Homological Algebra

Keerthi Madapusi






Contents

|Chapter 1. Chain Complexes|
[[._Basicd

[2.  Cohomology and the Long Eixact Sequence|
3. Chain Homotopics|
d_Resolutiond

5. Mapping Cones and Cylinders|
6. Difterential Graded Algebras|
7. Double Complexes|

|[Chapter 2. Derived and o-functors|

2. Derived Functors|
8. F-acyclicity, F-syzygies and F-dimension|

|Chapter 3. Spectral Sequences|
L. Lots of Definitions and a Proposition|

[2._Convergenc

[3. The Spectral Sequences associated to a Double Complex]

4. Derived Functors of Multi-functors|

. Cartan-Eilenberg Resolutions|

6. Hypercohomology and the Grothendieck Spectral Sequence]

|Chapter 4. Some Classical Results]|
I Ex
2. _Some Other Derived Functors|

8. Kunneth Formula and the Universal Coefficient Theorem|

Chapter 5. Applications to Module Theor
1. rojective and Injective Dimensio
[2. Base Change Formulas|
3. Minimal Resolutions|

4. Koszul Complexes|
. Local Cohomology|

|Chapter 6. Group Cohomology]

|[Chapter 7. Sheaf Cohomology|

1. abby and Injective Sheaves
2. Sections with Local Support|
3. Cohomology ot Sheaves|

4. Cohomology with Supports|




4 CONTENTS

b. Sheaves on Noetherian Spaces|
6. Cech Cohomology|

xt Groups
S. igher Direct Images

|Chapter 8. Derived Categories|

|Chapter 9.  More on Sheat Cohomology]

95
99
62
65

67
69



chain-dual-isomorphic

CHAPTER 1

Chain Complexes

1. Basics

We use the cohomological representation of chain complexes. To translate to
the homological picture, just lower all indices and change them to their negatives.
We'll also use standard homological lemmas like the Snake Lemma or the 5-lemma
without comment, because by now we don’t give a fuck for their proofs.

DEFINITION 1.1.1. A chain complex C'® in an abelian category % is a Z-indexed
set {(C™,d}) : C™ € Ob¥,d} € €(C",C™ )}, satisfying the condition that
dpody ! =0.

We usually picture a chain complex as a chain of morphisms

orr .t ot D omer
The morphisms d¢, are called the boundary maps or the differentials.

NoOTE ON NOTATION 1. We will usually use d” as a generic signifier for bound-
ary map for any chain complex. We might also omit the subscript n sometimes.
Things should be clear from the context.

DEFINITION 1.1.2. A morphism or a chain map between two chain complexes
f®:C* — D*® in ¥ is a collection of morphisms {f™ : C™ — D"} such that,
for every n € Z, f* odpy ! = d ' o f"~1. In other words the following diagram
commutes for every n:

dn—2 Cmfl dn—l on dn
fn—l fn
. dn—2 Cmfl dn—l on dn

It’s easy to see that the composition of two chain maps is also a chain map.
This gives us a category Ch% of chain complexes and chain maps in . It’s easy
to see that this is an additive category. For example, the direct sum of two chain

complexes C*® and D* is just {C" @ D™, ( de. 0 )}

0 dp
REMARK 1.1.3. Observe that Ch% is isomorphic to Ch%°P. Indeed, we can
define a functor ' : Ch% — Ch%°P that takes a complex and reverses all arrows
and reindexes the complex by setting F'(C)" = C~"™. We see immediately that this
gives us an isomorphism of categories
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Now, suppose we had a chain map f®* : C* — D®. Consider the following
commutative diagram:

0 0 0
('ivnfl Jn
K1 s PO 7 G LI > KTl
ker o1 ker f™ ker ft1
n—1 n
Cm—l d Cm d C7L+1
fnfl fn fn+1
Dn—l dn71 D" d" Dn-‘rl
coker 71 coker f™ coker ft1
(fivnfl En
L1 s SO L > [l
0 0 0

where we get the dotted maps among the kernels and the cokernels because of their
universal properties. For example d o d?fl oker f*~! = 0 and so dg o ker et
K"~ — C™ factors through ker f™ via the dotted map d”~'. We see also from this
that

ker f*t o d” o d ' = d oker fhod" ' =dP o dy ' oker fr = 0.

Since ker f**! is monic, we see that dod = 0. A similar computation works for the
cokernels.

So we have chain complexes K*® and L°®, with chain maps K* — C*® and
D* — L* given by {ker f*} and {coker ™} respectively.

ProroOSITION 1.1.4. With the notation as above, the chain map K® — C® is
the kernel of f. Similarly, the map D®* — L°® is the cokernel of f.

Proor. Easy. (I

DEFINITION 1.1.5. A chain complex C* is bounded below if there exists s € Z
such that C™ = 0, for n < s. It is bounded above if there exists s € Z such that
C™ =0, for n > s. It is bounded if it is bounded both above and below.

We denote the full subcategory of Ch% that consists of the bounded below
(resp. bounded above, resp. bounded) chain complexes by Ch=%¢ (resp. Ch= %,
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resp. Ch’®%). For s € Z, we denote by ChZ¢% (resp. ChS¢%) the category of
chain complexes over € with C™ = 0, for n < ¢ (resp. n > ¢).

PROPOSITION 1.1.6. The category Ch¢ (or Ch=%, Ch= ¢, Ch® %, Ch=* ¢,
or Ch=* % ), is an abelian category.

PROOF. It only remains to show that for a monic map f, we have ker(coker f) =
f, and for an epi g, we have coker(ker g) = g. From Proposition above, we see that a
map f is monic iff each f™ is monic, and similarly g is epi iff each g™ is epi. Now, the
statement follows immediately from the corresponding one for the abelian category
%, since ker(coker f)™ = ker(coker f™) = f", and similarly for coker(ker g)™. O

REMARK 1.1.7. Observe that, for every n € Z we have a natural embedding
of ¥ into Ch% that takes every object A to the complex A[n]®, with A[n|” = 0,
for r # n, and A[n]= A, with 0 boundary maps everywhere. In a sense, to be made
precise later, complexes are like generalized objects.

2. Cohomology and the Long Exact Sequence

Consider, for a chain complex, C®, the morphisms kerd™ : Z" — C™ and
imd"~!: B" — C". Since d" o d"~! = 0, we see that im d"~! factors through Z",
giving us an exact sequence

coker(im d™ 1)

0— primd" on H™ = 0.

DEFINITION 1.2.1. The n** cohomology of a chain complex C* is the codomain
of coker(im d™~1) in the exact sequence above, and it is denoted by H™(C).

If f: C® — D® is a chain map, then it’s not hard to see that f induces
maps B"(C) — B™(D) and Z"(C) — Z™(D), giving us the following commutative
diagram.

0 — B"(C) —— Z2"(C) — H"(C) ——— 0

().

0 — B"(D) — Z"(D) —> H”V(D) —0

This tells us that the n*” cohomology gives us a functor H" : Ch € — €, for
every n € Z.

DEFINITION 1.2.2. A morphism f : C* — D® of chain complexes is a quasi-
isomorphism if H™(f) is an isomorphism for all n € Z.

Here’s a result that will prove very useful.

PROPOSITION 1.2.3. Let F : € — 2 be a functor between abelian categories;
then F' induces functors Ch & : Ch'4 — Ch 2. If F is exact, then, for everyn € Z,
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the following diagram commutes:

ChF
Ch® —— Cho

H" H"

C — 9
In other words, F' preserves cohomology.

PROOF. Follows immediately from the fact that F' preserves kernels and cok-
ernels. (]

The next Theorem is the most important elementary result on the cohomology
of complexes.

THEOREM 1.2.4. Let of = Exact(Ch®) be the category of exact sequences of
complexes

o-DLocLEo
over an abelian category €. Then we have a functor H® : of — Ch(€) that assigns

to every short exact sequence of complezes a long exact sequence of cohomology of
the form

H"(g) 5"

) D, gney 29, gy 2

HYE) E gD
Proor. We'll first construct a long exact sequence for each short exact se-
quence of complexes using the Snake Lemma, and then show functoriality by using
Freyd’s Embedding Theorem and chasing diagrams.
We find from the Snake Lemma that, for every n, the rows of the following
diagram are exact:

D"/B™(D) — C"/B"(C) —> E"/B"(E) —> 0
dp dé, d

0 —— 2" (D) — 2" (C) — Z"TY(E)
Applying the Snake Lemma once again, we find an exact sequence
HW(D) — H“(C) — H”(E) i)_> Hn—'rl(D) _ Hn-‘,—l(c) - Hn+1(E)

Putting all these exact sequences together gives us the long exact sequence of co-
homology associated to the short exact sequence of complexes.

To show functoriality, it suffices to show that, given another short exact se-
quence 0 — D' — ¢/ — E' — 0, and a morphism («, 3,7) from the original exact
sequence to this one, the following square commutes:

n

IP%E)!1>H“+%D)
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For this we’ll assume that we're in R-mod for some ring R, and chase diagrams.
Let w € E be a cycle, and e its image in H"(E). Then 6™(e) is represented by
z € Z"TY(D) such that f**1(z) = d"y, for y € C"*! such that ¢"(y) = e. And
6" H"(7y)(e) is represented by an element 2’ € Z"1(D’) such that f"+1(2') = d"y/,
where y' € C'"T! is such that ¢""(y') = 7" (w). Consider the element z = 2’ —
a™tl(z) € Z"*TY(D’). Then we have

) = dvy — gy
=d"(y' - B"y).
Now we also have
9"y = B"y) =" (w—g"(y)) = 0.
Hence y' — 8™y € im f'™, which, since f™*! is injective, implies that = € imd"

and thus that 2’ and a"*!(z) represent the same element in H"*!(D’), which is
precisely what we wanted to show. [

3. Chain Homotopies

DEFINITION 1.3.1. Let f,g: C* — D*® be two morphisms of chain complexes.
A chain homotopy from f to g is a collection of morphisms {k" : C™ — D"~ !}
such that k" T1dg, + d’f{lk” = f™ — g™. In this case, we say that f and g are chain
homotopic and we denote this by f ~ g. If f is chain homotopic to 0, then we say
that f is null-homotopic.

If we have morphisms f : C* — D® and g : D* — C*® such that gf is chain
homotopic to 1¢ and fg is chain homotopic 1p, then we say that C'* and D*® are
chain homotopic.

A chain complex C*® is ezxact if H"(C) = 0, for all n € Z. It’s split exact if it
exact, and if, for every n, the short exact sequence:

0—kerd" — C" —imd" — 0
splits. In other words, if C"™ = imd” @ imd™ !, for all n.

PropPOSITION 1.3.2. Let f,g : C* — D® be two chain homotopic morphisms.
Then H*(f) = H*(g). In particular, if C* and D*® are chain homotopic, then they
are in fact quasi-isomorphic.

ProoOF. Replacing f with f — ¢ and ¢ with 0, it suffices to consider the case
where f is null-homotopic, and show that H®(f) = 0. Indeed, let a € Z™(C) be a
cycle; then we find:

f"(a) = d}y 'k (a) € B"(D),
which shows that the induced morphism on cohomology is trivial.

From the definitions, and the first assertion of the Proposition, we see that we
have morphisms f : C* — D*® and g : C* — D*® such that H*(fg) = H*(1p) =
lgepy and H®*(gf) = 1gec). This shows that H*(f) : H*(C) — H*(D) is an
isomorphism, and thus that f : C* — D*® is a quasi-isomorphism. (]

LEMMA 1.3.3. Pick an integer n € Z, and let C* be a chain complex with
C" =0, forr #n,n+ 1. Then the following are equivalent:
(1) d*: C™ — C™*! is an isomorphism.
(2) C* is split exact.
(3) C* is exact.
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(4) 1c¢e is null-homotopic.

PROOF. Before we start the rounds, observe that we have

ker d" ifr=n
H"(C) = { cokerd" ifr=n+1
0 otherwise.

It’s clear now that (1) < (2) < (3) and that (4) = (1). It remains to show that
(1) = (4): define morphisms k" : C" — C"~! by setting k" ! = (d")~! and k" = 0,
for r # n+1. We see immediately that this gives us a null-homotopy of the identity
morphism. ([l

DEFINITION 1.3.4. A complex that satisfies the hypotheses of the lemma is
called a fundamental split exact compler.

The next Proposition characterizes split exact complexes.

ProprosITION 1.3.5. The following are equivalent for a chain complex C*®:
(1) C*® is a direct sum of fundamental split exact complezes.
(2) C* is split exact.
(3) 1ce is null-homotopic.

ProOF. The implication (1) = (2) is trivial. We'll first show (2) = (3): for
this let i" : imd™ — C™ be the embedding given by the splitting on C", and let
antl . C"*tl — imd" be the projection given by the splitting on C™*!. Define
Ertl = qngntl . C7tl — €™, Then we find

kn+1dn + dn—lkn — i”ﬂn + ldn + dn—lin—lﬂ_n
= 'L.npn + ]nﬂ'n = ].Cn.
where p" : C" — imd" is the natural projection and j” : imd"~! — C™ is the
natural embedding. Thus we see that 1¢e is null-homotopic.

Now we show (3) = (2): suppose {k™ : C" — C™*1} is a null-homotopy for
1ce. Then we see that, for each n € Z, we have

C" = k" (imd") 4+ d" ' (im k™).
Now we have
imd" = d" (k"' (imd")).

Therefore, k" !|;m gn gives a splitting morphism for the epimorphism C™ — im d".
Since 1¢e is nullhomotopic, we also see that C* is exact, which shows that it is in
fact split exact.

We'll now finish by showing (2) = (1). For every m € Z, define C?,, to be the
fundamental split exact complex given by

im(imd™) ifr=m
Clmy = § imd™ ifr=m+1
0 otherwise
Here ™ : imd™ — C™ is the splitting morphism, and the morphism dg(m) :

C(Tn) — szf)l induced by d@ is an isomorphism. It is now evident that C*® =
C('m). O

mEZ
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4. Resolutions

DEFINITION 1.4.1. Let C*® be a bounded below (resp. a bounded above) chain
complex; then C* is acyclic if the following conditions hold:
(1) C™ =0, for n < 0 (resp. for n > 0).
(2) H™(C) =0, for all n > 0 (resp. for all n < 0).

DEFINITION 1.4.2. Let JZ be a class of objects in ¥, and let A be any object in
€. Then, a right (resp. left) H# -resolution of A, denoted A — C*® (resp. C* — A)is
an acyclic bounded below (resp. bounded above) chain complex C* with C" € ¥,
for all n > 0 (resp. for all n < 0), such that H°(C) = A. In other words, it’s a
bounded below (resp. bounded above) chain complex C*® quasi-isomorphic to A[0].

DEFINITION 1.4.3. If J# is the class of projective objects in %, then a left
J -resolution is called a projective resolution.

If 2# is the class of injective objects in €, then a right J# -resolution is called
a injective resolution.

If € = R-mod, for some ring R, and % is the class of flat R-modules, then a
left ¢ -resolution is a called a flat resolution.

If ¥ = R-mod, for some ring R, and J# is the class of finitely generated free
R-modules, then a left J£ -resolution is called a finite free resolution.

DEFINITION 1.4.4. An abelian category € has enough injectives if, for every
object A in %, there is a monomorphism u : A — I, with I injective. It has enough
projectives if, for every object A in ¢, there is an epimorphism « : P — A with P
projective.

It’s easy to see inductively that if a category % has enough injectives (resp.
enough projectives) then every object has an injective (resp. projective) resolution.

in-acyclic-inj-extension‘ LEMMA 1.4.5. Let N*® be a bounded below acyclic complex. Then H°N =
ker d%;[0] injects into N*. Suppose I*® is a bounded below chain complex with I" =0,
for r < 0, and with I™ an injective object, for n > 0. Then, for every morphism
f: HON — I*, there exists an extension F : N®* — I® of f to N®. Moreover, any
two such extensions of f are chain homotopic.

N e > J®

f

H°N
ProOOF. We will construct the chain morphism F' inductively. For n = 0,
observe that we have:

JF°
NO e > JO

ker d°
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We obtain the extension F© immediately from the injectivity of I°. Now suppose,
for r < n, we’ve constructed morphisms F” : N — I” compatible with the bound-
ary morphisms. Let G"~1 : N»~! — " be the composition d}’*lF”*. Observe
that G"~'d% ' =0, and so G"~! factors through N"~!/imd"~! = N"~!/kerd".
In other words, we have the following picture, where the extension F" is obtained
by the injectivity of I™.

o
N™ e > "

N"1/ker d™

Now suppose F : N®* — I*® is an extension of the zero morphism from H°N to
I°. We will construct a chain homotopy from F to 0 by induction on n. Define
k™ =0, for n <0. When n = 1, we have the following picture:

N1 L It
kil
diy dj

ker d%

We get the morphism k', by observing that FY factors through NY/kerdy, a
subobject of N', and by using the injectivity of I°. Suppose now that we have
define morphisms k" : N™ — I"~! such that F"~' = k"dy ' + d 2k"~1, for r < n;
then we have a diagram

N".—>I"

n—1 . n—1

dy dy
Frn— 1 4
Nn —1 S In —1
kn—l

n—2 n—2

dN dI
n—2

Nn—2 S In—2
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where we get the morphism £™ in the following fashion: Consider the morphism
Grl = Fn=l — d} 2" from N™7! to I"71, and observe that we have:

Gn—lan—2 _ d?_2Fn_2 _ d?_2kin_1d7v_2
_ d?_an_2 _ d}l—Z(Fn—Q _ dx{—?yk_n—2) 0.

Therefore, G"~! factors through N"~!/imd"~2 = N""!/kerd" !, and we can
therefore extend it to a morphism k™ : N® — I™~! that satisfies our requirements.
|

Here’s the dual statement for acyclic bounded above resolutions:

LEMMA 1.4.6. Let N°® be a bounded above acyclic complex. Then N°® surjects
onto H'N = (N°/imdy")[0]. Suppose P* is a bounded above chain complex with
Pr =0, forr > 0, and with P™ an projective object, for n < 0. Then, for every
morphism f : P®* — HON, there exists a lift F : P* — N*® of f to N*. Moreover,
any two such liftings of f are chain homotopic.

JF
P ol > N°®

f

H°N

THEOREM 1.4.7 (Uniqueness of Resolutions). Suppose I® and J® are two in-
jective resolutions of an object A. Then I® and J® are chain homotopic and thus
quasi-isomorphic. In fact, any quasi-isomorphism f : I®* — J® is determined
uniquely upto chain homotopy.

Dually, if P® and Q® are two projective resolutions of an object A, then P® and
Q° are chain homotopic and thus quasi-isomorphic. In fact, any quasi-isomorphism
[ P® — Q° is determined uniquely upto chain homotopy.

PROOF. We prove the statement about injective resolutions; the one about

projective resolutions will follow dually, using (|1.4.6)) instead of (|1.4.5)).
Observe that we have HI = HY.J = A[0]. So we have the following diagram:

I.

J*<—— H°J=HT —— J*
Since both I*® and J*® are acyclic, we have used lemma (|1.4.5)) to find extensions
(unique upto chain homotopy) f : J* — I* and g : I* — J* of the inclusions
of A into I* and J°, respectively. Since these extensions are unique upto chain

homotopy, we find that gf ~ 1; and fg ~ 1;, which shows that I® and J*® are
chain homotopic. O

PROPOSITION 1.4.8 (Horseshoe Lemma).
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5. Mapping Cones and Cylinders

DEFINITION 1.5.1. The translation functor T : Ch% — Ch% is the functor
that sends a chain complex {C™, d"} to the chain complex {T'C", T'd"}, with TC™ =
C" 1 and Td" = d"~'. Given a chain map f*: C® — D®, Tf*: TC®* — TD® is
just the chain map with (T'f)" = fn~1.

T is in fact an automorphism of Ch %, with inverse T—! acting via the assign-
ments T-'C™ = C"*! and T~ 1d" = d*+!.

For any p € Z, we denote T?C*® by C|[p]®.

It’s easy to check that H™(C[p]) = H" ?(C).
Now, we consider two important operations that arise from chain maps.

chain-mapping-cone DEFINITION 1.5.2. The mapping cone cone(f) of a chain map f: C* — D*® is
the chain complex with chain objects cone(f)" = C™ @ D"~ ! and chain maps

= (T gl ) scone(n)” — conel)"
D

fﬂ
This indeed gives us chain maps, because we have the composition
dyttaz, 0
m+1 gn __ _
d d" = ( fn+1dn +d fn d%dZ;l =0.
We can visualize this in the following diagram
n CnJrl
\ﬁ\ w\
n—1
s D" 1 d Dn+1

There is a natural inclusion D[1]® — cone( f), with cokernel C*. So we get an

exact sequence of complexes
0— D[1]° 5 cone(f) = C* — 0,

where 7"(¢,d) = (—1)™c. The sign is to ensure that it is a chain map.
This gives rise to a long exact sequence of cohomology.

I 0) 2 HY (D) — H' (cone(f)) — H™N(C) — ...

in-cone-connecting-morph PRrROPOSITION 1.5.3. The connecting morphism 6™ in the sequence above is sim-
ply H™(f).
Proor. We'll do a diagram chase for the following diagram:

00— =sprt " o cone(f)" T cr 0

7, dr dgtt
-n+1 7.l.n+1
0 D cone(f)"H ——= "t —— >0

Pick z € Z™(C); so dtz = 0. Then (—z,0) € cone(f)™ projects onto z. Since
d"(—z,0) = (ditz, f*(2)), we see that 6™[z] = [f"z] = H"(f)[2]. O
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With the mapping cone in hand, we are ready to describe injectives and pro-
jectives in the category of chain complexes.

PROPOSITION 1.5.4. A chain complex P® is projective in the category of chain
complexes if and only if P® is split exact with P™ projective, for all n € N.

Dually, a chain complex I® is injective in the category of chain complexes if
and only if 1* is split exact with I™ injective, for all n € N.

PROOF. Suppose the first assertion about projectives is proven; then observe
that the injectives in Ch % are also injectives in Ch ¥’°P, which, by the first assertion,
consist of split exact complexes of projectives in €°P and thus of injectives in €
under the canonical isomorphism from Ch%°P to Ch%. Thus it suffices to prove
the first assertion.

For this, note that it’s easy to see right away that if P® is projective, then it
must be a complex of projectives. To see that it must in fact be split exact, consider
the exact sequence:

0 — P[1] — cone(lp) — P — 0.
Since P* is projective, this sequence splits. And so we get a morphism s = (isl;’ ) :
P* — cone(lp). Writing out the condition for it to be a morphism of complexes,

we find, for each n € Z,
+d" [ Ed”
Ipn +dn=1sy )~ \shtldn )’

So we get 1pn = shT1d" — d"~1s3. Taking k" = (—1)"s} : P* — P™~', for each
n € 7Z, gives us a null-homotopy for 1p~, which, by , means that P*® is split
exact.

Now for the converse assume P°® is a split exact complex of projectives. By
, it’s a direct sum of fundamental split exact complexes. Therefore it suffices
to show that a fundamental split exact complex of projectives is projective in Ch % .
So let P*® be such a fundamental split exact complex with P™ = 0, for r # n,n+ 1,
and suppose we have a diagram

C.

™

v
pe L o

Now, observe that giving a morphism F : P®* — (C° is equivalent to giving a

morphism F™ : P" — C™, since we can define F*t! : Pl . Ont+l by setting

et = d’(}F"d}E—l. To see that this defines a morphism of complexes, all we need

to check is that d’éHF ™ = 0; but this follows immediately from its definition.
Since P™ is projective, we can find a lifting F™ : P™ — C" of f™. This as noted

above gives us a morphism F : P* — C*. It remains to check that 7F = f. We
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find:
P = et g Frdp
= dg, 7" F"dp
= dg frdp!
= frHldpdpTt = f,
as we had wanted to show. ]

COROLLARY 1.5.5. Let € be an abelian category with enough projectives (resp.
enough injectives); then Ch€ also has enough projectives (resp. injectives).

PrROOF. We prove the result about projectives; the one about injectives is
obtained by formal duality.

By the Proposition above, it’s enough to show that, for every chain complex
C*, there is an epimorphism P* — C'® with P*® a split exact complex of projectives.
For this, choose, for each n € Z, epimorphisms u" : Q™ — C™ with Q™ projective.
Set P" = Q" @ Q" 1, and let 7™ : P — Q" be the natural projection, and let
i"*t1 . Q" — Pt be the natural embedding. Set dp = i"*17"; it’s easy to see
that this gives us a split exact complex P*® of projectives. Take the epimorphism
um : P* — C*® to finish the proof. O

6. Differential Graded Algebras
7. Double Complexes

Put simply, double complexes are complexes over the category of chain com-
plexes. They will prove important when we get to Chapter [3| on spectral sequences.
The formal definition follows.

DEFINITION 1.7.1 (Double Complexes). A double complex C** over an abelian
category € consists of the following data:
(1) For every pair (p,q) € Z X Z, an object CP1 € €,
(2) For every pair (p,q) € Z x Z, morphisms dyy’ : CP9 — CP9+1 and 497 :
CP9 — CP+14 gatisfying the condition:

p,q p—1,q _ P,q gp,q—1 _
dI dI =0 dII dH =0
p,q+1 jp,q _ p+1.9 jp,q
dI dII *dII dI :

Observe that this means that {CP* : ¢ € Z} and {C*? : p € Z} are chain complexes
for each fixed p,q € Z. The last equality can be restated as saying that d}; is a
chain map from C*7 to C*9+1,

A morphism f : C** — D®**® between double complexes is a collection of
morphisms P4 : CP? — DP:? such that

dz?qu,q — f”“’qd’;’qd’;’[qu’q - fp,quld?Iq

DEFINITION 1.7.2. Let S C Z X Z be a subset of the plane lattice. Then S is
bounded below, if, for each n € Z, there is s € Z such that (p,n —p) ¢ S, for p > s.
It is bounded above, if, for each n € Z, there is s € Z such that (p,n —p) ¢ S, for
p < s. It is bounded if it is bounded both below and above. It is first (resp. second,
third, fourth) quadrant if (p,q) ¢ S, for p < 0 or ¢ < 0 (resp. p > 0 or ¢ < 0,



7. DOUBLE COMPLEXES 17

p>0o0rqg>0,p<0orq>0). Itis upper (resp. lower, right, left) half plane if
(p,q) ¢ S, for p <0 (resp. p>0,¢<0,q>0).

DEFINITION 1.7.3 (Boundedness conditions). Let C'** be a double complex.
To such a double complex we can associate a subset S(C') of the plane lattice by:
(p,q) € S(C) & CP7 # 0. Now, C** is bounded below (resp. bounded above,
bounded, first quadrant, etc.) if S(C) is bounded below (resp. bounded above,
bounded, first quadrant, etc).

DEFINITION 1.7.4. If ¥ is complete and C'*® is a double complex over %, then
the total complex of C**, which we denote by Tot};(C) is given by
Toti(C) = [ or9a =] (a7 + (-)rHedpy).
pta=n ptq
Observe that we have
dHL g — H (dpyqdpflyq F(—1)PHaLgpagpat (L qypragragpla dp,qdnrl)
1 951 1 951 119 11957
pt+g=n+1
= ()7
by our conditions on d;; and dj.

If ¢ is instead cocomplete, then we analogously define Totg, (C), the restricted
total complex of C'**, by replacing products everywhere with sums.

REMARK 1.7.5. It’s clear that a morphism between double complexes induces a
morphism between their total complexes. That is, the assignment C'** — Tot*(C)
is functorial.

REMARK 1.7.6. Observe that if C'**® is bounded then both these total complexes
are isomorphic. In general we can refer to either of these as the total complex of
cee.

chain-hom-double-complex ExAMPLE 1.7.7 (Hom Double Complex). Let P*® and J* be two complexes over
% and consider the double complex obtained in the following fashion:

Hom(P, J)P? = Hom(P~?, J9)
d?? = Hom(dp "™, J9)  d% = Hom(P~?,d%)

This is called the Hom complex of P® and J*. We refer to Toty;(Hom(P, J)) as the
total Hom complex of P® and J°.

chain-tensor-product ‘ ExAMPLE 1.7.8 (Tensor Product of Complexes). Fix a ring R and suppose P*®
and Q°® are complexes of right R-modules and left R-modules, respectively. Now
consider the double complex with (P®rQ)"? = PP ®@r Q7, and with d}}' = 1®dy,
and d7'? = d, ® 1. We then have:

Ayt — dp g = b, @ dfy — df @ df) = 0.

This is the tensor product of P® with Q°® over R. We denote the total complex
Totd, (P ®r Q) as the total tensor product of P and Q. It’s not hard to see that,
for P* a complex of right R-modules, Q* a complex of left R-modules, and I°® a
complex of abelian groups, we have a natural isomorphism

Homgzmod(Totd (P ®r Q), I*) = Homgmoa (P, Toty (Hom(Q, 1))).
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Thus the total Hom and the total tensor product are adjoints to each other, as one
would expect.

DEFINITION 1.7.9. A chain homotopy between two morphisms f,g : C** —
D** consists of two collections of maps: {k}'? : CP¢ — DP~14} and {k}}! : CP7 —
DP-a=1} guch that

gnq _ fp,q —_ dz;—lvqh?q + (_1)q—1dz;,]q—1h1;,[q + h1;+1,qd119,q + (_1)qh1127[q+1d1]77]q
We see immediately that a chain homotopy between morphisms of double complexes

induces a chain homotopy between the induced morphisms on the total complex.

DEFINITION 1.7.10 (Cohomology of a Double Complex). Let C** be a double
complex. For every pair (p, ¢) of integers, we define the following objects:

Z})Qq( ) = ke (dpq Cp,qHCerl,q)
Z54(C) = ker(dyy : P9 — Pt
B?’q(C) (dp La . op=la _, CcP)
B?}q(C’) (dpq 1 Cp,qflﬂcp,q)
H(C) = qu( )/BY(C)

H(C) = Z17(C)/ B (C).
That is H} takes the cohomology of the rows and H;; the cohomology of the
columns. Now, observe that H7"® is a complex with the boundary morphisms
induced by dy;. Taking its cohomology we get new objects Hf;(H7(C')). Similarly,
taking the cohomology of the complex HY;®, we get objects Hi(H?Y;(C)).
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CHAPTER 2

Derived and -functors

1. d-functors

DEFINITION 2.1.1. Let ¢ and 2 be abelian categories, and let Exact(%’) be the
category of short exact sequences in ¢ with the obvious morphisms. We have three
forgetful functors O : Exact(%) — €, for i = 1,2, 3, that extract first, second and
third objects, respectively, of a short exact sequence over %.

A cohomological (resp. homological) §-functor from € to 2, denoted T® : € —
2, is a collection of additive functors {T" : € — 2}, for each n > 0 (resp. for
n < 0), along with a collection of natural transformations {§" : T"O3 — T"+10'},
so that for every exact sequence

ot L2t o3

we have a long exact sequence

_)Tncvl ™(f) Tan ™ (9) TncS ﬂ)TnJrlcl M,TWJFZLCQ RN

REMARK 2.1.2. We will reserve the use of the unqualified term J-functor for
cohomological d-functors.

REMARK 2.1.3. Note that if T is a d-functor, then TV is a left exact functor
(right exact, if T is homological).

PROPOSITION 2.1.4. Let € be an abelian category. The functors {H™ : Ch€ —
€}, forn > 0, (resp. for n < 0) define a cohomological (resp. homological) -
functor from Ch=€ (resp. Ch="€) to €.

PrOOF. Immediate from (|1.2.4)) O

DEFINITION 2.1.5. A morphism ¢ : T* — T'® between two (cohomological
or homological) d-functors from € to Z is a collection of natural transformations
©" : T" — T' such that the following diagram commutes, for all n:

6?1
T"0* — T"'0!
4,0"03 (p"+101
T/noB > T/n+101
6"L
A cohomological (resp. homological) é-functor T* : € — 2 is universal if, for
every other cohomological (homological) d-functor T"e : € — 2 equipped with a

natural transformation 7 : 7% — T' (resp. a natural transformation 7 : 70 — T9),
there is a unique morphism ¢ : T* — T’® (resp. ¢ : T'® — T*) such that ¢° = 7.

19
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REMARK 2.1.6. By its definition a universal é-functor S*® is an initial (or ter-
minal) object in the subcategory of the category of d-functors that consists of
S-functors T® : € — 2 with T° = SY. Hence, given a functor F' : ¢ — 2,
upto isomorphism of é-functors, there exists a unique é-functor 7° : ¥ — 2 with
T~ F.

Here’s our first example of a universal d-functor:

PROPOSITION 2.1.7. Let F : € — 2 be an exact functor between abelian cate-
gories. Then the cohomological (resp. homological) 0-functor T® : € — 2 defined
by TO = F, T" = 0, forn > 0 (resp n < 0), is a universal cohomological (resp.
homological) §-functor.

Proor. We'll only do the cohomological case. It follows from the exactness of
F that T is indeed a d-functor (with 6™ = 0, for all n).

Assume S® : € — Z is a d-functor and suppose we have a natural transforma-
tion n : F — S°. To check that the obvious choice for a morphism from 7°® to S*® is
indeed a morphism of d-functors, we only have to check that the following diagram
commutes:

F 2,3
FO? ! FO? 0
no* no?

5902 Sof2’3 §903 d° sio!

So it suffices to show that °(nO?) = 0. But observe that we have
50(,'703)1;1]('2,3 _ 60s0f2,3(7701) — 07

where f23 : O? — O3 is the obvious natural transformation. Since f23 is an
epimorphism and F is exact, we see that §°(nO?) = 0. O

This will be generalized to left and right exact functors in the next section.

DEFINITION 2.1.8. Let F' : € — 2 be an additive functor. We say that F is
effaceable (resp. coeffaceable) if, for every object A of &, there is a monomorphism
u: A — I (resp. an epimorphism u : P — A) with I injective (resp. with P
projective) such that F(u) = 0.

The next Theorem is the most important general nonsense result about o-
functors.

THEOREM 2.1.9 (Grothendieck). Let T® : € — 2 be a cohomological (resp.
homological) §-functor such that T™ is effaceable for all m > 0 (resp. coeffaceable
for alln <0). Then T* is universal.

PrOOF. Again, we’ll only prove the cohomological version. Suppose T* is
an effaceable d-functor and suppose S® : ¥ — & is another d-functor equipped
with a natural transformation n : 70 — S° We'll construct a morphism ¢ :
T* — S°® inductively. The base case is our hypothesis, so assume that we’ve
constructed natural transformations " : T" — S” for r < n, which satisfy the
required commutativity conditions.
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Choose an object A in ¢, and let w : A — I be a monomorphism into an
injective object I such that T™(u) = 0. Let C' = coker u; then we have the following
diagram:

n—1
™ >l 0 S TPA—— 50

oy o e
n—1 v
S ——> 8l ——= S A
where the dotted morphism " is obtained from the universal property of 7" A as
the cokernel of the morphism from 7711 to T"~1C.

Of course, a priori, ¢ is dependent on the choice of the monomorphism wu,
and so it’s not clear how natural it is. As it turns out, it’s very natural indeed. To
see this, we’ll do something more general. Choose another object A’ in & and let
u’ : A" — I' be a monomorphism into an injective object I’ such that T"(u’) = 0,
and let C’ = cokeru’. Suppose we have a morphism f : A — A’; then, by a baby
version of , we can extend f to a morphism ¢ : I — I’, thus obtaining the
following diagram with exact rows:

0 P

~

C 0

f g h

U/

0 A r C’ 0
where of course h is the morphism induced by f and g.
We then have the following cube diagram, all of whose faces except the vertical
one facing east are known to be commutative:

n—1
™ 'C d T"A
Tn—lh SOA Tnf
n—1 n—1 5n71 m A/
o ™" C A
wort
sn-io " gna n
P A
Snflh Snf
n—1
el ’ S"A

Chasing this commutative diagram, it’s not hard to see that we have

Pa (T "1 = (S" f)ehon
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Since 6"~ ! is an epimorphism, this shows both that ¢ is independent of the choice
of the monomorphism u (take f to be 14), and that it actually gives us a natural
transformation from 7™ to S™.

So we’ve inductively constructed natural transformations ¢ : T" — S, for
all n > 0. There is just a little more work to go before we can be sure that this
is a morphism of §-functors. Fix n > 0 and suppose we have an exact sequence
0— C!' = C? — C3? — 0. Choose a monomorphism u : C' — I with I injective so
that T™(u) = 0, and let C = cokeru. We then obtain the following diagram with
exact rows:

0 c! C? c? 0
g: h
¥ ¥

0 [ C 0

where ¢ is obtained by the injectivity of I and h by the universal property of C3
as cokernel.

We obtain another cube diagram; this time all the faces except the top face are
commutative.

TncS 0" Tn+ 1 Cl
907(33 Sﬁg—fl
§n
T"h Eles srHic!
S™h
m 5% n+1 1
™C ™ C
¢ oot
671
el STLJr 1 Cl

By a similar argument, using again the fact that 6" : T"C — T"*+C! is an epi-
morphism, we find that the top face does indeed commute, thus showing that
©® :T* — 5° does indeed define a morphism of §-functors. O

COROLLARY 2.1.10. Let € be an abelian category with enough injectives (resp.
enough projectives); then H® : Ch=¢ — ¢ (resp. H® : Ch=¢ — €) is a
universal 0-functor.

PROOF. As always, we give a proof only of the cohomological version. By the
Theorem above, it suffices to prove that H*® is effaceable. Let C'® be a chain complex;
then, by , there is a monomorphism v : C* — I*® with I*® a split exact complex
of injectives. Then, since H™(I) = 0, for all n € Z, we see immediately that H® is
indeed effaceable and is thus universal. (]
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REMARK 2.1.11 (Contravariant d-functors). There is also the notion of a con-
travariant d-functor. A homological (resp. cohomological) contravariant §-functor
T* : ¥ — 2 between abelian categories is simply a cohomological (resp. homologi-
cal) d-functor T : €°P — 2. Put more concretely, it is a collection of additive con-
travariant functors T : € — 2 and natural transformations " : T"O' — T"~103,
which associate the appropriate long exact sequence to each short exact sequence
in €. Universality of such d-functors also has an analogous definition.

2. Derived Functors
The main result of this section is the following theorem.

THEOREM 2.2.1. Let F' : € — 2 be a left exact functor between abelian cate-
gories, and suppose € has enough injectives. Then there exists a universal §-functor

R°F : € — 2 such that the following conditions hold:
(1) F = ROF.
(2) Forn >0 and for any injective object I, we have R"F(I) = 0.

Proor. We will proceed in steps:

Construction: Given an object A in €, take any injective resolution I* of A
and define R"F(A) = H™(F(I*)). Given any other injective resolution J*® of any
other object A’, and a morphism there is a chain homotopy f : I®* — J*®
unique again upto chain homotopy. Now we see that Ch F'f : Ch FI* — Ch FJ*®
is also a chain homotopy that is unique upto chain homotopy. Hence R"F'(A) is
independent of choice of injective resolution upto canonical isomorphism.

Now, given any other injective resolution J® of any other object A’, and a
morphism g : A — A’, there is, according to , an extension ¢’ : I®* — J*® that
is unique up to chain homotopy. But then R"F(g) = H"(Ch F(¢')) : R"F(A) —
R"F(A’) is determined again upto unique isomorphism. Moreover, if f : A — A’
and g : A’ — A" are two morphisms and fis an extension of f between injective
resolutions I°® and J*® of A and A’, respectively, and g is an extension of g between
injective resolutions J* and K*® of A’ and A”, respectively, then gf is an extension
of gf : A — A” between injective resolutions, and so we find that R"F(gf) =
R"F(g)R"F(f). Hence R™F is indeed a functor, for all n > 0.

By construction, it’s evident that, for an injective object I, R"F(I) = 0, for
n > 0. It remains to show that R°F = F. Suppose f : A — A’ is a morphism in
%’; then let I® and J*® be injective resolutions of A and A’, and let g : I* — J*® be
an extension of f. We then see that RVF(f) = H°(Fg) = Fg¢° = Ff.

Additivity: Suppose 0 : A — A’ is the 0 morphism; then, an extension of
it between injective resolutions of A and A’ is of course again the 0 morphism,
which then induces trivial maps on cohomology. Thus we find that R"F'(0) = 0. If
f,g: A— A’ are two morphisms, and if f: g are extensions of f and g, respectively,
to injective resolutions of A and A’, then f+ g is an extension of f + g, and so we
find that R™F preserves sums of morphisms.

d-functoriality: Suppose we have an exact sequence in €: 0 — C; — Cy —
Cs — 0. Let I7 and I3 be injective resolutions of C; and C'5 respectively. Then,
by the Horseshoe Lemma (?7), there is an injective resolution I3 for C5 such that
the sequence

0—It —-I3—1I3—0



ce—derived—functors—left‘

iversal-derived-functors ‘

delta-derived-exact ‘

24 2. DERIVED AND §-FUNCTORS

is split exact. In this case, since F' is additive, we find that we have an exact
sequence

0—ChF(I}) - ChF(I3) - ChF(I3)—0
of complexes over . Taking the long exact sequence of cohomology of this sequence
gives us the morphisms §" : R*F(C3) — R""1F(C)), for all n € N.

It remains to check that these morphisms satisfy the required naturality condi-
tions. So suppose we have another short exact sequence: 0 — Dy — Dy — D3 — 0,
and another split exact sequence of injective resolutions 0 — J; — J3 — J3 — 0
attached to this sequence as above. Suppose we have a morphism («,3,v) in
Exact(%) from the first short exact sequence to this one. Then we can extend «
and v to morphisms & : IT — Jy and 5 : I — J3. Now, using (??), we can find a
morphism B : I3 — J3, such that the following diagram commutes with exact rows:

0 ; I3 I3 0
a 3 5
0 J? J3 J3 0

Now showing that REF*® is a d-functor reduces to the showing that H® : Ch=* 2 — 2
is a -functor, which is what we did in (2.1.4).

Universality: We will show that R™ F is effaceable for every n > 0; universality
will then follow from . Given any object A in € take any monomorphism
u: A — I, with I injective. Since R"F(I) = 0, for n > 0, we have R"F(u) = 0, for
n > 0, and thus R"™F is effaceable, for all n > 0. O

DEFINITION 2.2.2. The functors R™F associated to I as in the Theorem above
are called the right derived functors of F'.

The dual statement is the following, which we will not prove.

THEOREM 2.2.3. Let F' : € — 2 be a right exact functor between abelian
categories, and suppose € has enough projectives. Then there exists a universal
homological §-functor L*F : € — 2 such that the following conditions hold:

(1) F=LOF.
(2) Forn < 0 and for any projective object P, we have L"F(P) = 0.

DEFINITION 2.2.4. The functors L™ F' associated to F' as in the Theorem above
are called the left derived functors of F.

COROLLARY 2.2.5. Let T® : € — 2 be a universal cohomological (resp. homo-

logical) §-functor, and suppose € has enough injectives (resp. projectives). Then
T* = R*TY (resp. T* = L*TY).

PRrROOF. First note that TV is a left exact functor, and so R*TY is defined and
is moreover a universal é-functor with R°7T° = T°. Since upto isomorphism there
is a unique universal d-functor S® : € — 2 with S° = T°, we find R*T" = T9.

The homological case is formally the same. O

COROLLARY 2.2.6. Let F' : € — @ be an exact functor, and suppose that €
has enough injectives (resp. enough projectives); then R"F = 0, for n > 0 (resp.
L™"F =0, forn <0).
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PrOOF. Follows from (2.2.5)) and (2.1.7). O

REMARK 2.2.7 (The Contravariant Case). Given a left exact contravariant
functor F' : ¥°P — 2, and supposing ¥ has enough projectives (and thus %P
has enough injectives) we can define in exactly the same fashion the right derived
functors R™F of F. These will then form a contravariant homological universal
d-functor from % to 2.

The next result gives us a useful way to obtain long exact sequences.

PROPOSITION 2.2.8. Let € and 2 be abelian categories, and suppose Fy —
Fy — F3 is a complex of left exact functors in Funct(€, Z). Now, suppose that €
has enough injectives, and that, for every injective object I in €, the sequence

0— F(I)— F(I)— F5I)—0

is exact. Then, for every object C' in €, we have a long exact sequence:

0 — F1(C) — Fy(C) — F3(C) — R'F,(C) — R'F,(C) — R'F3(C) — ...

PrOOF. Given an object C' in %, let I®* be an injective resolution of C. Now,
we have an exact sequence of chain complexes in Z:

0 — ChFi(I*) - ChFy(I*) — Ch F3(I°%) — 0.

Taking the long exact sequence of cohomology associated to this sequence gives us
the result. ([l

3. F-acyclicity, F-syzygies and F-dimension

NOTE ON NOTATION 2. From now on we will assume that all our domain
categories have enough injectives (or projectives, as the case may be).

DEFINITION 2.3.1 (F-acyclicity). Let F' : € — Z be a left (resp. right) exact
functor between abelian categories. Then an object A in % is said to be F-acyclic
if R"F(A) =0, for all n > 0 (resp. L"F(A) =0, for all n < 0).

Given a left (resp. right) exact functor F': € — 2, and an object A in €, an
F-acyclic resolution of A is a right (resp. left) J# -resolution of A, where % is the
class of F-acyclic objects.

REMARK 2.3.2. Observe that, given a left (resp. right) exact functor F': € —
9, every injective (resp. projective) object is F-acyclic.

We now present a criterion for a class of objects to be F-acyclic, for some left
exact functor F.

PROPOSITION 2.3.3. Let F' : € — 2 be a left exact functor between abelian
categories, and suppose & is a class of objects in € satisfying the following prop-
erties:

(1) For every object C € X, there exists a monomorphism v : C — I, such
that I is F-acyclic, and such that coker u is again in JH .
(2) For every exact sequence

0—>Cl—>02—>03—>0,
in € with Cy € J, the sequence
0— F(Cy) — F(Cy) — F(C3) =0

18 also exact in 9.
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Then every object in & is F-acyclic.

REMARK 2.3.4. There is the evident dual version for right exact functors (begin
by replacing monomorphism with epimorphism in (1) and Cy with Cj5 in condition
(2)). We will use it without comment when the need arises (which is unlikely).

PROOF. We will do this by induction. That is, we will show that R'F(C) = 0,
for all C € # and then we will show that if, for n > 1, R*"1F(C) = 0, for all
C € X, then in fact R"F(C) =0, for all C € 7.

Pick an object C' € ', and let u : C' — I be the monomorphism into an F-
acyclic object guaranteed to us by condition (1), and set C* = coker u. By condition
(2), we have a short exact sequence

0— F(C)— F(I)— F(C') -0,

which, since I is F-acyclic, implies that R'F(C') = 0 (using the long exact sequence
of derived functors of F'). Since C was arbitrary, this finishes the base step of the
induction.

Maintaining the notation of the previous paragraph, observe now that we have
(again from the long exact sequence of derived functors and the F-acyclicity of I):

R"'F(C') = R"F(C), foralln > 2.

By condition (2), €’ is also in 2, and so by the induction step, we find that
R"F(C) =0, for all n > 0. This finishes our proof. O

Here’s another situation where we get acyclicity of objects.

PROPOSITION 2.3.5. Let F : € — 2 be a left exact functor between abelian
categories, and let A be an object in € equipped with a finite filtration
A=F'ADF'AD .. DF"ADF"A=0
such that, for 1 <i <n, FI"1A/F'A is F-acyclic. Then A is F-acyclic.
Proor. We'll do this by induction on the length n of the filtration. If n = 0,

then there is nothing to prove; so assume n > 1. By the induction step, F'A is
F-acyclic. Moreover, we have a short exact sequence

O—>F1A—>A—>A/F1A—>0,

where F1A and A/F' A are both F-acyclic. It’s easy to conclude now from the long
exact sequence of derived functors of F' associated to this short exact sequence that
A is also F-acyclic. O

DEFINITION 2.3.6 (Syzygies). Suppose £ is a class of objects in ¢, and suppose
we have an exact sequence

0-A—-I">1'— . . I S N,

with 17 in 7, for 0 < j < n. Then N is called a n* right ¢ -syzygy of A.
If instead we have an exact sequence

0—-M-—-p ol pmt2_, PV A0,

with P7 in ., for —n < j < 0. Then M is called a nt" left J# -syzygy of A.

If Fis a left (resp. right) exact functor from % to 2 and # is the class of
F-acyclic objects in ¢, then the n'” right (resp. left) ¢ -syzygy of A is called the
nth F-syzygy of A.



ygies-dimension-shifting

elta-acyclic-resolutions ‘

3. F-ACYCLICITY, F-SYZYGIES AND F-DIMENSION 27

PROPOSITION 2.3.7. Let F' : € — 2 be a left exact functor, and let A be an
object in €. Suppose N is an n'" F-syzygy of A; then we have:
R"™"™F(N) ifr>n+1

RF(4) = {coker(F(I”l) — F(N)) ifr=n.

If instead F : € — 2 is a right exact functor, and if M is an n'™ F-syzygy of
A; then we have:
L™ F(N ifr<-n-—1
ker(F(M) — F(P™™ 1)) ifr=—n.

Proor. We'll only prove the first assertion; this will be done by induction on
n. First suppose that IV is a first F-syzygy of A. In this case, we have a short exact
sequence
0—-A—1°-N -0

If we now consider the long exact sequence in the derived functors R™F' associated
to this sequence, we obtain, using the F-acyclicity of I, isomorphisms

RF(N) L RF(A),  forr>2

For r = 1, we get an exact sequence
F(I") — F(N) — R'F(A) — 0.

Now the result follows by induction on n and from the observation that if N is
an nt" F-syzygy of A and if N’ is the (n—1)t" F-syzygy given by im(I"~2 — ["~1),
then N is a first F-syzygy of N'. O

The next result is very useful for computations.

COROLLARY 2.3.8. Let F' : € — @ be a left exact functor, and let A be an
object in €. Suppose I*® is an F-acyclic resolution of A; then we have R"F(A) =
H"(Ch F(I*)).

Dually, if F : € — 2 is a right exact functor, then we can compute L"F(A) =
H™(Ch F(P*®)), for some F-acyclic resolution P* of A.

PROOF. Let N =im(d" : I"~! — I") be an n'* F-syzygy of A. Then we find
from the Proposition that, for n > 1, we have

R"F(A) = coker(F(I"™') — F(N))
= F(N)/im F(d"™)
= F(kerd")/im F(d"™ 1)
= ker F(d")/im F(d" ")
= H"(Ch F(I*)).
Since F is left exact, we find H°(Ch F(I*®)) = F(A), as we want it to be. O

DEFINITION 2.3.9. Let F be a left exact functor F': € — 2, and let A be an
object in €. The F-dimension of A, denote F' — dim(A) is the quantity

sup{n: R"F(A) =0}.
If F is instead a right exact functor, then the F-dimension of A is the quantity
sup{—n: L"F(A) = 0}.
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If F—dim(A) < oo, we say that A has finite F-dimension. Observe that
F — dim(A) = 0 if and only if A is F-acyclic.

Let £ be a class of objects in €’; then the length of a J£ -resolution I® is the
quantity

sup{|n|: I" #0}

Given an object A and a class of objects # in A, we define the right (resp.
left)  -dimension, # — rdim(A) (resp. £ —1dim(A)), of A as the supremum of
the lengths of all right (resp. left) % -resolutions of A.

PROPOSITION 2.3.10. Let F : € — 2 be a left (resp. right) exact functor, and
let & be the class of F-acyclic objects. Then the following are equivalent for an
object A in € :

(1) F—dim(A4) =n < 0.

(2) For every integer v > 0, and every r'" F-syzygy N of A, we have

F — dim(N) = max{n — r,0}.

(3) Buvery nt" F-syzygy of A is F-acyclic and no (n — 1)** F-syzygy of A is
F-acyclic.

(4) Some n** F-syzygy of A is F-acyclic and some (n — 1)** F-syzygy of A
is not F-acyclic.

(5) A —rdim(A) =n < oo (resp. H —1dim(A) =n < c0).

Proor. We’ll do the case where F' is left exact. Observe first that if there

exists an F-acyclic resolution I® of A of length r, then we have:
R°F(A) = H®*(ChF(I*))=0 fors>r+1
This shows F — dim(A) < ¢ — rdim(A).

Next, observe that there exists an F-acyclic r** F-syzygy of A if and only if
there exists an F-acyclic resolution of A of length r. Thus the existence of an
F-acyclic 7" F-syzygy implies

A —rdim(A) <r.
Now, let N be an r*" F-syzygy of A, and suppose F — dim(A) = n; then by (2.3.7)
we have

R*F(N) = R*tT"F(A) fors>1

So if » > m, then R*F(N) = 0, for all s > 1, which means that N is F-acyclic. On
the other hand, if » < n, we have:
REF(N) = 0 fors>n—r+1
R"F(A)#0 fors=mn—r.
This shows F — dim(N) = n — r. In particular, an 7" F-syzygy of A is F-acyclic
if and only if r > n. Therefore, if F' — dim(A) = n, then there exists an F-acyclic
nt? F-syzygy of A, and so we find

A —rdim(A) <n=F —dim(A) < % — rdim(A4).

This shows the equivalence between all the statements in the Proposition. ([l
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CHAPTER 3

Spectral Sequences

Unless otherwise noted, all our categories will be abelian categories satisfying
axioms Ab-4 and Ab-4*.

1. Lots of Definitions and a Proposition

DEFINITION 3.1.1. A filtration F*A of an object A in a category € is a collec-
tion {F"A: r € Z} of subobjects of A such that F"A D F"1 A, for r € Z.

A filtration F'*A is exhaustive if | J, o, F"A = A.

It is separated if (), o, F"A = 0.

It is complete if A = lim._ A/F"A; it’s immediate that a complete filtration
is separated.

DEFINITION 3.1.2. A filtered object over a category % is a pair (A, F*A), where
F* A is a filtration on A.

We will say that (A, F*A) is separated (resp. complete, resp. exhaustive if the
filtration F'* A is separated (resp. complete, resp. exhaustive).

Rather abusively, we will in this context say that A is separated (or complete
or exhaustive), leaving the filtration implicit in our assertion.

DEFINITION 3.1.3. Given a filtered object (A, F'*A), we consider the object
A" = A/, ez F"A. This has a natural filtration F* A" on it induced by the filtration
on A. We call the filtered object (A’, F'*A’) the separation of A.

Given a filtration F* A on A, we define the completion of Aby A = lim. A/FT A,
and equip it with the filtration given by F’ rA = FrA. We have

A/FTA~ A'JFTA'~ A/F"A  forr e Z.
From this it follows that A = A’ is complete with its equipped filtration.
From now on we will concentrate on filtrations of chain complexes over % .

DEFINITION 3.1.4. A filtration F'*C* is bounded below if, for every n € Z, there
exists s € Z such that F"C"™ = F*C", for all r > s. It is bounded above if, for
every n € Z, there exists s € Z such that F"C" = F*C", for all r < s. A filtration
that is bounded both above and below is said to be bounded or finite. A filtration
is canonically bounded if FTC™ =0, for r > n + 1, and F°C™ = C™.

Again in this situation we may conflate the chain complex C* and the filtered
chain complex (C*®, F*C*®), when the filtration is clear from the context.

DEFINITION 3.1.5. A spectral sequence over a category € is a collection
{E?: r > a, for some a € Z}
of chain complexes over € satisfying the following conditions:

29
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(1) Forr > a, n € Z, there exists a direct sum decomposition E" = @y, g=pn EP1
such that &% = dI| pr.« maps EP? into EPTma-"+1,
(2) There exist isomorphisms

o

D9 . [JP:q _ Dsq /3 p—r,q—r+1 D,q
b HP(E,) = ker d2?/im dP — Elf.

REMARK 3.1.6. E? is called the r*" page of the spectral sequence, and condition
(1) above says that, if we visualize E? as given by a plane lattice with EP*¢ at the
(p, q)-position, then every line of slope —(r — 1)/r forms a chain complex by itself.
The object HP4(E,) is nothing but the cohomology of this chain complex at the
(p, q)-position. Observe that these lines get steeper with each subsequent page.

DEFINITION 3.1.7. A morphism between two spectral sequences {E® : r > a}
and {E? : r > b} is a collection {f, : r > max{a,b}} of chain maps f, : E* — E?®
satisfying the following conditions:

(1) For p,q € Z, and r large enough, f9 = fP*9|gr.a maps into E’qu.
(2) For p,q € Z, and r large enough, the following diagram commutes:

Sopaq
HP’Q(ET) > Epvq

r+1
Hpﬂ(fr) fr+1
~ Sop)q ~
Hr(B,) £ Era

It’s easy to check now that this gives us a category of spectral sequences over
%, which we will denote by Sp(%).

DEFINITION 3.1.8 (The Limit Page). Let {E® : r > a} be a spectral sequence
over €. Then, for s,t € Z, s > t, EP? is a subquotient of EI"?. This lets us find
collections {B??} and {ZP-7} of EP? such that EP9 = ZP9/BP-7 and such that we
have a filtration

0=BrMcC..BPlcC...czllcC...CczZli=FEP

We define
(B2 =U, 5, B2? and ZBI=(),5, 2,

and we set ER9 = ZP:9/BP1.

REMARK 3.1.9. Suppose now that we have two spectral sequences {E? : r > a}
and {E/* : r > b} and a morphism f from the first to the second. Replacing a,b
with max{a,b}, we can assume that a = b. Now, since f, is a chain morphism, we
have that ZP-7(E) maps into ZP?9(E’) and that B?%(FE) maps into B?9(E’). In-
ductively from here, using the commutativity condition on f, we show that ZP?(E)
maps into ZP9(E’), for all » > a, and analogously for B??. This gives us an in-
duced morphism E2(E) — E2(E’). Thus the assignment of the doubly graded
object {E®:%} to the spectral sequence {Ef} is functorial.

DEFINITION 3.1.10 (Boundedness conditions). Observe now that to each spec-
tral sequence {E?® : r > a}, we can associate a subset S(E) C Z x Z of the plane
lattice by the formula (p,q) € S(F) & EP? # 0. A spectral sequence {E? : r > a}
is bounded below, bounded above, bounded, first quadrant, etc. if S(F) is bounded
below, bounded above, bounded, etc.



ltration-to-spectral-seq ‘

1. LOTS OF DEFINITIONS AND A PROPOSITION 31

A spectral sequence {E? : r > a} is regular if, for all pairs p,q € Z, there is
s € Z, such that d?9 = 0, for all » > s. It is clear that this can occur if and only if
7P = 7P,

A spectral sequence {E® : r > a} collapses if there exists r > a such that E?
has only one non-zero row or only one non-zero column.

REMARK 3.1.11. We see immediately that a bounded below spectral sequence
is regular. Essentially the differentials get steeper and steeper till they fall off the
chart.

PROPOSITION 3.1.12. A filtered chain complex (C*, F*C*®) naturally determines
a spectral sequence {E2(C) : r > 0} starting with Ey'? = FPCP+d/FpTiCrta,
More precisely, the assignment of the spectral sequence {E®(C)} to the filtered com-
plex (C*, F*C*®) gives rise to a functor from the category of filtered chain complexes
over € to the category Sp(€) of spectral sequences over €.

NoTE ON NOTATION 3. For the purposes of this proof, we will index all our
objects by the double index (p,n), where n = p + ¢, instead of the double index
(p,q)-

PROOF. We begin by setting E'" = FPC™/FPTIC™. Next, for every pair
(p,n) and every r > 0, we define:

A}z,n _ d71 (Fp+r0n+1) NEPC™.
Observe that we have
, 1 _ +1,
AP FPEICT = APT T
We have the following useful relations:
Apm AP,
d(Ap,n) C Ap—i—r,n+1
r s ’
for all p,n,r, s. Now, let nP™ : FPC™ — EJ™ be the natural surjection, and define
the following subobjects of Ef":
Z0m = ypn (A2™) and
Bt = (d (AP ).
It’s clear that we have a chain
0=BF"cC...BP"C...Cczt"C...czZt" =ED".
We now set EP" = ZP" /BP™ Observe that we have:
APy pPEIom N Abm

EPT > ~ '
r d (Af:’l“-i-l,n—l) + Fp+iCn d <A£:71"+1,n—1) + Afi_%’n

Now, using the differential d, we get a map dP" from EP™ to EPT™" Tl What is
the kernel of d?"?7 For this we note:

a7 (A 4 AP = AT AR
This tells us that we have

p+1,n p,n
ker dP" = Ao A = Z0" /BE"
o - “r+ o
p—r+1ln—1 p+1ln
d (Ar—l ) + Ar—l
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So the map dP™ factors through Z?"/Z". But we now have:

DN [ 7PN Ay AP p;n p+ln |
Z’r‘ /Zr+1 _AT /(AT+1+A7‘—1 )7

BYEm Bttt e q (APt fd (AV] + AR

This shows that im dP™ = ij:{’wrl/B,{"“””‘l7 which shows that we have
HP™(E,) = ker 2" fim d2="n=1 & 700, [BPTy = BV,
Hence {Ey : r > 0} does give us a spectral sequence as claimed.

The functoriality of this construction is quite clear at this point. (Il

The next Proposition lists some properties of this construction. Since we would
like as much as possible not to go back to the construction ever again, this collection
of results will prove very useful.

PROPOSITION 3.1.13. Let (C®, F*C*®) be a filtered chain complez, and let E(C) =
{E? : r >0} be the spectral sequence associated to this filtered complex.

(1) If F*C is bounded below (resp. bounded above, resp. bounded, canonically
bounded) then { E*} is bounded below (resp. bounded above, resp. bounded,
resp. a first quadrant sequence).

(2) Fixp € Z and k € N; let Cp, = C/FPT*C and CP* = FP=*kC/FPHEC.
Then the natural maps C — Cp ), < CP* induce isomorphisms

EP(C) =2 EP9(Cpp) = EPUCPF)  0<r <k

(3) If C is the completion of C, then E(C) = E(C). The same statement is

true if we replace C with the separation C' of C.

PROOF. (1) This is quite obvious from the construction.
(2) Observe that we have, for 0 < r < k,

APT(Cpa) = AP (CTH) = AT/ FPHRC™,
(3) Just observe that for all pairs (p, k), we have
(Cpr =2 Cpp and CPF = CPk)

A similar natural isomorphism holds with C replaced by C’. Now use part
(2).
O

Now, consider the cohomology H*®(C) of the complex C*®. Given a filtra-

tion F*C*® on C®, we get a natural filtration on H*(C), given by FPH"(C) =
im(H™(FPC) — H™(C)). This filtration is exhaustive (resp. bounded below, resp.
bounded above, resp. bounded, resp. separated), whenever the original filtration
is exhaustive (resp. bounded below, resp. bounded above, resp. bounded, resp.
separated). In particular this gives us a functor from the category of filtered chain
complexes to the category of filtered graded objects over %.

PROPOSITION 3.1.14. Let (C*,F*C®) be a separated and exhaustive filtered

chain complex. In the notation of , set AL = ﬂrzo AP et pP™ be the
natural map from FPC™ onto EY", and set eB" = nP"(AR™)/BE:™.

(1) ker(d : FPC™ — FPO™1) = Apn,
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(2) FPH(C) = A% /d (UTZOA[;—r,n—l)'
(3) FPH™(C)/FP* H™(O) = &',

PROOF. Since the filtration is separated,

ker d|pron = d™* (ﬂ F’“C”“) nFrcn

T

= (d " (Fre™t) nFren) = Az

This gives us the first assertion. Now observe that FPH"(C) is just the image of
AP in H™(C'), so we'll be done if we compute the kernel of A:"™ — H™(C). This
is simply im d N FPC™, which is of course J,.~, d (Aﬁ,’*r’”*l). For the last assertion,
observe that FPH"T1(C) is just the image of AZFL™ in H™(C'), and so we have

FpHn(C)/FPHnJrl(C) ~ A;Q)(,)n/ Aggﬂrl + d(U Ang,’l’Lfl)
r>0

1%

p,n
ebn.

2. Convergence

We now come to the main purpose of spectral sequences as a computational
tool.

DEFINITION 3.2.1 (Convergence). Let {E? : r > a} be a spectral sequence over
€, and let H* = {H™ : n € Z} be a sequence of objects in €. Let F*H* be a
filtration of H* (treating H* as an object in the category [],c, ¢). We now list
the possible kinds of convergence in increasing order of niceness.

Weak Convergence: : {E*} weakly converges to H* if, for every pair
(p,q), we have

EPi =~ FpHp+q/Fp+1Hp+q_

Abutment: : {E*} abuts to or approaches H* if it weakly converges to H*,
and if the filtration F'®* H* is separated and exhaustive.

Convergence: : {E*} converges to H* if it is regular, it approaches H*,
and if the filtration F'®*H* is complete.

Bounded Convergence: : {E?} boundedly converges to H* if it is bounded,
it converges to H*, and if, for every n € Z, the filtration F'*H™ is finite.
We denote this kind of convergence by EP9 = HPTY,

‘We make several remarks.

REMARK 3.2.2 (Bounded below sequences). Suppose {E® : r > a} is a bounded
below spectral sequence weakly converging to H*. In this case, the filtration on H*
is also bounded below and {E?} is already regular. Therefore, for it to converge to
H*, it suffices to check that the filtration on H* is complete. But since the filtration
is bounded below, for it to be complete, it in fact suffices for it to be separated. In
other words, if {E®} approaches H*, then it in fact converges to H*.
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REMARK 3.2.3 (Collapsing sequences). Suppose {E® : r > a} is a spectral
sequence weakly converging to H*, and suppose also that it collapses on page r,
say on the row ¢ = s. Then we have H™ = E'~%° which allows us to completely
recover H* from our spectral sequence.

REMARK 3.2.4 (First quadrant sequences). Suppose {E® : r > a} is a first
quadrant spectral sequence converging to H*. Then, since E2"~P = 0, for p < 0
and p > n, we find that the filtration on H* must be canonically bounded. That is
we must have F"H" =0, for r > n+ 1 and F""H" = H™. Moreover we must have
FPH" = B9 and H*/F*H™ = E%". Observe also that we have Z07),, = E%"
and E™0/Bn0 = pn.o.

Then the natural morphisms E™* — E%Y C H" and H" — E%" C E%™ are
called the edge morphisms.

REMARK 3.2.5 (Euler Characteristic). Let {E? : r > a} be a spectral se-
quence over R-mod, for some ring R, weakly converging to H*, and suppose E? is
bounded for some r > s, thus giving us that E? is bounded for all > s. Moreover,
suppose that E?*? has finite length, for all pairs (p, ¢). Then we have:

X(ER) = (~)"(H™(E,)) = x(Epy1) = X(E2).
nez
We also have
I(H™) =Y IFPH"/FPT H") = > 1(EL"P).
PEZL pEZ
So we see that we have

V(ED) = (B = SO (—1)m(H").
nez

DEFINITION 3.2.6. Let {E® : r > a} and {E/* : r > a} be two spectral
sequences weakly converging respectively to H* and H'*. Let h : H* — H'* be a
morphism of filtered objects in [[,, ¢ and let f : E — E’ be a morphism of spectral
sequences. Let @™ : FPH"™ /FPTIH™ — FPH™ /FPTLH’ be the morphism induced
by h and let Y™ : E2:™ — E2™ be the morphism induced by f. We say that h is
compatible with f if the following diagram commutes for every pair (p,n).

DN
p,n Ip,n
EY ———— = EJ

>~ >~

D1
FPH™ )PP H™ £ s prp  prt T
After this somewhat lengthy prelude, we are ready to present our main result.
THEOREM 3.2.7 (Classical Convergence Theorem). Let (C®,F*C*®) be an ex-
haustive, separated filtered complex over €, and let {E® : r > 0} be its associated

spectral sequence. If F*C® is bounded below (resp. bounded), then {E®} converges
(resp. boundedly converges) to H*(C').

PROOF. As we observed earlier, if F*C*® is bounded below (resp. bounded),
then the filtration induced on H*(C) is also bounded below (resp. bounded). So,
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as observed in (3.2.2), it suffices to assume that F*C is bounded below and to
then show that it weakly converges to H*(C). For this, from part (3) of ,
it’s enough to show that n™™ (ARJ") = ZP™. But since F'*C*® is bounded below,
AP = AP" for r large enough, and so Z&" = ZP", for r large enough, from which
the result follows. O

EXAMPLE 3.2.8 (The Canonical Filtration). Let C*® be a complex over €. The
canonical filtration on C*® is given by FPC*® = 7<,C*. So we have
cn ifn<p
FPC™" =< kerd? ifn=p
0 if n > p.

‘We then have

H"(C) ifn<
Hn(FpC.){ (@) ifn<p
if n > p.
Now, we have
0 ifn<p—1lorn>p
FPC™ [FPHIC™ = { O~V kerdP~! ifn=p—1
ker dP ifn=p

Hence we see that

Epnr — HP(C) ifn=p
0 otherwise.

So the sequence collapses on page 1, and we get the cohomology of the chain
complex, as we expected.

3. The Spectral Sequences associated to a Double Complex

Let C** be a double complex over ¥. Then we have two natural filtrations on
C**, either by rows or by columns. These give rise to different spectral sequences.
The aim of this section is to study the relationship between these two spectral
sequences.

DEFINITION 3.3.1. Given a double complex C**® we define, for all p € N, two
subcomplexes of Tot®(C') by the formulas below (we speak here only of the restricted
total complex).

(FF Tot*(C)" = 5 €™

itj=n
12p

(FF, Tot*(C)" = @5 C*.
itg=n
Jjzp
This gives us two natural filtrations of Tot*(C).
From these two natural filtrations, we get two natural spectral sequences, which
we'll denote {{E2(C)} and {{!E2(C)}, respectively.
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We make the following observations about these spectral sequences: On the 0"
page we have:
I E(I)%q — P4
11 p, )
EPY =P,
Observe, in particular, that the spectral sequences associated to C** satisfy the
same boundedness conditions that C'** (to be more precise, for {{/ E®}, this is only
true after a reflection through the origin).
Moreover, the differentials on the 0" page are induced by the total differential
on Tot*(C). Therefore, on the first page we have:
TEpPT = H(CP®) = HIP(C)
BT = HY(C) = HP(C).
The differentials here are again induced by the total differential on Tot®(C),
and so we have on the second page:
"BpY = HY(H{;(C))
ey = HY (H](C)).

We record this in the next Proposition.

PrOPOSITION 3.3.2. To each double complex C** over € we can naturally as-
sociate two spectral sequences {!E®} and {{'E®} such that

"By = HY (H{,(C))
"B = HY, (H{(C)).

PROOF. O

Now we consider some boundedness conditions on the double complex and how
they affect the filtrations on it, and hence the spectral sequences arising from these
filtrations. Observe first that both filtrations on Tot®*(C) are exhaustive. Now
suppose C** is 0 in the fourth quadrant. Then we see that F} Tot®(C') is bounded
below; so we see that {{ E*} must converge to H*(Tot(C)), by . Instead, if
C** were 0 in the second quadrant, then F7; Tot®(C') would be bounded below,
and so {{{E*} will now converge to H*(Tot(C)). If now, C** is either first or
third quadrant, then we see that both spectral sequences arising from it converge
to H*(Tot(C)). This last observation is a wellspring for many standard results; so
we record in the next Proposition.

PROPOSITION 3.3.3. Let C'** be either a first or a third quadrant double com-
plex over €. Then we have

TEDY = H*(Tot(C))
HEPY = H*(Tot(C)).

PROOF. O
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4. Derived Functors of Multi-functors

There’s a nice consequence of the spectral sequence of a double complex that
lets us relate the different derived functors of a multi-functor. Before that a defini-
tion.

DEFINITION 3.4.1. A multi-functor F': 61 X ... X €, — Z is right balanced if
the following conditions hold:

(1) Tt is left exact in each of its variables.
(2) For any covariant variable %; and any injective object I in %;, the multi-
functor

FliG X .. XC 1 XxCp1 X ... xXCp— D
(Clv"'7Ciflaci+11"'7cn)'_>F(Clw"7C’L717-[70i+17~~~acn)
is exact.

(3) For any contravariant variable €, and any projective object P in 4}, the
multi-functor

F};:‘éx...x%j,lx%ﬂl X...XCn— 9D
(Cl,...,Cj,1,0j+1,...,cn) I—>F(Cl,...,ijl,P,Cj+1,...,Cn>
is exact.

A multi-functor F' : €1 X...xX%6, — 2 is left balanced if the following conditions
hold:

(1) Tt is right exact in each of its variables.
(2) For any covariant variable %; and any projective object P in %;, the multi-
functor

Fo:Gix..XC 1 xCi1X...xCp— D
(C’l,...,Ci_1,0i+1,...,0n) |—>F(Cl,...,Ci_l,P7Ci+17...,Cn)
is exact.

(3) For any contravariant variable 4; and any injective object I in ¥, the
multi-functor

Fl G X . XC_ 1 XCp1 X ... XCn— D
(Cl,...,Oj_1,0j+1,...,cn)I—>F(Cl,...,Cj_l,I,Cj+17...,On)

is exact.

ctral—derived—bifunctors‘ PROPOSITION 3.4.2. Let F : €1 X ... X €, — Z be a multi-functor between
abelian categories, and suppose that F is covariant in the first r variables and that
it is contravariant in the next n—r variables. Suppose also that each €; has enough
ingectives if i < r and that it has enough projectives if i > r.

If F is right balanced, then, for any n-tuple of objects (A1, ..., Ay), with A; €
©:, and any pair i,j with 1 < i < j < n, and for all p > 0, we have a natural
isomorphism:

(RPF(A1, ..., Ag, ..., A))(A) =2 (RPF(Ay,. .., Aj, .o A))(A)

If F is left balanced, then, for any n-tuple of objects (A1, ..., A,), with A; € €,
and any pair i, with 1 < i < j < n, and for all p < 0, we have a natural
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isomorphism:

(LPF(A1, .. Ai, o AR)(A) =2 (LPF (AL, .. A4y, A))(4))

ProOOF. We'll only do the case where F' is right balanced. It clearly suffices
to prove the natural isomorphism for the case where ¢ = 1 and j is arbitrary. In
doing so we reduce essentially to the case where F' is a bi-functor F': ) x 62 — 2.
There are now three possible scenarios: F' is covariant in both variables, or F' is
contravariant in both variables, or F' is covariant in one variable and contravariant
in the other. We’ll consider the last; the proofs are almost identical in the other
cases.

So suppose F' is covariant in the first variable and contravariant in the second.
Let I°® be an injective resolution of A; in %7 and let P*® be a projective resolution
of As in %5. Let K*® be the first quadrant double complex defined by

KP4 = F(IP, P~9)
AP = F(d5,1p-a)dy? = F(110,dp" ).

We now consider the two spectral sequences associated with this double complex
to find:

II
Ippa _ F(I?,Az) ifq=0 e _ F(A,P7P) ifqg=0
! 0 otherwise 0 otherwise

Here, we used the fact that F}, and FI%_F are exact functors. Computing the second
page of both spectral sequences we get:

II
L [RPECLADAY ig=0 ", [RIF(A, )(A) ifg=0
5 = . 2 = :
0 otherwise 0 otherwise

So both sequences collapse on the second page on the 0** row, and since they both

must converge H*®(Tot(K)), we see that we must in fact have a natural isomorphism
RP(F(, A2))(A1) = RP(F(Ay, ) (Az)

O

But in fact it is very common for an abelian category to not have enough

projectives. The next result shows that we can still get some useful information

out of the covariant variable even in this case, and although it has nothing to do
with spectral sequences, this is probably the most appropriate place for it.

spectral—bi—functor‘ PROPOSITION 3.4.3. Let F : 1 — 6> — 2 be a right balanced bi-functor,

contravariant in the first variable and covariant in the second. Suppose also that
©> has enough injectives. Let J# be the class of objects P in €y, for which the
functor F(P,_.) is exact.

(1) For every short exact sequence
0— A — Ay > A3 — 0

in 61, and every object C' in 6, there is an associated long exact sequence

0 — F(A3,C) — F(A3,C) — F(A;,C) — R'F(As,_)(C) — R'F(Ay, _)(C) — R'F(A;, _)(C) — ...

In other words, the sequence of functors R*F(__, __)(C) from € to 9 s
in fact a contravariant cohomological &-functor.
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(2) Suppose that P® is a left # -resolution of A in €1. Then, for every object
C in 6>, we have a natural isomorphism

RUP(_,C)(A) = H-"(F(P",C))
PROOF. For the first statement, use (2.2.8)), and the fact that the sequence
0— F(A3,I) — F(Ay,I) —» F(A;,I) — 0

is exact for every injective object I in %5. If we had two exact sequences A and A’
in Exact(%71) and a morphism between them, and if I*® is an injective resolution of
C, then we have a diagram:

0 ——> F(A3,I°) — F(As,I°) — F(A,I°) —— 0

0 —— F(A},I°) — F(A,,I°) — F(A,,I°) —— 0
From this diagram and the §-functoriality of H®* : Ch ¥ — 2, we obtain the 4-
functoriality of the sequence R*F(__, __)(C).

For the second observe that R*F'(__, __)(A) and H~*(F(P*®,_.)) are both con-
travariant cohomological d-functors from %5 to 2. That the first is a d-functor
follows from part (1), and that the second is a §-functor follows from the fact that
F(P*,__) is an exact functor into Ch= 2. Now, when n = 0, they are both simply
F(A,_), and for n > 0 they are both effaceable, since they vanish on injective
objects. Hence we see that they must be isomorphic. O

REMARK 3.4.4. Many properties (right balancedness, contravariance, etc.) are
naturally dualistic in nature, and so we can replace them by their duals in the
Proposition to get the appropriate analogues. If the need arises in the future, we
will use these analogues without comment.

5. Cartan-Eilenberg Resolutions

So far we’ve only discussed resolutions of objects, but if, as remarked earlier,
we want to treat chain complexes as generalized objects, then we should also be
willing to consider resolutions of complexes as well. We will do exactly that in this
section, and in doing so, we will be able to define a

DEFINITION 3.5.1 (Cartan-Eilenberg Resolutions). An injective Cartan-Eilenberg
resolution of a complex C'® over & consists of an upper plane double complex I**
of injectives and a monomorphism € : C* — I%® such that the following conditions
hold:

(1) If C? =0, then the column I”* is also 0.
(2) For all ¢ > 0, the complex By is an injective resolution of B%(C'), and
the complex H;'? is an injective resolution of H%(C').

Dually, a projective Cartan-Filenberg resolution of a complex C'® over € consists
of a lower plane double complex P*® of injectives and an epimorphism € : P%* — C*®
such that the following conditions hold:

(1) If C? =0, then the column IP* is also 0.
(2) For all p € Z, the complex BY**(I) is an injective resolution of B?(C'), and
the complex H?"*(I) is an injective resolution of HP(C).
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From now on we will only state results for injective Cartan-Eilenberg resolution,
but will use their dual statements for projective ones without comment.

REMARK 3.5.2. It’s easy to see that we also have, for all p € Z, that the complex
IP* is an injective resolution of CP, and that Z7*(I) is an injective resolution of

zZP(C).
The next Proposition is a generalization of (|1.4.5]).

rtan—eilenberg—extension‘ PROPOSITION 3.5.3. Let C® and €'® be complexes over € and let I** and J**
be injective Cartan-FEilbenberg resolution of C* and C'®, respectively.

(1) Every morphism C®* — C'® can be extended to a morphism of I*® into J**
of double complexes. Moreover, this extension is unique upto homotopy of
double complezes.

(2) If two morphisms f, f' : C* — C'* are chain homotopic, then their exten-
sions from I*® to J** are also chain homotopic. In particular, any two
Cartan-FEilenberg resolutions of C*® are chain homotopy equivalent.

PROOF. O

n-eilenberg-construction PROPOSITION 3.5.4. Let € be a category with enough injectives. Then every
complex C* over € has a Cartan-Eilenberg resolution.

PROOF. O

6. Hypercohomology and the Grothendieck Spectral Sequence

truction-hypercohomology‘ THEOREM 3.6.1. Let F : € — 2 be a left exact functor between abelian cate-
gories, and suppose € has enough injectives. Then there is a cohomological univer-
sal §-functor

R°F:Ch"’%¢ — 2
such that the following conditions hold:
(1) ROF = HO(Ch F).
(2) For any complex C* € Ch=" and n > 0, we have
RFF(C%) ifp=n
0 otherwise.

WFwwvz{

(3) For any object A € €, and n > 0, we have

RP-"F(A) ifp>n
0 otherwise.

RPF(Aln]) = {

h=0

(4) For every complex C € C €, there is a first quadrant spectral sequence

{Ey : 7 >0} such that
RP(HY(C)) = EDY = RPTIF(C®).

DEFINITION 3.6.2. With the notation of the Theorem, we call R"F : Ch="¢ —
2 the right hyper-derived functors of F.

We of course have the dual version of this Theorem, which we will record below
without proof:
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nstruction-hyperhomology THEOREM 3.6.3. Let F' : € — 2 be a right exact functor between abelian
categories, and suppose € has enough projectives. Then there is a homological
universal d-functor

L*F: Ch="% — 2
such that the following conditions hold:

(1) LOF = HO(Ch F).

(2) For any complex C* € Ch="

and n <0, we have

LP~"F(C*) ifp<n

0 otherwise.

LPF(C[n]*) = {

(3) For any object A € €, and n <0, we have

LP~"F(A) ifp<n

0 otherwise.

LPF(Aln]) = {
(4) For every complex C' € Ch=%, there is a third quadrant spectral sequence
{E? : r >0} such that
LP(HY(C)) = EY? = LPTIF(C®).

We now come to one of the most useful gadgets in homological algebra: the
Grothendieck spectral sequence.

-grothendieck-left-exact THEOREM 3.6.4. Let G: € — D and ' : 9 — & be left exact functors between
abelian categories; suppose € and 2 have enough injectives and suppose that G
takes injective objects in € to F-acyclic objects in 9. Then, for every object A € €,
there exists a first quadrant spectral sequence {E® : r > 0} such that

(RPF)(RIG)(A) = EP9 = RPHI(FG)(A).

rothendieck-one-is-exact COROLLARY 3.6.5. If, with the notation and hypotheses of the theorem above,
G is in fact exact, then, for all n > 0, we have natural isomorphisms

(R"F)(GA) 2 R"(FG)(A).
If instead F' is exact, then we have natural isomorphisms:
F(R"G)(A) =2 R"(FG)(A).

PROOF. Indeed, the spectral sequence collapses on the 0*” row, since RIG = 0,
for ¢ > 1 (2.2.6)). For the second statement, we apply the same argument, but this
time to F. 0

REMARK 3.6.6. Observe that if F' is exact then we do not need any additional
hypotheses on G apart from left exactness: every object in & is F-acyclic in this
case. The content of the corollary is in the first identity.

endieck—two—compositions‘ COROLLARY 3.6.7. Let €, 2, 9’ and & be abelian categories, and suppose we
have left exact functors G : € — 92, G : € - 9", F: 92 — & and F' : 9" — &
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such that the following diagram commutes up to natural equivalence:

C —F— 9

G’ F
F/
D > &
Suppose also that €, 2 and 2’ all have enough injectives, that G and F' are in

fact exact, and, finally, that G takes injective objects to F-acyclic ones. Then, for
every object A € €, and every n > 0, we have natural isomorphisms

(R"F)(GA) = F'(R"G')(A)
PROOF. Since FG = F'G’, this follows from (3.6.5)). O

Of course there’s also a dual version of the Grothendieck spectral sequence. We
present it below.

THEOREM 3.6.8. Let G : € — 2 and F : 2 — & be right exact functors
between abelian categories, and suppose that G takes projective objects in € to F-
acyclic objects in 9. Then, for every object A € €, there exists a third quadrant
spectral sequence {E® : r > 0} such that

(LPF)(L'G)(A) =2 EY? = LPTY(FG)(A).
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CHAPTER 7

Sheaf Cohomology

We will be using the notation and the language of my notes on sheaf theory
[NOS, 7?7 ]. All our ringed spaces will be equipped with sheaves of commutative
rings.

1. Flabby and Injective Sheaves

In this section, we’ll discuss a class of sheaves that’s very important for the
study of the cohomology of sheaves. For the remainder of this section ¢ will denote
an abelian category.

DEFINITION 7.1.1. A sheaf Z is flabby if, for every inclusion of open sets
V—U,resyy : Z(U) — F(V) is surjective.

REMARK 7.1.2. It’s clear that if .% is flabby, and U C X is open, then Z|y is
also flabby.

The main result is the following one:

PROPOSITION 7.1.3. If %' € Shi(X, %) is flabby, then I'(U,__) preserves any
short exact sequence of the form:

O—n?\/—n?in?”—ﬂ)

PrOOF. We have to show that
0— F'(U) - FU) 2% 2"(U) -0
is exact.

Suppose s € ZF"(U). We want to find § € #(U) such that ¢y (s) = s. We
consider the set # = {(W,w) : W C Uw € F(W),¢w(w) = resyw(s)}, in
anticipation of the moment when we can bring down the sledgehammer of Zorn’s
Lemma.

Since ¢ is surjective, # is non-empty (and in fact quite large) by [NOS, L8] ].
Now, suppose (W, w) € #. Again, by [NOS,[A8]], if W # U, we can find another el-
ement (V,v) € #, with V"¢ W. Then, the element t= resw,vaw (w)—resy,yaw (v)
lies in ker gy = F'(VNW). Since %’ is flabby, we can find v’ € 7 (W)
such that resy vaw (w') = t. In that case, if we consider w — w’ € .#(W) and
v € F(V), then both have the same restrictions to .#(V N W). So we can patch
them together to find a section ¢t € % (V U W), which by the Identity Axiom has
to satisfy ¢vuw (t) = resy,yuw (s). So (V U W,t) is an extension of (W, w).

Now it’s time for the sledgehammer, which does the rest of the work for us. O

COROLLARY 7.1.4. With the notation and hypotheses as in the Proposition
above, .F is flabby iff F'' is flabby.

49
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ProoF. Follows from the Proposition and the commutativity of the following
diagram, for open sets V C U.

0— > F'U) —> FU) —=> F"U) —>0

0 ——> F (V) — FV) — F'(V) —— 0
The vertical arrow on the left is surjective. So by a diagram chase it’s clear that
one of the arrows on the right is surjective iff the other one is. O

The direct image functor preserves flabbiness.

PROPOSITION 7.1.5. If f : X — Y is continuous, and F € Shf(X,€) is flabby,
then so is f..% € Shi(Y,€).

PRrROOF. We have to show that if V' C U are open sets in Y, then the restriction
from (f.Z#)(U) to (f..Z)(V) is surjective, but this is just the restriction from
Z(f~YU)) to Z(f~1(V)), which is surjective, because .7 is flabby. O

PROPOSITION 7.1.6. Let (X, Ox) be a ringed space, and let .Z be an injective

Ox -module, that is, an injective object in Ox-mod. Then, for any Ox-module ¥,
the sheaf Hom, (¥, .%) is flabby. In particular, . is flabby.

PRrROOF. For any open subset U C X, consider the exact sequence
0—n¥9lv) =9 —i(9x\wv) =0,

where j : U — X and ¢ : X \ U — X are the inclusion maps. Applying
Homg,, (-, .#) to this sequence, we get another exact sequence

0 — Homg (i+(9|x\v),-¥) — Homeg (¥, ) — Homg, (Y|v, |v) — 0.

Since the morphism on the right is surjective, we find that Hom,, (¥,.7) is indeed
flabby. If we take ¥4 = Oy, then we get our second assertion. O

Both injectivity and flabbiness are local conditions. Before we show that, we
need a lemma, which we can think of as a local criterion for flabbiness.

LEMMA 7.1.7. A sheaf Z € Shi(X,¥) is flabby if and only if, for every open
subspace U C X, the natural morphism F — j(F|u) is surjective, where j : U —
X is the inclusion map.

PROOF. One direction is trivial; so assume .# — ji(%|y) is surjective, for all
open sets U C X. To show that .% is flabby, it suffices to show that the restriction
map I'(X, #) — I'(U,.F) is surjective, for all open sets U C X. Pick a section s
of .Z over U, and set

S ={(V,t): UCV, V CXopen, t e I'(V,7), t|ly = s}.

This is a non-empty set with a natural ordering, and it clearly satisfies the require-
ments for Zorn’s lemma to work. So let (V,t) be a maximal element of .. We
claim that V' = X. Suppose otherwise, and pick z € X\ V. Since %, — (ji(Z|v))s
is surjective, there is some open neighborhood W of z and a section ¢’ of .% over W
such that ¢’ |yaw = t|yaw. But then we can extend ¢ to a section of # on WUV,
which is a contradiction of the maximality of (V,¢). O
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PROPOSITION 7.1.8. Let # € Shf(X,%) be a sheaf, and suppose we have an
open cover {U; : i € I} of X.
(1) 7 is flabby if and only if F|u, is flabby, for alli € 1
(2) Suppose in addition that (X, Ox) is a ringed space and that F is an Ox -
module. Then .F is injective in Ox-mod if and only if F|y, is injective,
for alli e I.
PROOF. (1) The criterion in the Lemma above is clearly a local one, so
the assertion follows easily.
(2) First suppose that # is injective, and let U C X be any open subset.
Then we have isomorphisms

HOHl,ﬁU (*77 <g\|U) = Homg (j!(**)a g)a
where j, : U — X is the inclusion map. Since j is exact, this shows that
Z |y must be injective. Conversely, if .7 |y, is injective, for all ¢ € I, then,
for any ¥ € Ox-mod, the sheaf mﬁvi “\u,, Z|u,) is flabby, for all 4
(7.1.6). Hence, by part (1) Hom,, (¥,.7) is flabby also. But then the
functor Homg, (¢,.%) is the composition

Hom,, (=)

Ox-mod ~5=), A,

which is an exact functor, and so % must be injective.

O x-mod

2. Sections with Local Support

Sections with local support behave well in the presence of flabbiness.

PROPOSITION 7.2.1. If Z C X is a closed subset, F € Shi(X,€), and j : U :=
X\ Z — X s the inclusion map, then, if F is flabby, we have an exact sequence:
0— Hy(F) = F = ju(Flu) — 0.

Moreover, HY(F) is flabby.

PROOF. Most of the work was done in [NOS, I3 ]. So assume that .Z is
flabby. Then the statement follows immediately from the fact that the morphism
F (V) — F(VNU) is surjective for every open set V. C X. So in fact, the

sequence is exact as a sequence of presheaves. Given this, for any pair of open sets
V' C W, we have the following diagram:

0 ——=IyW,.7) = ITW,7) = I'(W,j(Flv)) —0

0 ——1I72(V.7) — I'(V,.7) — I'(V.ju(F|v)) — 0
where the rows are exact, and the two vertical arrows on the right and in the middle

are surjective. This implies that the arrow on the left is also surjective, and hence
HY%(.7) is flabby. O

PROPOSITION 7.2.2. If 0 — F#' — F — F"” — 0 is an exact sequence of
sheaves, and F' is flabby, then we have an exact sequence:

0—I'z2(U,F") - I'z(UF)— I7(UF")—0
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PROOF. Suppose #' is flabby; then by Propositions ([7.1.3]) and (7.1.5)), we see
that we have now the following diagram with exact rows, and with exact columns
on the right and in the middle:

0 0 0

00— I7(U,%)—TUZ)—TUj(F|y) —0

0 ——Iy(U%F) —TI'UZF)—TI'Uj(F|ly) ——0

0 ——=TI7(UZ") — I'(U,F") = I'U,j.(F"|lv)) —0

0 0 0
Then, it follows that the column on the left must be exact. ([

3. Cohomology of Sheaves
We fix a topological space X for this section.

DEFINITION 7.3.1. For any closed subset Z C X, the functor I'z(X,_) :
Shf(X, Ab) — Ab is a left exact functor, and so has right derived functors R"I'z(X, __).
For a sheaf .# € Shf(X, Ab) we define the n'" cohomology of X with support Z and
coefficients in F to be

HY(X, ) = R'T5(X, 7).

If Z = X, then I'x(X,_) is simply I'(X,__), and in this case we denote
HY(X,.Z) simply by H"(X,.#) and call it the n'" cohomology of X with coef-
ficients in F.

Before we do anything else, let’s prove something trivial, but very fundamental.

It will be used repeatedly without comment.

PROPOSITION 7.3.2. Let Z C X be a closed subset and let U C X be an open
one. Then, for all # € Shi(X, Ab), we have a natural isomorphism:

Hyz (U, Zlu) = R*(I'zru (U, ) (F)

PrOOF. Follows from (3.6.5)), since restriction to U is an exact functor, and
takes injective sheaves to flasque sheaves, by (7.1.6]). O

Cohomology is functorial in X.
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PRrROPOSITION 7.3.3. Let f : X — Y be a continuous map. Then, for every
sheaf F € Shi(Y, Ab), we have a natural morphism
H*(f) : H*(Y, %) — H*(X, [L%).
In particular, for every open subset U C Y, we have a natural morphism

H*(Y,7) — H*(U, Z|0).

PROOF. For the existence of H*(f), since both H®*(Y, __) and H*(X, f~!_) are
o-functors, with the first one universal, it suffices to build a natural map I'(Y, &%) —
I'(X,f~L.%). This is easy, since by definition, f~1.% is the sheafification of the
presheaf that assigns to U C X, the group

lim rw,z),
longrightarrow

VDO f(U)

and so carries a natural map from I'(Y,.#) into it. O

PROPOSITION 7.3.4. For every closed subset Z C X, every flabby sheaf in
Shf(X, Ab) is I'z(X, __)-acyclic.

PrOOF. We'll show that the class JZ of flabby sheaves satisfies the two con-
ditions of (2.3.3). Condition (1) there follows for flabby sheaves from (7.1.6) and
(7.1.4), and condition (2) follows from ([7.2.2). Hence we’re done. O

REMARK 7.3.5. Observe that the flabbiness of an 0x-module .% over a ringed
space (X, Ox) is independent of whether we are considering it an object in &'x-mod
or as a sheaf with values in Ab.

COROLLARY 7.3.6. Let X be a topological space and let .F € Shf(X,Ab) be a
sheaf of abelian groups over X. Let Z C X be a closed subspace.
(1) For any right flabby resolution 4° of & we have
Hz(X,7) = H"(I'2(X,9°)).
(2) Suppose that (X, Ox) is a ringed space and that F € Ox-mod. Consider
I'7(X,_) now as a functor from X-mod to Ab. Then we have
RnFZ(X7 **)(y) = Hg(va)
Proor. (1) follows immediately from (2.3.8) and (|7.3.4). (2) follows from (1)

and the fact that any injective resolution of .# in X-mod is a flabby resolution of
Z in Shf(X, Ab) (7.1.6). O

EXAMPLE 7.3.7 (Cohomology of S! with coefficients in Z).

4. Cohomology with Supports

In this section, we specifically consider cohomology with support in some closed
subspace of a topological space X. We'll find that it satisfies many properties
reminiscent of relative cohomology groups in topology, including excision and the
Mayer-Vietoris.

LEMMA 7.4.1. Let & € Shf(X, Ab) be a flabby sheaf and let Z C X be a closed

subspace. Then the following sequence is exact:

0-Iz(X,#)->TX,#)—->T(X\Z,%)—0.
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PROOF. The sequence is obtained simply by applying the global sections func-
tor to the exact sequence (7.2.2))

0 HY(F) - F — j(Flx\z) — 0,

where j : X\ Z — X is the inclusion. Since flabby sheaves are I'(X, __)-acyclic, the
result follows. O

1-support-long-exact-seq PROPOSITION 7.4.2. For every % € Shf(X, Ab) and every closed subspace Z C
X, there exists a long exact sequence

PRrROOF. Follows from the lemma and (2.2.8)). O
f—local—support—excision‘ PROPOSITION 7.4.3 (Excision). Let Z C X be a closed subspace and let F €

Shf(X, Ab) be a sheaf. Suppose V. C X is an open subspace such that Z C V.
Then, for all n > 0, we have natural isomorphisms

PRrROOF. Consider the composition
lv I'z(V,-)
G : Shf(X, Ab) — Shf(V, Ab) -———5 Ab.

Since restriction takes flabby sheaves to flabby sheaves and is an exact functor, we
can apply (3.6.5) to conclude that we have

HY(V, Z|v) = R"G(F).

We'll be done now if we show that G(.#) = I'z(X,.#). For this consider the natural
map I'z(X,.F) — I'z(V,%#). Since Z C V, this is clearly injective. Suppose
s € I'z(V,F); then we can extend it to a section over X simply by gluing it
together with the zero section over X \ Z. This shows surjectivity and finishes the
proof. ([

The next result will be useful for some Mayer-Vietoris type results for sheaf

cohomology.
-support-union-intersect ‘ PROPOSITION 7.4.4. Let Z1,Zs C X be two closed subsets, let U; = X \ Z;, for
i =1,2. Then, for a flabby sheaf F € Shf(X, Ab), we have exact sequences

ﬂ : (81782)

a:s— (s,s

0 —= I'(U, UUs, ) U, %) & (U, F) = 17 92) by, ) — 0

and

s (s

0 ——> Iy nz (X, F) 2L, (X, F) @ Iy (X, F) (51,82) = (51— 82) Iz02,(X, F) ——> 0
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PRrROOF. We have the following diagram with exact rows:
0 0 0

0—>F21022(X,5Z) —>F(X,ﬂ‘) —>F(U1UU279) —>0

00— I'zuz,(X, %) —— = I'(X

1-support-mayer-vietoris

n-filtered-colim-acyclic

F) s (U, NV, F) ———> 0

0 0 0

The column in the middle is trivially exact, and the column on the right is exact
by the sheaf axiom and the flabbiness of .# Therefore, the column on the left must
also be exact. (]

PROPOSITION 7.4.5. Let Z1,Zs C X be two closed subsets, let U; = X \ Z;, for
i1 =1,2, and let F € Shf(X, Ab) be any sheaf. Then we have a long exact sequences

= HY,07,(X, F) = Hy (X, F)OHL,(X,F) — H,47,(X, F) — Hyl 5, (X, F) — ..

and

.= Hn(UlLJUg,y) — Hn(Ul,y)@Hn(UQ,y) — Hn(UlﬂUg,y) — H71+1<U1UU2,9) — ...

PRrROOF. Follows from the Proposition above and (2.2.8]). O

5. Sheaves on Noetherian Spaces

LEMMA 7.5.1. Let X be a Noetherian topological space, and let I be a filtered
category. Then for any functor F : I — Shf(X, Ab), the presheaf

U — colim(.%;(U))
is already a sheaf, where for an object i € I, we denote the sheaf F (i) by F;, is
already a sheaf. In other words, we have
I'(U, colim .%;) = colim(I'((, %;)U)),
for every open set U C X

PROOF. Let the presheaf in question be denoted 4. We’ll denote the maps in
the directed system by ¢ ; : Fr, — F;. Suppose U is an open set in X and V = {V;}
is a weak covering sieve of U. We want to show that the natural map 4(U) — V(¥)
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is an isomorphism. Since X is Noetherian, U is quasicompact [NS, B3], and we
can find a finite subcover {Vi,...,V,,} of ¥ for U.

Let’s show injectivity first: suppose s € 4(U) is such that resyy,(s) = 0, for
i=1,...,n. Let s be represented by ¢t € .Z;(U), for some k. Then, there is some
I > k (by which we mean there is a morphism k — [) such that ¢y, (resy,v; (¢)) = 0,
for all 4. This then means that ¢, (t) = 0 in .7 (U), and so s = 0 in ¢(U). This
shows that the presheaf ¢ is separated.

Now, on to surjectivity: suppose we have s; € 4(V;) such that resy, v,nv, (s;) =
resy; vinv; (85) € 4(V;N'Vj), for all 4, 5. Since the presheaf is separated, it suffices
to piece together an s € 4(U) from s; for i = 1,...,n. So we can find k such that
for all i = 1,...,n, we have t; € F,(V;) representing s;, such that they form a
coherent sequence for %, over the weak covering sieve generated by the open cover
{V1,...,V,}. Since %} is a sheaf, we can piece the t; together to get a section ¢ of
Fi over U. It’s easy to check now that the image of ¢ in ¢ (U) restricts to each of
the S O

LEMMA 7.5.2. Let X be a Noetherian space and suppose F : I — Shf(X, Ab)
is a functor from a filtered category I, with %#; flabby, for all objects i in I. Then
colim .%; is also flabby, and in particular is I'z(X, __)-acyclic, for all closed subsets
ZCX.

Proor. Using the lemma above, this reduces to the fact that colimits of abelian
groups preserve surjections, which is of course true. ([

ProproOSITION 7.5.3. Let X be a Noetherian topological space, let Z C X be a
closed subspace, and let & : I — Shf(X, Ab) be a functor from a filtered category
1. Then, for every n > 0, we have natural isomorphisms

H7(X,colim %;) = colim H (X, .%;).

PROOF. Since Shf(X,Ab) and Ab are both Grothendieck categories, we see
that Funct(I, Shf(X, Ab)) is also a Grothendieck category. In particular, it has
enough injectives, and the colimit functor colim : Funct(Z, Shf(X, Ab)) — Shf(X, Ab)
is exact. Therefore, the Proposition will follow from and the lemma above,
if we show that there is a natural isomorphism:

I'z(X,colim.%;) = colim I'z(X, .%;).

First we will show that the functor H%(__) commutes with colimits. For this observe
that we have a natural morphism

colim(HY (%)) — HY(colim .Z;).

We now counsider the action of this morphism induced on stalks. When = ¢ Z, then
the stalk at = of both sheaves involved is zero; so we can assume that x is in Z. In
this case, since stalks commute with colimits, we have
colim(HY (%)) = colim(HY (%))
= colim
TOBEDONE
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LEMMA 7.5.4. Let X be a topological space, and suppose Y,Z C X are closed
subsets. If & € Shi(Y, Ab) is a sheaf of abelian groups over Y, then, for all n, we
have a natural isomorphism

Hzny (Y, F) = Hz(X, i 7),
where i : Y — X is the inclusion map.

Proor. Follows from (3.6.5)), since i, is exact and takes injective sheaves to
flabby sheaves by ([7.1.6) and (7.1.5)). (]

We now come to the main result of this section: the Vanishing Theorem of
Grothendieck. It’s quite a strong result with a strikingly simple proof. Before that,
a definition.

DEFINITION 7.5.5. The homological dimension of a topological space X is de-
fined to be the quantity

sup{I'(X,__) —dim(.#) : .Z € Shf(X, Ab)}.
It is either a non-negative integer or oo.

THEOREM 7.5.6 (Grothendieck’s Vanishing Theorem). Let X be a finite dimen-
sional Noetherian topological space, with dim X = n, and let Z C X be a closed
subspace; then, for every sheaf % € Shf(X, Ab), we have H(X,.%#) =0, forr > n.
In particular, the homological dimension of n is at most n.

PROOF. The proof will be Bourbakiesque; that is, in several steps, each of
which cuts away at the complexities of the problem, till, at the end, the statement
that we have to actually prove becomes an obvious fact. We’ll do a double induction
on the number of irreducible components and on dim X.

Reduction to the case X irreducible: Suppose the Theorem is true for
an irreducible space. Let Y C X be an irreducible component of X and
let U = X \ Y. Then, for every sheaf .# € Shf(X, Ab), we have an exact
sequence

0= j(Flv) = F —i(Fly) =0

Using the long exact sequence associated to this short exact sequence,
and observing that j,(.Z|y) is a sheaf supported on W = U, where Z has
one fewer irreducible component than X, we use induction on the number
of irreducible components and to reduce to the case where X is
irreducible.

The Base Case: So now we can suppose that X is irreducible. Suppose
dimX = 0; then the only closed subsets of X are X and (), and so the
only open subsets of X are X and (). We see then that either Z = () and
I'z(X,__) is the 0 functor, or Z = X and Shf(X, Ab) is isomorphic to
Ab via the functor I'(X, __). In particular, I'(X,__) is exact, and so the
homological dimension of X is 0.

Reduction to the Finitely Generated case: Now suppose dim X =n >
0 (assuming still that X is irreducible), and let % € Shf(X,Ab) be
a sheaf. Set ¥ = Jycx I'(U,#), and let I be the poset of finite
subsets of .. Considering this as a filtered category, take the functor
% . I — Shf(X, Ab) that takes i € I to the subsheaf ¥; of .# generated



7. SHEAF COHOMOLOGY

by all the sections inside ¢. Then we see that % = colim¥;, and so by

(7.5.3]) we have
H7 (X, colim¥;) = colim H;(X,%;).

In particular, it suffices to show that H(X,.#) = 0, for all sheaves of
finite type over X, and for all r > n.

Reduction to the Case of One Generator: Now suppose .% is a sheaf
generated by 7 sections, and let .#’ be a subsheaf of .# generated by r — 1
sections; then we have an exact sequence

0% - F -9 —0,

where ¢ is generated by one section over some open set U C X. Looking
at the long exact sequence of cohomology associated to this sequence, and
using induction on the number of generators, we find that it is enough to
do the case where . is generated by one generator.

Reduction to the Case of Ideal Sheaves: In this case, there is some open
subset U C X such that .Z |y is a quotient of Z;;. Moreover, we also have
I'(V,#) =0, for V¢ U. Therefore, .Z is in fact a quotient of ji(Z),
where j : U — X is the inclusion map. From the long exact sequence
associated to the short exact sequence

00— — i(Zy) — F — 0,

we reduce to the case where .# is a subsheaf of 4 = ji(Z;;), for some open
subset U C X.

Reduction to the case .% = j(Z;): Let .# C ¢ be a subsheaf. If .# = 0,
then we’re done; otherwise, let d € N be the smallest positive integer such
that ., = dZ (where we consider Z to be the local ring of Zy at z). Now,
Y|y = Zy is a constant sheaf on U, since U is irreducible. Therefore, we
can find a neighborhood V' 3 x contained in U such that |y = dZy.
That means that we have the following short exact sequence:

0—jl(Zy) =" = 5" =0,
where j' : V' — X is the inclusion map, and where .#” is supported on
U \ V, which is contained in the proper closed subset Y = X \ V of X.
Since dimY < n, using the long exact sequence of cohomology obtained
from this short exact sequence, and induction on the dimension, we reduce
to proving the vanishing theorem for the case where .# = ji(Z,;) for the
inclusion j : U — X of some open subset into X.

The case ¥ = ji(Zy): Let Y = X\ U, and let ¢ : Y — X be the inclusion
map. Then we have an exact sequence

0— j1(Zy) = Zx — i(Zy) — 0

Since Y & X (we can of course assume that U # (), for otherwise we are
trivially done), dimY < dim X, and so by the induction on dimension
we see that the homological dimension of Y is at most n — 1. Since X
is irreducible Zy is the constant sheaf, and is thus flabby, and hence
I'z(X, _)-acyclic. Putting these two facts together with the long exact
sequence of cohomology arising from this short exact sequence, we see
that H (X, j1(Zy)) = 0, for r > n.

O
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REMARK 7.5.7. Note the analogy of this proof with the characterization of the
global dimension of a ring R (in increasing order of strength) in terms of finitely
generated R-modules and then in terms of the ideals of R.

6. Cech Cohomology

The quickest way to get a computable cohomology of sheaves is via Cech co-
homology. Unfortunately, this does not always agree with the cohomology theory
obtained above from more abstract homological concerns. But in nice cases (say,
for a separated scheme, or for a topological manifold) it does give the same answers.

Let V ={V;: i € I be an open cover of a topological space X, and suppose I
has a total ordering. For each p > 0, set

oP(I) = {(io, .- -,ip) € TP g < iy < ... <ip},
and for all J = (ig,...,p) € oP(I) set
P
Vi={Vi.
r=0

For every 0 < k < p+ 1, we have a map

T} 1P (V) — o(I)

(iOa s 7ip+1) = (Z.OD s 7%]€7 s 72.17-"-1)'
For 0 <1 < k <p+1, these maps satisfy the formula

PP = P p
Now, for # € Shf(X, Ab), set
crw,.7) =[] rw,#).
Jeor(I)

An element s € CP(V,.7) is given by a collection of sections sy € I'(Vy, %), for all
J € oP(I). We now define an ostensible differential

d?: CP(V,.F) — CPTH(V, %)
(@s);= Y (=DFspy  for Jeo?TH (V).
0<k<p+1

By s;#(7), we of course mean s,»(y) restricted to Vy, but we omit this additional
information for convenience. To check that this is in fact a differential we compute,
for J € aP2(V),

@ ds); = 3 (CDRs) e

0<k<p+2
k l
= Z (=1 Z (1) Sep(rPTL())
0<k<p+2 0<I<p+1
— k+1 k+1
N Z (D™ s ey + Z A )
0<I<k<p+2 0<I<k<p+1

:0’
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since every summand in the sum on the right hand side has a counterpart in the
sum on the left hand side that differs from it only in sign. This follows from the
formulas for 7} that we found above.

REMARK 7.6.1. For convenience, take the following convention: for any ordered
(p + 1)-tuple (io,...,3p) € oP(I), any map « : [p] — [p], and any element s €
CP(V, F), we set

B (_1)sgn(a)s(i0 ’’’’’ i) if a is a bijection
S(alio).-.alip)) 0 otherwise.

DEFINITION 7.6.2. Given an open covering V = {V; : i € I} of a topological
space X, and a sheaf .# € Shf(X, Ab), the Cech complex of .F over V is the complex
c*\V,.7).

The cohomology H*(C(V,.%)) of this complex is called the Cech cohomology
of .7 over V, and is denoted H*(V,.%).

We also define a sheaf theoretic version of the Cech complex. For p > 0, and a
sheaf .7 € Shf(X, Ab), set

ow,.z) = I (@),
JeoP(I)

where, for every open subset U C X, fU : U — X is the inclusion map. Observe
that we have:

ruw,criv,7)=c*r(vnu,Zly).
Therefore, the graded sheaf C'*(V,.%#) has a structure of a complex of sheaves.

LEMMA 7.6.3. Let .% € Shi(X, Ab) be a sheaf of abelian groups over a topo-
logical space X, and let V = {V; : i € I} be an open cover for X. Then the
complex

0—.7 5 co(v,f) - C'WV,.7) —
is exact in Shf(X, Ab), where € — C°V,.F) is the product of the natural
restrictions.

PROOF. It’s enough to show exactness locally; more precisely, we’ll show that
for every k € I and every open set U C Vj, the complex

0—IUZ)—-C'VnU,Z)—C'(VNU,F)—
is exact. For this, consider the maps
R CP(VNU,ZF)— CP Y (VNU,ZF)
(hPs) s = s Uik} for J € o?~1(I).
Here we take 071(I) = 0 and C~'(VNU) = I'(U,.F). We have, for s € CP(V N
U, %), and J € oP(I),

(@' W2+ 1P dP)s) = > (=17 (BPs) -1y + (@) s0a)

0<r<p
= D (Wspgumt 2 CD'spuumy
0<r<p 0<t<p+1



sheaf-cech-derived-agree ‘

6. CECH COHOMOLOGY 61

Now we come to the main theorem.

THEOREM 7.6.4. Let X be a topological space, and let # € Shf(X,Ab) be a
sheaf of abelian groups over it. Suppose V = {V;: i € I} is an open cover such that
F is I'(Vy, _)-acyclic, for all J € oP(I), and for p > 0. Then there is a natural
isomorphism

(v, 7) = H*(X, 7).

Proor. We will use the Grothendieck spectral sequence. Consider the se-
quence of functors:

co Vv,
—_—

Shf(X, Ab) ), cn=0 Ab 2 Ab.

We claim that C*(V,_.) takes flabby sheaves to acyclic complexes in Ch=° Ab.
Indeed, if .# is flabby, then C'*(V,.#) is just the complex obtained from applying
the global sections functor to C*(V,.#), which according to the lemma above is
an acyclic complex of flabby sheaves. Since exact sequences of flabby sheaves are
preserved by the global sections functor, we have our claim.

Moreover, observe that we have HO(C*(V,_.)) = I'(X,_). This is just the
sheaf axiom.

Given this, we're in a position to apply Grothendieck’s spectral sequence, to
conclude that we have a spectral sequence {Ey} such that

HP(RY(C*(V,_))(Z)) = EY? = HPYI(X, 7).
In particular, we have a natural surjection
H"(V,F) = H"(R*(C*(V,))(F)) — H"(X, F),
whose kernel lies in By~ >' = H"2(R! (C*V, I)(F))-.
It remains to compute the derived functors of the Cech complex functor. For

this, take an injective resolution .#* of %, and consider the double complex K** =
C*(V,.7*). We have

(RP(C*(V, - N(£))" = H{ (K)

11 #w, 7

Jeor(I)
—0, ifg>0.

We applied our hypothesis on the local acyclicity of .% in the last equality. From
this we find that the kernel of the natural surjection is in fact zero, and so we have
the isomorphism promised to us in the Theorem. (Il

EXAMPLE 7.6.5 (Cohomology of A? — {(0,0)}). Let U = A% — {(0,0)} be
the complement of the origin in the affine plane. Then U has a covering by the
principal affine opens Uy = Spec k[, y], and Us = Spec k[z, y],. Let’s compute the
Cech complex of 0y corresponding to the open cover V = {U;, Uy} of U. We have

OV, Oy) = klz,y, x4 x k[z,y,y7")
C\(V, Oy) = klz,y, x4,y ]
L., o) — YV, oy)

(f(z,y,2~ 1) 9(@,y,y7) = (fe,y,27 1) = gz, y,271)C™(V, 0p) =0, forn>1,
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The image of d' consists of all linear combinations of monomials x%y’, where at
least one of ¢ or j is non-negative. Therefore, we find that

HY(U,0p) = H'(V, Oy)
is an infinite dimensional vector space over k spanned by the images of the mono-

mials 2'y?, where i,j < 0.

Observe that we didn’t use the acyclicity condition on .# right till the end of
the proof of the Theorem. In particular, we did not use it to construct the spectral
sequence. We extract this spectral sequence from the proof.

PROPOSITION 7.6.6 (The Cech Cohomology Spectral Sequence). Let X be a topo-
logical space, let V ={V;: i € I} be an open cover of X, and let F € Shf(X, Ab)
be a sheaf of abelian groups over X. For n > 0, let H"(F) be the presheaf on
X gwen by U — H™(U, %|u). Then we have a first quadrant spectral sequence
{E7 : r >0} such that

HP(C*(V,HY(ZF))) = EY?! = HPT(X, 7).
Proor. We have already shown that there is a spectral sequence boundedly
converging to HPT4(X.%), on whose second page we have
EP? = HP(RYC*(V, -))(F)).

It remains to compute the derived functors of the Cech complex functor. We can
consider the Cech complex functor to be the composition:

ShE(X, Ab) 5 Pre(X, Ab) <-Y=), 20 Ap.

Since the Cech complex functor is clearly exact on Pre(X, Ab), we have by (3.6.5)):
RUC*(V, ))I(F) = C*(V, RYi(F)).
So what we really need to do is compute the right derived functors of the forgetful

functor i. But, by taking a flasque resolution .#° of .7, it’s easy to see that we
have

I'U,RY(F)) = HI(I(U,.7*))
- Hq(va‘U)

7. Ext Groups

There are two other fundamental left exact functors on the category ¢'x-mod,
for aringed space (X, Ox ). These are the functors Homg, (#, ) and Hom, (7, ),
for some fixed &x-module .. We will investigate their derived functors in this sec-
tion and construct a spectral sequence relating the derived functors of the pair.

DEFINITION 7.7.1. Let (X, Ox) be a ringed space. For &x-modules .# and ¥,
we define, for n > 0,

EXt%;X (j’ g) = EXt%x—mod (ﬁa %)
Extg, (#,9) = R"(Homg yoa(F,-))(¥).

Here are some preliminary properties of and relations between the two derived
functors.
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PROPOSITION 7.7.2. Let (X,0x) be a ringed space, and let F and 4G be Ox -
modules.

(1) For every open subset U C X, we have natural isomorphisms
Exty (F,9)|v = Exty, (Flv,9|v).
(2) If F = Ox, then we have
BExty (Ox,9) = H"(X,9).
Y ifn=0
Exty, (Ox,9) =
Exty (0x,9) {0 otherwise.

PRrROOF. In (1), both ¢ functors are clearly effaceable for n > 0, since /|y is
injective for any injective sheaf .# (7.1.8)) and agree in degree 0; hence they are
isomorphic. For (2), just note that we have

Homg, (Ox,9) = I'(X,9).
Hom, (Ox,9)=9.

Here’s a useful spectral sequence that relates Ext and Ext.

ProrosITION 7.7.3 (Local Ext Spectral Sequence). Let Z and ¥ be Ox-modules;
then we have a first quadrant spectral sequence {E® : r > 0} such that

HP(X,Ext), (F.9)) = E}? = Extl {(7,9).
PROOF. Observe that we have
Homg, (F, ) =2 I'((,Hom, )7, ).

Moreover, for every injective sheaf .#, Hom, (.7,.7) is flabby by (7.1.6). Now the
proposition follows from Grothendieck’s spectral sequence ((3.6.4)). (]

Now we look at how these functors behave when tensored with locally free
sheaves of finite rank. This will prove helpful when we consider the cohomology of
quasi-coherent sheaves over projective space.

PROPOSITION 7.7.4. Let F and & be Ox-modules, and let & be a locally free
Ox -module of finite rank, and let & be its dual.

(1) For every injective sheaf Z, & Qg & is also injective.
(2) We have natural isomorphisms:

Exty, (F ®&,9) 2 Exty (F,629)
Exty (F ® &,9) 2 Exty (F,6©9)
= Exty (F,9)® 8.
PRrROOF. For (1), just note that we have natural isomorphisms
Homg, (#,8 ®ey #) =2 Homg, (F,Home, (L, 7))
>~ Homg, (F @ %L, .9),

and the last functor is clearly exact in 7.
For the first or second isomorphisms in (2), observe that on either side of the
isomorphism we have §-functors agreeing in degree 0, both of which are effaceable,
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the first, quite trivially, and the second by part (1). For the last isomorphism, we
only need to check that we have
Hom, (#,9)® F = Hom, (¥ ®&,9).

There is a natural morphism in one direction, and it’s easy to check locally on open
sets where & is free that this is indeed an isomorphism. O

PROPOSITION 7.7.5. Let % be an Ox-module, and let &° be a left resolution
of F by locally free Ox-modules of finite rank. Then, for every Ox-module 4, we
have natural isomorphisms

Exty (#,9)= H "(Hom,, (6°,9)).
PROOF. Follows from ([3.4.3), since Hom, (&, ) is an exact functor, for every

locally free 0x-module & (locally it is isomorphic to the functor that takes ¢4 to
@™, for some n > 0). O

The next Corollary shows that Ext preserves coherence and quasicoherence
under some conditions that are common in geometric situations.

COROLLARY 7.7.6. Let % and 4 be Ox-modules; suppose that X is Noether-
ian, and that Ox and % are coherent Ox-modules.

(1) If 9 is also coherent, then Exty, (F,9) is also coherent.
(2) If Ox-qcoh is a Serre subcategory of Ox-mod (for example if X is a
scheme), then Exty, (F,9) is a quasi-coherent sheaf.

PROOF. The main point is that when Ox is coherent and X is Noetherian,
every coherent Ox-module has a local resolution by locally free &x-modules of
finite rank. This is quite easy to see from the definition of coherence: for any point
x € X, we can find a neighborhood U of x and some free sheaf &° surjecting onto
F|uy. Now the kernel of this is again coherent, and hence has some other locally
free sheaf surjecting onto it on a smaller neighborhood of . Proceeding in this
fashion, since X is Noetherian, we can find some smallest neighborhood W of x on
which we have a free resolution of .# |y . Replacing X with W, we can assume that
Z has a free resolution over X.

Now, let &° be a locally free resolution of .%; then by the Proposition we have

Exty (Z,9) = H "(Hom, (&°,9)).

If & is coherent, then Hom, (&£°,%) is a complex of coherent sheaves, and hence its
cohomology is also coherent. If Ox-qcoh is a Serre subcategory, then it contains its
kernels and cokernels, and moreover Hom, (&*,%) is a complex of quasi-coherent
sheaves. Hence its cohomology sheaves are also quasi-coherent. O

COROLLARY 7.7.7. Let % and 4 be Ox-modules; suppose that X is Noetherian
and also that Ox and F are coherent Ox-modules; then, for every x € X, we have
natural isomorphisms

Exty (F,9), = Exty (F2,9:).
PROOF. Since # and Ox are coherent, there exists a neighborhood U around

every € X and a resolution &° of & |y by free sheaves of finite rank. Replacing
U by X, we have by the Proposition above:

Exty, (F,9) = H "(Homg, (6°,9))
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Taking stalks at x on both sides and observing that this is an application of an
exact functor, we have

Exty, (7,9). = H™"(Homg, (&7, %))
= Exty (Fe, %)

where we have used the isomorphism
Homg, (6°,9), = Homg, (&, %)

that is obtained from the fact that & is free of finite rank and hence finitely
presented, for all n < 0. The second isomorphism follows from the fact that & is
a projective resolution for %, in Ox-mod. ]

8. Higher Direct Images

DEFINITION 7.8.1. Given a continuous map f : X — Y of topological spaces,
the direct image functor f, : Shf(X,Ab) — Shf(Y, Ab) is a right adjoint and is
hence left exact. We call its derived functors R"™ f, the higher direct images of f.

PrOPOSITION 7.8.2. Let f : X — Y be a continuous map, and let F €
Shf(X, Ab) be a sheaf. Then, forn > 0, R™f..F is the sheafification of the presheaf
that assigns to every open subset U C 'Y, the group H"(f~*(U),.F).

PROOF. Let G* : Shf(X, Ab) — Pre(Y, Ab) be the J-functor that assigns to
every sheaf .7, the presheaf U — H*(f~'(U),.Z|p-1(;y). Consider now the 4-
functor Shf ¢° : Shf(X, Ab) — Shf(Y, Ab): this is a d-functor, since Shf is exact.
Moreover, we have Shf %Y = f,: therefore it is enough to show that Shf ¥" is
effaceable, for n > 1. For this, let .# be any injective sheaf over X; then 7|1y
is still injective for all open subsets U C Y , and so we find that ¥".# = 0,
for n > 1, which shows effaceability. O

COROLLARY 7.8.3. Let f: X — Y be a continuous map.

(1) Any flabby sheaf over X is f.-acyclic.
(2) For any sheaf F € Shf(X,Ab) and any flabby resolution 4°* of F, we
have natural isomorphisms

R*f.7 = H*((Ch f.)(¥4*)).

(3) If f : (X,0x) — (Y, Oy) is a morphism of ringed spaces, then the derived
functors of the direct image functor

f+ : Ox-mod — Oy -mod
agree with R® f,.

PrOOF. (1) follows from the Proposition and (2) follows immediately from (1)
and (2.3.8] For (3), just note that any injective resolution in €x-mod is flasque in

Shf(X, ADb) by (7.1.6). O

We finish this section with a look at the Leray spectral sequence for higher
direct images. Like most of the spectral sequences we’ve seen before, this will be a
special case of the Grothendieck spectral sequence.
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PROPOSITION 7.8.4 (Leray Spectral Sequence). Let f : X — Y be a continu-
ous map, and let Z C'Y be a closed subset; then, for every sheaf & € Shf(X, Ab),
we can naturally associate a first quadrant spectral sequence {E® : r > a} such that

HY(Y,Rf.7) = EYy? = H{TT (X, 7).

PrOOF. Observe that we have I'y-1(5) (X, #) = I'z(Y, fu.#). To see this,
observe that both sides of the identity are isomorphic to the kernel of the restriction
map [(X,F) — [(f (X \ Z), 7).

Now the statement follows from ({3.6.4)), and the fact that f,. takes flabby sheaves
to flabby sheaves (|7.1.5)). O
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