.

Note on Notation 1. In the sequel, we will restrict ourselves to the study of quasi-
Zariski spaces. Here, we can rephrase our definition of dimension of a space X
as the supremum of all positive integers n ∈ N such that there exists a strictly
ascending chain of elements of the form

x0 < x1 < . . . < xn.

defn:going-up Definition 6.9. A continuous map f : X → Y has the going up property if, for
every point x ∈ X, f induces a surjective map from V (x) to V (f(x)). Equivalently,
f has the going up property if, for every x ∈ X, and every specialization y ∈ Y of
f(x), there is a specialization x′ ∈ X of x such that f(x′) = y.

going-up-closed Proposition 6.10. Let f : X → Y be a a continuous map.
(1) If f is closed, then f has the going up property
(2) Now, suppose that f has the going up property. If Z ⊂ X is an irreducible

closed subset, then f(Z) is closed.
(3) Again, let f have the going up property. If Z ⊂ X is a closed subset, and

{Zi : i ∈ I} is its collection of irreducible components, then {f(Zi) : i ∈ I}
is the collection of irreducible components of f(Z).

(4) If f has the going up property and every subset of Y has only finitely many
irreducible components (for example, if Y is Noetherian; see below), then f
is a closed map.

Proof. (1) Follows immediately from the fact that f(V (x)) is closed.
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(2) Indeed, if z ∈ Z is its unique generic point, then we see that

f(Z) = f(V (z)) ⊂ V (f(z)).

The going up condition gives us equality between the sets above on the far
right and left, which of course tells us that f(Z) is closed.

(3) First observe that f(Zi) is irreducible (1.3). Let W be an irreducible compo-
nent of f(Z), and let w ∈ W be its unique generic point. Then w = f(z),
for some z ∈ Z, and there is some j ∈ I such that z ∈ Zj ; but then
W ⊂ f(Zj), which shows that W = f(Zj), and completes our proof.

(4) Follows immediately from part (2) and (3).
�

Definition 6.11. A map f : X → Y has the incomparability property if, for every
point y ∈ Y , the fiber f−1(y) over y has dimension zero. In some sense, this is the
‘relative zero dimension’ case.

This next Lemma explains the terminology.

incomp-equiv Lemma 6.12. Let f : X → Y be a map between quasi-Zariski spaces. Then f has
the incomparability property if and only if whenever f(x) = f(x′), for x, x′ ∈ X, x
and x′ are incomparable under the ordering on X.

Proof. Immediate from the definitions. �

going-up-incomp-dim Proposition 6.13. Let f : X → Y be a continuous map of quasi-Zariski spaces
with the going up and incomparability properties.

(1) For every x ∈ X, we have

codim(V (x), X) ≤ codim(V (f(x)), Y ).

In particular, dim X ≤ dim Y .
(2) If f is also closed, then dim f(Z) = dim Z, for all closed subsets Z ⊂ X.

Proof. (1) Let V (x) = V (x0)  . . .  V (xn) be a chain of irreducible closed
subsets of X. The going up property, via Proposition (6.10) tells us that
this maps under f to a chain

V (f(x)) = V (f(x0))  . . .  V (f(xn))

of irreducible closed subsets of Y , where we get the strict inclusions because
of the incomparability property. The second assertion follows immediately
from part (3) of (6.6).

(2) For every closed subset Z ⊂ X, f |Z is also a closed map, and hence has
the going up property, by (6.10). It clearly also has the incomparability
property, since f does. Hence it follows that dim f(Z) ≥ dim Z. Conversely,
if y0 < . . . < yn is a chain of elements in f(Z), then we can find xi ∈ Z
such that f(xi) = yi, thus showing that dim f(Z) ≤ dim Z.

�

6.3. Going Down and Dimension of Fibers.

going-down-fibers Proposition 6.14. Let f : X → Y be a map between quasi-Zariski spaces. If f
has the going down property, and is such that f−1(y) is also quasi-Zariski, for all
y ∈ Y , then, for every x ∈ X,

codim(V (x), X) ≥ codim(V (f(x)), Y ) + codim(V (x), f−1(f(x))).
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Proof. Indeed, let x = x0 < x1 < . . . < xn be a chain of generizations of x in
f−1(f(x)), where n = codim(V (x), f−1(f(x))), and let y = y0 < y1 < . . . < ym be
a chain of generizations of y = f(x), where m = codim(V (y), Y ). By the going down
property, we can inductively lift this chain to a chain xn = x′0 < x′1 < . . . < x′m
such that f(x′i) = yi. Then we get a chain

x0 < x1 < . . . < xn < x′1 < . . . < x′m

of generizations of x0 = x in X, thus proving our assertion. �

6.4. Chain Conditions.

catenary-spaces Definition 6.15. A topological space X is catenary if, for every pair Y,Z of closed
irreducible subsets of X with Y ⊂ Z, we have codim(Y, Z) < ∞, and if, for every
tower Z ⊂ T ⊂ W of closed irreducible subspaces of X, the following equality holds:

codim(Z,W ) = codim(Z, T ) + codim(T,W ).

A chain of irreducible closed subsets

Z0  . . .  Zn

is saturated if, for 1 ≤ i ≤ n, codim(Zi−1, Zi) = 1.

catenary-equiv-prps Proposition 6.16. Let X be a topological space. Then the following are equivalent:

(1) X is catenary.
(2) For every open subset U ⊂ X, U is catenary.
(3) There is an open cover {Ui : i ∈ I} of X such that Ui is catenary, for each

i.
(4) Given any two irreducible closed subsets Z,W ⊂ X such that Z  W , every

saturated chain

Z = Z0  . . .  Zn = W

has the same finite length.

Proof. Before we begin, we make a useful observation. Let Z ⊂ T be two closed,
irreducible subspaces of X, and let U ⊂ X be an open subset such that U ∩Z 6= ∅.
Then

codim(Z, T ) = codim(Z ∩ U, T ∩ U).

This follows from part (5) of (6.6).

(1) ⇒ (2): Follows immediately from the remark above.
(2) ⇒ (3): Trivial.
(3) ⇒ (1): First let Y, Z ⊂ X be irreducible closed subsets with Y ⊂ Z, and

let i ∈ I be such that Y ∩ Ui 6= ∅. Then we have

codim(Y,Z) = codim(Y ∩ Ui, Z ∩ Ui) < ∞.

Now, let Z ⊂ T ⊂ W be a tower of closed irreducible subsets of X, and let
i ∈ I be such that Ui ∩ Z 6= ∅. Again, a similar argument, using the fact
that Ui is catenary, gives us the equality

codim(Z,W ) = codim(Z, T ) + codim(T,W ).
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(1) ⇒ (4): Suppose we’re given Z and W as in (4), and suppose we have two
saturated chains

Z = Z0  Z1  . . .  Zn = W

Z = Z ′
0  Z ′

1  . . .  Z ′
m = W,

with n ≤ m. We will use induction on n. If n = 1, then it follows that
codim(Z,W ) = 1, and so m = 1. Suppose n > 1; then, by induction,
codim(Z1,W ) = n− 1, and so we have

codim(Z,W ) = codim(Z,Z1) + codim(Z1,W ) = n.

But codim(Z,W ) ≥ m, and so n = m.
(4) ⇒ (1): This is easy.

�

Definition 6.17. A topological space X is biequidimensional if it is finite dimen-
sional, and if every maximal chain of irreducible closed subsets of X has the same
length. Evidently, this common length is dim X.

biequidimensional-subspaces Lemma 6.18. Let X be a biequidimensional space.
(1) X is catenary.
(2) For every irreducible closed subspace Z ⊂ X, we have

dim Z + codim(Z,X) = dimX.

(3) Suppose every non-empty closed subset of X contains a closed point; then
every irreducible closed subspace of X is also biequidimensional.

Proof. (1) It suffices to show that any saturated chain between two fixed ir-
reducible closed subspaces has the same length. But any such saturated
chain can be extended to a maximal chain in X. Hence the result.

(2) This is equivalent to the statement that for every irreducible closed sub-
set Z ⊂ X there is a chain of irreducible closed subsets of length dim X
containing Z. But this follows immediately from hypothesis.

(3) Let Z ⊂ X be an irreducible closed subspace, let z ∈ Z be a closed point,
and let X ′ ⊃ Z be an irreducible component of X. Then, by the catenary
condition, we see that

codim(z, Z) = codim(z,X ′)− codim(Z,X ′) = dim X − codim(Z,X ′)

is independent of z. Since every minimal closed subset of X is a closed
point, we find that Z is equicodimensional. It is evident that Z is catenary
and equidimensional.

�

biequidimensional-equiv-prps Proposition 6.19. Let X be a finite dimensional Zariski space. Then the following
are equivalent:

(1) X is biequidimensional.
(2) X is equidimensional, and for every pair of irreducible closed subsets Y,Z ⊂

X with Y ⊂ Z, we have

dim Z = dim Y + codim(Y,Z).
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(3) X is equicodimensional, and for every pair of irreducible closed subsets
Y, Z ⊂ X with Y ⊂ Z, we have

codim(Y, X) = codim(Y, Z) + codim(Z,X).

Proof. Before we begin the rounds, note that, since X is Zariski, in every maximal
chain of irreducible closed subsets of length n, Z0 must be a closed point, and Zn

must be an irreducible component of X. Let {zi : i ∈ I} and {X1, . . . , Xr} be
the collections of closed points of X and irreducible components of X, respectively.
Hence X is equidimensional if dimXk = dim X, for all 1 ≤ k ≤ r, X is equicodi-
mensional if codim({zi}, X) = dim X, for all i ∈ I, and X is biequidimensional if
codim({zi}, Xk) = dim X, for all pairs i ∈ I and k ∈ {1, . . . , r}, such that zi ∈ Xk.

(1) ⇔ (2): First suppose X is biequidimensional; then it’s clear that X is also
equidimensional. Moreover, if Z ⊂ X is irreducible, then it follows from
the lemma above (6.18) that Z is also biequidimensional, and in this case
the required identity also follows from the same lemma.

Conversely, suppose (2) holds. Let Y = {zi}, for some i ∈ I, and let
Z = Xk, for some irreducible components Xk of X containing zi. Then we
have

dim X = dim Xk = codim({zi}, Xk),
which shows that X is biequidimensional.

(2) ⇒ (3): Observe that by (1) and the lemma above, we have

dim Y + codim(Y, X) = dim Z + codim(Z,X).

Now the identity in (3) follows immediately from the identity in (2).
(3) ⇒ (1): Suppose now that (4) is true, and let Y = {zi}, for some i ∈ I,

and let Z = Xk, for some irreducible components Xk of X containing zi.
Then we have

dim X = codim({zi}, X) = codim({zi}, Xk),

which shows that X is biequidimensional.
�
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