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CHAPTER 1

Chain Complexes

chap:chain
1. Basics

We use the cohomological representation of chain complexes. To translate to
the homological picture, just lower all indices and change them to their negatives.
We’ll also use standard homological lemmas like the Snake Lemma or the 5-lemma
without comment, because by now we don’t give a fuck for their proofs.

Definition 1.1.1. A chain complex C• in an abelian category C is a Z-indexed
set {(Cn, dn

C) : Cn ∈ ObC , dn
C ∈ C (Cn, Cn+1)}, satisfying the condition that

dn
C ◦ d

n−1
C = 0.

We usually picture a chain complex as a chain of morphisms

C• : . . .
dn

C−−→ Cn+1 dn+1
C−−−→ Cn+2 → . . .

The morphisms dn
C are called the boundary maps or the differentials.

Note on Notation 1. We will usually use dn as a generic signifier for bound-
ary map for any chain complex. We might also omit the subscript n sometimes.
Things should be clear from the context.

Definition 1.1.2. A morphism or a chain map between two chain complexes
f• : C• → D• in C is a collection of morphisms {fn : Cn → Dn} such that,
for every n ∈ Z, fn ◦ dn−1

D = dn−1
C ◦ fn−1. In other words the following diagram

commutes for every n:

. . .
dn−2

> Cn−1 dn−1

> Cn dn

> . . .

. . .
dn−2

> Cn−1

fn−1

∨
dn−1

> Cn

fn

∨ dn

> . . .

It’s easy to see that the composition of two chain maps is also a chain map.
This gives us a category ChC of chain complexes and chain maps in C . It’s easy
to see that this is an additive category. For example, the direct sum of two chain

complexes C• and D• is just {Cn ⊕Dn,

(
dn

C 0
0 dn

D

)
}.

chain-dual-isomorphic Remark 1.1.3. Observe that Ch C is isomorphic to ChC op. Indeed, we can
define a functor F : ChC → ChC op that takes a complex and reverses all arrows
and reindexes the complex by setting F (C)n = C−n. We see immediately that this
gives us an isomorphism of categories
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6 1. CHAIN COMPLEXES

Now, suppose we had a chain map f• : C• → D•. Consider the following
commutative diagram:

0 0 0

Kn−1
∨

.......................
d̃n−1

> Kn
∨

...................
d̃n

> Kn+1
∨

Cn−1

ker fn−1

∨
dn−1

> Cn

ker fn

∨ dn

> Cn+1

ker fn+1

∨

Dn−1

fn−1

∨
dn−1

> Dn

fn

∨ dn

> Dn+1

fn+1

∨

Ln−1

coker fn−1

∨
.........................

d̃n−1

> Ln

coker fn

∨
....................

d̃n

> Ln+1

coker fn+1

∨

0
∨

0
∨

0
∨

where we get the dotted maps among the kernels and the cokernels because of their
universal properties. For example dn

C ◦ d
n−1
C ◦ ker fn−1 = 0 and so dn

C ◦ ker fn−1 :
Kn−1 → Cn factors through ker fn via the dotted map d̃n−1. We see also from this
that

ker fn+1 ◦ d̃n ◦ d̃n−1 = dn
C ◦ ker fn ◦ d̃n−1 = dn

C ◦ dn−1
C ◦ ker fn−1 = 0.

Since ker fn+1 is monic, we see that d̃◦ d̃ = 0. A similar computation works for the
cokernels.

So we have chain complexes K• and L•, with chain maps K• → C• and
D• → L• given by {ker fn} and {coker fn} respectively.

Proposition 1.1.4. With the notation as above, the chain map K• → C• is
the kernel of f . Similarly, the map D• → L• is the cokernel of f .

Proof. Easy. �

Definition 1.1.5. A chain complex C• is bounded below if there exists s ∈ Z
such that Cn = 0, for n ≤ s. It is bounded above if there exists s ∈ Z such that
Cn = 0, for n ≥ s. It is bounded if it is bounded both above and below.

We denote the full subcategory of ChC that consists of the bounded below
(resp. bounded above, resp. bounded) chain complexes by Ch≤ C (resp. Ch≥ C ,
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resp. Chb C ). For s ∈ Z, we denote by Ch≥c C (resp. Ch≤c C ) the category of
chain complexes over C with Cn = 0, for n < c (resp. n > c).

Proposition 1.1.6. The category ChC (or Ch≤ C , Ch≥ C , Chb C , Ch≥s C ,
or Ch≤s C ), is an abelian category.

Proof. It only remains to show that for a monic map f , we have ker(coker f) =
f , and for an epi g, we have coker(ker g) = g. From Proposition above, we see that a
map f is monic iff each fn is monic, and similarly g is epi iff each gn is epi. Now, the
statement follows immediately from the corresponding one for the abelian category
C , since ker(coker f)n = ker(coker fn) = fn, and similarly for coker(ker g)n. �

Remark 1.1.7. Observe that, for every n ∈ Z we have a natural embedding
of C into ChC that takes every object A to the complex A[n]•, with A[n]r = 0,
for r 6= n, and A[n]=A, with 0 boundary maps everywhere. In a sense, to be made
precise later, complexes are like generalized objects.

2. Cohomology and the Long Exact Sequence

Consider, for a chain complex, C•, the morphisms ker dn : Zn → Cn and
im dn−1 : Bn → Cn. Since dn ◦ dn−1 = 0, we see that im dn−1 factors through Zn,
giving us an exact sequence

0→ Bn im dn−1

−−−−−→ Zn coker(im dn−1)−−−−−−−−−→ Hn → 0.

Definition 1.2.1. The nth cohomology of a chain complex C• is the codomain
of coker(im dn−1) in the exact sequence above, and it is denoted by Hn(C).

If f : C• → D• is a chain map, then it’s not hard to see that f induces
maps Bn(C)→ Bn(D) and Zn(C)→ Zn(D), giving us the following commutative
diagram.

0 > Bn(C) > Zn(C) > Hn(C) > 0

0 > Bn(D)
∨

> Zn(D)
∨

> Hn(D)

Hn(f)

∨

................
> 0

This tells us that the nth cohomology gives us a functor Hn : ChC → C , for
every n ∈ Z.

Definition 1.2.2. A morphism f : C• → D• of chain complexes is a quasi-
isomorphism if Hn(f) is an isomorphism for all n ∈ Z.

Here’s a result that will prove very useful.

chain-exact-preserves-homology Proposition 1.2.3. Let F : C → D be a functor between abelian categories;
then F induces functors ChF : ChC → ChD . If F is exact, then, for every n ∈ Z,
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the following diagram commutes:

ChC
ChF

> ChD

C

Hn

∨ F
> D

Hn

∨

In other words, F preserves cohomology.

Proof. Follows immediately from the fact that F preserves kernels and cok-
ernels. �

The next Theorem is the most important elementary result on the cohomology
of complexes.

chain-long-exact-sequence Theorem 1.2.4. Let A = Exact(ChC ) be the category of exact sequences of
complexes

0→ D
f−→ C

g−→ E → 0.
over an abelian category C . Then we have a functor H• : A → Ch(C ) that assigns
to every short exact sequence of complexes a long exact sequence of cohomology of
the form

. . .Hn−1(E) δn−1

−−−→ Hn(D)
Hn(f)−−−−→ Hn(C)

Hn(g)−−−−→ Hn(E) δn

−→ . . .

Proof. We’ll first construct a long exact sequence for each short exact se-
quence of complexes using the Snake Lemma, and then show functoriality by using
Freyd’s Embedding Theorem and chasing diagrams.

We find from the Snake Lemma that, for every n, the rows of the following
diagram are exact:

Dn/Bn(D) > Cn/Bn(C) > En/Bn(E) > 0

0 > Zn+1(D)

dn
D

∨
> Zn+1(C)

dn
C

∨
> Zn+1(E)

dn
E

∨

Applying the Snake Lemma once again, we find an exact sequence

Hn(D)→ Hn(C)→ Hn(E) δn

−→→ Hn+1(D)→ Hn+1(C)→ Hn+1(E)

Putting all these exact sequences together gives us the long exact sequence of co-
homology associated to the short exact sequence of complexes.

To show functoriality, it suffices to show that, given another short exact se-
quence 0→ D′ → C ′ → E′ → 0, and a morphism (α, β, γ) from the original exact
sequence to this one, the following square commutes:

Hn(E)
δn

> Hn+1(D)

Hn(E′)

Hn(γ)

∨ δn

> Hn+1(D′)

Hn(α)

∨
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For this we’ll assume that we’re in R-mod for some ring R, and chase diagrams.
Let w ∈ E be a cycle, and e its image in Hn(E). Then δn(e) is represented by
z ∈ Zn+1(D) such that fn+1(z) = dny, for y ∈ Cn+1 such that gn(y) = e. And
δnHn(γ)(e) is represented by an element z′ ∈ Zn+1(D′) such that f ′n+1(z′) = dny′,
where y′ ∈ C ′n+1 is such that g′n(y′) = γn(w). Consider the element x = z′ −
αn+1(z) ∈ Zn+1(D′). Then we have

f ′n+1(x) = dny′ − βn+1dny

= dn(y′ − βny).

Now we also have

g′n(y′ − βny) = γn(w − gn(y)) = 0.

Hence y′ − βny ∈ im f ′n, which, since fn+1 is injective, implies that x ∈ im dn

and thus that z′ and αn+1(z) represent the same element in Hn+1(D′), which is
precisely what we wanted to show. �

3. Chain Homotopies

Definition 1.3.1. Let f, g : C• → D• be two morphisms of chain complexes.
A chain homotopy from f to g is a collection of morphisms {kn : Cn → Dn−1}
such that kn+1dn

C + dn−1
D kn = fn − gn. In this case, we say that f and g are chain

homotopic and we denote this by f ∼ g. If f is chain homotopic to 0, then we say
that f is null-homotopic.

If we have morphisms f : C• → D• and g : D• → C• such that gf is chain
homotopic to 1C and fg is chain homotopic 1D, then we say that C• and D• are
chain homotopic.

A chain complex C• is exact if Hn(C) = 0, for all n ∈ Z. It’s split exact if it
exact, and if, for every n, the short exact sequence:

0→ ker dn → Cn → im dn → 0

splits. In other words, if Cn ∼= im dn ⊕ im dn−1, for all n.

chain-homotopic-quasi-iso Proposition 1.3.2. Let f, g : C• → D• be two chain homotopic morphisms.
Then H•(f) = H•(g). In particular, if C• and D• are chain homotopic, then they
are in fact quasi-isomorphic.

Proof. Replacing f with f − g and g with 0, it suffices to consider the case
where f is null-homotopic, and show that H•(f) = 0. Indeed, let a ∈ Zn(C) be a
cycle; then we find:

fn(a) = dn−1
D kn(a) ∈ Bn(D),

which shows that the induced morphism on cohomology is trivial.
From the definitions, and the first assertion of the Proposition, we see that we

have morphisms f : C• → D• and g : C• → D• such that H•(fg) = H•(1D) =
1H•(D) and H•(gf) = 1H•(C) . This shows that H•(f) : H•(C) → H•(D) is an
isomorphism, and thus that f : C• → D• is a quasi-isomorphism. �

chain-basic-split-exact Lemma 1.3.3. Pick an integer n ∈ Z, and let C• be a chain complex with
Cr = 0, for r 6= n, n+ 1. Then the following are equivalent:

(1) dn : Cn → Cn+1 is an isomorphism.
(2) C• is split exact.
(3) C• is exact.
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(4) 1C• is null-homotopic.

Proof. Before we start the rounds, observe that we have

Hr(C) =


ker dn if r = n

coker dn if r = n+ 1
0 otherwise.

It’s clear now that (1) ⇔ (2) ⇔ (3) and that (4) ⇒ (1). It remains to show that
(1)⇒ (4): define morphisms kr : Cr → Cr−1 by setting kn+1 = (dn)−1 and kr = 0,
for r 6= n+1. We see immediately that this gives us a null-homotopy of the identity
morphism. �

Definition 1.3.4. A complex that satisfies the hypotheses of the lemma is
called a fundamental split exact complex.

The next Proposition characterizes split exact complexes.

chain-split-exact-direct-sum Proposition 1.3.5. The following are equivalent for a chain complex C•:
(1) C• is a direct sum of fundamental split exact complexes.
(2) C• is split exact.
(3) 1C• is null-homotopic.

Proof. The implication (1) ⇒ (2) is trivial. We’ll first show (2) ⇒ (3): for
this let in : im dn → Cn be the embedding given by the splitting on Cn, and let
πn+1 : Cn+1 → im dn be the projection given by the splitting on Cn+1. Define
kn+1 = inπn+1 : Cn+1 → Cn. Then we find

kn+1dn + dn−1kn = inπn+ 1dn + dn−1in−1πn

= inpn + jnπn = 1Cn .

where pn : Cn → im dn is the natural projection and jn : im dn−1 → Cn is the
natural embedding. Thus we see that 1C• is null-homotopic.

Now we show (3) ⇒ (2): suppose {kn : Cn → Cn+1} is a null-homotopy for
1C• . Then we see that, for each n ∈ Z, we have

Cn = kn+1(im dn) + dn−1(im kn).

Now we have

im dn = dn(kn+1(im dn)).

Therefore, kn+1|im dn gives a splitting morphism for the epimorphism Cn → im dn.
Since 1C• is nullhomotopic, we also see that C• is exact, which shows that it is in
fact split exact.

We’ll now finish by showing (2)⇒ (1). For every m ∈ Z, define C•(m) to be the
fundamental split exact complex given by

Cr
(m) =


im(im dm) if r = m

im dm if r = m+ 1
0 otherwise

Here im : im dm → Cm is the splitting morphism, and the morphism dm
C(m)

:
Cm

(m) → Cm+1
(m) induced by dm

C is an isomorphism. It is now evident that C• =⊕
m∈Z C

•
(m). �
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4. Resolutions

Definition 1.4.1. Let C• be a bounded below (resp. a bounded above) chain
complex; then C• is acyclic if the following conditions hold:

(1) Cn = 0, for n < 0 (resp. for n > 0).
(2) Hn(C) = 0, for all n > 0 (resp. for all n < 0).

Definition 1.4.2. Let K be a class of objects in C , and let A be any object in
C . Then, a right (resp. left) K -resolution of A, denoted A ↪→ C• (resp. C• � A) is
an acyclic bounded below (resp. bounded above) chain complex C• with Cn ∈ K ,
for all n > 0 (resp. for all n < 0), such that H0(C) = A. In other words, it’s a
bounded below (resp. bounded above) chain complex C• quasi-isomorphic to A[0].

Definition 1.4.3. If K is the class of projective objects in C , then a left
K -resolution is called a projective resolution.

If K is the class of injective objects in C , then a right K -resolution is called
a injective resolution.

If C = R-mod, for some ring R, and K is the class of flat R-modules, then a
left K -resolution is a called a flat resolution.

If C = R-mod, for some ring R, and K is the class of finitely generated free
R-modules, then a left K -resolution is called a finite free resolution.

Definition 1.4.4. An abelian category C has enough injectives if, for every
object A in C , there is a monomorphism u : A→ I, with I injective. It has enough
projectives if, for every object A in C , there is an epimorphism u : P → A with P
projective.

It’s easy to see inductively that if a category C has enough injectives (resp.
enough projectives) then every object has an injective (resp. projective) resolution.

chain-acyclic-inj-extension Lemma 1.4.5. Let N• be a bounded below acyclic complex. Then H0N =
ker d0

N [0] injects into N•. Suppose I• is a bounded below chain complex with Ir = 0,
for r < 0, and with In an injective object, for n ≥ 0. Then, for every morphism
f : H0N → I•, there exists an extension F : N• → I• of f to N•. Moreover, any
two such extensions of f are chain homotopic.

N• ....................
∃F

> I•

H0N

∧

f

>

Proof. We will construct the chain morphism F inductively. For n = 0,
observe that we have:

N0 ...................
∃F 0

> I0

ker d0
∪

∧

f0

>
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We obtain the extension F 0 immediately from the injectivity of I0. Now suppose,
for r < n, we’ve constructed morphisms F r : Nr → Ir compatible with the bound-
ary morphisms. Let Gn−1 : Nn−1 → In be the composition dn−1

I Fn−1. Observe
that Gn−1dn−1

N = 0, and so Gn−1 factors through Nn−1/ im dn−1 = Nn−1/ ker dn.
In other words, we have the following picture, where the extension Fn is obtained
by the injectivity of In.

Nn ........................
Fn

> In

Nn−1/ ker dn
∪

∧ >

Now suppose F : N• → I• is an extension of the zero morphism from H0N to
I•. We will construct a chain homotopy from F to 0 by induction on n. Define
kn = 0, for n ≤ 0. When n = 1, we have the following picture:

N1 F 1

> I1

N0

d0
N

∧

F 0

> I0

d0
I

∧

k1

................................>

ker d0
N

∪

∧

0

>

We get the morphism k1, by observing that F 0 factors through N0/ ker d0
N , a

subobject of N1, and by using the injectivity of I0. Suppose now that we have
define morphisms kr : Nr → Ir−1 such that F r−1 = krdr−1

N + dr−2
N kr−1, for r < n;

then we have a diagram

Nn Fn

> In

Nn−1

dn−1
N

∧

Fn−1

> In−1

dn−1
I

∧

kn

................................>

Nn−2

dn−2
N

∧

Fn−2

> In−2

dn−2
I

∧

kn−1

>
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where we get the morphism kn in the following fashion: Consider the morphism
Gn−1 = Fn−1 − dn−2

I kn−1 from Nn−1 to In−1, and observe that we have:

Gn−1dn−2
N = dn−2

I Fn−2 − dn−2
I kn−1dn−2

N

= dn−2
I Fn−2 − dn−2

I (Fn−2 − dn−3
N kn−2) = 0.

Therefore, Gn−1 factors through Nn−1/ im dn−2 = Nn−1/ ker dn−1, and we can
therefore extend it to a morphism kn : Nn → In−1 that satisfies our requirements.

�

Here’s the dual statement for acyclic bounded above resolutions:

chain-acyclic-proj-lifting Lemma 1.4.6. Let N• be a bounded above acyclic complex. Then N• surjects
onto H0N = (N0/ im d−1

N )[0]. Suppose P • is a bounded above chain complex with
P r = 0, for r > 0, and with Pn an projective object, for n ≤ 0. Then, for every
morphism f : P • → H0N , there exists a lift F : P • → N• of f to N•. Moreover,
any two such liftings of f are chain homotopic.

P • ...................
∃F

> N•

H0N

∧

f

>

chain-uniqueness-of-resolutions Theorem 1.4.7 (Uniqueness of Resolutions). Suppose I• and J• are two in-
jective resolutions of an object A. Then I• and J• are chain homotopic and thus
quasi-isomorphic. In fact, any quasi-isomorphism f : I• → J• is determined
uniquely upto chain homotopy.

Dually, if P • and Q• are two projective resolutions of an object A, then P • and
Q• are chain homotopic and thus quasi-isomorphic. In fact, any quasi-isomorphism
f : P • → Q• is determined uniquely upto chain homotopy.

Proof. We prove the statement about injective resolutions; the one about
projective resolutions will follow dually, using (1.4.6) instead of (1.4.5).

Observe that we have H0I = H0J = A[0]. So we have the following diagram:

I•

J• < ⊃

f

>

H0J = H0I

∪

∧

⊂ > J•

g

>

Since both I• and J• are acyclic, we have used lemma (1.4.5) to find extensions
(unique upto chain homotopy) f : J• → I• and g : I• → J• of the inclusions
of A into I• and J•, respectively. Since these extensions are unique upto chain
homotopy, we find that gf ∼ 1J and fg ∼ 1I , which shows that I• and J• are
chain homotopic. �

chain-horseshoe-lemma Proposition 1.4.8 (Horseshoe Lemma).
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5. Mapping Cones and Cylinders

Definition 1.5.1. The translation functor T : Ch C → ChC is the functor
that sends a chain complex {Cn, dn} to the chain complex {TCn, Tdn}, with TCn =
Cn−1 and Tdn = dn−1. Given a chain map f• : C• → D•, Tf• : TC• → TD• is
just the chain map with (Tf)n = fn−1.

T is in fact an automorphism of ChC , with inverse T−1 acting via the assign-
ments T−1Cn = Cn+1 and T−1dn = dn+1.

For any p ∈ Z, we denote T pC• by C[p]•.

It’s easy to check that Hn(C[p]) = Hn−p(C).
Now, we consider two important operations that arise from chain maps.

chain-mapping-cone Definition 1.5.2. The mapping cone cone(f) of a chain map f : C• → D• is
the chain complex with chain objects cone(f)n = Cn ⊕Dn−1 and chain maps

dn =
(
−dn

C 0
fn dn−1

D

)
: cone(f)n → cone(f)n+1.

This indeed gives us chain maps, because we have the composition

dn+1dn =
(

dn+1
C dn

C 0
−fn+1dn

C + dn
Df

n dn
Dd

n−1
D

)
= 0.

We can visualize this in the following diagram

. . . > Cn −dn

> Cn+1 > . . .

⊕ ⊕
. . . > Dn−1 dn−1

> Dn >

fn+1

>

Dn+1

fn+1

>

There is a natural inclusion D[1]• → cone(f), with cokernel C•. So we get an
exact sequence of complexes

0→ D[1]• i−→ cone(f) π−→ C• → 0,

where πn(c, d) = (−1)nc. The sign is to ensure that it is a chain map.
This gives rise to a long exact sequence of cohomology.

. . .
H−→

n

(C) δn

−→ Hn(D)→ Hn+1(cone(f))→ Hn+1(C)→ . . .

chain-cone-connecting-morph Proposition 1.5.3. The connecting morphism δn in the sequence above is sim-
ply Hn(f).

Proof. We’ll do a diagram chase for the following diagram:

0 > Dn−1 in
> cone(f)n πn

> Cn > 0

0 > Dn

dn
D

∨ in+1

> cone(f)n+1

dn

∨
πn+1

> Cn+1

dn+1
C

∨
> 0

Pick z ∈ Zn(C); so dn
Cz = 0. Then (−z, 0) ∈ cone(f)n projects onto z. Since

dn(−z, 0) = (dn
Cz, f

n(z)), we see that δn[z] = [fnz] = Hn(f)[z]. �
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With the mapping cone in hand, we are ready to describe injectives and pro-
jectives in the category of chain complexes.

chain-proj-inj-complexes Proposition 1.5.4. A chain complex P • is projective in the category of chain
complexes if and only if P • is split exact with Pn projective, for all n ∈ N.

Dually, a chain complex I• is injective in the category of chain complexes if
and only if I• is split exact with In injective, for all n ∈ N.

Proof. Suppose the first assertion about projectives is proven; then observe
that the injectives in ChC are also injectives in ChC op, which, by the first assertion,
consist of split exact complexes of projectives in C op and thus of injectives in C
under the canonical isomorphism from ChC op to ChC . Thus it suffices to prove
the first assertion.

For this, note that it’s easy to see right away that if P • is projective, then it
must be a complex of projectives. To see that it must in fact be split exact, consider
the exact sequence:

0→ P [1]→ cone(1P )→ P → 0.

Since P • is projective, this sequence splits. And so we get a morphism s =
(±1P

s2

)
:

P • → cone(1P ). Writing out the condition for it to be a morphism of complexes,
we find, for each n ∈ Z, (

±dn

1P n + dn−1sn
2

)
=
(
±dn

sn+1
2 dn

)
.

So we get 1P n = sn+1
2 dn − dn−1sn

2 . Taking kn = (−1)nsn
2 : Pn → Pn−1, for each

n ∈ Z, gives us a null-homotopy for 1P n , which, by (1.3.5), means that P • is split
exact.

Now for the converse assume P • is a split exact complex of projectives. By
(1.3.5), it’s a direct sum of fundamental split exact complexes. Therefore it suffices
to show that a fundamental split exact complex of projectives is projective in ChC .
So let P • be such a fundamental split exact complex with P r = 0, for r 6= n, n+ 1,
and suppose we have a diagram

C•

P •
f

> C ′•

π

∨∨

Now, observe that giving a morphism F : P • → C• is equivalent to giving a
morphism Fn : Pn → Cn, since we can define Fn+1 : Pn+1 → Cn+1 by setting
Fn+1 = dn

CF
ndn

P
−1. To see that this defines a morphism of complexes, all we need

to check is that dn+1
C Fn = 0; but this follows immediately from its definition.

Since Pn is projective, we can find a lifting Fn : Pn → Cn of fn. This as noted
above gives us a morphism F : P • → C•. It remains to check that πF = f . We
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find:

πn+1Fn+1 = πn+1dn
CF

ndn
P
−1

= dn
C′πnFndn

P
−1

= dn
C′fndn

P
−1

= fn+1dn
P d

n
P
−1 = f,

as we had wanted to show. �

chain-enough-proj-inj Corollary 1.5.5. Let C be an abelian category with enough projectives (resp.
enough injectives); then ChC also has enough projectives (resp. injectives).

Proof. We prove the result about projectives; the one about injectives is
obtained by formal duality.

By the Proposition above, it’s enough to show that, for every chain complex
C•, there is an epimorphism P • � C• with P • a split exact complex of projectives.
For this, choose, for each n ∈ Z, epimorphisms un : Qn � Cn with Qn projective.
Set Pn = Qn ⊕ Qn−1, and let πn : Pn → Qn be the natural projection, and let
in+1 : Qn → Pn+1 be the natural embedding. Set dn

P = in+1πn; it’s easy to see
that this gives us a split exact complex P • of projectives. Take the epimorphism
uπ : P • → C• to finish the proof. �

6. Differential Graded Algebras

7. Double Complexes

Put simply, double complexes are complexes over the category of chain com-
plexes. They will prove important when we get to Chapter 3 on spectral sequences.
The formal definition follows.

Definition 1.7.1 (Double Complexes). A double complex C•,• over an abelian
category C consists of the following data:

(1) For every pair (p, q) ∈ Z× Z, an object Cp,q ∈ C ,
(2) For every pair (p, q) ∈ Z × Z, morphisms dp,q

II : Cp,q → Cp,q+1 and dp,q
I :

Cp,q → Cp+1,q satisfying the condition:

dp,q
I dp−1,q

I = 0 dp,q
II d

p,q−1
II = 0

dp,q+1
I dp,q

II = dp+1,q
II dp,q

I .

Observe that this means that {Cp,• : q ∈ Z} and {C•,q : p ∈ Z} are chain complexes
for each fixed p, q ∈ Z. The last equality can be restated as saying that d•,qII is a
chain map from C•,q to C•,q+1.

A morphism f : C•,• → D•,• between double complexes is a collection of
morphisms fp,q : Cp,q → Dp,q such that

dp,q
I fp,q = fp+1,qdp,q

I dp,q
II f

p,q = fp,q+1dp,q
II

Definition 1.7.2. Let S ⊂ Z × Z be a subset of the plane lattice. Then S is
bounded below, if, for each n ∈ Z, there is s ∈ Z such that (p, n− p) /∈ S, for p ≥ s.
It is bounded above, if, for each n ∈ Z, there is s ∈ Z such that (p, n − p) /∈ S, for
p ≤ s. It is bounded if it is bounded both below and above. It is first (resp. second,
third, fourth) quadrant if (p, q) /∈ S, for p < 0 or q < 0 (resp. p > 0 or q < 0,
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p > 0 or q > 0, p < 0 or q > 0). It is upper (resp. lower, right, left) half plane if
(p, q) /∈ S, for p < 0 (resp. p > 0, q < 0, q > 0).

Definition 1.7.3 (Boundedness conditions). Let C•,• be a double complex.
To such a double complex we can associate a subset S(C) of the plane lattice by:
(p, q) ∈ S(C) ⇔ Cp,q 6= 0. Now, C•,• is bounded below (resp. bounded above,
bounded, first quadrant, etc.) if S(C) is bounded below (resp. bounded above,
bounded, first quadrant, etc).

Definition 1.7.4. If C is complete and C•,• is a double complex over C , then
the total complex of C•,•, which we denote by Tot•Π(C) is given by

Totn
Π(C) =

∏
p+q=n

Cp,qdn =
n∏

p+q

(
dp,q

I + (−1)p+qdp,q
II

)
.

Observe that we have

dn+1dn =
∏

p+q=n+1

(
dp,q

I dp−1,q
II + (−1)p+q−1dp,q

I dp,q−1
II + (−1)p+qdp,q

II d
p−1,q
I − dp,q

II d
p,q−1
II

)
= 0,

by our conditions on dII and dI .
If C is instead cocomplete, then we analogously define Tot•⊕(C), the restricted

total complex of C•,•, by replacing products everywhere with sums.

Remark 1.7.5. It’s clear that a morphism between double complexes induces a
morphism between their total complexes. That is, the assignment C•,• → Tot•(C)
is functorial.

Remark 1.7.6. Observe that if C•,• is bounded then both these total complexes
are isomorphic. In general we can refer to either of these as the total complex of
C•,•.

chain-hom-double-complex Example 1.7.7 (Hom Double Complex). Let P • and J• be two complexes over
C and consider the double complex obtained in the following fashion:

Hom(P, J)p,q = Hom(P−p, Jq)

dp,q
I = Hom(d−(p+1)

P , Jq) dp,q
II = Hom(P−p, dq

J)

This is called the Hom complex of P • and J•. We refer to Tot•Π(Hom(P, J)) as the
total Hom complex of P • and J•.

chain-tensor-product Example 1.7.8 (Tensor Product of Complexes). Fix a ring R and suppose P •

and Q• are complexes of right R-modules and left R-modules, respectively. Now
consider the double complex with (P ⊗RQ)p,q = P p⊗RQ

q, and with dp,q
II = 1⊗dq

Q

and dp,q
I = dp

P ⊗ 1. We then have:

dp+1,q
II dp,q

I − dp,q+1
I dp,q

II = dp
P ⊗ d

q
Q − d

p
P ⊗ d

q
Q = 0.

This is the tensor product of P • with Q• over R. We denote the total complex
Tot•⊕(P ⊗R Q) as the total tensor product of P and Q. It’s not hard to see that,
for P • a complex of right R-modules, Q• a complex of left R-modules, and I• a
complex of abelian groups, we have a natural isomorphism

HomZ-mod(Tot•⊕(P ⊗R Q), I•) ∼= HomR-mod(P,Tot•Π(Hom(Q, I))).
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Thus the total Hom and the total tensor product are adjoints to each other, as one
would expect.

Definition 1.7.9. A chain homotopy between two morphisms f, g : C•,• →
D•,• consists of two collections of maps: {kp,q

I : Cp,q → Dp−1,q} and {kp,q
II : Cp,q →

Dp,q−1} such that

gp,q − fp,q = dp−1,q
I hp,q

I + (−1)q−1dp,q−1
II hp,q

II + hp+1,q
I dp,q

I + (−1)qhp,q+1
II dp,q

II

We see immediately that a chain homotopy between morphisms of double complexes
induces a chain homotopy between the induced morphisms on the total complex.

Definition 1.7.10 (Cohomology of a Double Complex). Let C•,• be a double
complex. For every pair (p, q) of integers, we define the following objects:

Zp,q
I (C) = ker(dp,q

I : Cp,q → Cp+1,q)

Zp,q
II (C) = ker(dp,q

II : Cp,q → Cp,q+1)

Bp,q
I (C) = im(dp−1,q

I : Cp−1,q → Cp,q)

Bp,q
II (C) = im(dp,q−1

II : Cp,q−1 → Cp,q)

Hp,q
I (C) = Zp,q

I (C)/Bp,q
I (C)

Hp,q
II (C) = Zp,q

II (C)/Bp,q
II (C).

That is H∗I takes the cohomology of the rows and HII the cohomology of the
columns. Now, observe that Hp,•

I is a complex with the boundary morphisms
induced by dII . Taking its cohomology we get new objects Hq

II(H
p
I (C)). Similarly,

taking the cohomology of the complex Hp,•
II , we get objects Hq

I (Hp
II(C)).



CHAPTER 2

Derived and δ-functors

chap:delta

1. δ-functors

Definition 2.1.1. Let C and D be abelian categories, and let Exact(C ) be the
category of short exact sequences in C with the obvious morphisms. We have three
forgetful functors Oi : Exact(C )→ C , for i = 1, 2, 3, that extract first, second and
third objects, respectively, of a short exact sequence over C .

A cohomological (resp. homological) δ-functor from C to D , denoted T • : C →
D , is a collection of additive functors {Tn : C → D}, for each n ≥ 0 (resp. for
n ≤ 0), along with a collection of natural transformations {δn : TnO3 → Tn+1O1},
so that for every exact sequence

0→ C1 f−→ C2 g−→ C3 → 0

we have a long exact sequence

· · · → TnC1 T n(f)−−−−→ TnC2 T n(g)−−−−→ TnC3 δn

−→ Tn+1C1 T n+1(f)−−−−−→ Tn+1C2 → · · ·

Remark 2.1.2. We will reserve the use of the unqualified term δ-functor for
cohomological δ-functors.

Remark 2.1.3. Note that if T • is a δ-functor, then T 0 is a left exact functor
(right exact, if T • is homological).

delta-cohom-delta Proposition 2.1.4. Let C be an abelian category. The functors {Hn : ChC →
C }, for n ≥ 0, (resp. for n ≤ 0) define a cohomological (resp. homological) δ-
functor from Ch≥0 C (resp. Ch≤0 C ) to C .

Proof. Immediate from (1.2.4) �

Definition 2.1.5. A morphism ϕ : T • → T ′• between two (cohomological
or homological) δ-functors from C to D is a collection of natural transformations
ϕn : Tn → T ′n such that the following diagram commutes, for all n:

TnO3 δn

> Tn+1O1

T ′nO3

ϕnO3

∨

δn
> T ′n+1O1

ϕn+1O1

∨

A cohomological (resp. homological) δ-functor T • : C → D is universal if, for
every other cohomological (homological) δ-functor T ′• : C → D equipped with a
natural transformation η : T 0 → T ′0 (resp. a natural transformation η : T ′0 → T 0),
there is a unique morphism ϕ : T • → T ′• (resp. ϕ : T ′• → T •) such that ϕ0 = η.

19
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Remark 2.1.6. By its definition a universal δ-functor S• is an initial (or ter-
minal) object in the subcategory of the category of δ-functors that consists of
δ-functors T • : C → D with T 0 ∼= S0. Hence, given a functor F : C → D ,
upto isomorphism of δ-functors, there exists a unique δ-functor T • : C → D with
T 0 ∼= F .

Here’s our first example of a universal δ-functor:

delta-exact-trivial-delta Proposition 2.1.7. Let F : C → D be an exact functor between abelian cate-
gories. Then the cohomological (resp. homological) δ-functor T • : C → D defined
by T 0 = F , Tn = 0, for n ≥ 0 (resp n ≤ 0), is a universal cohomological (resp.
homological) δ-functor.

Proof. We’ll only do the cohomological case. It follows from the exactness of
F that T • is indeed a δ-functor (with δn = 0, for all n).

Assume S• : C → D is a δ-functor and suppose we have a natural transforma-
tion η : F → S0. To check that the obvious choice for a morphism from T • to S• is
indeed a morphism of δ-functors, we only have to check that the following diagram
commutes:

FO2 Ff2,3

> FO3 > 0

S0O2

ηO1

∨
S0f2,3

> S0O3

ηO3

∨
δ0

> S1O1
∨

So it suffices to show that δ0(ηO3) = 0. But observe that we have

δ0(ηO3)Ff2,3 = δ0S0f2,3(ηO1) = 0,

where f2,3 : O2 → O3 is the obvious natural transformation. Since f2,3 is an
epimorphism and F is exact, we see that δ0(ηO3) = 0. �

This will be generalized to left and right exact functors in the next section.

Definition 2.1.8. Let F : C → D be an additive functor. We say that F is
effaceable (resp. coeffaceable) if, for every object A of C , there is a monomorphism
u : A → I (resp. an epimorphism u : P → A) with I injective (resp. with P
projective) such that F (u) = 0.

The next Theorem is the most important general nonsense result about δ-
functors.

delta-criterion-universal Theorem 2.1.9 (Grothendieck). Let T • : C → D be a cohomological (resp.
homological) δ-functor such that Tn is effaceable for all n ≥ 0 (resp. coeffaceable
for all n ≤ 0). Then T • is universal.

Proof. Again, we’ll only prove the cohomological version. Suppose T • is
an effaceable δ-functor and suppose S• : C → D is another δ-functor equipped
with a natural transformation η : T 0 → S0. We’ll construct a morphism ϕ :
T • → S• inductively. The base case is our hypothesis, so assume that we’ve
constructed natural transformations ϕr : T r → Sr for r < n, which satisfy the
required commutativity conditions.
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Choose an object A in C , and let u : A → I be a monomorphism into an
injective object I such that Tn(u) = 0. Let C = cokeru; then we have the following
diagram:

Tn−1I > Tn−1C
δn−1

> TnA > 0

Sn−1I

ϕn−1
I

∨
> Sn−1C

ϕn−1
C

∨
δn−1

> SnA

ϕn
A

∨

.................

where the dotted morphism ϕn
A is obtained from the universal property of TnA as

the cokernel of the morphism from Tn−1I to Tn−1C.
Of course, a priori, ϕn

A is dependent on the choice of the monomorphism u,
and so it’s not clear how natural it is. As it turns out, it’s very natural indeed. To
see this, we’ll do something more general. Choose another object A′ in C and let
u′ : A′ → I ′ be a monomorphism into an injective object I ′ such that Tn(u′) = 0,
and let C ′ = cokeru′. Suppose we have a morphism f : A → A′; then, by a baby
version of (1.4.5), we can extend f to a morphism g : I → I ′, thus obtaining the
following diagram with exact rows:

0 > A
u

> I > C > 0

0 > A′

f

∨ u′
> I ′

g

∨
> C ′

h

∨
> 0

where of course h is the morphism induced by f and g.
We then have the following cube diagram, all of whose faces except the vertical

one facing east are known to be commutative:

Tn−1C
δn−1

> TnA

Tn−1C
δn−1

>

Tn−1h
>

ϕn
A

TnA′

Tnf
>

Sn−1C

ϕn−1
C

∨
δn−1

> SnA
∨

Sn−1C ′

ϕn−1
C′

∨
δn−1

>

Sn−1h
>

SnA

ϕn
A′

∨
Snf

>

Chasing this commutative diagram, it’s not hard to see that we have

ϕn
A′(T

nf)δn−1 = (Snf)ϕn
Aδ

n−1.
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Since δn−1 is an epimorphism, this shows both that ϕn
A is independent of the choice

of the monomorphism u (take f to be 1A), and that it actually gives us a natural
transformation from Tn to Sn.

So we’ve inductively constructed natural transformations ϕn
A : Tn → Sn, for

all n ≥ 0. There is just a little more work to go before we can be sure that this
is a morphism of δ-functors. Fix n ≥ 0 and suppose we have an exact sequence
0→ C1 → C2 → C3 → 0. Choose a monomorphism u : C1 → I with I injective so
that Tn(u) = 0, and let C = cokeru. We then obtain the following diagram with
exact rows:

0 > C1 > C2 > C3 > 0

0 > C1

wwwwwwwwww
u

> I

g

∨

.................
> C

h

∨

.................
> 0

where g is obtained by the injectivity of I and h by the universal property of C3

as cokernel.
We obtain another cube diagram; this time all the faces except the top face are

commutative.

TnC3 δn

> Tn+1C1

SnC3 δn

>

ϕn
C3

>

Sn+1C1

ϕn+1
C1

>

TnC

Tnh

∨ δn

> Tn+1C1
∨

SnC

Snh

∨ δn

>

ϕn
C

>

Sn+1C1
∨

ϕn+1
C1

>

By a similar argument, using again the fact that δn : TnC → Tn+1C1 is an epi-
morphism, we find that the top face does indeed commute, thus showing that
ϕ• : T • → S• does indeed define a morphism of δ-functors. �

delta-cohom-universal Corollary 2.1.10. Let C be an abelian category with enough injectives (resp.
enough projectives); then H• : Ch≥0 C → C (resp. H• : Ch≤0 C → C ) is a
universal δ-functor.

Proof. As always, we give a proof only of the cohomological version. By the
Theorem above, it suffices to prove thatH• is effaceable. Let C• be a chain complex;
then, by (1.5.5), there is a monomorphism u : C• ↪→ I• with I• a split exact complex
of injectives. Then, since Hn(I) = 0, for all n ∈ Z, we see immediately that H• is
indeed effaceable and is thus universal. �
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delta-contravariant Remark 2.1.11 (Contravariant δ-functors). There is also the notion of a con-
travariant δ-functor. A homological (resp. cohomological) contravariant δ-functor
T • : C → D between abelian categories is simply a cohomological (resp. homologi-
cal) δ-functor T • : C op → D . Put more concretely, it is a collection of additive con-
travariant functors Tn : C → D and natural transformations δn : TnO1 → Tn−1O3,
which associate the appropriate long exact sequence to each short exact sequence
in C . Universality of such δ-functors also has an analogous definition.

2. Derived Functors

The main result of this section is the following theorem.

delta-existence-derived-functors-right Theorem 2.2.1. Let F : C → D be a left exact functor between abelian cate-
gories, and suppose C has enough injectives. Then there exists a universal δ-functor
R•F : C → D such that the following conditions hold:

(1) F ∼= R0F .
(2) For n > 0 and for any injective object I, we have RnF (I) = 0.

Proof. We will proceed in steps:
Construction: Given an object A in C , take any injective resolution I• of A

and define RnF (A) = Hn(F (I•)). Given any other injective resolution J• of any
other object A′, and a morphism there is a chain homotopy f : I• → J• (1.4.7)
unique again upto chain homotopy. Now we see that ChFf : ChFI• → ChFJ•

is also a chain homotopy that is unique upto chain homotopy. Hence RnF (A) is
independent of choice of injective resolution upto canonical isomorphism.

Now, given any other injective resolution J• of any other object A′, and a
morphism g : A→ A′, there is, according to (1.4.5), an extension g′ : I• → J• that
is unique up to chain homotopy. But then RnF (g) = Hn(ChF (g′)) : RnF (A) →
RnF (A′) is determined again upto unique isomorphism. Moreover, if f : A → A′

and g : A′ → A′′ are two morphisms and f̃ is an extension of f between injective
resolutions I• and J• of A and A′, respectively, and g̃ is an extension of g between
injective resolutions J• and K• of A′ and A′′, respectively, then g̃f̃ is an extension
of gf : A → A′′ between injective resolutions, and so we find that RnF (gf) =
RnF (g)RnF (f). Hence RnF is indeed a functor, for all n ≥ 0.

By construction, it’s evident that, for an injective object I, RnF (I) = 0, for
n > 0. It remains to show that R0F ∼= F . Suppose f : A → A′ is a morphism in
C ; then let I• and J• be injective resolutions of A and A′, and let g : I• → J• be
an extension of f . We then see that R0F (f) = H0(Fg) ∼= Fg0 = Ff .

Additivity: Suppose 0 : A → A′ is the 0 morphism; then, an extension of
it between injective resolutions of A and A′ is of course again the 0 morphism,
which then induces trivial maps on cohomology. Thus we find that RnF (0) = 0. If
f, g : A→ A′ are two morphisms, and if f̃ , g̃ are extensions of f and g, respectively,
to injective resolutions of A and A′, then f̃ + g̃ is an extension of f + g, and so we
find that RnF preserves sums of morphisms.

δ-functoriality: Suppose we have an exact sequence in C : 0 → C1 → C2 →
C3 → 0. Let I•1 and I•3 be injective resolutions of C1 and C3 respectively. Then,
by the Horseshoe Lemma (??), there is an injective resolution I•2 for C2 such that
the sequence

0→ I•1 → I•2 → I•3 → 0
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is split exact. In this case, since F is additive, we find that we have an exact
sequence

0→ ChF (I•1 )→ ChF (I•2 )→ ChF (I•3 )→ 0
of complexes over D . Taking the long exact sequence of cohomology of this sequence
gives us the morphisms δn : RnF (C3)→ Rn+1F (C1), for all n ∈ N.

It remains to check that these morphisms satisfy the required naturality condi-
tions. So suppose we have another short exact sequence: 0→ D1 → D2 → D3 → 0,
and another split exact sequence of injective resolutions 0 → J•1 → J•2 → J•3 → 0
attached to this sequence as above. Suppose we have a morphism (α, β, γ) in
Exact(C ) from the first short exact sequence to this one. Then we can extend α
and γ to morphisms α̃ : I•1 → J•1 and γ̃ : I•3 → J•3 . Now, using (??), we can find a
morphism β̃ : I•2 → J•2 , such that the following diagram commutes with exact rows:

0 > I•1 > I•2 > I•3 > 0

0 > J•1

α̃

∨
> J•2

β̃

∨
> J•3

γ̃

∨
> 0

Now showing that RF • is a δ-functor reduces to the showing thatH• : Ch≥0 D → D
is a δ-functor, which is what we did in (2.1.4).

Universality: We will show thatRnF is effaceable for every n > 0; universality
will then follow from (2.1.9). Given any object A in C take any monomorphism
u : A→ I, with I injective. Since RnF (I) = 0, for n > 0, we have RnF (u) = 0, for
n > 0, and thus RnF is effaceable, for all n > 0. �

Definition 2.2.2. The functors RnF associated to F as in the Theorem above
are called the right derived functors of F .

The dual statement is the following, which we will not prove.

delta-existence-derived-functors-left Theorem 2.2.3. Let F : C → D be a right exact functor between abelian
categories, and suppose C has enough projectives. Then there exists a universal
homological δ-functor L•F : C → D such that the following conditions hold:

(1) F ∼= L0F .
(2) For n < 0 and for any projective object P , we have LnF (P ) = 0.

Definition 2.2.4. The functors LnF associated to F as in the Theorem above
are called the left derived functors of F .

delta-universal-derived-functors Corollary 2.2.5. Let T • : C → D be a universal cohomological (resp. homo-
logical) δ-functor, and suppose C has enough injectives (resp. projectives). Then
T • ∼= R•T 0 (resp. T • ∼= L•T 0).

Proof. First note that T 0 is a left exact functor, and so R•T 0 is defined and
is moreover a universal δ-functor with R0T 0 ∼= T 0. Since upto isomorphism there
is a unique universal δ-functor S• : C → D with S0 ∼= T 0, we find R•T 0 ∼= T 0.

The homological case is formally the same. �

delta-derived-exact Corollary 2.2.6. Let F : C → D be an exact functor, and suppose that C
has enough injectives (resp. enough projectives); then RnF = 0, for n > 0 (resp.
LnF = 0, for n < 0).
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Proof. Follows from (2.2.5) and (2.1.7). �

Remark 2.2.7 (The Contravariant Case). Given a left exact contravariant
functor F : C op → D , and supposing C has enough projectives (and thus C op

has enough injectives) we can define in exactly the same fashion the right derived
functors RnF of F . These will then form a contravariant homological universal
δ-functor from C to D .

The next result gives us a useful way to obtain long exact sequences.

delta-long-exact-sequence Proposition 2.2.8. Let C and D be abelian categories, and suppose F1 →
F2 → F3 is a complex of left exact functors in Funct(C ,D). Now, suppose that C
has enough injectives, and that, for every injective object I in C , the sequence

0→ F1(I)→ F2(I)→ F3(I)→ 0

is exact. Then, for every object C in C , we have a long exact sequence:

0→ F1(C)→ F2(C)→ F3(C)→ R1F1(C)→ R1F2(C)→ R1F3(C)→ . . .

Proof. Given an object C in C , let I• be an injective resolution of C. Now,
we have an exact sequence of chain complexes in D :

0→ ChF1(I•)→ ChF2(I•)→ ChF3(I•)→ 0.

Taking the long exact sequence of cohomology associated to this sequence gives us
the result. �

3. F -acyclicity, F -syzygies and F -dimension

Note on Notation 2. From now on we will assume that all our domain
categories have enough injectives (or projectives, as the case may be).

Definition 2.3.1 (F -acyclicity). Let F : C → D be a left (resp. right) exact
functor between abelian categories. Then an object A in C is said to be F -acyclic
if RnF (A) = 0, for all n > 0 (resp. LnF (A) = 0, for all n < 0).

Given a left (resp. right) exact functor F : C → D , and an object A in C , an
F -acyclic resolution of A is a right (resp. left) K -resolution of A, where K is the
class of F -acyclic objects.

Remark 2.3.2. Observe that, given a left (resp. right) exact functor F : C →
D , every injective (resp. projective) object is F -acyclic.

We now present a criterion for a class of objects to be F -acyclic, for some left
exact functor F .

delta-f-acyclicity-criterion Proposition 2.3.3. Let F : C → D be a left exact functor between abelian
categories, and suppose K is a class of objects in C satisfying the following prop-
erties:

(1) For every object C ∈ K , there exists a monomorphism u : C → I, such
that I is F -acyclic, and such that cokeru is again in K .

(2) For every exact sequence

0→ C1 → C2 → C3 → 0,

in C with C1 ∈ K , the sequence

0→ F (C1)→ F (C2)→ F (C3)→ 0

is also exact in D .
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Then every object in K is F -acyclic.

Remark 2.3.4. There is the evident dual version for right exact functors (begin
by replacing monomorphism with epimorphism in (1) and C1 with C3 in condition
(2)). We will use it without comment when the need arises (which is unlikely).

Proof. We will do this by induction. That is, we will show that R1F (C) = 0,
for all C ∈ K and then we will show that if, for n > 1, Rn−1F (C) = 0, for all
C ∈ K , then in fact RnF (C) = 0, for all C ∈ K .

Pick an object C ∈ K , and let u : C → I be the monomorphism into an F -
acyclic object guaranteed to us by condition (1), and set C ′ = cokeru. By condition
(2), we have a short exact sequence

0→ F (C)→ F (I)→ F (C ′)→ 0,

which, since I is F -acyclic, implies that R1F (C) = 0 (using the long exact sequence
of derived functors of F ). Since C was arbitrary, this finishes the base step of the
induction.

Maintaining the notation of the previous paragraph, observe now that we have
(again from the long exact sequence of derived functors and the F -acyclicity of I):

Rn−1F (C ′) ∼= RnF (C), for all n > 2.

By condition (2), C ′ is also in K , and so by the induction step, we find that
RnF (C) = 0, for all n > 0. This finishes our proof. �

Here’s another situation where we get acyclicity of objects.

delta-aycyclic-finite-filtration Proposition 2.3.5. Let F : C → D be a left exact functor between abelian
categories, and let A be an object in C equipped with a finite filtration

A = F 0A ⊃ F 1A ⊃ . . . ⊃ Fn+1A ⊃ FnA = 0

such that, for 1 ≤ i ≤ n, F i−1A/F iA is F -acyclic. Then A is F -acyclic.

Proof. We’ll do this by induction on the length n of the filtration. If n = 0,
then there is nothing to prove; so assume n ≥ 1. By the induction step, F 1A is
F -acyclic. Moreover, we have a short exact sequence

0→ F 1A→ A→ A/F 1A→ 0,

where F 1A and A/F 1A are both F -acyclic. It’s easy to conclude now from the long
exact sequence of derived functors of F associated to this short exact sequence that
A is also F -acyclic. �

Definition 2.3.6 (Syzygies). Suppose K is a class of objects in C , and suppose
we have an exact sequence

0→ A→ I0 → I1 → . . .→ In−1 → N → 0,

with Ij in K , for 0 ≤ j ≤ n. Then N is called a nth right K -syzygy of A.
If instead we have an exact sequence

0→M → P−n+1 → P−n+2 → . . .→ P 0 → A→ 0,

with P j in K , for −n ≤ j ≤ 0. Then M is called a nth left K -syzygy of A.
If F is a left (resp. right) exact functor from C to D and K is the class of

F -acyclic objects in C , then the nth right (resp. left) K -syzygy of A is called the
nth F -syzygy of A.
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delta-syzygies-dimension-shifting Proposition 2.3.7. Let F : C → D be a left exact functor, and let A be an
object in C . Suppose N is an nth F -syzygy of A; then we have:

RrF (A) ∼=

{
Rr−nF (N) if r ≥ n+ 1
coker(F (In−1)→ F (N)) if r = n.

If instead F : C → D is a right exact functor, and if M is an nth F -syzygy of
A; then we have:

LrF (A) ∼=

{
Lr+nF (N) if r ≤ −n− 1
ker(F (M)→ F (P−n−1)) if r = −n.

Proof. We’ll only prove the first assertion; this will be done by induction on
n. First suppose that N is a first F -syzygy of A. In this case, we have a short exact
sequence

0→ A→ I0 → N → 0.
If we now consider the long exact sequence in the derived functors RnF associated
to this sequence, we obtain, using the F -acyclicity of I0, isomorphisms

Rr−1F (N) δr−1

−−−→∼= RrF (A), for r ≥ 2

For r = 1, we get an exact sequence

F (In)→ F (N)→ R1F (A)→ 0.

Now the result follows by induction on n and from the observation that if N is
an nth F -syzygy of A and if N ′ is the (n−1)th F -syzygy given by im(In−2 → In−1),
then N is a first F -syzygy of N ′. �

The next result is very useful for computations.

delta-acyclic-resolutions Corollary 2.3.8. Let F : C → D be a left exact functor, and let A be an
object in C . Suppose I• is an F -acyclic resolution of A; then we have RnF (A) =
Hn(ChF (I•)).

Dually, if F : C → D is a right exact functor, then we can compute LnF (A) =
Hn(ChF (P •)), for some F -acyclic resolution P • of A.

Proof. Let N = im(dn : In−1 → In) be an nth F -syzygy of A. Then we find
from the Proposition that, for n ≥ 1, we have

RnF (A) = coker(F (In−1)→ F (N))

= F (N)/ imF (dn−1)

= F (ker dn)/ imF (dn−1)

= kerF (dn)/ imF (dn−1)

= Hn(ChF (I•)).

Since F is left exact, we find H0(ChF (I•)) = F (A), as we want it to be. �

Definition 2.3.9. Let F be a left exact functor F : C → D , and let A be an
object in C . The F -dimension of A, denote F − dim(A) is the quantity

sup{n : RnF (A) = 0}.
If F is instead a right exact functor, then the F -dimension of A is the quantity

sup{−n : LnF (A) = 0}.
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If F − dim(A) < ∞, we say that A has finite F -dimension. Observe that
F − dim(A) = 0 if and only if A is F -acyclic.

Let K be a class of objects in C ; then the length of a K -resolution I• is the
quantity

sup{|n| : In 6= 0}
Given an object A and a class of objects K in A, we define the right (resp.

left) K -dimension, K − rdim(A) (resp. K − ldim(A)), of A as the supremum of
the lengths of all right (resp. left) K -resolutions of A.

delta-f-dimension Proposition 2.3.10. Let F : C → D be a left (resp. right) exact functor, and
let K be the class of F -acyclic objects. Then the following are equivalent for an
object A in C :

(1) F − dim(A) = n <∞.
(2) For every integer r ≥ 0, and every rth F -syzygy N of A, we have

F − dim(N) = max{n− r, 0}.
(3) Every nth F -syzygy of A is F -acyclic and no (n − 1)th F -syzygy of A is

F -acyclic.
(4) Some nth F -syzygy of A is F -acyclic and some (n − 1)th F -syzygy of A

is not F -acyclic.
(5) K − rdim(A) = n <∞ (resp. K − ldim(A) = n <∞).

Proof. We’ll do the case where F is left exact. Observe first that if there
exists an F -acyclic resolution I• of A of length r, then we have:

RsF (A) = Hs(ChF (I•)) = 0 for s ≥ r + 1

This shows F − dim(A) ≤ K − rdim(A).
Next, observe that there exists an F -acyclic rth F -syzygy of A if and only if

there exists an F -acyclic resolution of A of length r. Thus the existence of an
F -acyclic rth F -syzygy implies

K − rdim(A) ≤ r.
Now, let N be an rth F -syzygy of A, and suppose F − dim(A) = n; then by (2.3.7)
we have

RsF (N) = Rs+rF (A) for s ≥ 1

So if r ≥ n, then RsF (N) = 0, for all s ≥ 1, which means that N is F -acyclic. On
the other hand, if r < n, we have:

RsF (N) =

{
0 for s ≥ n− r + 1
RnF (A) 6= 0 for s = n− r.

This shows F − dim(N) = n − r. In particular, an rth F -syzygy of A is F -acyclic
if and only if r ≥ n. Therefore, if F − dim(A) = n, then there exists an F -acyclic
nth F -syzygy of A, and so we find

K − rdim(A) ≤ n = F − dim(A) ≤ K − rdim(A).

This shows the equivalence between all the statements in the Proposition. �



CHAPTER 3

Spectral Sequences

chap:spectral
Unless otherwise noted, all our categories will be abelian categories satisfying

axioms Ab-4 and Ab-4*.

1. Lots of Definitions and a Proposition

Definition 3.1.1. A filtration F •A of an object A in a category C is a collec-
tion {F rA : r ∈ Z} of subobjects of A such that F rA ⊃ F r+1A, for r ∈ Z.

A filtration F •A is exhaustive if
⋃

r∈Z F
rA = A.

It is separated if
⋂

r∈Z F
rA = 0.

It is complete if A ∼= lim←−A/F rA; it’s immediate that a complete filtration
is separated.

Definition 3.1.2. A filtered object over a category C is a pair (A,F •A), where
F •A is a filtration on A.

We will say that (A,F •A) is separated (resp. complete, resp. exhaustive if the
filtration F •A is separated (resp. complete, resp. exhaustive).

Rather abusively, we will in this context say that A is separated (or complete
or exhaustive), leaving the filtration implicit in our assertion.

Definition 3.1.3. Given a filtered object (A,F •A), we consider the object
A′ = A/

⋂
r∈Z F

rA. This has a natural filtration F •A′ on it induced by the filtration
on A. We call the filtered object (A′, F •A′) the separation of A.

Given a filtration F •A onA, we define the completion ofA by Â = lim←−A/F rA,
and equip it with the filtration given by F rÂ = ˆF rA. We have

A/F rA ∼= A′/F rA′ ∼= Â/F rÂ for r ∈ Z.

From this it follows that Â = Â′ is complete with its equipped filtration.

From now on we will concentrate on filtrations of chain complexes over C .

Definition 3.1.4. A filtration F •C• is bounded below if, for every n ∈ Z, there
exists s ∈ Z such that F rCn = F sCn, for all r ≥ s. It is bounded above if, for
every n ∈ Z, there exists s ∈ Z such that F rCn = F sCn, for all r ≤ s. A filtration
that is bounded both above and below is said to be bounded or finite. A filtration
is canonically bounded if F rCn = 0, for r ≥ n+ 1, and F 0Cn = Cn.

Again in this situation we may conflate the chain complex C• and the filtered
chain complex (C•, F •C•), when the filtration is clear from the context.

Definition 3.1.5. A spectral sequence over a category C is a collection

{E•r : r ≥ a, for some a ∈ Z}

of chain complexes over C satisfying the following conditions:

29
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(1) For r ≥ a, n ∈ Z, there exists a direct sum decomposition En
r = ⊕p+q=nE

p,q
r

such that dp,q
r = dn

r |Ep,q
r

maps Ep,q
r into Ep+r,q−r+1

r .
(2) There exist isomorphisms

ϕp,q
r : Hp,q(Er) = ker dp,q

r / im dp−r,q−r+1
r

∼=−→ Ep,q
r+1.

Remark 3.1.6. E•r is called the rth page of the spectral sequence, and condition
(1) above says that, if we visualize E•r as given by a plane lattice with Ep,q

r at the
(p, q)-position, then every line of slope −(r − 1)/r forms a chain complex by itself.
The object Hp,q(Er) is nothing but the cohomology of this chain complex at the
(p, q)-position. Observe that these lines get steeper with each subsequent page.

Definition 3.1.7. A morphism between two spectral sequences {E•r : r ≥ a}
and {Ẽ•r : r ≥ b} is a collection {fr : r ≥ max {a, b}} of chain maps fr : E•r → Ẽ•r
satisfying the following conditions:

(1) For p, q ∈ Z, and r large enough, fp,q
r = fp+q

r |Ep,q
r

maps into Ẽp,q
r .

(2) For p, q ∈ Z, and r large enough, the following diagram commutes:

Hp,q(Er)
ϕp,q

> Ep,q
r+1

Hp,q(Ẽr)

Hp,q(fr)

∨
ϕp,q

> Ẽp,q
r+1.

∨

fr+1

It’s easy to check now that this gives us a category of spectral sequences over
C , which we will denote by Sp(C ).

Definition 3.1.8 (The Limit Page). Let {E•r : r ≥ a} be a spectral sequence
over C . Then, for s, t ∈ Z, s ≥ t, Ep,q

s is a subquotient of Ep,q
t . This lets us find

collections {Bp,q
r } and {Zp,q

r } of Ep,q
a such that Ep,q

r
∼= Zp,q

r /Bp,q
r and such that we

have a filtration

0 = Bp,q
a ⊂ . . . Bp,q

r ⊂ . . . ⊂ Zp,q
r ⊂ . . . ⊂ Zp,q

a = Ep,q
a .

We define (
Bp,q
∞ =

⋃
r≥aB

p,q
r and Zp,q

∞ =
⋂

r≥a Z
p,q
r ,
)

and we set Ep,q
∞ = Zp,q

∞ /Bp,q
∞ .

Remark 3.1.9. Suppose now that we have two spectral sequences {E•r : r ≥ a}
and {E′•r : r ≥ b} and a morphism f from the first to the second. Replacing a, b
with max{a, b}, we can assume that a = b. Now, since fa is a chain morphism, we
have that Zp,q

a (E) maps into Zp,q
a (E′) and that Bp,q

a (E) maps into Bp,q
a (E′). In-

ductively from here, using the commutativity condition on f , we show that Zp,q
r (E)

maps into Zp,q
r (E′), for all r ≥ a, and analogously for Bp,q

r . This gives us an in-
duced morphism Ep,q

∞ (E) → E′p,q
∞ (E′). Thus the assignment of the doubly graded

object {Ep,q
∞ } to the spectral sequence {E•r} is functorial.

Definition 3.1.10 (Boundedness conditions). Observe now that to each spec-
tral sequence {E•r : r ≥ a}, we can associate a subset S(E) ⊂ Z × Z of the plane
lattice by the formula (p, q) ∈ S(E)⇔ Ep,q

a 6= 0. A spectral sequence {E•r : r ≥ a}
is bounded below, bounded above, bounded, first quadrant, etc. if S(E) is bounded
below, bounded above, bounded, etc.
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A spectral sequence {E•r : r ≥ a} is regular if, for all pairs p, q ∈ Z, there is
s ∈ Z, such that dp,q

r = 0, for all r ≥ s. It is clear that this can occur if and only if
Zp,q
∞ = Zp,q

s .
A spectral sequence {E•r : r ≥ a} collapses if there exists r ≥ a such that E•r

has only one non-zero row or only one non-zero column.

Remark 3.1.11. We see immediately that a bounded below spectral sequence
is regular. Essentially the differentials get steeper and steeper till they fall off the
chart.

spectral-filtration-to-spectral-seq Proposition 3.1.12. A filtered chain complex (C•, F •C•) naturally determines
a spectral sequence {E•r (C) : r ≥ 0} starting with Ep,q

0 = F pCp+q/F p+1Cp+q.
More precisely, the assignment of the spectral sequence {E•r (C)} to the filtered com-
plex (C•, F •C•) gives rise to a functor from the category of filtered chain complexes
over C to the category Sp(C ) of spectral sequences over C .

Note on Notation 3. For the purposes of this proof, we will index all our
objects by the double index (p, n), where n = p + q, instead of the double index
(p, q).

Proof. We begin by setting Ep,n
0 = F pCn/F p+1Cn. Next, for every pair

(p, n) and every r ≥ 0, we define:

Ap,n
r = d−1

(
F p+rCn+1

)
∩ F pCn.

Observe that we have
Ap,n

r ∩ F p+1Cn = Ap+1,n
r−1 .

We have the following useful relations:

Ap,n
r ⊂ Ap,n

r+1

d(Ap,n
r ) ⊂ Ap+r,n+1

s ,

for all p, n, r, s. Now, let ηp,n : F pCn → Ep,n
0 be the natural surjection, and define

the following subobjects of Ep,n
0 :

Zp,n
r = ηp,n (Ap,n

r ) and

Bp,n
r = ηp,n

(
d
(
Ap−r+1,n−1

r−1

))
.

It’s clear that we have a chain

0 = Bp,n
0 ⊂ . . . Bp,n

r ⊂ . . . ⊂ Zp,n
r ⊂ . . . ⊂ Zp,n

a = Ep,n
0 .

We now set Ep,n
r = Zp,n

r /Bp,n
r . Observe that we have:

Ep,n
r
∼=

Ap,n
r + F p+1Cn

d
(
Ap−r+1,n−1

r−1

)
+ F p+1Cn

∼=
Ap,n

r

d
(
Ap−r+1,n−1

r−1

)
+Ap+1,n

r−1

.

Now, using the differential d, we get a map dp,n
r from Ep,n

r to Ep+r,n+1
r . What is

the kernel of dp,n
r ? For this we note:

d−1
(
d
(
Ap+1,n

r−1

)
+Ap+r+1,n+1

r−1

)
= Ap+1,n

r−1 +Ap,n
r+1.

This tells us that we have

ker dp,n
r =

Ap+1,n
r−1 +Ap,n

r+1

d
(
Ap−r+1,n−1

r−1

)
+Ap+1,n

r−1

∼= Zp,n
r+1/B

p,n
r .
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So the map dp,n
r factors through Zp,n

r /Zp,n
r+1. But we now have:

Zp,n
r /Zp,n

r+1
∼= Ap,n

r /
(
Ap,n

r+1 +Ap+1,n
r−1

)
;

Bp+r,n+1
r+1 /Bp+r,n+1

r
∼= d (Ap,n

r ) /d
(
Ap,n

r+1 +Ap+1,n
r−1

)
.

This shows that im dp,n
r
∼= Bp+r,n+1

r+1 /Bp+r,n+1
r , which shows that we have

Hp,n(Er) = ker dp,n
r / im dp−r,n−1

r
∼= Zp,n

r+1/B
p,n
r+1 = Ep,n

r+1.

Hence {E•r : r ≥ 0} does give us a spectral sequence as claimed.
The functoriality of this construction is quite clear at this point. �

The next Proposition lists some properties of this construction. Since we would
like as much as possible not to go back to the construction ever again, this collection
of results will prove very useful.

spectral-filtrations-prps Proposition 3.1.13. Let (C•, F •C•) be a filtered chain complex, and let E(C) =
{E•r : r ≥ 0} be the spectral sequence associated to this filtered complex.

(1) If F •C is bounded below (resp. bounded above, resp. bounded, canonically
bounded) then {E•r} is bounded below (resp. bounded above, resp. bounded,
resp. a first quadrant sequence).

(2) Fix p ∈ Z and k ∈ N; let Cp,k = C/F p+kC and Cp,k = F p−kC/F p+kC.
Then the natural maps C → Cp,k ← Cp,k induce isomorphisms

Ep,q
r (C) ∼= Ep,q

r (Cp,k) ∼= Ep,q
r (Cp,k) 0 ≤ r ≤ k.

(3) If Ĉ is the completion of C, then E(Ĉ) ∼= E(C). The same statement is
true if we replace Ĉ with the separation C ′ of C.

Proof. (1) This is quite obvious from the construction.
(2) Observe that we have, for 0 ≤ r ≤ k,

Ap,n
r (Cp,k) = Ap,n

r (Cp,k) = Ap,n
r (C)/F p+kCn.

(3) Just observe that for all pairs (p, k), we have(
Cp,k

∼= Ĉp,k and Cp,k ∼= Ĉp,k.
)

A similar natural isomorphism holds with Ĉ replaced by C ′. Now use part
(2).

�

Now, consider the cohomology H•(C) of the complex C•. Given a filtra-
tion F •C• on C•, we get a natural filtration on H•(C), given by F pHn(C) =
im(Hn(F pC)→ Hn(C)). This filtration is exhaustive (resp. bounded below, resp.
bounded above, resp. bounded, resp. separated), whenever the original filtration
is exhaustive (resp. bounded below, resp. bounded above, resp. bounded, resp.
separated). In particular this gives us a functor from the category of filtered chain
complexes to the category of filtered graded objects over C .

spectral-filtrations-cohomology Proposition 3.1.14. Let (C•, F •C•) be a separated and exhaustive filtered
chain complex. In the notation of (3.1.12), set Ap,n

∞ =
⋂

r≥0A
p,n
r , let ηp,n be the

natural map from F pCn onto Ep,n
0 , and set ep,n

∞ = ηp,n(Ap,n
∞ )/Bp,n

∞ .
(1) ker(d : F pCn → F pCn+1) = Ap,n

∞ .
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(2) F pHn(C) ∼= Ap,n
∞ /d

(⋃
r≥0A

p−r,n−1
r

)
.

(3) F pHn(C)/F p+1Hn(C) ∼= ep,n
∞ .

Proof. Since the filtration is separated,

ker d|F pCn = d−1

(⋂
r

F rCn+1

)
∩ F pCn

=
⋂
r

(
d−1

(
F rCn+1

)
∩ F pCn

)
= Ap,n

∞ .

This gives us the first assertion. Now observe that F pHn(C) is just the image of
Ap,n
∞ in Hn(C), so we’ll be done if we compute the kernel of Ap,n

∞ → Hn(C). This
is simply im d∩F pCn, which is of course

⋃
r≥0 d

(
Ap−r,n−1

r

)
. For the last assertion,

observe that F pHn+1(C) is just the image of Ap+1,n
∞ in Hn(C), and so we have

F pHn(C)/F pHn+1(C) ∼= Ap,n
∞ /

Ap,n+1
∞ + d

(⋃
r≥0

Ap−r,n−1
r

)
∼= ep,n
∞ .

�

2. Convergence

We now come to the main purpose of spectral sequences as a computational
tool.

Definition 3.2.1 (Convergence). Let {E•r : r ≥ a} be a spectral sequence over
C , and let H∗ = {Hn : n ∈ Z} be a sequence of objects in C . Let F •H∗ be a
filtration of H∗ (treating H∗ as an object in the category

∏
n∈Z C ). We now list

the possible kinds of convergence in increasing order of niceness.
Weak Convergence: : {E•r} weakly converges to H∗ if, for every pair

(p, q), we have

Ep,q
∞
∼= F pHp+q/F p+1Hp+q.

Abutment: : {E•r} abuts to or approaches H∗ if it weakly converges to H∗,
and if the filtration F •H∗ is separated and exhaustive.

Convergence: : {E•r} converges to H∗ if it is regular, it approaches H∗,
and if the filtration F •H∗ is complete.

Bounded Convergence: : {E•r} boundedly converges toH∗ if it is bounded,
it converges to H∗, and if, for every n ∈ Z, the filtration F •Hn is finite.
We denote this kind of convergence by Ep,q

a ⇒ Hp+q.

We make several remarks.

spectral-bounded-below-convergence Remark 3.2.2 (Bounded below sequences). Suppose {E•r : r ≥ a} is a bounded
below spectral sequence weakly converging to H∗. In this case, the filtration on H∗

is also bounded below and {E•r} is already regular. Therefore, for it to converge to
H∗, it suffices to check that the filtration on H∗ is complete. But since the filtration
is bounded below, for it to be complete, it in fact suffices for it to be separated. In
other words, if {E•r} approaches H∗, then it in fact converges to H∗.
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spectral-collapsing-convergence Remark 3.2.3 (Collapsing sequences). Suppose {E•r : r ≥ a} is a spectral
sequence weakly converging to H∗, and suppose also that it collapses on page r,
say on the row q = s. Then we have Hn = En−s,s

r , which allows us to completely
recover H∗ from our spectral sequence.

spectral-first-quadrant-convergence Remark 3.2.4 (First quadrant sequences). Suppose {E•r : r ≥ a} is a first
quadrant spectral sequence converging to H∗. Then, since Ep,n−p

∞ = 0, for p < 0
and p > n, we find that the filtration on H∗ must be canonically bounded. That is
we must have F rHn = 0, for r ≥ n+ 1 and FnHn = Hn. Moreover we must have
FnHn ∼= En,0

∞ and Hn/F 1Hn ∼= E0,n
∞ . Observe also that we have Z0,n)∞ ∼= E0,n

∞
and En,0

a /Bn,0
∞
∼= En,0

∞ .
Then the natural morphisms En,0

a → En,0
∞ ⊂ Hn and Hn → E0,n

∞ ⊂ E0,n
a are

called the edge morphisms.

spectral-euler-characteristic Remark 3.2.5 (Euler Characteristic). Let {E•r : r ≥ a} be a spectral se-
quence over R-mod, for some ring R, weakly converging to H∗, and suppose E•s is
bounded for some r ≥ s, thus giving us that E•r is bounded for all r ≥ s. Moreover,
suppose that Ep,q

s has finite length, for all pairs (p, q). Then we have:

χ(E•r ) =
∑
n∈Z

(−1)nl(Hn(Er)) = χ(E•r+1) = χ(E•∞).

We also have

l(Hn) =
∑
p∈Z

l(F pHn/F p+1Hn) =
∑
p∈Z

l(Ep,n−p
∞ ).

So we see that we have

χ(E•r ) = χ(E•∞) =
∑
n∈Z

(−1)nl(Hn).

Definition 3.2.6. Let {E•r : r ≥ a} and {E′•r : r ≥ a} be two spectral
sequences weakly converging respectively to H∗ and H ′∗. Let h : H∗ → H ′∗ be a
morphism of filtered objects in

∏
n C and let f : E → E′ be a morphism of spectral

sequences. Let ϕp,n : F pHn/F p+1Hn → F pH ′n/F p+1H ′ be the morphism induced
by h and let ψp,n : Ep,n

∞ → E′p,n
∞ be the morphism induced by f . We say that h is

compatible with f if the following diagram commutes for every pair (p, n).

Ep,n
∞

ψp,n

> E′p,n
∞

F pHn/F p+1Hn

∼=
∨

ϕp,n

> F pH ′n/F p+1H ′n

∼=
∨

After this somewhat lengthy prelude, we are ready to present our main result.

spectral-classical-convergence Theorem 3.2.7 (Classical Convergence Theorem). Let (C•, F •C•) be an ex-
haustive, separated filtered complex over C , and let {E•r : r ≥ 0} be its associated
spectral sequence. If F •C• is bounded below (resp. bounded), then {E•r} converges
(resp. boundedly converges) to H•(C).

Proof. As we observed earlier, if F •C• is bounded below (resp. bounded),
then the filtration induced on H•(C) is also bounded below (resp. bounded). So,
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as observed in (3.2.2), it suffices to assume that F •C is bounded below and to
then show that it weakly converges to H•(C). For this, from part (3) of (3.1.14),
it’s enough to show that ηp,n (Ap,n

∞ ) = Zp,n
∞ . But since F •C• is bounded below,

Ap,n
∞ = Ap,n

r , for r large enough, and so Zp,n
∞ = Zp,n

r , for r large enough, from which
the result follows. �

Example 3.2.8 (The Canonical Filtration). Let C• be a complex over C . The
canonical filtration on C• is given by F pC• = τ≤pC

•. So we have

F pCn =


Cn if n < p

ker dp if n = p

0 if n > p.

We then have

Hn(F pC•) =

{
Hn(C) if n ≤ p
0 if n > p.

Now, we have

F pCn/F p+1Cn =


0 if n < p− 1 or n > p

Cp−1/ ker dp−1 if n = p− 1
ker dp if n = p

Hence we see that

Ep,n−p
1 =

{
Hp(C) if n = p

0 otherwise.

So the sequence collapses on page 1, and we get the cohomology of the chain
complex, as we expected.

3. The Spectral Sequences associated to a Double Complex

Let C•,• be a double complex over C . Then we have two natural filtrations on
C•,•, either by rows or by columns. These give rise to different spectral sequences.
The aim of this section is to study the relationship between these two spectral
sequences.

Definition 3.3.1. Given a double complex C•,• we define, for all p ∈ N, two
subcomplexes of Tot•(C) by the formulas below (we speak here only of the restricted
total complex).

(F p
I Tot•(C))n =

⊕
i+j=n

i≥p

Ci,j

(F p
II Tot•(C))n =

⊕
i+j=n

j≥p

Ci,j .

This gives us two natural filtrations of Tot•(C).
From these two natural filtrations, we get two natural spectral sequences, which

we’ll denote {IE•r (C)} and {IIE•r (C)}, respectively.
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We make the following observations about these spectral sequences: On the 0th

page we have:

IEp,q
0 = Cp,q

IIEp,q
0 = Cq,p.

Observe, in particular, that the spectral sequences associated to C•,• satisfy the
same boundedness conditions that C•,• (to be more precise, for {IIE•r}, this is only
true after a reflection through the origin).

Moreover, the differentials on the 0th page are induced by the total differential
on Tot•(C). Therefore, on the first page we have:

IEp,q
1 = Hq(Cp,•) = Hq,p

II (C)
IIEp,q

1 = Hq(C•,p) = Hq,p
I (C).

The differentials here are again induced by the total differential on Tot•(C),
and so we have on the second page:

IEp,q
2 = Hp

I (Hq
II(C))

IIEp,q
2 = Hp

II(H
q
I (C)).

We record this in the next Proposition.

spectral-double-complex-sequences Proposition 3.3.2. To each double complex C•,• over C we can naturally as-
sociate two spectral sequences {IE•r} and {IIE•r} such that

IEp,q
2 = Hp

I (Hq
II(C))

IIEp,q
2 = Hp

II(H
q
I (C)).

Proof. �

Now we consider some boundedness conditions on the double complex and how
they affect the filtrations on it, and hence the spectral sequences arising from these
filtrations. Observe first that both filtrations on Tot•(C) are exhaustive. Now
suppose C•,• is 0 in the fourth quadrant. Then we see that F •I Tot•(C) is bounded
below; so we see that {IE•r} must converge to H•(Tot(C)), by (3.2.7). Instead, if
C•,• were 0 in the second quadrant, then F •II Tot•(C) would be bounded below,
and so {IIE•r} will now converge to H•(Tot(C)). If now, C•,• is either first or
third quadrant, then we see that both spectral sequences arising from it converge
to H•(Tot(C)). This last observation is a wellspring for many standard results; so
we record in the next Proposition.

spectral-double-complex-bounded-convergence Proposition 3.3.3. Let C•,• be either a first or a third quadrant double com-
plex over C . Then we have

IEp,q
2 ⇒ H•(Tot(C))

IIEp,q
2 ⇒ H•(Tot(C)).

Proof. �
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4. Derived Functors of Multi-functors

There’s a nice consequence of the spectral sequence of a double complex that
lets us relate the different derived functors of a multi-functor. Before that a defini-
tion.

Definition 3.4.1. A multi-functor F : C1 × . . .× Cn → D is right balanced if
the following conditions hold:

(1) It is left exact in each of its variables.
(2) For any covariant variable Ci and any injective object I in Ci, the multi-

functor

F i
I : C1 × . . .× Ci−1 × Ci+1 × . . .× Cn → D

(C1, . . . , Ci−1, Ci+1, . . . , Cn) 7→ F (C1, . . . , Ci−1, I, Ci+1, . . . , Cn)

is exact.
(3) For any contravariant variable Cj and any projective object P in Cj , the

multi-functor

F j
P : C1 × . . .× Cj−1 × Cj+1 × . . .× Cn → D

(C1, . . . , Cj−1, Cj+1, . . . , Cn) 7→ F (C1, . . . , Cj−1, P, Cj+1, . . . , Cn)

is exact.
A multi-functor F : C1×. . .×Cn → D is left balanced if the following conditions

hold:
(1) It is right exact in each of its variables.
(2) For any covariant variable Ci and any projective object P in Ci, the multi-

functor

F i
P : C1 × . . .× Ci−1 × Ci+1 × . . .× Cn → D

(C1, . . . , Ci−1, Ci+1, . . . , Cn) 7→ F (C1, . . . , Ci−1, P, Ci+1, . . . , Cn)

is exact.
(3) For any contravariant variable Cj and any injective object I in Cj , the

multi-functor

F j
I : C1 × . . .× Cj−1 × Cj+1 × . . .× Cn → D

(C1, . . . , Cj−1, Cj+1, . . . , Cn) 7→ F (C1, . . . , Cj−1, I, Cj+1, . . . , Cn)

is exact.

spectral-derived-bifunctors Proposition 3.4.2. Let F : C1 × . . . × Cn → D be a multi-functor between
abelian categories, and suppose that F is covariant in the first r variables and that
it is contravariant in the next n−r variables. Suppose also that each Ci has enough
injectives if i ≤ r and that it has enough projectives if i > r.

If F is right balanced, then, for any n-tuple of objects (A1, . . . , An), with Ai ∈
Ci, and any pair i, j with 1 ≤ i < j ≤ n, and for all p ≥ 0, we have a natural
isomorphism:

(RpF (A1, . . . , Âi, . . . , An))(Ai) ∼= (RpF (A1, . . . , Âj , . . . , An))(Aj)

If F is left balanced, then, for any n-tuple of objects (A1, . . . , An), with Ai ∈ Ci,
and any pair i, j with 1 ≤ i < j ≤ n, and for all p ≤ 0, we have a natural
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isomorphism:

(LpF (A1, . . . , Âi, . . . , An))(Ai) ∼= (LpF (A1, . . . , Âj , . . . , An))(Aj)

Proof. We’ll only do the case where F is right balanced. It clearly suffices
to prove the natural isomorphism for the case where i = 1 and j is arbitrary. In
doing so we reduce essentially to the case where F is a bi-functor F : C1×C2 → D .
There are now three possible scenarios: F is covariant in both variables, or F is
contravariant in both variables, or F is covariant in one variable and contravariant
in the other. We’ll consider the last; the proofs are almost identical in the other
cases.

So suppose F is covariant in the first variable and contravariant in the second.
Let I• be an injective resolution of A1 in C1 and let P • be a projective resolution
of A2 in C2. Let K•,• be the first quadrant double complex defined by

Kp,q = F (Ip, P−q)

dp,q
I = F (dp

I , 1P−q )dp,q
II = F (1Ip , d−q−1

P ).

We now consider the two spectral sequences associated with this double complex
to find:

IEp,q
1 =

{
F (Ip, A2) if q = 0
0 otherwise

II

Ep,q
1 =

{
F (A1, P

−p) if q = 0
0 otherwise

Here, we used the fact that F 1
Ip and F 2

P−p are exact functors. Computing the second
page of both spectral sequences we get:

IEp,q
2 =

{
Rp(F ( , A2))(A1) if q = 0
0 otherwise

II

Ep,q
2 =

{
Rp(F (A1, ))(A2) if q = 0
0 otherwise

So both sequences collapse on the second page on the 0th row, and since they both
must converge H•(Tot(K)), we see that we must in fact have a natural isomorphism

Rp(F ( , A2))(A1) ∼= Rp(F (A1, ))(A2)

�

But in fact it is very common for an abelian category to not have enough
projectives. The next result shows that we can still get some useful information
out of the covariant variable even in this case, and although it has nothing to do
with spectral sequences, this is probably the most appropriate place for it.

spectral-bi-functor Proposition 3.4.3. Let F : C1 → C2 → D be a right balanced bi-functor,
contravariant in the first variable and covariant in the second. Suppose also that
C2 has enough injectives. Let K be the class of objects P in C1, for which the
functor F (P, ) is exact.

(1) For every short exact sequence

0→ A1 → A2 → A3 → 0

in C1, and every object C in C2, there is an associated long exact sequence

0→ F (A3, C)→ F (A2, C)→ F (A1, C)→ R1F (A3, )(C)→ R1F (A2, )(C)→ R1F (A1, )(C)→ . . .

In other words, the sequence of functors R•F ( , )(C) from C1 to D is
in fact a contravariant cohomological δ-functor.
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(2) Suppose that P • is a left K -resolution of A in C1. Then, for every object
C in C2, we have a natural isomorphism

RnF ( , C)(A) ∼= H−n(F (P •, C))

Proof. For the first statement, use (2.2.8), and the fact that the sequence

0→ F (A3, I)→ F (A2, I)→ F (A1, I)→ 0

is exact for every injective object I in C2. If we had two exact sequences A and A′

in Exact(C1) and a morphism between them, and if I• is an injective resolution of
C, then we have a diagram:

0 > F (A3, I
•) > F (A2, I

•) > F (A1, I
•) > 0

0 > F (A′3, I
•)

∨
> F (A′2, I

•)
∨

> F (A′1, I
•)

∨
> 0

From this diagram and the δ-functoriality of H• : ChD → D , we obtain the δ-
functoriality of the sequence R•F ( , )(C).

For the second observe that R•F ( , )(A) and H−•(F (P •, )) are both con-
travariant cohomological δ-functors from C2 to D . That the first is a δ-functor
follows from part (1), and that the second is a δ-functor follows from the fact that
F (P •, ) is an exact functor into Ch≤D . Now, when n = 0, they are both simply
F (A, ), and for n > 0 they are both effaceable, since they vanish on injective
objects. Hence we see that they must be isomorphic. �

Remark 3.4.4. Many properties (right balancedness, contravariance, etc.) are
naturally dualistic in nature, and so we can replace them by their duals in the
Proposition to get the appropriate analogues. If the need arises in the future, we
will use these analogues without comment.

5. Cartan-Eilenberg Resolutions

So far we’ve only discussed resolutions of objects, but if, as remarked earlier,
we want to treat chain complexes as generalized objects, then we should also be
willing to consider resolutions of complexes as well. We will do exactly that in this
section, and in doing so, we will be able to define a

Definition 3.5.1 (Cartan-Eilenberg Resolutions). An injective Cartan-Eilenberg
resolution of a complex C• over C consists of an upper plane double complex I•,•

of injectives and a monomorphism ε : C• → I0,• such that the following conditions
hold:

(1) If Cp = 0, then the column Ip,• is also 0.
(2) For all q ≥ 0, the complex B•,qI is an injective resolution of Bq(C), and

the complex H•,qI is an injective resolution of Hq(C).
Dually, a projective Cartan-Eilenberg resolution of a complex C• over C consists

of a lower plane double complex P •,• of injectives and an epimorphism ε : P 0,• → C•

such that the following conditions hold:
(1) If Cp = 0, then the column Ip,• is also 0.
(2) For all p ∈ Z, the complex Bp,•

I (I) is an injective resolution of Bp(C), and
the complex Hp,•

I (I) is an injective resolution of Hp(C).
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From now on we will only state results for injective Cartan-Eilenberg resolution,
but will use their dual statements for projective ones without comment.

Remark 3.5.2. It’s easy to see that we also have, for all p ∈ Z, that the complex
Ip,• is an injective resolution of Cp, and that Zp,•

I (I) is an injective resolution of
Zp(C).

The next Proposition is a generalization of (1.4.5).

spectral-cartan-eilenberg-extension Proposition 3.5.3. Let C• and C ′• be complexes over C and let I•,• and J•,•

be injective Cartan-Eilbenberg resolution of C• and C ′•, respectively.
(1) Every morphism C• → C ′• can be extended to a morphism of I•,• into J•,•

of double complexes. Moreover, this extension is unique upto homotopy of
double complexes.

(2) If two morphisms f, f ′ : C• → C ′• are chain homotopic, then their exten-
sions from I•,• to J•,• are also chain homotopic. In particular, any two
Cartan-Eilenberg resolutions of C• are chain homotopy equivalent.

Proof. �

spectral-cartan-eilenberg-construction Proposition 3.5.4. Let C be a category with enough injectives. Then every
complex C• over C has a Cartan-Eilenberg resolution.

Proof. �

6. Hypercohomology and the Grothendieck Spectral Sequence

spectral-construction-hypercohomology Theorem 3.6.1. Let F : C → D be a left exact functor between abelian cate-
gories, and suppose C has enough injectives. Then there is a cohomological univer-
sal δ-functor

R•F : Ch≥0 C → D

such that the following conditions hold:
(1) R0F ∼= H0(ChF ).
(2) For any complex C• ∈ Ch≥0 and n ≥ 0, we have

RpF (C[n]•) =

{
Rp−nF (C•) if p ≥ n
0 otherwise.

(3) For any object A ∈ C , and n ≥ 0, we have

RpF (A[n]) =

{
Rp−nF (A) if p ≥ n
0 otherwise.

(4) For every complex C ∈ Ch≥0 C , there is a first quadrant spectral sequence
{E•r : r ≥ 0} such that

Rp(Hq(C)) ∼= Ep,q
2 ⇒ Rp+qF (C•).

Definition 3.6.2. With the notation of the Theorem, we call RnF : Ch≥0 C →
D the right hyper-derived functors of F .

We of course have the dual version of this Theorem, which we will record below
without proof:
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spectral-construction-hyperhomology Theorem 3.6.3. Let F : C → D be a right exact functor between abelian
categories, and suppose C has enough projectives. Then there is a homological
universal δ-functor

L•F : Ch≤0 C → D

such that the following conditions hold:

(1) L0F ∼= H0(ChF ).
(2) For any complex C• ∈ Ch≤0 and n ≤ 0, we have

LpF (C[n]•) =

{
Lp−nF (C•) if p ≤ n
0 otherwise.

(3) For any object A ∈ C , and n ≤ 0, we have

LpF (A[n]) =

{
Lp−nF (A) if p ≤ n
0 otherwise.

(4) For every complex C ∈ Ch≤0 C , there is a third quadrant spectral sequence
{E•r : r ≥ 0} such that

Lp(Hq(C)) ∼= Ep,q
2 ⇒ Lp+qF (C•).

We now come to one of the most useful gadgets in homological algebra: the
Grothendieck spectral sequence.

spectral-grothendieck-left-exact Theorem 3.6.4. Let G : C → D and F : D → E be left exact functors between
abelian categories; suppose C and D have enough injectives and suppose that G
takes injective objects in C to F -acyclic objects in D . Then, for every object A ∈ C ,
there exists a first quadrant spectral sequence {E•r : r ≥ 0} such that

(RpF )(RqG)(A) ∼= Ep,q
2 ⇒ Rp+q(FG)(A).

spectral-grothendieck-one-is-exact Corollary 3.6.5. If, with the notation and hypotheses of the theorem above,
G is in fact exact, then, for all n ≥ 0, we have natural isomorphisms

(RnF )(GA) ∼= Rn(FG)(A).

If instead F is exact, then we have natural isomorphisms:

F (RnG)(A) ∼= Rn(FG)(A).

Proof. Indeed, the spectral sequence collapses on the 0th row, since RqG = 0,
for q ≥ 1 (2.2.6). For the second statement, we apply the same argument, but this
time to F . �

Remark 3.6.6. Observe that if F is exact then we do not need any additional
hypotheses on G apart from left exactness: every object in D is F -acyclic in this
case. The content of the corollary is in the first identity.

spectral-grothendieck-two-compositions Corollary 3.6.7. Let C , D , D ′ and E be abelian categories, and suppose we
have left exact functors G : C → D , G′ : C → D ′, F : D → E and F ′ : D ′ → E
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such that the following diagram commutes up to natural equivalence:

C
G

> D

D ′

G′

∨ F ′
> E

F

∨

Suppose also that C , D and D ′ all have enough injectives, that G and F ′ are in
fact exact, and, finally, that G takes injective objects to F -acyclic ones. Then, for
every object A ∈ C , and every n ≥ 0, we have natural isomorphisms

(RnF )(GA) ∼= F ′(RnG′)(A)

Proof. Since FG ∼= F ′G′, this follows from (3.6.5). �

Of course there’s also a dual version of the Grothendieck spectral sequence. We
present it below.

spectral-grothendieck-right-exact Theorem 3.6.8. Let G : C → D and F : D → E be right exact functors
between abelian categories, and suppose that G takes projective objects in C to F -
acyclic objects in D . Then, for every object A ∈ C , there exists a third quadrant
spectral sequence {E•r : r ≥ 0} such that

(LpF )(LqG)(A) ∼= Ep,q
2 ⇒ Lp+q(FG)(A).
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CHAPTER 7

Sheaf Cohomology

chap:sheaf
We will be using the notation and the language of my notes on sheaf theory

[NOS, ?? ]. All our ringed spaces will be equipped with sheaves of commutative
rings.

1. Flabby and Injective Sheaves

In this section, we’ll discuss a class of sheaves that’s very important for the
study of the cohomology of sheaves. For the remainder of this section C will denote
an abelian category.

Definition 7.1.1. A sheaf F is flabby if, for every inclusion of open sets
V ↪→ U , resU,V : F (U)→ F (V ) is surjective.

Remark 7.1.2. It’s clear that if F is flabby, and U ⊂ X is open, then F |U is
also flabby.

The main result is the following one:

sheaf-section-flabby-exact Proposition 7.1.3. If F ′ ∈ Shf(X,C ) is flabby, then Γ (U, ) preserves any
short exact sequence of the form:

0→ F ′ → F
φ−→ F ′′ → 0

Proof. We have to show that

0→ F ′(U)→ F (U)
φU−−→ F ′′(U)→ 0

is exact.
Suppose s ∈ F ′′(U). We want to find s̃ ∈ F (U) such that φU (s̃) = s. We

consider the set W = {(W,w) : W ⊂ U,w ∈ F (W ), φW (w) = resU,W (s)}, in
anticipation of the moment when we can bring down the sledgehammer of Zorn’s
Lemma.

Since φ is surjective, W is non-empty (and in fact quite large) by [NOS, 4.8 ].
Now, suppose (W,w) ∈ W . Again, by [NOS, 4.8 ], if W 6= U , we can find another el-
ement (V, v) ∈ W , with V *W . Then, the element t̃ = resW,V ∩W (w)−resV,V ∩W (v)
lies in kerφV ∩W = F ′(V ∩ W ). Since F ′ is flabby, we can find w′ ∈ F ′(W )
such that resW,V ∩W (w′) = t̃. In that case, if we consider w − w′ ∈ F (W ) and
v ∈ F (V ), then both have the same restrictions to F (V ∩W ). So we can patch
them together to find a section t ∈ F (V ∪W ), which by the Identity Axiom has
to satisfy φV ∪W (t) = resU,V ∪W (s). So (V ∪W, t) is an extension of (W,w).

Now it’s time for the sledgehammer, which does the rest of the work for us. �

sheaf-cokernel-flabby-flabby Corollary 7.1.4. With the notation and hypotheses as in the Proposition
above, F is flabby iff F ′′ is flabby.

49
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Proof. Follows from the Proposition and the commutativity of the following
diagram, for open sets V ⊂ U .

0 > F ′(U) > F (U) > F ′′(U) > 0

0 > F ′(V )
∨

> F (V )
∨

> F ′′(V )
∨

> 0
The vertical arrow on the left is surjective. So by a diagram chase it’s clear that
one of the arrows on the right is surjective iff the other one is. �

The direct image functor preserves flabbiness.

sheaf-dirimg-flabby Proposition 7.1.5. If f : X → Y is continuous, and F ∈ Shf(X,C ) is flabby,
then so is f∗F ∈ Shf(Y,C ).

Proof. We have to show that if V ⊂ U are open sets in Y , then the restriction
from (f∗F )(U) to (f∗F )(V ) is surjective, but this is just the restriction from
F (f−1(U)) to F (f−1(V )), which is surjective, because F is flabby. �

sheaf-ringed-space-injective-flabby Proposition 7.1.6. Let (X,OX) be a ringed space, and let I be an injective
OX-module, that is, an injective object in OX-mod. Then, for any OX-module G ,
the sheaf HomOX

(G ,I ) is flabby. In particular, I is flabby.

Proof. For any open subset U ⊂ X, consider the exact sequence

0→ j!(G |U )→ G → i∗(G |X\U )→ 0,

where j : U → X and i : X \ U → X are the inclusion maps. Applying
HomOX

( ,I ) to this sequence, we get another exact sequence

0→ HomOX
(i∗(G |X\U ),I )→ HomOX

(G ,I )→ HomOU
(G |U ,I |U )→ 0.

Since the morphism on the right is surjective, we find that HomOX
(G ,I ) is indeed

flabby. If we take G = OX , then we get our second assertion. �

Both injectivity and flabbiness are local conditions. Before we show that, we
need a lemma, which we can think of as a local criterion for flabbiness.

sheaf-flabby-characterization Lemma 7.1.7. A sheaf F ∈ Shf(X,C ) is flabby if and only if, for every open
subspace U ⊂ X, the natural morphism F → j!(F |U ) is surjective, where j : U →
X is the inclusion map.

Proof. One direction is trivial; so assume F → j!(F |U ) is surjective, for all
open sets U ⊂ X. To show that F is flabby, it suffices to show that the restriction
map Γ (X,F ) → Γ (U,F ) is surjective, for all open sets U ⊂ X. Pick a section s
of F over U , and set

S = {(V, t) : U ⊂ V, V ⊂ X open, t ∈ Γ (V,F ), t|U = s}.
This is a non-empty set with a natural ordering, and it clearly satisfies the require-
ments for Zorn’s lemma to work. So let (V, t) be a maximal element of S . We
claim that V = X. Suppose otherwise, and pick x ∈ X \V . Since Fx → (j!(F |U ))x

is surjective, there is some open neighborhood W of x and a section t′ of F over W
such that t′|V ∩W = t|V ∩W . But then we can extend t to a section of F on W ∪ V ,
which is a contradiction of the maximality of (V, t). �
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sheaf-flabby-local-condition Proposition 7.1.8. Let F ∈ Shf(X,C ) be a sheaf, and suppose we have an
open cover {Ui : i ∈ I} of X.

(1) F is flabby if and only if F |Ui
is flabby, for all i ∈ I

(2) Suppose in addition that (X,OX) is a ringed space and that F is an OX-
module. Then F is injective in OX-mod if and only if F |Ui

is injective,
for all i ∈ I.

Proof. (1) The criterion in the Lemma above is clearly a local one, so
the assertion follows easily.

(2) First suppose that F is injective, and let U ⊂ X be any open subset.
Then we have isomorphisms

HomOU
( ,F |U ) = HomOX

(j!( ),F ),

where j! : U → X is the inclusion map. Since j! is exact, this shows that
F |U must be injective. Conversely, if F |Ui

is injective, for all i ∈ I, then,
for any G ∈ OX -mod, the sheaf HomOUi

(G |Ui
,F |Ui

) is flabby, for all i
(7.1.6). Hence, by part (1) HomOX

(G ,F ) is flabby also. But then the
functor HomOX

(G ,F ) is the composition

OX -mod
HomOX

( ,F)
−−−−−−−−−→ OX -mod

Γ (X, )−−−−−→ Ab,

which is an exact functor, and so F must be injective.
�

2. Sections with Local Support

Sections with local support behave well in the presence of flabbiness.

sheaf-local-support-flabby-exctseq Proposition 7.2.1. If Z ⊂ X is a closed subset, F ∈ Shf(X,C ), and j : U :=
X \ Z ↪→ X is the inclusion map, then, if F is flabby, we have an exact sequence:

0→ H0
Z(F )→ F → j∗(F |U )→ 0.

Moreover, H0
Z(F ) is flabby.

Proof. Most of the work was done in [NOS, 8.13 ]. So assume that F is
flabby. Then the statement follows immediately from the fact that the morphism
F (V ) −→ F (V ∩ U) is surjective for every open set V ⊂ X. So in fact, the
sequence is exact as a sequence of presheaves. Given this, for any pair of open sets
V ⊂W , we have the following diagram:

0 > ΓZ(W,F ) > Γ (W,F ) > Γ (W, j∗(F |U )) > 0

0 > ΓZ(V,F )
∨

> Γ (V,F )
∨

> Γ (V, j∗(F |U ))
∨

> 0
where the rows are exact, and the two vertical arrows on the right and in the middle
are surjective. This implies that the arrow on the left is also surjective, and hence
H0

Z(F ) is flabby. �

sheaf-local-support-flabby-exact Proposition 7.2.2. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves, and F ′ is flabby, then we have an exact sequence:

0→ ΓZ(U,F ′)→ ΓZ(U,F )→ ΓZ(U,F ′′)→ 0
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Proof. Suppose F ′ is flabby; then by Propositions (7.1.3) and (7.1.5), we see
that we have now the following diagram with exact rows, and with exact columns
on the right and in the middle:

0 0 0

0 > ΓZ(U,F ′)
∨

> Γ (U,F ′)
∨

> Γ (U, j∗(F ′|V ))
∨

> 0

0 > ΓZ(U,F )
∨

> Γ (U,F )
∨

> Γ (U, j∗(F |V ))
∨

> 0

0 > ΓZ(U,F ′′)
∨

> Γ (U,F ′′)
∨

> Γ (U, j∗(F ′′|V ))
∨

> 0

0
∨

0
∨

0
∨

Then, it follows that the column on the left must be exact. �

3. Cohomology of Sheaves

We fix a topological space X for this section.

Definition 7.3.1. For any closed subset Z ⊂ X, the functor ΓZ(X, ) :
Shf(X,Ab)→ Ab is a left exact functor, and so has right derived functorsRnΓZ(X, ).
For a sheaf F ∈ Shf(X,Ab) we define the nth cohomology of X with support Z and
coefficients in F to be

Hn
Z(X,F ) = RnΓZ(X, ()F ).

If Z = X, then ΓX(X, ) is simply Γ (X, ), and in this case we denote
Hn

X(X,F ) simply by Hn(X,F ) and call it the nth cohomology of X with coef-
ficients in F .

Before we do anything else, let’s prove something trivial, but very fundamental.
It will be used repeatedly without comment.

sheaf-cohomology-open-subset Proposition 7.3.2. Let Z ⊂ X be a closed subset and let U ⊂ X be an open
one. Then, for all F ∈ Shf(X,Ab), we have a natural isomorphism:

H•Z(U,F |U ) ∼= R•(ΓZ∩U (U, ))(F )

Proof. Follows from (3.6.5), since restriction to U is an exact functor, and
takes injective sheaves to flasque sheaves, by (7.1.6). �

Cohomology is functorial in X.
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sheaf-cohomology-functoriality Proposition 7.3.3. Let f : X → Y be a continuous map. Then, for every
sheaf F ∈ Shf(Y,Ab), we have a natural morphism

H•(f) : H•(Y,F )→ H•(X, f−1F ).

In particular, for every open subset U ⊂ Y , we have a natural morphism

H•(Y,F )→ H•(U,F |U ).

Proof. For the existence of H•(f), since both H•(Y, ) and H•(X, f−1 ) are
δ-functors, with the first one universal, it suffices to build a natural map Γ (Y,F )→
Γ (X, f−1F ). This is easy, since by definition, f−1F is the sheafification of the
presheaf that assigns to U ⊂ X, the group

lim
longrightarrow

V⊃f(U)

Γ (V,F ),

and so carries a natural map from Γ (Y,F ) into it. �

sheaf-abelian-flabby-acyclic Proposition 7.3.4. For every closed subset Z ⊂ X, every flabby sheaf in
Shf(X,Ab) is ΓZ(X, )-acyclic.

Proof. We’ll show that the class K of flabby sheaves satisfies the two con-
ditions of (2.3.3). Condition (1) there follows for flabby sheaves from (7.1.6) and
(7.1.4), and condition (2) follows from (7.2.2). Hence we’re done. �

Remark 7.3.5. Observe that the flabbiness of an OX -module F over a ringed
space (X,OX) is independent of whether we are considering it an object in OX -mod
or as a sheaf with values in Ab.

sheaf-ringed-space-abelian-same Corollary 7.3.6. Let X be a topological space and let F ∈ Shf(X,Ab) be a
sheaf of abelian groups over X. Let Z ⊂ X be a closed subspace.

(1) For any right flabby resolution G • of F we have

Hn
Z(X,F ) = Hn(ΓZ(X,G •)).

(2) Suppose that (X,OX) is a ringed space and that F ∈ OX-mod. Consider
ΓZ(X, ) now as a functor from X-mod to Ab. Then we have

RnΓZ(X, )(F ) = Hn
Z(X,F ).

Proof. (1) follows immediately from (2.3.8) and (7.3.4). (2) follows from (1)
and the fact that any injective resolution of F in X-mod is a flabby resolution of
F in Shf(X,Ab) (7.1.6). �

Example 7.3.7 (Cohomology of S1 with coefficients in Z).

4. Cohomology with Supports

In this section, we specifically consider cohomology with support in some closed
subspace of a topological space X. We’ll find that it satisfies many properties
reminiscent of relative cohomology groups in topology, including excision and the
Mayer-Vietoris.

sheaf-flabby-local-support-section-exact Lemma 7.4.1. Let F ∈ Shf(X,Ab) be a flabby sheaf and let Z ⊂ X be a closed
subspace. Then the following sequence is exact:

0→ ΓZ(X,F )→ Γ (X,F )→ Γ (X \ Z,F )→ 0.
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Proof. The sequence is obtained simply by applying the global sections func-
tor to the exact sequence (7.2.2)

0→ H0
Z(F )→ F → j∗(F |X\Z)→ 0,

where j : X \Z → X is the inclusion. Since flabby sheaves are Γ (X, )-acyclic, the
result follows. �

sheaf-local-support-long-exact-seq Proposition 7.4.2. For every F ∈ Shf(X,Ab) and every closed subspace Z ⊂
X, there exists a long exact sequence

0→ ΓZ(X,F )→ Γ (X,F )→ Γ (X\Z,F )→ H1
Z(X,F )→ H1(X,F )→ H1(X\Z,F |X\Z)→ . . .

Proof. Follows from the lemma and (2.2.8). �

sheaf-local-support-excision Proposition 7.4.3 (Excision). Let Z ⊂ X be a closed subspace and let F ∈
Shf(X,Ab) be a sheaf. Suppose V ⊂ X is an open subspace such that Z ⊂ V .
Then, for all n ≥ 0, we have natural isomorphisms

Hn
Z(X,F ) ∼= Hn

Z(V,F |V ).

Proof. Consider the composition

G : Shf(X,Ab)
|V−→ Shf(V,Ab)→ ΓZ(V, )−−−−−→ Ab .

Since restriction takes flabby sheaves to flabby sheaves and is an exact functor, we
can apply (3.6.5) to conclude that we have

Hn
Z(V,F |V ) ∼= RnG(F ).

We’ll be done now if we show that G(F ) ∼= ΓZ(X,F ). For this consider the natural
map ΓZ(X,F ) → ΓZ(V,F ). Since Z ⊂ V , this is clearly injective. Suppose
s ∈ ΓZ(V,F ); then we can extend it to a section over X simply by gluing it
together with the zero section over X \ Z. This shows surjectivity and finishes the
proof. �

The next result will be useful for some Mayer-Vietoris type results for sheaf
cohomology.

sheaf-local-support-union-intersect Proposition 7.4.4. Let Z1, Z2 ⊂ X be two closed subsets, let Ui = X \Zi, for
i = 1, 2. Then, for a flabby sheaf F ∈ Shf(X,Ab), we have exact sequences

0 > Γ (U1 ∪ U2,F )
α : s 7→ (s, s)

> Γ (U1,F )⊕ Γ (U2,F )
β : (s1, s2) 7→ (s1 − s2)

> Γ (U1 ∩ U2,F ) > 0

and

0 > ΓZ1∩Z2(X,F )
s 7→ (s, s)

> ΓZ1(X,F )⊕ ΓZ2(X,F )
(s1, s2) 7→ (s1 − s2)

> ΓZ1∪Z2(X,F ) > 0
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Proof. We have the following diagram with exact rows:
0 0 0

0 > ΓZ1∩Z2(X,F )
∨

> Γ (X,F )
∨

> Γ (U1 ∪ U2,F )
∨

> 0

0 > ΓZ1(U,F )⊕ ΓZ2(U,F )

γ

∨
> Γ (X,F )⊕ Γ (X,F )

∨
> Γ (U1,F )⊕ Γ (U2,F )

α

∨
> 0

0 > ΓZ1∪Z2(X,F )

δ

∨
> Γ (X,F )

∨
> Γ (U1 ∩ U2,F )

β

∨
> 0

0
∨

0
∨

0
∨

The column in the middle is trivially exact, and the column on the right is exact
by the sheaf axiom and the flabbiness of F Therefore, the column on the left must
also be exact. �

sheaf-local-support-mayer-vietoris Proposition 7.4.5. Let Z1, Z2 ⊂ X be two closed subsets, let Ui = X \Zi, for
i = 1, 2, and let F ∈ Shf(X,Ab) be any sheaf. Then we have a long exact sequences

. . .→ Hn
Z1∩Z2

(X,F )→ Hn
Z1

(X,F )⊕Hn
Z2

(X,F )→ Hn
Z1∪Z2

(X,F )→ Hn+1
Z1∩Z2

(X,F )→ . . .

and

. . .→ Hn(U1∪U2,F )→ Hn(U1,F )⊕Hn(U2,F )→ Hn(U1∩U2,F )→ Hn+1(U1∪U2,F )→ . . .

Proof. Follows from the Proposition above and (2.2.8). �

5. Sheaves on Noetherian Spaces

sheaf-noetherian-filtered-colim-acyclic Lemma 7.5.1. Let X be a Noetherian topological space, and let I be a filtered
category. Then for any functor F : I → Shf(X,Ab), the presheaf

U 7→ colim(Fi(U))

is already a sheaf, where for an object i ∈ I, we denote the sheaf F (i) by Fi, is
already a sheaf. In other words, we have

Γ (U, colim Fi) = colim(Γ ((,Fi)U)),

for every open set U ⊂ X

Proof. Let the presheaf in question be denoted G . We’ll denote the maps in
the directed system by φk,l : Fk → Fl. Suppose U is an open set inX and V = {Vi}
is a weak covering sieve of U . We want to show that the natural map G (U)→ V(G )
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is an isomorphism. Since X is Noetherian, U is quasicompact [NS, 3.3 ], and we
can find a finite subcover {V1, . . . , Vn} of V for U .

Let’s show injectivity first: suppose s ∈ G (U) is such that resU,Vi(s) = 0, for
i = 1, . . . , n. Let s be represented by t ∈ Fk(U), for some k. Then, there is some
l ≥ k (by which we mean there is a morphism k → l) such that φk,lVi

(resU,Vi
(t)) = 0,

for all i. This then means that φk,lU (t) = 0 in Fl(U), and so s = 0 in G (U). This
shows that the presheaf G is separated.

Now, on to surjectivity: suppose we have si ∈ G (Vi) such that resVi,Vi∩Vj (si) =
resVj ,Vi∩Vj (sj) ∈ G (Vi ∩ Vj), for all i, j. Since the presheaf is separated, it suffices
to piece together an s ∈ G (U) from si for i = 1, . . . , n. So we can find k such that
for all i = 1, . . . , n, we have ti ∈ Fk(Vi) representing si, such that they form a
coherent sequence for Fk over the weak covering sieve generated by the open cover
{V1, . . . , Vn}. Since Fk is a sheaf, we can piece the ti together to get a section t of
Fk over U . It’s easy to check now that the image of t in G (U) restricts to each of
the si. �

sheaf-noetherian-filtered-colim-flabby Lemma 7.5.2. Let X be a Noetherian space and suppose F : I → Shf(X,Ab)
is a functor from a filtered category I, with Fi flabby, for all objects i in I. Then
colim Fi is also flabby, and in particular is ΓZ(X, )-acyclic, for all closed subsets
Z ⊂ X.

Proof. Using the lemma above, this reduces to the fact that colimits of abelian
groups preserve surjections, which is of course true. �

sheaf-noetherian-cohomology-colim-commute Proposition 7.5.3. Let X be a Noetherian topological space, let Z ⊂ X be a
closed subspace, and let F : I → Shf(X,Ab) be a functor from a filtered category
I. Then, for every n ≥ 0, we have natural isomorphisms

Hn
Z(X, colim Fi) ∼= colimHn

Z(X,Fi).

Proof. Since Shf(X,Ab) and Ab are both Grothendieck categories, we see
that Funct(I,Shf(X,Ab)) is also a Grothendieck category. In particular, it has
enough injectives, and the colimit functor colim : Funct(I,Shf(X,Ab))→ Shf(X,Ab)
is exact. Therefore, the Proposition will follow from (3.6.7) and the lemma above,
if we show that there is a natural isomorphism:

ΓZ(X, colim Fi) ∼= colimΓZ(X,Fi).

First we will show that the functorH0
Z( ) commutes with colimits. For this observe

that we have a natural morphism

colim(H0
Z(Fi))→ H0

Z(colim Fi).

We now consider the action of this morphism induced on stalks. When x /∈ Z, then
the stalk at x of both sheaves involved is zero; so we can assume that x is in Z. In
this case, since stalks commute with colimits, we have

colim(H0
Z(Fi))x = colim(H0

Z(Fi)x)
= colim

TOBEDONE

�
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sheaf-extzero-closed-cohomology Lemma 7.5.4. Let X be a topological space, and suppose Y, Z ⊂ X are closed
subsets. If F ∈ Shf(Y,Ab) is a sheaf of abelian groups over Y , then, for all n, we
have a natural isomorphism

Hn
Z∩Y (Y,F ) ∼= Hn

Z(X, i∗F ),

where i : Y → X is the inclusion map.

Proof. Follows from (3.6.5), since i∗ is exact and takes injective sheaves to
flabby sheaves by (7.1.6) and (7.1.5). �

We now come to the main result of this section: the Vanishing Theorem of
Grothendieck. It’s quite a strong result with a strikingly simple proof. Before that,
a definition.

Definition 7.5.5. The homological dimension of a topological space X is de-
fined to be the quantity

sup{Γ (X, )− dim(F ) : F ∈ Shf(X,Ab)}.

It is either a non-negative integer or ∞.

sheaf-grothendieck-vanishing Theorem 7.5.6 (Grothendieck’s Vanishing Theorem). Let X be a finite dimen-
sional Noetherian topological space, with dimX = n, and let Z ⊂ X be a closed
subspace; then, for every sheaf F ∈ Shf(X,Ab), we have Hr

Z(X,F ) = 0, for r > n.
In particular, the homological dimension of n is at most n.

Proof. The proof will be Bourbakiesque; that is, in several steps, each of
which cuts away at the complexities of the problem, till, at the end, the statement
that we have to actually prove becomes an obvious fact. We’ll do a double induction
on the number of irreducible components and on dimX.

Reduction to the case X irreducible: Suppose the Theorem is true for
an irreducible space. Let Y ⊂ X be an irreducible component of X and
let U = X \ Y . Then, for every sheaf F ∈ Shf(X,Ab), we have an exact
sequence

0→ j!(F |U )→ F → i∗(F |Y )→ 0

Using the long exact sequence associated to this short exact sequence,
and observing that j!(F |U ) is a sheaf supported on W = U , where Z has
one fewer irreducible component than X, we use induction on the number
of irreducible components and (7.5.4) to reduce to the case where X is
irreducible.

The Base Case: So now we can suppose that X is irreducible. Suppose
dimX = 0; then the only closed subsets of X are X and ∅, and so the
only open subsets of X are X and ∅. We see then that either Z = ∅ and
ΓZ(X, ) is the 0 functor, or Z = X and Shf(X,Ab) is isomorphic to
Ab via the functor Γ (X, ). In particular, Γ (X, ) is exact, and so the
homological dimension of X is 0.

Reduction to the Finitely Generated case: Now suppose dimX = n >
0 (assuming still that X is irreducible), and let F ∈ Shf(X,Ab) be
a sheaf. Set S =

⋃
U⊂X Γ (U,F ), and let I be the poset of finite

subsets of S . Considering this as a filtered category, take the functor
G : I → Shf(X,Ab) that takes i ∈ I to the subsheaf Gi of F generated
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by all the sections inside i. Then we see that F = colim Gi, and so by
(7.5.3) we have

Hr
Z(X, colim Gi) ∼= colimHr

Z(X,Gi).

In particular, it suffices to show that Hr
Z(X,F ) = 0, for all sheaves of

finite type over X, and for all r ≥ n.
Reduction to the Case of One Generator: Now suppose F is a sheaf

generated by r sections, and let F ′ be a subsheaf of F generated by r−1
sections; then we have an exact sequence

0→ F ′ → F → G → 0,

where G is generated by one section over some open set U ⊂ X. Looking
at the long exact sequence of cohomology associated to this sequence, and
using induction on the number of generators, we find that it is enough to
do the case where F is generated by one generator.

Reduction to the Case of Ideal Sheaves: In this case, there is some open
subset U ⊂ X such that F |U is a quotient of ZU . Moreover, we also have
Γ (V,F ) = 0, for V * U . Therefore, F is in fact a quotient of j!(ZU ),
where j : U → X is the inclusion map. From the long exact sequence
associated to the short exact sequence

0→ I → j!(ZU )→ F → 0,

we reduce to the case where F is a subsheaf of G = j!(ZU ), for some open
subset U ⊂ X.

Reduction to the case F = j!(ZU ): Let I ⊂ G be a subsheaf. If I = 0,
then we’re done; otherwise, let d ∈ N be the smallest positive integer such
that Ix = dZ (where we consider Z to be the local ring of ZX at x). Now,
G |U = ZU is a constant sheaf on U , since U is irreducible. Therefore, we
can find a neighborhood V 3 x contained in U such that I |V = dZV .
That means that we have the following short exact sequence:

0→ j′!(ZV )→d I → I ′′ → 0,

where j′ : V → X is the inclusion map, and where I ′′ is supported on
U \ V , which is contained in the proper closed subset Y = X \ V of X.
Since dimY < n, using the long exact sequence of cohomology obtained
from this short exact sequence, and induction on the dimension, we reduce
to proving the vanishing theorem for the case where F = j!(ZU ) for the
inclusion j : U → X of some open subset into X.

The case F = j!(ZU ): Let Y = X \ U , and let i : Y → X be the inclusion
map. Then we have an exact sequence

0→ j!(ZU )→ ZX → i∗(ZY )→ 0

Since Y  X (we can of course assume that U 6= ∅, for otherwise we are
trivially done), dimY < dimX, and so by the induction on dimension
we see that the homological dimension of Y is at most n − 1. Since X
is irreducible ZX is the constant sheaf, and is thus flabby, and hence
ΓZ(X, )-acyclic. Putting these two facts together with the long exact
sequence of cohomology arising from this short exact sequence, we see
that Hr

Z(X, j!(ZU )) = 0, for r > n.
�
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Remark 7.5.7. Note the analogy of this proof with the characterization of the
global dimension of a ring R (in increasing order of strength) in terms of finitely
generated R-modules and then in terms of the ideals of R.

6. Čech Cohomology

The quickest way to get a computable cohomology of sheaves is via Čech co-
homology. Unfortunately, this does not always agree with the cohomology theory
obtained above from more abstract homological concerns. But in nice cases (say,
for a separated scheme, or for a topological manifold) it does give the same answers.

Let V = {Vi : i ∈ I be an open cover of a topological space X, and suppose I
has a total ordering. For each p ≥ 0, set

σp(I) = {(i0, . . . , ip) ∈ Ip+1 : i0 < i1 < . . . < ip},

and for all J = (i0, . . . , ip) ∈ σp(I) set

VJ =
p⋂

r=0

Vir
.

For every 0 ≤ k ≤ p+ 1, we have a map

τp
k : σp+1(V)→ σp(I)

(i0, . . . , ip+1) 7→ (i0, . . . , îk, . . . , ip+1).

For 0 ≤ l < k ≤ p+ 1, these maps satisfy the formula

τp−1
k−1 τ

p
l = τp−1

l τp
k .

Now, for F ∈ Shf(X,Ab), set

Cp(V,F ) =
∏

J∈σp(I)

Γ (VJ ,F ).

An element s ∈ Cp(V,F ) is given by a collection of sections sJ ∈ Γ (VJ ,F ), for all
J ∈ σp(I). We now define an ostensible differential

dp : Cp(V,F )→ Cp+1(V,F )

(dps)J =
∑

0≤k≤p+1

(−1)ksτp
k (J) for J ∈ σp+1(V).

By sτp
k (J), we of course mean sτp

k (J) restricted to VJ , but we omit this additional
information for convenience. To check that this is in fact a differential we compute,
for J ∈ σp+2(V),

(dp+1dps)J =
∑

0≤k≤p+2

(−1)k(dps)τp+1
k (J)

=
∑

0≤k≤p+2

(−1)k

 ∑
0≤l≤p+1

(−1)lsτp
l (τp+1

k (J))


=

∑
0≤l<k≤p+2

(−1)k+lsτp
l (τp+1

k (J)) +
∑

0≤l≤k≤p+1

(−1)k+lsτp
k (τp+1

l (J))

= 0,
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since every summand in the sum on the right hand side has a counterpart in the
sum on the left hand side that differs from it only in sign. This follows from the
formulas for τp

k that we found above.

Remark 7.6.1. For convenience, take the following convention: for any ordered
(p + 1)-tuple (i0, . . . , ip) ∈ σp(I), any map α : [p] → [p], and any element s ∈
Cp(V,F ), we set

s(α(i0),...,α(ip)) =

{
(−1)sgn(α)s(i0,...,ip) if α is a bijection
0 otherwise.

Definition 7.6.2. Given an open covering V = {Vi : i ∈ I} of a topological
spaceX, and a sheaf F ∈ Shf(X,Ab), the Čech complex of F over V is the complex
C•(V,F ).

The cohomology H•(C(V,F )) of this complex is called the Čech cohomology
of F over V, and is denoted Ȟ•(V,F ).

We also define a sheaf theoretic version of the Čech complex. For p ≥ 0, and a
sheaf F ∈ Shf(X,Ab), set

Cp(V,F ) =
∏

J∈σp(I)

fU
∗ (F |VJ

),

where, for every open subset U ⊂ X, fU : U → X is the inclusion map. Observe
that we have:

Γ (U,Cp(V,F )) = Cp(V ∩ U,F |U ).

Therefore, the graded sheaf C•(V,F ) has a structure of a complex of sheaves.

sheaf-exactness-sheafified-cech Lemma 7.6.3. Let F ∈ Shf(X,Ab) be a sheaf of abelian groups over a topo-
logical space X, and let V = {Vi : i ∈ I} be an open cover for X. Then the
complex

0→ F
ε−→ C0(V,F )→ C1(V,F )→ · · ·

is exact in Shf(X,Ab), where ε : F → C0(V,F ) is the product of the natural
restrictions.

Proof. It’s enough to show exactness locally; more precisely, we’ll show that
for every k ∈ I and every open set U ⊂ Vk, the complex

0→ Γ (U,F )→ C0(V ∩ U,F )→ C1(V ∩ U,F )→ · · ·
is exact. For this, consider the maps

hp : Cp(V ∩ U,F )→ Cp−1(V ∩ U,F )

(hps)J = sJ∪{k} for J ∈ σp−1(I).

Here we take σ−1(I) = ∅ and C−1(V ∩ U) = Γ (U,F ). We have, for s ∈ Cp(V ∩
U,F ), and J ∈ σp(I),(

(dp−1hp + hp+1dp)s
)
J

=
∑

0≤r≤p

(−1)r(hps)τp−1
r (J) + (dps)J∪{k}

=
∑

0≤r≤p

(−1)rsτp−1
r (J)∪{k} +

∑
0≤t≤p+1

(−1)tsτp
t (J∪{k})

�
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Now we come to the main theorem.

sheaf-cech-derived-agree Theorem 7.6.4. Let X be a topological space, and let F ∈ Shf(X,Ab) be a
sheaf of abelian groups over it. Suppose V = {Vi : i ∈ I} is an open cover such that
F is Γ (VJ , )-acyclic, for all J ∈ σp(I), and for p ≥ 0. Then there is a natural
isomorphism

Ȟ•(V,F ) ∼= H•(X,F ).

Proof. We will use the Grothendieck spectral sequence. Consider the se-
quence of functors:

Shf(X,Ab)
C•(V, )−−−−−→ Ch≥0 Ab H0

−−→ Ab .

We claim that C•(V, ) takes flabby sheaves to acyclic complexes in Ch≥0 Ab.
Indeed, if I is flabby, then C•(V,I ) is just the complex obtained from applying
the global sections functor to C•(V,I ), which according to the lemma above is
an acyclic complex of flabby sheaves. Since exact sequences of flabby sheaves are
preserved by the global sections functor, we have our claim.

Moreover, observe that we have H0(C•(V, )) ∼= Γ (X, ). This is just the
sheaf axiom.

Given this, we’re in a position to apply Grothendieck’s spectral sequence, to
conclude that we have a spectral sequence {E•r} such that

Hp(Rq(C•(V, ))(F )) = Ep,q
2 ⇒ Hp+q(X,F ).

In particular, we have a natural surjection

Ȟn(V,F ) = Hn(R0(C•(V, ))(F ))→ Hn(X,F ),

whose kernel lies in En−2,1
2 = Hn−2(R1(C•(V, ))(F )).

It remains to compute the derived functors of the Čech complex functor. For
this, take an injective resolution I • of F , and consider the double complex K•,• =
C•(V,I •). We have(

Rp(C•(V, ))(F )
)q = Hq,p

II (K)

=
∏

J∈σp(I)

Hq(VJ ,F )

= 0, if q > 0.

We applied our hypothesis on the local acyclicity of F in the last equality. From
this we find that the kernel of the natural surjection is in fact zero, and so we have
the isomorphism promised to us in the Theorem. �

Example 7.6.5 (Cohomology of A2 − {(0, 0)}). Let U = A2 − {(0, 0)} be
the complement of the origin in the affine plane. Then U has a covering by the
principal affine opens U1 = Spec k[x, y]x and U2 = Spec k[x, y]y. Let’s compute the
Čech complex of OU corresponding to the open cover V = {U1, U2} of U . We have

C0(V,OU ) = k[x, y, x−1]× k[x, y, y−1]

C1(V,OU ) = k[x, y, x−1, y−1]

d1 : C0(V,OU )→ C1(V,OU )

(f(x, y, x−1), g(x, y, y−1)) = (f(x, y, x−1)− g(x, y, x−1))Cn(V,OU ) = 0, for n > 1,
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The image of d1 consists of all linear combinations of monomials xiyj , where at
least one of i or j is non-negative. Therefore, we find that

H1(U,OU ) ∼= Ȟ1(V,OU )

is an infinite dimensional vector space over k spanned by the images of the mono-
mials xiyj , where i, j < 0.

Observe that we didn’t use the acyclicity condition on F right till the end of
the proof of the Theorem. In particular, we did not use it to construct the spectral
sequence. We extract this spectral sequence from the proof.

sheaf-cech-cohomology-spectral-sequence Proposition 7.6.6 (The Čech Cohomology Spectral Sequence). Let X be a topo-
logical space, let V = {Vi : i ∈ I} be an open cover of X, and let F ∈ Shf(X,Ab)
be a sheaf of abelian groups over X. For n ≥ 0, let Hn(F ) be the presheaf on
X given by U 7→ Hn(U,F |U ). Then we have a first quadrant spectral sequence
{Er
• : r ≥ 0} such that

Hp(C•(V,Hq(F ))) ∼= Ep,q
2 ⇒ Hp+q(X,F ).

Proof. We have already shown that there is a spectral sequence boundedly
converging to Hp+q(X,F ), on whose second page we have

Ep,q
2
∼= Hp(Rq(C•(V, ))(F )).

It remains to compute the derived functors of the Čech complex functor. We can
consider the Čech complex functor to be the composition:

Shf(X,Ab) i−→ Pre(X,Ab)
C•(V, )−−−−−→ Ch≥0 Ab .

Since the Čech complex functor is clearly exact on Pre(X,Ab), we have by (3.6.5):

Rq(C•(V, ))(F ) = C•(V, Rqi(F )).

So what we really need to do is compute the right derived functors of the forgetful
functor i. But, by taking a flasque resolution I • of F , it’s easy to see that we
have

Γ (U,Rqi(F )) = Hq(Γ (U,I •))

= Hq(U,F |U ).

�

7. Ext Groups

There are two other fundamental left exact functors on the category OX -mod,
for a ringed space (X,OX). These are the functors HomOX

(F , ) and HomOX
(F , ),

for some fixed OX -module F . We will investigate their derived functors in this sec-
tion and construct a spectral sequence relating the derived functors of the pair.

Definition 7.7.1. Let (X,OX) be a ringed space. For OX -modules F and G ,
we define, for n ≥ 0,

Extn
OX

(F ,G ) = Extn
OX -mod(F ,G ).

Extn
OX

(F ,G ) = Rn(HomOX -mod(F , ))(G ).

Here are some preliminary properties of and relations between the two derived
functors.
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sheaf-ext-sext-properties Proposition 7.7.2. Let (X,OX) be a ringed space, and let F and G be OX-
modules.

(1) For every open subset U ⊂ X, we have natural isomorphisms

Ext•OX
(F ,G )|U ∼= Ext•OU

(F |U ,G |U ).

(2) If F = OX , then we have

Extn
OX

(OX ,G ) ∼= Hn(X,G ).

Extn
OX

(OX ,G ) ∼=

{
G if n = 0
0 otherwise.

Proof. In (1), both δ functors are clearly effaceable for n > 0, since I |U is
injective for any injective sheaf I (7.1.8) and agree in degree 0; hence they are
isomorphic. For (2), just note that we have

HomOX
(OX ,G ) ∼= Γ (X,G ).

HomOX
(OX ,G ) ∼= G .

�

Here’s a useful spectral sequence that relates Ext and Ext.

sheaf-local-ext-spectral-sequence Proposition 7.7.3 (Local Ext Spectral Sequence). Let F and G be OX-modules;
then we have a first quadrant spectral sequence {E•r : r ≥ 0} such that

Hp(X,Extq
OX

(F ,G )) ∼= Ep,q
2 ⇒ Extp+q

OX
(F ,G ).

Proof. Observe that we have

HomOX
(F , ) ∼= Γ ((,HomOX

)F , ).

Moreover, for every injective sheaf I , HomOX
(F ,I ) is flabby by (7.1.6). Now the

proposition follows from Grothendieck’s spectral sequence (3.6.4). �

Now we look at how these functors behave when tensored with locally free
sheaves of finite rank. This will prove helpful when we consider the cohomology of
quasi-coherent sheaves over projective space.

sheaf-sext-locally-free-tensor Proposition 7.7.4. Let F and G be OX-modules, and let E be a locally free
OX-module of finite rank, and let Ě be its dual.

(1) For every injective sheaf I , E ⊗OX
I is also injective.

(2) We have natural isomorphisms:

Ext•OX
(F ⊗ E ,G ) ∼= Ext•OX

(F , Ě ⊗ G )

Ext•OX
(F ⊗ E ,G ) ∼= Ext•OX

(F , Ě ⊗ G )
∼= Ext•OX

(F ,G )⊗ Ě .

Proof. For (1), just note that we have natural isomorphisms

HomOX
(F ,E ⊗OX

I ) ∼= HomOX
(F ,HomOX

(L ,I ))
∼= HomOX

(F ⊗L ,I ),

and the last functor is clearly exact in F .
For the first or second isomorphisms in (2), observe that on either side of the

isomorphism we have δ-functors agreeing in degree 0, both of which are effaceable,
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the first, quite trivially, and the second by part (1). For the last isomorphism, we
only need to check that we have

HomOX
(F ,G )⊗ Ě ∼= HomOX

(F ⊗ E ,G ).

There is a natural morphism in one direction, and it’s easy to check locally on open
sets where E is free that this is indeed an isomorphism. �

sheaf-sext-locally-free-resolution Proposition 7.7.5. Let F be an OX-module, and let E • be a left resolution
of F by locally free OX-modules of finite rank. Then, for every OX-module G , we
have natural isomorphisms

Ext•OX
(F ,G ) ∼= H−n(HomOX

(E •,G )).

Proof. Follows from (3.4.3), since HomOX
(E , ) is an exact functor, for every

locally free OX -module E (locally it is isomorphic to the functor that takes G to
G n, for some n ≥ 0). �

The next Corollary shows that Ext preserves coherence and quasicoherence
under some conditions that are common in geometric situations.

sheaf-sext-coherent Corollary 7.7.6. Let F and G be OX-modules; suppose that X is Noether-
ian, and that OX and F are coherent OX-modules.

(1) If G is also coherent, then Extn
OX

(F ,G ) is also coherent.
(2) If OX-qcoh is a Serre subcategory of OX-mod (for example if X is a

scheme), then Extn
OX

(F ,G ) is a quasi-coherent sheaf.

Proof. The main point is that when OX is coherent and X is Noetherian,
every coherent OX -module has a local resolution by locally free OX -modules of
finite rank. This is quite easy to see from the definition of coherence: for any point
x ∈ X, we can find a neighborhood U of x and some free sheaf E 0 surjecting onto
F |U . Now the kernel of this is again coherent, and hence has some other locally
free sheaf surjecting onto it on a smaller neighborhood of x. Proceeding in this
fashion, since X is Noetherian, we can find some smallest neighborhood W of x on
which we have a free resolution of F |W . Replacing X with W , we can assume that
F has a free resolution over X.

Now, let E • be a locally free resolution of F ; then by the Proposition we have

Ext•OX
(F ,G ) ∼= H−n(HomOX

(E •,G )).

If G is coherent, then HomOX
(E •,G ) is a complex of coherent sheaves, and hence its

cohomology is also coherent. If OX -qcoh is a Serre subcategory, then it contains its
kernels and cokernels, and moreover HomOX

(E •,G ) is a complex of quasi-coherent
sheaves. Hence its cohomology sheaves are also quasi-coherent. �

sheaf-sext-stalks Corollary 7.7.7. Let F and G be OX-modules; suppose that X is Noetherian
and also that OX and F are coherent OX-modules; then, for every x ∈ X, we have
natural isomorphisms

Ext•OX
(F ,G )x

∼= Ext•Ox
(Fx,Gx).

Proof. Since F and OX are coherent, there exists a neighborhood U around
every x ∈ X and a resolution E • of F |U by free sheaves of finite rank. Replacing
U by X, we have by the Proposition above:

Extn
OX

(F ,G ) = H−n(HomOX
(E •,G ))
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Taking stalks at x on both sides and observing that this is an application of an
exact functor, we have

Extn
OX

(F ,G )x = H−n(HomOx
(E •x ,Gx))

∼= Extn
Ox

(Fx,Gx)

where we have used the isomorphism

HomOX
(E •,G )x

∼= HomOx(E •x ,Gx)

that is obtained from the fact that E n is free of finite rank and hence finitely
presented, for all n ≤ 0. The second isomorphism follows from the fact that E •x is
a projective resolution for Fx in OX -mod. �

8. Higher Direct Images

Definition 7.8.1. Given a continuous map f : X → Y of topological spaces,
the direct image functor f∗ : Shf(X,Ab) → Shf(Y,Ab) is a right adjoint and is
hence left exact. We call its derived functors Rnf∗ the higher direct images of f .

sheaf-higher-direct-image-presheaf Proposition 7.8.2. Let f : X → Y be a continuous map, and let F ∈
Shf(X,Ab) be a sheaf. Then, for n ≥ 0, Rnf∗F is the sheafification of the presheaf
that assigns to every open subset U ⊂ Y , the group Hn(f−1(U),F ).

Proof. Let G• : Shf(X,Ab) → Pre(Y,Ab) be the δ-functor that assigns to
every sheaf F , the presheaf U 7→ H•(f−1(U),F |f−1(U)). Consider now the δ-
functor Shf G • : Shf(X,Ab) → Shf(Y,Ab): this is a δ-functor, since Shf is exact.
Moreover, we have Shf G 0 ∼= f∗; therefore it is enough to show that Shf G n is
effaceable, for n ≥ 1. For this, let I be any injective sheaf over X; then I |f−1(U)

is still injective for all open subsets U ⊂ Y (7.1.8), and so we find that G nI = 0,
for n ≥ 1, which shows effaceability. �

sheaf-higher-direct-images-flabby-resolutions Corollary 7.8.3. Let f : X → Y be a continuous map.

(1) Any flabby sheaf over X is f∗-acyclic.
(2) For any sheaf F ∈ Shf(X,Ab) and any flabby resolution G • of F , we

have natural isomorphisms

R•f∗F ∼= H•((Ch f∗)(G •)).

(3) If f : (X,OX)→ (Y,OY ) is a morphism of ringed spaces, then the derived
functors of the direct image functor

f∗ : OX-mod→ OY -mod

agree with R•f∗.

Proof. (1) follows from the Proposition and (2) follows immediately from (1)
and (2.3.8. For (3), just note that any injective resolution in OX -mod is flasque in
Shf(X,Ab) by (7.1.6). �

We finish this section with a look at the Leray spectral sequence for higher
direct images. Like most of the spectral sequences we’ve seen before, this will be a
special case of the Grothendieck spectral sequence.
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sheaf-leray-spectral-sequence Proposition 7.8.4 (Leray Spectral Sequence). Let f : X → Y be a continu-
ous map, and let Z ⊂ Y be a closed subset; then, for every sheaf F ∈ Shf(X,Ab),
we can naturally associate a first quadrant spectral sequence {E•r : r ≥ a} such that

Hp
Z(Y,Rqf∗F ) ∼= Ep,q

2 ⇒ Hp+q
f−1(Z)(X,F ).

Proof. Observe that we have Γf−1(Z)(X,F ) ∼= ΓZ(Y, f∗F ). To see this,
observe that both sides of the identity are isomorphic to the kernel of the restriction
map Γ (X,F )→ Γ (f−1(X \ Z),F ).

Now the statement follows from (3.6.4), and the fact that f∗ takes flabby sheaves
to flabby sheaves (7.1.5). �
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