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August 27, 2018. Monday.

1. Motivation.

Let X be a smooth projective (algebraic) variety over C. Forgetting any algebraic structures, we
can associate with it a smooth compact manifold X(C), and we can look at its singular cohomology
Hi(X(C),Q) with rational coefficients. But the initial algebraic/projective structure on X equips
these cohomologies with a Hodge structure, ie.

Hi(X(C),Q)⊗Q C ∼=
⊕
p+q=i
p,q≥0

Hp,q, where Hp,q = Hq(X,Ωp) with H̄p,q = Hq,p.

This structure arises from a comparison

Hi
B(X,Q)⊗Q C ∼−→ Hi

dR(X/C) = Hi(X,Ω•X/C),

where we write Hi
B for singular cohomologies for clarity. We can think of this as taking forms on

the right and integrating them along the cycles given from the left hand side – illustrated by an
example very soon. This isomorphism is also nice since we are comparing topological and algebraic
data.

This becomes interesting when X is defined over number fields or even simply over Q. For the
sake of simplicity, let’s just suppose for a moment that X is defined over Q. Then we have the de
Rham complex Ω•X/Q already over Q, and the de Rham cohomology Hi

dR(X/Q) = Hi(X,Ω•X/Q) (we
can think of this as taking cohomology of the coherent sheaf ΩX/Q) with

Hi
dR(X/Q)⊗Q C = Hi

dR(X/C).

And so we have arrived at the comparison isomorphism

Hi
B(X,Q)⊗Q C ∼−→ Hi

dR(X/Q)⊗Q C.

In words, we have two vector spaces over Q, for which after tensoring with C is naturally iso-
morphic. Let’s consider the example when X = Gm. When i = 1, we can think of this isomorphism
as a pairing

H1(Gm,C)×H1
dR(X/C)→ C

〈 	 , [dz/z] 〉 =

∫
	
dz/z = 2πi

This is called a period for Gm. This concludes the story for C, and we move on to Qp.

We should think of C as completing Q at infinite place (yielding R) and taking its algebraic
closure. The infinite prime is as good as any other prime, p-adic Hodge theory is trying to mimic
the above for finite places. Let’s think about what happens when we naively replace C with Qp
for a moment. Topology isn’t good on left, since it’s totally disconnected. So here the appropriate
analogue of Hi

B(X,Q) will be the p-adic étale cohomology.

Let’s start with the example where E is an elliptic curve over Qp, then we can look at E[pn] =
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{x ∈ E(Qp) : [pn]x = 0}. We can then define the Tate module TpE = lim←−
n

E[pn], whch is a

2-dimensional finite free Zp-module. Our analogue of Hi
B is

H1
ét(E,Qp) = HomZp(TpE,Qp).

As an upshot, Γ := Gal(Qp/Qp) acts on E[pn], so TpE is also a continuous representation of Γ.
We will talk about how Γ acts on the various terms in the comparison isomorphism later.

Let’s go back to Gm (over Qp) even if it’s not projective because it’s simple. We would like to
compare H1

ét(Gm,Qp) and H1
dR(Gm/Qp).

We can describe H1
ét(Gm,Qp) as HomZp(TpGm,Qp), where TpGm = lim←−

n

µpn and µpn = {x ∈

Qp
×

: xp
n

= 1}. Γ acts on TpGm and after dualizing, we get HomZp(TpGm,Qp) which is a 1-
dimensional continuous representation of Γ, given by a character χp : Γ → Z×p satisfying γ · x =

xχp(γ)−1

for γ ∈ Γ (on TpGm). We can next identify the Γ-action on TpGm with Zp and see that
the action on Zp is given by multiplication by χp. Dualizing it, the action on HomZp(TpGm,Qp) is
simply given as multiplication by χ−1

p .

On the other hand, H1
dR(Gm/Qp) is a 1-dimensional Qp-vector space generated by [dz/z]. What’s

a natural isomorphism between H1
ét and H1

dR then? First of all, Qp is not big enough – it’s not com-
plete, so let’s define Cp to be the completion of Qp, which turns out conveniently to be algebraically
closed. Is there then a natural isomorphism after tensoring with Cp? Or what does natural here
even mean?

To answer this, one way is to think about the Γ-action – there is a Γ-action on both H1
ét and

Cp (but on H1
dR the action is trivial since H1

dR is already defined over Qp). We can then ask for
natural to mean Γ-equivariant. H1

ét(Gm,Qp) ⊗ Cp as a Γ-representation is isomorphic to Cp(χ−1
p ),

a 1-dimensional Cp-vector space with a Γ-action given by γ · α = χp(γ)−1(γα) (α ∈ Cp) (we can
think of this as the usual Galois action with a twist by χp). H1

dR(Gm/Qp)⊗ Cp is just Cp with its
canonical Γ-action.

Thus we are asking for a Γ-equivariant isomorphism φ : Cp(χ−1
p )

∼−→ Cp. This is equivalent to
specifying 0 6= α = φ(1) ∈ Cp with γα = χp(γ)−1α for all γ ∈ Γ, or equivalently α ∈ Cp(χ−1

p )Γ−{0}.
This will be our analogue for 2πi.

However, Tate proved the following

Theorem. (a) CΓ
p = Qp (ie. completion from Qp to Cp does not introduce anything extra in terms

of Γ-invariants), and

(b) Cp(χip)Γ = {0} for i ∈ Z− {0}. (cf. Tate twists)

And so there is no such α! One solution to this is to consider the graded polynomial ring BHT

(HT stands for Hodge and Tate), defined as

BHT :=
⊕
i∈Z

Cp(χip)
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along with a Γ-action. Then there is a canonical comparison isomorphism

H1
ét(Gm ×Qp Qp,Qp)⊗Qp BHT

∼−→ H1
dR(Gm/Qp)⊗Qp BHT.

Tate next showed

Theorem. For an abelian variety A over Qp, there is a canonical Γ-equivariant isomorphism

H1
ét(A×Qp Qp,Qp)⊗Qp BHT

∼−→ H1
dR(A/Qp)⊗Qp BHT.

Moreover, this arises from a Γ-equivariant isomorphism over Cp-vector spaces:

H1
ét(A×Qp Qp,Qp)⊗ Cp

∼−→ (ωA/Qp ⊗ Cp(χp))⊕ (Lie Â⊗ Cp)

where ωA/Qp = H0(A,Ω1
A/Qp), Â the dual abelian variety and Lie(Â) its Lie algebra.

Note that there is a short exact sequence 0→ ωA/Qp → H1
dR(A/Qp)→ Lie(Â)→ 0, and we can

find a splitting (cf. Hodge Tate decomposition) thought it is not canonical.

Faltings then showed a geometric version for this theorem:

Theorem. For a smooth projective variety X/Qp, we have a Γ-equivariant isomorphism

Hi
ét(X ×Qp Qp,Qp)⊗ Cp

∼−→
⊕

m+n=i

(Hn(X,ΩmX/Qp)⊗ Cp(χmp )).

Note that if we twist both sides by χ−mp , we get Hn(X,ΩmX/Qp) = (Hi
ét(X ×Qp Qp,Qp) ⊗

Cp(χ−mp ))G, so Hodge cohomology can be recovered from the p-adic étale cohomology.

Fontaine then defined a complete DVR B+
dR with

(a) residue field Cp,

(b) maximal ideal Fil1B+
dR ⊂ B

+
dR,

(c) a Γ-action on it,

(d) and a canonical uniformizer t ∈ Fil1B+
dR (depending on the choice of compatible p-power roots

of unity),

and if we set BdR := B+
dR[t−1] its fraction field, and FiliBdR = tiB+

dR, then there is a canonical
isomorphism grBdR

∼−→ BHT with gr1BdR
∼−→ Cp(χ−1

p ).

With this new construction, Faltings proved that the isomorphism from previous theorem arises
from a canonical isomorphism Hi

ét(X×QpQp,Qp)⊗BdR
∼−→ Hi

dR(X/Qp)⊗BdR of BdR-vector spaces.

Using first theorem of Tate, we find that Hi
dR(X/Qp) = (Hi

ét(X×Qp Qp,Qp)⊗BdR)Γ (recovering
de Rham cohomology), and the filtration Filj Hi

dR(X/Qp) on it can be recovered from (Hi
ét(X,Qp)⊗

Filj BdR)Γ (cf. Hodge spectral sequence).

There is actually an additional hidden structure on de Rham cohomology, namely the Frobenius.
Grothendieck proved the following

Theorem. Assume that smooth projective varieties X,X ′ have good reduction, both with smooth
projective special fibre X0/Fp (after identifications if necessary). Then there is a canonical isomor-
phism between Hi

dR(X/Qp)
∼−→ Hi

dR(X ′/Qp).
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(In this theorem, Qp here is essential, as opposed to finite extensions of Qp.) Frobenius on X0

then endows Hi
dR(X/Qp) with a canonical endomorphism φ.

August 29, 2018. Wednesday.

Let’s take a finite extension K/Qp, then there is a largest unramified subextension K0 which is
generated by prime-to-p roots of unity. Take a smooth projective variety X over K. Let’s write X
for XQp for convenience.

Let’s recall what we have talked about. We have discussed two cohomologies Hi
ét(X,Qp) and

Hi
dR(X/K), and ΓK = Gal(Qp/K) acts on Hi

ét (this Galois action is rarely continuous). Hi
dR is

a filtered K-vector space. Last time we have seen a result due to Faltings: there is a canonical
isomorphism

Hi
ét(X ×Qp Qp,Qp)⊗BdR

∼−→ Hi
dR(X/Qp)⊗BdR.

There is a natural filtration on the right hand side: there is one on Hi
dR and one of BdR, and hence

on tensor products. Hi
ét has a trivial filtration, and this isomorphism also preserves the filtration.

We can recover the de Rham cohomology from Hi
dR(X/K) = Fil0(Hi

ét(X/Qp)⊗BdR)ΓK .

Last time we have ended with a result by Grothendieck; let’s try to generalize it to K/Qp.
Suppose that X has good reduction with special fibre X0/k (where k the residue field of K), so now
X0 is a smooth projective variety over k. We have the crystalline cohomology (a cohomology that
works in characteristic p) Hi

cris(X0/K0) which is a K0-vector space.

This has an additional structure which arises from the Frobenius. We have a diagram

X0 X
(p)
0 X

Spec k Spec k

FX0/k

p

Fp

Here Fp is the Frobenius, and FX0/k is the relative Frobenius: ifX0 = Spec k[T1, . . . , Tn]/(f1, . . . , fr),
then X(p)

0 = Spec[T1, . . . , Tn]/(f
(p)
1 , . . . , f

(p)
r ), where f (p)

i (T ) =
∑
apIT

I if fi(T ) =
∑
aIT

I .

On the other hand, let σ : K0
∼−→ K0 be the Frobenius automorphism – it’s the unique automor-

phism satisfying σ(ζn) = ζpn for all prime-to-p roots of unity ζn ∈ K0 (recall thatK0 is predetermined
by prime-to-p roots of unity).

With this, the additional structure on Hi
cris(X0/K0) is encapsulated in the following commutative

diagram:

Hi
cris(X

(p)
0 /K0) Hi

cris(X0/K0)

σ∗Hi
cris(X0/K0)

F∗X0/k

φ

∼=

Note that φ is σ-semilinear.

Berthelot and Ogus proved

Theorem. There is a canonical isomorphism Hi
cris(X0/K0)⊗K0

K
∼−→ Hi

dR(X/K).
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Remark: Grothendieck showed that if l 6= p, then there is a canonical isomorphism Hi(X,Ql)
∼−→

Hi(X0,Ql).

This isomorphism allows us to move properties on Hi
dR to Hi

cris (though we have to apply ⊗K0
K.

For example, ΓK̄ acts on Hi
dR via the qth-power Frobenius, and thus gives an action on the left hand

side as well.

There is a subring Bcris ⊆ BdR with the following properties:

(a) BΓK
cris = K0 (instead of K as suggested by Tate previously for BdR), and

(b) there is a Frobenius lift φ : Bcris → Bcris (ie. φ (mod p) is the pth-power map) with Bφ=1
cris ∩

Fil0BdR = Qp (cf. the fundamental short exact sequence).

These properties suggest the idea that Bcris can only detect the unramified part, and taking φ

invariants tend to make things nicer.

Faltings then proved the following

Theorem. There exists a canonical isomorphism

Hi
ét(X,Qp)⊗Qp Bcris → Hi

cris(X0/K0)⊗K0
Bcris.

This isomorphism also respects

(a) the ΓK-action (g ⊗ g on the left and 1⊗ g on the right),

(b) the filtration (a priori the filtration on Bcris is inherited from BdR) after a base change to K
(for the filtration on Hcris to make sense via Berthelot-Ogus; also note that Bcris does not
contain K but only K0), and

(c) the σ-semilinear map φ.

We can recover crystalline cohomology from étale cohomology:

Hi
cris(X0/K0) = (Hi

ét(X,Qp)⊗Qp Bcris)
ΓK

asK0-vector spaces: this is because the latter equals (Hi
cris(X0/K0)⊗K0

Bcris)
ΓK = Hi

cris(X0/K0)⊗K0

BΓK
cris. Conversely, if we hit both sides by (−)φ=1 ∩ Fil0(−⊗Bcris BdR), we can also recover étale co-

homology from crystalline and de Rham cohomologies:

Hi
ét(X,Qp) = (Hi

cris(X0/K0)⊗K0
Bcris)

φ=1 ∩ Fil0(Hi
dR(X/K)⊗K BdR).

(We have secretly used the isomorphism by Berthelot-Ogus in the latter term.) (cf. Grothendieck’s
mysterious functor)

There exists a version of Berthelot-Ogus for the case semistable reduction, dealing with mon-
odromy over singularities.

Let’s define the category Rep(ΓK) of continuous representations of ΓK on finite dimensional
Qp-vector spaces. Next we define the functor Dcris which sends

V ∈ Rep(ΓK) 7→ Dcris(V ) = (V ⊗Qp Bcris)
ΓK .
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For example, if V = Hi
ét(X,Qp) where X has a good reduction, we then recover Dcris(V ) =

Hi
cris(X0/K0).

In general, Dcris(V ) is a finite dim K0-vs, with dimension dimK0
Dcris(V ) ≤ dimQp V . Let’s write

D := Dcris(V ) for simplicity. D has some additional structure:

(a) From φ : Bcris → Bcris we obtain a canonical isom σ∗D
∼−→ D. In general, anything that does

not interact with ΓK will be preserved.

(b) D ⊆ (V ⊗Qp BdR)ΓK =: DdR(V ), which is a finite dimensional filtered K-vector space. So
D ⊗K0

K inherits a filtration.

Define the category MFφK of filtered φ-modules over K, by

MFφK = {(D,φ,Fil•(D ⊗K0 K))},

where

(a) D is a finite dimensional K-vector space,

(b) φ : σ∗D
∼−→ D, and

(c) Fil•(D ⊗K0
K) is a descending filtration by K-vector subspaces.

These objects are called isocrystals, and there is a complete classification of isocrystals by Manin.

Next we say that V is crystalline if dimK0
Dcris(V ) = dimQp(V ), or in other words, the equality

holds in the previous inequality.

Here are some examples:

(a) The trivial representation Qp is crystalline, since BΓK
cris = K0 and thus dimK0 Dcris(V ) =

dimQp V = 1.

(b) Qp(χip) is crystalline for any cyclotomic character.

(c) If η : ΓK → Z×p , then Qp(η) is crystalline iff η |ΓK∞ is unramified.

(d) By Faltings, the étale cohomology of any smooth projective variety X with good reduction is
crystalline.

(e) (Non-example.) The Galois representation of the Tate curve, an elliptic curve without good
reduction, is not crystalline.

Let’s write Repcris(ΓK) be the category of crystalline Galois representations. This category is
closed under reasonable operations such as tensors. Then the functor Dcris to MFφK which is fully
faithful. Now here is the important question: Can we describe its image? The answer is positive!
(cf. Hodge polygon and Newton polygon by Mazur) We define, for D ∈ MFφK , the quantities
tN (D), tH(D) as follows:

(a) For dimK0 D = 1:

(i) tH(D) is the unique i ∈ Z such that gri Fil(D ⊗K0
K) 6= 0.

(ii) tN (D) = vp(a) where φ(d) = ad, after choosing d ∈ D − {0}.
(b) In general, we set t?(D) = t?(∧dimDD) (where ? = H or N).
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For example, in the second example previously, Dcris(Qp(χip)) = K0 with tN (D) = tH(D) = i.

We say that D is weakly admissible if tH(D) = tN (D), and for all D′ ⊆ D (inclusion in MFφK ,
so this inclusion respects filtration and φ) with D′ ∈ MFφK (ie. D′ is stable under Frobenius), we
have tH(D′) ≤ tN (D′).

Finally, Colmez and Fontaine proved

Theorem. D is in the image of Dcris |Repcris(ΓK) iff D is weakly admissible.

September 6, 2018. Thursday.

2. Valuation Fields.

2.1. Complete Discrete Valuation Fields.

Recall that Q has a p-adic norm |·|p : Q× → R>0 where one sends x 7→ p−vp(x). If x = r/s, then
vp(x) = vp(r)− vp(s). By convention we also set |0|p = 0. This norm has a few properties:

(a) |x|p 6= 0 for x ∈ Q×,
(b) |xy|p = |x||y|, and
(c) |x+ y|p ≤ max{|x|p, |y|p}. Furthermore, if |x|p < |y|p, then |x+ y|p = |y|p.

In general, an extension K/Q is a p-adic valuation field if there is a multiplicative norm
|·|p : K× → R>0 satisfying the three above properties, and in addition this norm has to restrict to
the ordinary |·|p on Q×.

We can look at the ring OK,|·|p := {x ∈ K : |x|p ≤ 1} ⊆ K. If the norm is clear, we simply write
OK . This is a local ring with maxiaml ideal mK = {x ∈ L : |x|p < 1}. Caution: This ring is not
necessarily Noetherian.

If |·|′p : K× → R≥0 is another such norm on K, then TFAE:

(a) |·|p = |·|′p.
(b) OK,|·|p = OK,|·|′p .
(c) OK,|·|p ⊆ OK,|·|′p .

1

Any such norm equips K with a topology, where a basis of neighbourhoods of zero is given by

{U(r) : r ∈ R>0} where U(r) = {x ∈ K : |x|p < r}.

We say that K is complete if it is complete with respect to this topology. As a non-example, Q is
not complete for the p-adic norm.

However, any metric space admits a completion, using Cauchy sequences up to equivalence.
Hence we can complete a p-adic valuation field (K, |·|p) to get (K̂, |·|p), where

K̂ = set of equivalent classes of Cauchy sequences (x1, x2, . . .) in K for |·|p

|(x1, x2, . . .)|p := lim
n
|xn|p.

1One might need the fact that if x ∈ K×, then either x or x−1 is in OK,|·|p .
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In particular, we can complete (Q, |·|p) to obtain (Qp, |·|p). For example, 1+p+p2 +· · · converges
in Qp to 1/(1− p).

Every other complete p-adic valuation field contains a Qp: if (K, |·|p) → (L, |·|p) is a map of
p-adic valuation fields with L complete, then we have K ⊆ K̂ ⊆ L, where we embed K into K̂ by
constant Cauchy sequences.

Proposition 2.1. Let (K, |·|p) be a complete p-adic valuation field, and let L/K be a finite extension.
Then there is a unique extension of |·|p to |·|p : L× → R>0, given by

|x|p = |NL/K(x)|[L:K]−1

p .

We will delay the proof till later.

In addition, 2.1 is not true if K is not complete: consider the case where K = Q and L = Q(i),
and let p = 5. Then there are two ways to extend |·|5 to L, namely

x ∈ Z[i] 7→

5−vp1
(x)

5−vp2
(x),

where (5) = (2 + i)(2− i) =: p1p2.

Corollary 2.2. If L/K is Galois and K is a complete p-adic valuation field as before, and σ ∈
Gal(L/K), then for any L, we have |x|p = |σ(x)|p.

Proof. |·|p and |σ(·)|p are two ways to extend the norm on K. �

Corollary 2.3 (Krasner’s Lemma). Let α, β ∈ L be such that |β − α| < |σ(α) − α| for all σ ∈
Gal(L/K) with σ(α) 6= α. Then α ∈ K(β).

Proof. Replace K by K(β) and assume β ∈ K. Then we just need to show that α ∈ K. We
know that for any σ ∈ Gal(L/K), either σ(α) = α or |σ(α) − α| > |β − α| by assumption. Note
that by 2.2, we know that |β − α| = |β − σ(α)|, and hence |σ(α) − α| = |σ(α) − β + β − α| ≤
max{|σ(α)− β|, |α− β|} = |α− β|. This means that the latter case cannot occur, thus σ(α) = α for
all σ, and α ∈ K. �

Rephrasing 2.3, all conjugates of α ∈ L are equally far away from elements of K.

Next we introduce the Hensel’s Lemma. We shall introduce a more technical version of it. First
we extend the norm on K to K[T ], by defining

|q(T )|p = max
i
|ai|p where q(T ) =

∑
aiT

i.

Let K be a complete p-adic valuation field as before2. Suppose that f(T ), g0(T ), h0(T ) ∈ OK [T ]

are such that

(a) f(T ), g0(T ) are monic,

2There are non-complete DVR’s for which Hensel’s Lemma stays true, and those are called Henselian. These
DVR’s still have the norm extension property!

9



(b) |f(T )− g0(T )h0(T )|p =: α < 1, and

(c) g0(T ), h0(T ) are relatively prime modulo the maximal ideal, or equivalently, there are r(T ), s(T ) ∈
OK [t] such that |r(T )g0(T ) + s(T )h0(T )− 1|p =: β < 1.

Theorem 2.4 (Hensel’s Lemma). Under these conditions, we can find g(T ), h(T ) ∈ OK [T ] with

(a) g(T ) is monic,
(b) |g(T )− g0(T )|p < 1 and |h(T )− h0(T )|p < 1, and
(c) f(T ) = g(T )h(T ).

Verbally, Hensel’s Lemma is stating that once we have an approximate factorization, we can
tweak it to become an actual factorization.

Proof. The proof does not differ from the usual one – we will still use successive approximations.
Choose $ ∈ OK , with |$|p = max{α, β} < 1. By induction, we can define gn(T ), hn(T ) ∈ OK [T ]

such that

(a) gn(T )− gn−1(T ), hn(T )− hn−1(T ) ∈ $nOK [T ],

(b) f(T )− gn(T )hn(T ) ∈ $n+1OK [T ], and

(c) gn(T ) is monic.

We then define g(T ) = lim gn(T ) and h = limhn(T ), which makes sense by completeness.

By hypothesis, n = 0 holds, so we proceed straight into the induction step. Suppose that we
have gi(T ), hi(T ) where 0 ≤ i ≤ n− 1 such that the three criteria hold.

Write f(T )−gn(T )hn(T ) =: $n+1q(T ). From assumption (c) we have f(T ) := q(T )−[gn(T )r(T )q(T )+

hn(T )s(T )q(T )] ∈ $OK [T ]. Define

(a) sn+1(T ) = s(T )q(T )−gn(T )p(T ) where p(T ) is a choice made so that deg sn+1(T ) < deg gn(T ),

(b) rn+1(T ) = r(T )q(T ) + p(T )hn(T ),

(c) gn+1(T ) = gn(T ) +$n+1sn+1(T ), and

(d) hn+1(T ) = hn(T ) +$n+1rn+1(T ).

Then q(T )− [gn(T )rn+1(T ) + hn(T )sn+1(T )] = f(T ) ∈ $OK [T ]. (yet to be fixed)

Corollary 2.5. Let L/K be a finite extension and α ∈ L. Let the minimal polynomial of α be
mα(T ) ∈ K[T ], and write mα(T ) = Tn + an−1T

n−1 + · · ·+ a0. Then

|mα(T )|p = max{|a0|p, 1}.

Proof. If i ∈ {1, . . . , n−1} such that |αi|p = |mα(T )|p > max{1, |a0|p}, then a−1
i mα(T ) ∈ OK [T ]

and is irreducible. But
a−1
i mα(T ) ≡ T iq(T ) (mod mK)

so we can use Hensel’s Lemma to factorize mα(T ) in K[T ], but this is absurd. �

In particular, TFAE:

(a) mα(T ) ∈ OK [T ].

(b) α is integral over OK .

(c) a0 ∈ OK .
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(d) |NL/K(α)|p ≤ 1 (because NL/K(α) = a0 up to a sign).

September 10, 2018. Monday.

Now we are in a ready position to prove 2.1.

Proof. First we show that |·| := |N(x)|[L:K]
p is a norm on L. The only real content here is to

show the non-archimedean property, ie. |NL/K(x+ y)| ≤ max{|NL/K(x)|, |NL/K(y)|}. Assume that
|y| ≤ |x|, then by replacing x by 1, y by x−1y, it suffices to show that |NL/K(1 + y)| ≤ 1. This
is true iff 1 + y is integral over OK , or equivalently y is integral over OK , or in turn the same as
|NL/K(y)| ≤ 1. So we are good here.

Next we show the uniqueness of such an extension of norms. Recall the fact that if |·|p, |·|′p are
two norms, then OL,|·|p ⊆ OL,|·|′p iff |·|p = |·|′p. Now it suffices to show that if x is integral over OK ,
then |x| ≤ 1. Let’s look at mx(T ) = Tn + · · · + a0. Then |x|n ≤ max|x|i|ai|p, thus for some i we
have |x|n−i ≤ |ai|p ≤ 1. �

Lemma 2.6. For a complete valuation field K, TFAE:

(a) mK is finitely generated.
(b) mK is principal.
(c) OK is Noetherian.
(d) OK is a DVR.

If K satisfies any of the above equivalent conditions, we say K is in addition discrete.

Proof. This is a basic fact and thus left as an exercise. The only real ingredient is to prove that
(a) implies (b), to which we can start by assuming a is the one with the maximal norm among a
chosen set of generators of mK . �

Before we proceed, we will from now on restrict our focus to complete discrete valuation fields
(CDVFs). For simplicity, we also require k := OK/mK to be perfect. Note that the property of
being a CDVF (along with k being perfect) is stable under finite extensions. 3

Definition 2.7. (a) A uniformizer $K of K is a generator for mK .4

(b) The ramification index eL/K for L/K is the unique integer e such that mKOL = meL, or
equivalently, that $kOL = $e

LOL.
(c) The inertial degree fL/K for L/K is [kL : kK ].

In fact, we have [L : K] = eL/KfL/K . Furthermore, eL/K = [L : K] iff kL = kL, in which case
we say that L/K is totally ramified.

Totally ramified extensions are closely related to Eisenstein polynomials:

Theorem 2.8. 5

3This uses the topological fact that if K is complete, then any finite dimensional K-vector space with a norm is
complete.

4Typer’s note: I shall try my best to restrict to the notation $ for uniformizers, but π might also unintentionally
come up.

5To prove this, one might find the following exercise useful: Let O ⊆ L be a DVR which contains a generator
for L/K (as a field extension). Then O = OL. This in turn uses the fact that DVRs are normal, and so they are
integrally closed in their field of fractions.

11



(a) If f(T ) ∈ K[T ] is Eisenstein, then f(T ) is irreducible in K[T ], and K[T ]/(f(T )) is a totally
ramified field extension of K, with OL = OK [T ]/(f(T )).

(b) If L/K is totally ramified, then m$L(T ) is Eisenstein, and OL = OK [$L].

Using this, we can exhibit a famous example of a totally ramified extension, namely L = Q(ζpn)

and K = Qp. One can check explicitly that Φpn(T + 1) is a Eisenstein polynomial, and thus ζpn − 1

is a uniformizer in OL and OL = Zp[ζpn ].

September 12, 2018. Wednesday.

As per last time, we will assume that K is a CDVF (which by definition includes the assumption
that k = OK/mK is perfect). If L/K is a finite extension, then L is a CDVF as well. We defined
the ramification index eL/K and the inertial degree fL/K . Recall that L/K is totally ramified if
eL/K = [L : K], or equivalently, kL = kK . We saw last time if L/K is totally ramified, and $L ∈ L
is a uniformizer, then

(a) m$L(T ) ∈ OK [T ] is Eisenstein,

(b) OL = OK [$L].

The example to keep in mind should be where L = Qp(ζpn) and K = Qp, where we can take
$L = ζpn − 1.

Today we will look at the opposite case, where we say L/K is unramified if eL/K = 1, or
equivalently, [kL : kK ] = [L : K], or mKOL = mL. Our goal will be to characterize such extensions
in terms of the residue fields. In addition, in fact all extensions of CDVFs are obtained by first
adjoining an unramified extension and then a totally ramified extension.

Suppose that L = K(α) and mα(T ) ∈ OK [T ]. 6 Then

O′ := OK [α] = OK [T ]/(mα(T )) ⊆ OL.

We have a trace map TrL/K : L→ K, which is defined by TrL/K(x) = Tr(x : L→ L). From this we
get a trace pairing

〈·, ·〉 : L× L→ K, (x, y) 7→ TrL/K(xy).

For a finite separable extension L/K, this is then non-degenerate, because Tr(xx−1) = [L : K].

Lemma 2.9. We have

TrL/K

(
αi

m′α(α)

)
=

{
0 if 0 ≤ i ≤ n− w
1 if i = n− 1.

Sketch of Proof of Lemma.7 Write f = mα and α1, . . . , αn be the Galois conjugates of α. For
any j = 0, . . . , n− 1, we have the identity

n∑
i=1

f(T )

T − αi
αji

f ′(αi)
= T i.

6All finite separable extensions can be obtained by adjoining one element.
7Writer’s note: I have edited this proof to incoporate a proof I learnt from Dr. Jack Thorne.
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This is because both sides are polynomials of degree at most n − 1, and they agree at n points
T = α1, . . . , αn. Consider the coefficient of Tn−1 on both sides to get the lemma. �

Corollary 2.10. The dual (O′)∨ = {x ∈ L : 〈O′, x〉 ⊆ OK} is equal to m′α(α)−1O′.

Proof. 2.9 shows that m′α(α)−1O′ ⊆ (O′)∨. Let {βi}i be a dual basis of {1, α, . . . , αn−1}. Then
2.9 says that we have

(
TrL/K

αiαj

f ′(α)

)
i,j

=


0 · · · 0 1
... . .

.
1 ∗

0 . .
.

. .
. ...

1 ∗ · · · ∗

 .

Hence βn = m′α(α)−1, and one can see from the matrix that βn−i ∈
〈
βn, . . . , βn−(i−1)

〉
+

m′α(α)−1O′. Induction then gives {βi}i ∈ m′α(α)−1O′. �

In fact, 〈·, ·〉 : OL ×OL → OK , and O′ ⊆ OL ⊆ (O′)∨.

Corollary 2.11. If m′α(α) ∈ (O′)×, then O′ = OL = (O′)∨.

Suppose that m′α(α) ∈ OK [α]×. Then we have

(a) OK [α] = OL,
(b) L/K is unramified,

(c) If M/K is another finite extension with a commutative diagram

OL/mL OM/mM

OK/mK

ι0

then ι0 lifts to a unique embedding.

L M

K

ι

Proof. (a) is immediate. (b) Consider

OL/mKOL = OK [α]/mKOK [α] = OK [T ]/(mK + (mα(T ))) = k[T ]/(mα(T )).

One can show that mα(T ) is separable (or even stronger that m′α(ᾱ) is invertible), and is irreducible
by Hensel’s Lemma. Thus OL/mKOL is a field, and mKOL = mL. (c) Exercise. �

Note that l/k is a finite separable extension, then l = k[T ]/(f̄(T )) where f̄(T ) is irreducible and
separable. We can lift f̄(T ) to a monic f(T ) ∈ OK [T ], then f(T ) stays irreducible, and K[T ]/(f(T ))

is an unramified extension of K.

Proposition 2.12. (a) The functor

{L/K unramified extensions} 7→ {finite separable L/K}, L 7→ OL/mL

is an equivalence of categories.
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(b) In addition, if M/K is finite and L/K is unramified with l = OL/mL = OM/mM , then there
is a canonical embedding

L M

K

lifting
l l

k

=

with M/L totally ramified.

In particular, if k is finite, then any extension of k is obtained by adjoining prime-to-2 roots of
unity, thus by the above this is also the case for any unramified extensions of K. Furthermore, we
can see in this case (where k is finite) that all unramified extensions are Galois (and in fact abelian).

In general, for any k perfect, there is a gadget named étale φ-modules that studies p-power
extensions of k.

September 13, 2018. Thursday.

2.2. Dropping Discreteness, and the algebraically closed field Cp.

Let K be a complete p-adic valuation field. This will be our assumption throughout today. Today
our goal will be to prove that

(a) K̂ is algebraically closed, and

(b) ΓK = Gal(K/K) acts on K̂, and we will show that its ΓK-invariants are K.

Recall the following

Lemma 2.13 (Krasner). If L/K is finite Galois, and α, β ∈ L such that for any σ ∈ Gal(L/K)
with σ(α) 6= α and |β − α| < |σ(α)− σ|, then α ∈ K(β).

Proof. Replace K with K(β). For any σ ∈ Gal(L/K), we have |σ(α)−α| = |σ(α)−β+β−α| ≤
|α− β|. �

As a consequence, if α is algebraic over K, mα(T ) ∈ K[T ], then for any monic q(T ) ∈ K[T ] “close
enough” to mα(T ), we have

(a) q(T ) is irreducible, and

(b) α is contained in the extension of K generated by a root of q(T ).

Or if one prefers, it can be rephrased as: if α, β are algebraic over K and mα(T ),mβ(T ) are
“close enough”, then K(α) = K(β). In addition, if a polynomial f(T ) is irreducible and another
g(T ) is close enough to f(T ), then g(T ) is irreducible too. So in some sense irreducibility is an open
condition.

Now we are ready to prove

Proposition 2.14. K̂ is algebraically closed.

Proof. If α is algebraic over K̂, then mα(T ) ∈ K̂[T ] can be approximated by q(T ) ∈ K[T ]. But
q(T ) has all its roots in K̄, so does mα(T ). �

Let’s consider the following more interesting
14



Theorem 2.15. We have K̂
ΓK

= K.

More concretely, this is saying that if E ⊆ K̄, ΓE := Gal(K/E) ⊆ Gal(K/K), then K̂
ΓE

= Ê.
For this we will need a clever lemma.

Lemma 2.16 (Ax-Sen-Tate). Let E/K be a finite extension and let α ∈ K, and

∆E(α) = max
σ∈ΓE ,σ(α)6=α

|σ(α)− α|.

Then there is C > 1 which is independent of α, and exists a ∈ E such that |α− a| ≤ C∆E(α).

2.16 is assuring that for any α ∈ K, there is always a ∈ E such that a and α are “nicely” close.
Assuming 2.16, it is then easy to prove 2.15.

Proof of 2.15. Pick β ∈ K̂
ΓE

. For any n > 1, there is αn ∈ K such that |β − αn| < 1/n (simply
due to completion). Thus for any σ ∈ ΓE , we have

|σ(αn)− αn| ≤ max{|σ(αn)− β|, |β − αn|} = |αn − β| < 1/n

since |σ(αn) − β| = |σ(αn) − σ(β)| = |αn − β|. Thus ∆E(αn) < 1/n. By lemma, there is αn ∈ E
such that |αn − an| < C · 1/n. So β = lim an ∈ Ê. �

Proof of 2.16. Let i ∈ Z>0 and define Ci = p1/(pi−1(p−1)). Then define C :=
∏∞
i=1 Ci = pp/(p−1)2 .

We will show that there is a ∈ E such that |α − a| ≤ (
∏l(n)
i=1 Ci)∆E(α) where l(n) = max{i :⌊

degmα,E/p
i
⌋
6= 0} (where n = degmα,E).

We proceed by induction on n := degmα,E . If n = 1, this is trivial. In general, write f(T ) :=

mα,E(T ) ∈ E[T ]. Consider

g(T ) = f(T + α) ∈ E(α)[T ] = Tn + · · ·+ aiT
i + · · ·+ a1T.

This has zero constant term since f(α) = 0. Consider g′(T )/n = Tn−1 + · · ·+ a1/n. This has n− 1

roots, say γ1, . . . , γn−1. We have |γ1 · · · γn−1| = |a1/n|. But |a1| ≤ ∆E(α)n−1 (this is the sum of
product of n− 1 nonzero roots of g). So |a1/n| ≤ |n|−1∆E(α)n−1. So there is i0 such that

|γi0 | ≤ |n|−1/(n−1)∆E(α).

Write β = γi0 + α. Then f ′(β) = g′(γi0) = 0 and |β − α| ≤ |n|−1/(n−1)∆E(α).
Applying hypothesis to f ′, there is b ∈ E such that |α− (b−γi0)| = |β− b| ≤ (

∏l(n−1)
i=1 Ci)∆E(β).

But also |β−σ(β)| = |β−α+σ(α)−σ(β)| ≤ max{|β−α|, |σ(α)−σ(β)|} = |β−α| ≤ |n|−1/(n−1)∆E(α).
But this is not good enough (eg when n = pk).

To fix this, we have to look at higher derivatives and apply the same idea. Write n = prd where
either (d, p) = 1, d > 1 or d = p. Write q = pr. Repeat the same argument, but now look at
h(T ) = fq(T + α) · (n − q)!/n! ∈ E(α)[T ] to make it monic. The constant term is

(
n
q

)−1
aq. The

point:
(
n
q

)
cannot be very large! Show that under these hypothesis, |

(
n
q

)
| is either p−1 if d = p, or 1

otherwise.

But |aq| ≤ ∆E(α)n−q and so h(0) ≤ ∆E(α)n−q if (d, p) = 1, and p∆E(α)n−q if d = p. So
there is γ such that h(γ) = 0, equivalently f (q)(γ + α) = 0, such that |γ| ≤ ∆E(α) if (d, p) = 1,
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or p1/(n−q)∆E(α) if p = d, but p1/(n−q) = Cr+1. And β = γ + α, so ∆E(β) ≤ Cr+1∆E(α). Use
hypothesis. �

September 17, 2018. Monday.

Let K be a complete p-adic valuation field. Last time we showed that if K ⊆ E ⊆ K and

ΓE = Gal(K/E) ⊆ ΓK , then K̂
ΓE

= Ê. In the case where E/K is finite, then Ê = E in addition.

Consider the case where K/Qp is finite. Write K0 for the maximal unramified subextension.
Suppose we have a cyclotomic character χp : ΓQp → Z×p determined by σ(ζpn) = ζ

χp(σ)−1

pn for all
n ≥ 1. This governs the ΓK-action on the p-th power roots of unity. In particular, we can restrict
χp to K, by which we mean to look at χp |ΓK . Write Cp = Q̂p. We will be primarily interested in

Cp(χip)ΓK := {x ∈ Cp : for all σ ∈ ΓK , σ(x) = χp(σ)−ix}.

Note that

(a) we write i instead of −i for the index, and

(b) the superscript does not exactly mean “fixed by ΓK”, but rather fixed with a twist. (This is
what χip means.)

Theorem 2.17 (Tate). For a finite extension K/Qp, we have

Cp(χip)ΓK =

{
K if i = 0,

0 otherwise.

Remark: This is a special case of a theorem of Tate, which says that for any η : ΓK → Z×p ,
we then have Cp(η)ΓK = 0 unless η |IK has finite image, where IK = Gal(K/Knr) with Knr ⊆ K

being the maximal unramified subextension. More explicitly, Knr is the extension of K adjoining
all prime to p-th power roots of unity. This general statement is too elaborated to prove, so we’ll
focus on our simpler case.

We have also proved the case i = 0 in the previous lecture, so for what remains, we will focus on
the latter case.

Here is our upshot: unramified and totally ramified extensions are always linearly disjoint. So a
cyclotomic character when restricted to K0 is still non trivial.

Proof of 2.17. First assume that K0 = K, ie. K is unramified. In this case, for all n ≥ 1, we
have

Qp(ζpn) ∩K = Qp,

or for what is the same, [K(ζpn) : K] = [Qp(ζpn) : Qp]. The polynomial Φpn(T + 1) is still the
minimal one over K and Eisenstein, and so we still have OK(ζpn ) = OK [ζpn ] by the correspondence
between Eisenstein polynomials and totally ramified extensions.

Equivalently, let’s make the following observation. Suppose we have fixed a compatible sequence
of choices for ζpn . If we set Kn = K(ζpn) and K∞ = ∪∞i=1Kn, then every element x ∈ O

K̂∞
has a
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unique expression of the form
x =

∑
r∈ 1

p∞ Z∩[0,1)

ar(x)εr

where ar(x) ∈ Zp (or equivalently a compatible sequence of elements in Fpn) and εr = ζspn where
r = s/pn in lowest terms. However we do note that not all such things are in O

K̂∞
: ar(x) needs to

“go smaller” to get a convergent sequence and for x to make sense.

Pick x ∈ Cp(χip)ΓK ⊆ Cp(χip)ΓK∞ . First we observe that x ∈ K̂∞. Indeed, for any σ ∈ ΓK∞ , we
have σ(x) = χp(σ)−ix but χp(σ) = 1 since ΓK∞ = ker(χp |ΓK ). So x ∈ CΓK∞

p = K̂∞ by 2.15.

We can WLOG assume x ∈ O
K̂∞

, so we can write x =
∑
ar(x)εr. Then for all σ ∈ Gal(K∞/K),

we have σ(x) =
∑
r ar(x)σ(εr); and for εr = ζspn , we have σ(εr) = ζ

χp(σ)−1s
pn = εχp(σ)−1r. This

notation is fine, because χp(σ)−1 ∈ Z×p will not interfere with the denominator in r = s/pn.

So σ(x) =
∑
ar(x)σ(εr) =

∑
ar(x)εχp(σ)−1r =

∑
aχp(σ)r(x)εr and σ(x) = χp(σ)−i(x) =∑

χp(σ)−iar(x)εr. Equating, this is saying that for any r, we have

χp(σ)−iar(x) = aχp(σ)r(x).

But χp(σ), as σ varies, can be any element of Z×p . So we are saying that for any b ∈ Z×p , we have
b−iar(x) = abr(x). On the right hand side there are finitely many possibilities: when r is fixed, the
denominator is then fixed, and br does not change the denominator of r, so there are only finitely
many choices. But there are infinitely many possibilities on the left: again, K is unramified so χp
surjects onto Z×p . Thus this condition fails horribly! This proves the case when K is unramified.

In general, we have shown that Cp(χip)ΓK0 = 0 if i 6= 0. If x ∈ Cp(χip)ΓK , first it suffices to show for
the case assumingK is Galois overQp, since if L/K is the Galois closure, then Cp(χip)ΓK ⊆ Cp(χip)ΓL .
Let’s look at the extension K/K0. Take {σ1, . . . , σr} ⊆ ΓK0 which is a set of coset representatives
for Gal(K/K0) = ΓK0/ΓK , and define y =

∏
σi(x). In general y depends on {σi}i, but the Qp-line

of y is easily seen to be well defined (and independent of {σi}i): if σi is replaced by σ′i + σ where
σ ∈ ΓK , then σ acts on x by multiplication by χp(σ)−i.

Then one can check readily that

(a) the Qp-line generated by y in Cp is ΓK0
-invariant (a general feature of the averaging process),

and

(b) fixing σ ∈ ΓK0
and a coset representative σa, we have σσa = σbσa,b for some σa,b ∈ ΓK0

. This
gives

χp(σa,b)
−i = χp(σb)

iχp(σ)−iχp(σa)−i.

Hence σ(y) = χp(σ)−iry.

In other words, given x ∈ Cp(χip)ΓK , we have cooked up y ∈ Cp(χirp )ΓK0 . This reduces the
problem to unramified case. But we showed that Cp(χirp )ΓK0 is zero if i 6= 0, forcing x = 0, so we
are done. �

September 19, 2018. Wednesday.
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3. Formalisms and Setups.

Today we will set up the formalism of the Galois representations we will be interested in.

3.1. Admissible Representations.

Let Γ be a group and F be a field of characteristic zero. Let B be a ring8 which has a Γ-action
on it. We require

(a) B to be a F -algebra and the Γ-action to be F -linear,

(b) this Γ-action to preserve the ring structure, and

(c) B to be a domain with no non-trivial Γ-stable ideals. This will be our main assumption.

At this stage, we can think about it as if B with this Γ-action structure behaves like a field.

Let M be a B-module with a compatible Γ-action, ie. for any γ ∈ Γ,m ∈M, b ∈ B, we have

γ(bm) = γ(b)γ(m).

Then we can look at Mη := M ⊗B Frac(B). Consider

RepΓ(B) = { projective B-modules with a Γ-action of finite rank }.

and the functor from this to RepΓ(Frac(B)), sending M 7→Mη.

Lemma 3.1. This functor is fully faithful.

In particular this means that any map fromMη → Nη comes fromM → N , or HomB[Γ](M1,M2)
∼−→

HomFrac(B)[Γ](M1,η,M2,η). Note that HomB[Γ](M1,M2) = HomB(M1,M2)Γ and HomFrac(B)[Γ](M1,η,M2,η) =

HomB(M1,M2)Γ
η .

Proof. Let MΓ = {m ∈M : γm = m for all γ ∈ Γ}. This maps to MΓ
η := (Mη)Γ. We claim that

this is a bijection.

Indeed, suppose m ∈ MΓ
η − {0}. Consider {b ∈ B : bm ∈ M} ⊆ B. It is easy to check that this

is a nonzero Γ-stable ideal.9 So this ideal is all of B, and in particular m = 1 ·m ∈M .

If M1,M2 ∈ RepΓ(B), then HomB(M1,M2) ∼= M∨1 ⊗BM2 is also a projective B-module of finite
rank, which also has a natural Γ-action, given by (γf)(m) = γ(f(γ−1m)). Moreover, as we noted
previously, HomB(M1,M2)Γ = {Γ− equivariant f : M1 →M2}, so we deduced that

HomB(M1,M2)Γ ∼= HomB(M1,M2)Γ
η

and we are done. �

In light of this, if we let K = BΓ, then K = (FracB)Γ, and K is a field, since for example if x is
Γ-invariant, then so is x−1 evidently. Next we will look at

RepΓ(F ) := { finite dimensional F -vector spaces with a Γ-action }.

8All rings in this course will be commutative.
9Keerthi claims this argument only requires M to be torsion free as opposed to M being projective, but it seems

to me that we can even drop this assumption.
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This notation for good reason should be compatible with the previous one and indeed it is. Let us
define a functor

DB : RepΓ(F )→ VectK , sending V 7→ (B ⊗F V )Γ

where Γ acts on the right by γ(b⊗ v) = γ(b)⊗ γ(v).

Proposition 3.2. (a) DB = DFracB as functors.
(b) We have the inequality

dimK DB(V ) ≤ dimF V,

with equality iff

αB,V : B ⊗K DB(V )→ B ⊗F V, sending b⊗ (Σbj ⊗ vj) 7→ Σbbj ⊗ vj

is an isomorphism of Γ-equivariant B-modules. Here Γ acts on B in the usual sense and on
DB(V ) trivially on the left.

Let us make two remarks before we proceed.

(a) αB,V being an isomorphism is equivalent to saying that B ⊗F V ∼= Bd as objects in RepΓ(B),
with d = dimK DB(V ).10 This is in turn the same as saying that B ⊗F V is generated as a
B-module by Γ-invariant elements in it.

(b) It’s good to keep track of how we will use this formalism practically. In our future use, F will
usually be Qp, and Γ will be a Galois group, which comes with a profinite topology, and we
might require the representations here to be continuous.

In light of remark (a), it’s good to make the following definition: let M ∈ RepΓ(B). We say that
M is trivial if M is generated as a B-module by MΓ. Then the equality holds in 3.2(b) iff B ⊗F V
is trivial in the above sense.

Proof of 3.2. We have already shown (a). For (b) we must show dimK DFrac(B)(V ) ≤ dimF (V ),
and it does no harm to assume that B is a field sine we can replace B by FracB in both assertions.
Indeed, specifically for the equality assertion, by full faithfulness from 3.1, we see that αB,V is an
isomorphism iff αFracB,V is an isomorphism.

Given now B is a field, I claim that αB,V is always injective. Indeed, suppose x1, . . . , xn ∈ DB(V )

are linearly independent over K with
∑
bixi = 0 being a minimal linear dependence over B. We

can WLOG assume that b1 = 1, and we can also assume b2 ∈ B − K, so there is γ ∈ Γ such
that γ(b2) 6= b2. We hit this linear dependence with γ to get 0 = γ(

∑
bixi) −

∑
bixi which is a

nontrivlal linear dependence with fewer terms, giving a contradiction. This proves dimK DB(V ) ≤
dimB(B ⊗F V ) = dimF (V ).

Equality holds here iff B⊗KDB(V ) and B⊗F (V ) have the same dimension over B, but injectivity
shows it’s an isomorphism as finite dimensional B-vector spaces. �

Rephrasing, for V ∈ RepΓ(F ), the following are equivalent:

(a) αB,V is an isomorphism.

10It’s easy to see that taking Γ-invariants in Bd gives Kd, and this gives Bd once again after tensoring with B.
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(b) dimK DB(V ) = dimF V .

(c) B ⊗F V ∈ RepΓ(B) is trivial.

If any of the above conditions holds, we say that V is B-admissible.

Here’s an example. Let F = Qp, and let K/Qp be a finite extension, Γ = ΓK and B = Cp.
Last lecture we showed that Qp(χip) ∈ RepΓK (Qp) is Cp-admissible iff i = 0, since BΓ = K by
the Ax-Sen-Tate lemma. In general, a continuous representation of ΓK is Cp-admissible iff inertia
subgroup of ΓK acts through a finite quotient (a result due to Sen), generalizing Tate’s theorem on
characters.

Next time we will see that B-admissible representations have some nice properties, and are stable
under dualizing.

September 20, 2018. Thursday.

Last time we started with F a field of characteristic 0, B a domain which is a F -algebra, and Γ

a group acting on B linearly. We had the assumption that B has no nontrivial Γ-stable ideals. This
always holds when B is a field.

We defined the category

RepΓ(B) = { projective B-modules M of finite rank with a compatible Γ-action }.

Then we had a fully faithful functor M 7→ Mη from RepΓ(B) → RepΓ(FracB). We defined K =

BΓ = (FracB)Γ and we looked at the functor

DB : RepΓ(F )→ VectK , V 7→ (B ⊗F V )Γ.

We had the proposition which asserts that

(a) DB = DFracB , and

(b) αB,V : B ⊗K DB(V )→ B ⊗F V is always injective, and is an isomorphism iff dimK DB(V ) =

dimF V .

Towards the end, we defined that V is B-admissible if αB,V is an isomorphism, or equivalently
if dimK DB(V ) = dimF V . We write

RepBΓ (F ) for the full subcategory of such B-admissible V ’s.11

B can be thought of measuring how complex the representations of V can be.

Proposition 3.3. We have

(a) RepBΓ (F ) = RepFracB
Γ (F ).

(b) RepBΓ (F ) is closed under the following:
(i) subrepresentations and and quotients.
(ii) tensor products.

11“Full” means we do not change the set of morphisms.
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(iii) duals.12

(c) The functor DB : RepBΓ (F )→ VectK is faithful, and respects tensor products and duals.13

Proof. (a) is clear. For (b)(i), assume that we have an exact sequence 0→ V1 → V2 → V3 → 0 in
RepΓ(F ) with V2 B-admissible. Hit it with B ⊗F − to get another exact sequence 0→ B ⊗F V1 →
B ⊗F V2 → B ⊗F V3 → 0 in RepΓ(B). Now take Γ-invariants, which is a left exact functor, to get

0→ DB(V1)→ DB(V2)→ DB(V3)

which is exact in VectK . Hence

dimF V2 = dimK DB(V2) ≤ dimK DB(V1) + dimK DB(V3) ≤ dimF V1 + dimF V3 = dimF V2.

This forces equality everywhere. For (b)(ii), pick V1, V2 ∈ RepBΓ (F ). Consider DB(V1 ⊗ V2) =

(B ⊗F (V1 ⊗F V2))Γ. We know that

DB(V1)⊗K DB(V2) ⊆ (B ⊗F V1)⊗B (B ⊗F V2) ∼= B ⊗F (V1 ⊗F V2).

The inclusion is injective, and so we have a canonical injective map from DB(V1) ⊗K DB(V2) →
DB(V1 ⊗ V2). But this implies

dimF (V1 ⊗F V2) = dimF V1 dimF V2 = dimK DB(V1) dimK DB(V2) ≤ dimK DB(V1 ⊗F V2).

We always have the reverse inequality, so we are good. For (b)(iii), pick V ∈ RepBΓ (F ). First assume
that the dimF (V ) = 1. This means that there is χ : Γ → F× such that for any v ∈ V, γ ∈ Γ, we
have γ · v = χ(γ)v. DB(V ) is spanned by an element b⊗ v, where for it to be Γ-invariant, we have
γ(b) = χ(γ)−1b for all γ ∈ Γ. Consider b−1 ∈ FracB, then γ(b−1) = χ(γ)b−1. If φ ∈ V ∨ − {0}, then

γ(b−1 ⊗ φ)(1⊗ v) = χ(γ)b−1φ(χ−1v) = b−1 ⊗ φ(1⊗ v).

So we exhibited a nonzero element in DFracB(V ∨), proving that dimK DFracB(V ∨) ≥ 1 = dimF (V ).
So V ∨ is FracB-admissible, and it’s B-admissible (and so b−1 ∈ B).

In general, for d = dimF V > 1, first we observe that ∧iFV is B-admissible, for this is a quotient
of ⊗iFV . We also observe that det(V ∨) = ∧dV ∨ ∼= det(V )∨ = (∧dV )∨ is also B-admissible, using
our previous one-dimensional result.

There is a perfect pairing

d−1∧
V ⊗F V →

d∧
V = det(V ), given by (v1 ∧ · · · ∧ vd−1)⊗ v 7→ v1 ∧ · · · ∧ vd−1 ∧ v.

Hence we can identify V ∨ ∼−→ ∧d−1
F V ⊗F det(V )∨, which is B-admissible too.14

We leave (c) as an exercise. This is quite similar to the proof of 3.1. �

12In the literature, usually this is the main assumption that is made, instead of our assumption we had on B. In
other words, the assumption is that if b is acted on via a character, then b−1 is also in B.

13This functor cannot possibly be full: morphisms on the left form a F -vector spaces, and morphisms on the right
form K-vector spaces.

14Writer’s note: Keerthi jokes that he can never get around why this proof works, and while editing this I can only
say the same, though I have the same feeling for plenty of other proofs.
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3.2. Galois Descent and Faithfully Flat Descent.

Now let’s assume that K/F is a extension of fields and B = K. Let ΓK = Gal(K/K). We’ll
always reserve the notation ΓK for this Galois group.

Theorem 3.4 (Hilbert 90). We have

RepKΓK (F ) =
{ finite dimensional representations V/F of ΓK

on which the action is through a finite quotient

}
.

Proof. Suppose that V ∈ RepKΓK (F ). Then

αK,V : K ⊗K DK(V )
∼−→ K ⊗F V.

Fix bases {v1, . . . , vd} for V and {w1, . . . , wd} for DK(V ). Then we can write vi =
∑
aijwj , and if

A := (aij), then since there are only finitely many entries in A, A lives in Md(L) (d-by-d matrices
with entries in L) for some finite extension L/K.

By construction, if γ ∈ ΓL, then γ fixes V . Indeed,

γ(vi) = γ

∑
j

aijwj

 =
∑
j

γ(aij)γ(wj)
∑
j

γ(aij)wj =
∑
j

aijwj = vi.

So the kernel of the ΓK-action on V contains a finite index subgroup ΓL. This proves the inclusion
of the left into the right.

The other inclusion amounts to Hilbert 90 and Grothendieck’s proof of it (hence the name of this
theorem). Consider the finite Galois extension L/K, where Γ = Gal(L/K) is the supposed finite
quotient and B = L. Then by definition

RepΓ(L) = { L-vector spaces M acted on by Γ = Gal(L/K) },

and there is a functor
VectK → RepΓ(L) given by V 7→ L⊗K V.

Note that Γ acts on L⊗K V by γ(l ⊗ v) = γ(l)⊗ v, since V is defined over K. One formulation of
Hilbert 90 then says that this is an equivalence of categories, with inverse M 7→ MΓ = MGal(L/K).
(cf. Galois descent)

For this we must show for M ∈ RepΓ(L) where Γ = Gal(L/K), we have L ⊗K MΓ ∼−→ M . This
map is always injective, with the same essential proof from last time exploiting a minimal linear
dependence and hitting by γ ∈ Γ. So it is enough to show that the natural map L ⊗K MΓ → M

is an isomorphism, which we can do so after tensoring with L over K. This means we can check
whether

L⊗K L⊗K MΓ → L⊗K M

is an isomorphism. Notice that L⊗KL is isomorphism to L̃ =
∏
γ∈Γ L as L-algebra, where one sends

l1⊗l2 7→ (l1γ(l2))γ . Γ acts on L⊗KL only in the second copy of L. To make this equivariant though,
we have to endow the right with a not-so-typical Γ-action: think of L̃ as functions f : Γ → L, and
endow the action γf(·) = f(· γ). In other words, γ · (aγ′)γ′ = (aγ′)γ′γ−1 . Note that L embeds into
L̃ diagonally; and that L̃ is not a field – one should not expect any less with L⊗K L.
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Since the Γ-action on L̃ has kernel L, it descends onto an Γ-action on L̃/L. Let’s consider

RepΓ(L̃) = { finite free L̃-modules M̃ with a compatible Γ-action }.

We have a functor VectL → RepΓ(L̃), sending W 7→ L̃⊗LW . Next time we will see that this is
an equivalence with an inverse M̃ 7→ M̃Γ, where a priori we can write M̃ =

∏
γ∈ΓMγ . Here Mγ is

a L-vector space with a Γ-action by γ0 : Mγ →Mγ0γ , lm 7→ γ0(l)γ0(m).

September 26, 2018. Wednesday.

Today we will assume that K is a field of characteristic 0, and let K be its algebraic closure.
Let Γ = Gal(K/K), and K/F an extension of fields. Last time we claimed there is an equality of
categories

RepKΓ (F ) = {V ∈ RepΓ(F ) : Γ acts on V via a finite quotient }.

We proved the ⊆ inclusion. For the other inclusion, let’s look at the following abstract situation.
Let Γ be a finite group, A a commutative ring, and the A-algebra Ã :=

∏
γ∈ΓA, acted on by Γ

using the description from last time. A embeds into Ã diagonally.15 Let M̃ be a Ã-module with
a compatible Γ-action. Since we have idempotents in A, namely 1 at one entry and 0’s at the
remaining entries, we can always hit these to M̃ to break up M̃ =

∏
γ∈ΓMγ . Explicitly, we have an

isomorphism Mγ1
∼−→Mγ1γ−1 , with the following compatible diagram for group action.

Mγ Mγγ−1
1

Mγγ−1
1 γ−2

2

'

' '

Consider M̃Γ which consists of elements {(γ(m1))γ : m1 ∈M1}. In otherwords, once m1 ∈M1 =

Mid is fixed, we can uniquely determine a element in M̃Γ. I claim that the natural map

Ã⊗A M̃Γ ∼−→ M̃, (aγ)γ ⊗ (γ(m1))γ 7→ (aγγ(m1))γ

is an isomorphism. We leave this as an exercise for the readers.16 This is completely general! We
have imposed none of the finiteness, freeness or projectiveness (etc.) conditions.

There’s another way to think about the above isomorphism. Consider the composition of maps

A ↪
a7→(a)γ−−−−−→ Ã

(aγ)γ 7→a1−−−−−−→ A.

This composes to identity. If I = ker(π : Ã → A), then M1 = M̃/IM̃ , and the above is saying
that we can break up Ã = A ⊕ I, and similarly M̃ = M1 ⊕ IM̃ , and since M1 = M̃Γ, we have
Ã⊗A M̃/IM̃

∼−→ M̃ .

15It’s useful to remark at this point that A embeds into Ã diagonally, and we can also retrieve A from as a quotient
by projecting onto Aid. We’ll see this soon.

16Writer’s note: I have worked it out, and the proof that I have goes something like this. So we can assume a
minimal linear independence, and all the ai,id = 1 by altering m1’s. This will force ai,id = ai,γ = 1 for all γ ∈ Γ.
Then we can “factor out” 1 ⊗ − to see that the original element (which a priori is a sum of m’s) in M̃Γ has to be
(0, 0, . . . , 0) already. This proves injectivity. Thinking about surjectivity...
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In any case, let’s restrict our focus on where we were previously: L/K is a finite Galois extension,
and Γ = Gal(L/K); M is a L-vector space17 with a compatible Γ-action. Then Hilbert 90 says
L⊗K MΓ ∼−→M . Let’s see why this is true.

We have a natural map αL,M : L ⊗K MΓ → M . We can regard α as a map of K-vector
spaces, then we can tensor up to L and check whether 1 ⊗ αL,M is an isomorphism. We can write
L⊗K M = (L⊗K L)⊗LM , in which L⊗K L = L̃.

As suggested, consider 1⊗ αL,M : L̃⊗L (L⊗K MΓ)→ L̃⊗LM . By what we have established in
the general theory, it suffices to show that L⊗K MΓ = (L̃⊗LM)Γ 18, for which we claim it is true.
This is not difficult to check, so we again leave it to the readers. This concludes the proof of 3.4.�

Let’s package all of these up one last time: consider the exact sequence

0→MΓ →M
m 7→(γ(m)−m)γ−−−−−−−−−−→

⊕
γ∈Γ

M.

Tensoring with L over K, we will get another exact sequence

0 L⊗K MΓ L⊗K M L⊗K
⊕
γ∈Γ

M

0 (L̃⊗LM)Γ L̃⊗LM
⊕
γ∈Γ

(L̃⊗LM)

= = =

We note in the rightmost equality we have exploited the fact that ⊗ distributes over a finite
direct sum. In full generality we would have needed some extra condition on Γ.

This is all from a gadget named faithfully flat descent. The property that we used is that
we can check isomorphisms after tensoring up to a larger field, in which things simplify and so the
verifications are nice and easy. In general, suppose we have a map of rings R→ S, the correct analogy
is faithful flatness. We say that S is faithfully flat over R if the following holds for all R-modules
M1,M2: a morphism f : M1 →M2 of R-modules is an isomorphism iff 1⊗ f : S⊗RM1 → S⊗RM2

is an isomorphism of S-modules. For example, field extensions are faithfully flat.

Here are some observations that we can make:

(a) The following are equivalent:19

(i) S is faithfully flat over R.
(ii) S is flat as an R-module, and SpecS → SpecR is a surjective map of schemes.

(b) If R→ S is a map of local rings, then S is faithfully flat over R iff it is flat over R.

(c) Thus in particular, if L/K is an extension of p-adic valuation fields, then OL is faithfully flat
over OK .

We will talk more about faithfully flat descent next time.

17Previously we restricted ourselves to finite dimensional L-vector spaces, but in fact we can drop this assumption.
The idea is that once we have picked, say, a linear dependence, which is a finite sum, we can immediately restrict
ourselves back to a finite dimensional case.

18Remark: If we trace the L’s correctly, we will see that Γ does not act on the L on the left here; and acts on
L̃⊗LM diagonally

19A reference for this is Atiyah & Macdonald, Exercise 3.16.
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September 27, 2018. Thursday.

Let’s continue our discussion faithfully flat descent. Let’s recall our setup, where we have a map
of rings f : R → S, and a base change functor ModR → ModS given by M 7→ f∗M = S ⊗R M20.
We would like to describe the image of this functor. More explicitly, given a S-module N , how can
we detect whether N is coming from a base change of a R-module M?

The simple example we should keep in mind throughout this discussion is the case where f :

K → L and L/K is finite and Galois. The base change functor is given by VectK → VectL with
V 7→ L ⊗K V . Γ = Gal(L/K) acts on L ⊗K V on the first coordinate, endowing L ⊗K V an extra
structure for us to exploit. Thus the functor factors through VectK → RepΓ(L); and as mentioned
last time, taking Γ-invariants provide an inverse to this functor.

Let’s start with an observation. Suppose M = f∗N , where N is a R-module and M a S-module,
then it has the following property: there is a canonical isomorphism αM of S ⊗R S-modules.

αM : M ⊗R S S ⊗RM

(S ⊗R N)⊗R S S ⊗R (S ⊗R N)

(S ⊗R S)⊗R N

∼

= =

∼ ∼

Both sides have an S⊗RS-action. More explicitly, (S⊗RS) acts onM⊗RS via (s1⊗s2)·(m⊗s) =

s1m⊗s2s, and on S⊗RM by s1s⊗s2m. The isomorphism αM , is thus saying that these two actions
are compatible.

Here’s an alternative method to think about the isomorphism αM . We are given αM : M⊗RS
∼−→

S⊗RM , and two maps φ1, φ2 : S → A of R-algebras. Then we have a map φ := φ1⊗φ2 : S⊗RS → A.
There are two ways to pull this back to maps from S, namely via j1 := 1⊗ s and j2 := s⊗ 1.

S S ⊗R S A
j1=(s 7→1⊗s)

j2=(s 7→s⊗1)

φ

Then the isomorphism αM : M ⊗R S
∼−→ S ⊗R M is saying that j∗1M

∼−→ j∗2M . Taking φ∗ now
will give another commutative diagram

φ∗j∗1M φ∗j∗2M

φ∗1M φ∗2M

= =

∼

αM (φ1, φ2)

Here j1, j2 should be thought of as a universal pair of such maps, ie. if we are given an isomorphism
for this pair of maps, then we have virtually given an isomorphism for all pairs as shown above.

Again, an example to keep track of things in mind is the Galois case. If γ1, γ2 ∈ Γ, then we have
two maps γ1, γ2 : L // // L . IfM ∈ VectL, then there is an isomorphism α(γ1, γ2) : γ∗1M

∼−→ γ∗2M . In

20One should think of f∗ as pulling back of coherent sheaves, so in short on the level of modules f∗ “does not really
behave like a pullback as it might seem” on a naïve level.
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particular when γ2 = 1, then we have fixed an isomorphism γ∗1M
∼−→M , ie. L⊗L,γ1 M →M . This

data is same as saying γ1 induces an isomorphismM
∼−→M and is γ1-linear, ie. γ1(lm) = γ1(l)γ1(m).

Furthermore, consider the following situation: if φ1, φ2, φ3 : S → A, then we require it to satisfy
the commutative diagram (let’s call it (∗) for convenience)

φ∗1M φ∗2M

φ∗3M

αM (φ1, φ2)

∼

αM (φ2, φ3)

∼

αM (φ2, φ3)
∼

In the Galois example, this simply translates to the fact that the automorphism γ : M
∼−→ M

with γ ∈ Γ varies form a group action.

In any case let us move on. Here is the upshot. If the starting map f : S → R is already faithfully
flat, then the observaton that we make, namely the existence of the isomorphism αM : M ⊗R S

∼−→
S ⊗RM , already gives a sufficient (and necessary a priori) condition for M to come from extension
from R.

Let’s be more precise. Let’s take M ∈ ModS . A descent datum on M for the map f : R → S

is an isomorphism of S⊗R S-modules αM : M ⊗R S
∼−→ S⊗RM with the property that diagram (∗)

commutes for all R-algebras A and all triples φ1, φ2, φ3 : S → A. (Once again, in the Galois setting,
this means that the action by group elements actually fits into a group action.)

Then we can look at the category

ModfS = {(M,αM ) : M ∈ ModR, αM a descent datum on M}.

(In this Galois setting, this is equivalent to the VectK = RepΓ(L) data.) There is a natural functor

ModR → ModfS , N 7→ (f∗N,αf∗N ).

(In the Galois setting this corresponds to the functor VectK → RepΓ(L).) The theorem of faithfully
flat descent states that

Theorem 3.5 (Faithfully flat descent). The above functor

ModR → ModfS , given by N 7→ (f∗N, af∗N )

is an equivalence of categories, with the inverse given by

(M,αM ) 7→ {m ∈M : αM (m⊗ 1) = 1⊗m}.

In terms of Galois situation, αM should be thought of as a galois action, and the condition is
same as saying m is Galois fixed (ie. m ∈MΓ).

It’s good to get away from the formalism for a while, so let’s see where we are headed. Let’s
consider the case

(a) K̂∞/Qp, where K̂∞ = Q̂p(ζp∞), and over which we have Cp/K̂∞.
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(b) Take Γ = Gal(K̂∞, K̂∞).

Then Krasner’s lemma says this is same as Gal(K∞/K∞). We would have loved to study RepΓ(Qp),
but a better object to look at is the Cp-admissible representations RepCpΓ (Qp). Even with this, things
get pretty horrible since Cp is too big. So more precisely we would look at the representations which
are continuous.

You might ask though, what does it mean for a representation of Γ to be continuous? Γ has
a (profinite) topology where open subgroups are the ones of finite index. Giving V ∈ RepΓ(Qp) is
the same as giving ρV : Γ → GLn(Qp), where we endow GLn(Qp) with the p-adic topology: two
matrices A,B are close iff A−1B is close to 1 p-adically), and we say that V is continuous if ρV is
continuous.

Then we have a functor RepK̂∞Γ (Qp)→ Rep
Cp
Γ (Qp), which is actually an equivalence; or for what

is the same, every object in RepctsΓ (Cp) is trivial – this is because every object in RepK̂∞Γ (Qp) is
trivial. Concretely, Cp ⊗K̂∞ MΓ ∼−→ M . So by requiring representations to be continuous, we have
a similar statement to VectK = RepΓ(L). This is what we call almost étale descent, which due to
fontaine. We will give a more modern perspective. The map f : R→ S will be our K̂∞ → Cp.

All these will definitely not be true if K∞ replaced by Qp; because that would say every Cp-
admissible representation of ΓQ is generated by invariants. This amounts to a property of K̂∞ – it
is what we call a perfectoid field. We will see how to do this later.

We will end today’s class with an example. Let L/K be a finite Galois extension of valuation
fields with Γ = Gal(L/K), then f : OK → OL is faithfully flat. Faithfully flat descent says that

ModOK
∼−→ ModfOL ,

but we claim that
ModfOL 6= RepΓ(OL).

As opposed to L⊗K L
∼−→
∏

Γ L, the map

OL ⊗OK OL →
∏
γ∈Γ

OL

is usually not an isomorphism because of ramification.

Let’s take L = Qp(ζp),K = Qp and OL = Zp[ζp]. Then Γ = (Z/pZ)×. Consider the map

OL ⊗OK OL →
∏
γ∈Γ

OL.

The left side has OL-basis xi := 1 ⊗ ζip, while the right has the standard OL-basis {eγ}γ∈Γ. With
respect to these basis, this map x⊗ y 7→ (xγ(y))γ has matrix

1 ζp · · · ζp−1
p

1 ζ2
p · · · ζ

2(p−1)
p

...
...

. . .
...

1 ζp−1
p · · · ζ

(p−1)2

p


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which is a Vandermonde matrix, and thus its determinant is
∏
j>i(ζ

j
p − ζip), which has valuation at

least 1 evidently and so it is not invertible in Zp[ζp].

In fact, in this case, the map is an isomorphism iff L/K is unramified.

September 28, 2018. Friday.

3.3. Introduction to Perfectoid Fields.

Today we will talk about K̂∞, which we will see soon is a perfectoid field. There are two
observations that we can make:

(a) K̂∞ is not discrete, and

(b) the p-power map on O
K̂∞

/(p) is surjective.

These two observations are equivalent to saying

(a’) there exists an element $ ∈ O
K̂∞

21 such that $p | p, and that

(b’) OK/$ → OK/$p is an isomorphism.

The proof to this can be found in 3.11.

The existence of $ can be checked readily. For example, one can take $ = (ζp2 − 1)p−1, where
(ζp2 − 1) is a uniformizer of Zp[ζp2 ]. In addition, (b) implies x 7→ xp induces an isomorphism
OK̂∞/$

∼−→ OK̂∞/$
p. This will then show K̂∞ is not discrete, since |K̂∞

×
| ⊆ R>0 is p-divisible.

So the heart of the equivalence lies in proving (b) assuming (a’) and (b’).

One can also check (b) directly. Write Kn = Qp(ζn), then OKn = Zp[T ]/(Φpn(T )), so OKn/p =

Fp[T ]/((T − 1)φ(pn)) = Fp[U ]/(Uφ(pn)) by a change of variable U = T − 1. Hence

O
K̂∞

/p = OK∞/p = lim−→
n

OKn/p = lim−→
u7→up

Fp[U ]

(Uφ(pn))
=

Fp[U1, U2, . . . , ]

(U
φ(pi)
i , Upi = Ui−1)

.

Now it can readily be verified that the p-power map is indeed surjective.

These observations motivate the following definition. A perfectoid field K is a complete non-
discrete22 valuation field such that there is $ ∈ OK with

(a) $p | p, and
(b) x 7→ xp induces an isomorphism OK/$

∼−→ OK/$p.

We can still make sense of this when charK = p, in which case K is a nondiscrete complete
perfect valuation field. We also require nondiscreteness because we would like to rule out finite fields
being perfectoid. In fact, a perfect valuation field is either a finite field or nondiscrete. Indeed, being
perfect means group of valuation is p-divisible, so it is either trivial (in which case it is a finite field)
or non-trivial. So we can replace nondiscreteness by nontrivialness in the definition.

21$ is not necessarily a uniformizer despite the notation.
22Non-discreteness is automatic for characteristic 0 fields given (a) and (b), as explained above.
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Theorem 3.6 (Almost purity). 23 If K is perfectoid, and L/K a finite separable extension24, then
L is perfectoid.

The proof can be found at 4.4.

One can try to prove this for the characteristic p case which is easier; though it is also true for
the characteristic 0 case. One difficulty is that it’s not easy to describe OL if L is non discrete:
OL is not even finitely generated over OK in general. In fact, OL being a finitely generated OK
algebra is equivalently to OL being the unique “unramified” lift of a finite separable extension of kK
(Henselian still works for nondiscrete setting). Here “unramified” is in quotations because it’s not
entirely clear anymore what it means. Even worse OK is not Noetherian, though it is still a Bezout
domain: finitely generated ideals are principal.

Let K be a perfectoid field. We define

OK[ := lim←−
x 7→xp

OK/(p), and K[ := FracOK[ .

(Verbally we call this K-tilt.) More explicitly, OK[ consists of infinite sequences (x0, x1, . . .) where
xi ∈ OK/(p) and xpi = xi−1. We give two examples:

(a) If K has characteristic p, then x 7→ xp is already an isomorphism, so OK[ = OK .

(b) (!) If K = K̂∞ = Q̂p(ζp∞), then K[ = Fp((t))(t1/p
∞

).

Theorem 3.7. Suppose K is perfectoid, then
(a) OK[ has a noncanonical valuation |·|[ : OK[ −{0} → R>0 and is complete with respect to this.
(b) OK[ is an integral domain, so K[ is well-defined, and is a perfectoid field with charK[ = p.
(c) For every finite extension L̃/K[, there is a canonical perfectoid finite extension L/K such that

L[ = L̃ with [L : K] = [L̃ : K[].
(d) If K[ is algebraically closed, then K is also algebraically closed.

Here is one trick to use the theorem: Take union of all perfectoid guys from (iii), take tilt/flat of
union, then you get union of all finite extensions of K[, which is algebraically closed, and use (iv).

Witt Vectors.

Classical motivation: Question: Zp, for every n, there exists a unique unramified extension
Zpn | Zp with residue field Fpn . (For Zp choose coset reps for Fp, then power series in such coefficients
– same story for Zpn .) Is there a canonical choice of coset reps, ie. a canonical injection Fpn ↪→ Zpn
of sets?

Question 2: If α : Fpn ↪→ Zpn is such an injection, how does multiplication and addition work
when we write x ∈ Zpn in the form

∑∞
n=0 α(tn)pn?

Answer: Witt vectors.

(1) Every t ∈ Fpn satisfies tp
n − t = 0. So Xpn −X ∈ Zpn [X] is a separable polynomial mod p.

Hensel says that for every t ∈ Fpn , there is a unique [t] ∈ Zpn such that (a) [t]p
n − [t] = 0, and [t] ≡ t

23This is a special case of the traditional version of the theorem.
24One can deduce from the discussion above that separateness is automatic, because K is perfect in both char 0

and char p cases. In addition, one can think of finite separateness here as a special case of a finite étale map.
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(mod p). Exercise: if t1, t2 ∈ Fpn , then [t1t2] = [t1][t2]. (NOTE: for Zpn , {0, . . . , pn − 1} is not the
answer!!!) So [·] : Fpn → Zpn is the unique multiplicative section of Zpn � Fpn .

(2) is the thing answered by Witt vectors: gives canonical polynomials Pn, Qn over Z such
that

∑∞
n=0[tn]pn +

∑
[sn]pn =

∑
Pn([t1], . . . , [tn], [s1], . . . , [sn])pn, and similarly for product (coeff

is Qn([t1], . . . , [tn], [s1], . . . , [sn]).

October 1, 2018. Monday.

3.4. Completions.

Usually commutative algebra books deal with completion under a Noetherian setting, but that’s
not good enough for us. That’s why we have to set up our own formalism here.

Let R be a (commutative) ring, and as motivated we will not require R to be Noetherian. A
countable linear topology on R is a topology for which a basis of open neighbourhoods of 0 is
given by a countable descending sequence of ideals

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · .25

With this, we endow R with a topological ring structure. In other words, for any other element
r ∈ R, a basis of open neighbourhoods around r is given by translates from 0. More precisely, usually
we say that (R, {Ik}k) is a linearly topological ring. Two such sequences {Ik}k and {Jk}k endow
R with the same topology iff for any k, there is nk,mk such that Ik ⊆ Jnk and Jk ⊆ Imk .

If I ⊆ R is an ideal, then the I-adic topology is the one associated with the sequence {Ik : k ≥
1}. For example, the norm topology on OCp is the (p)-adic topology, and in contrast the mCp -adic
topology is uninteresting, because m2

Cp = mCp .

We then say (R, {Ik}k) is complete if for all sequences {ik : ik ∈ Ik}, there exists a unique r ∈ R
such that r −

∑n
k=1 ik ∈ In+1. In this case we should think of r as the limit of the sequence {ik}k,

or more precisely

r = lim−→
n

n∑
k=1

ik :=

∞∑
k=1

ik.

We remark that if (R, {Ik}) is complete, then it’s separated or Hausdorff, ie. ∩k≥1Ik = {0}. For
example, since Cp = Q̂p by construction, OCp is complete for the p-adic (or (p)-adic) topology.

Here’s one question that we can ask: If I ⊆ J ⊆ R where I, J are ideals in R, when does R being
J-adically complete imply that it’s I-adically complete? The following gives a sufficient condition.

Proposition 3.8. Suppose J ⊆ R is an ideal such that R is J-adically complete. Suppose I =
(f1, . . . , fr) ⊆ J is a finitely generated ideal (while J is not necessarily finitely generated). Then R
is I-adically complete.

We shall prove this in conjunction with the following

25We want to define it this way as opposed to simply specifying a set of ideals as open sets, for then we would have
more than a countable sequence.
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Lemma 3.9. Suppose I = (f1, . . . , fr) ⊆ R. Then TFAE:

(a) R is I-adically complete.
(b) (R, {Ik}k) is complete where Ik = (fk1 , . . . , f

k
r ).

(c) For each j, R is (fj)-adically complete.

Proof of 3.9. (a) and (b) are equivalent because the topologies are the same: Ikr+1 ⊆ Ik for
example, while Ik ⊆ Ik is obvious. Furthermore (c) implies (b): if ik = ak,1f

k
1 + · · ·+ ak,rf

k
r , then

∞∑
k=1

ik =

∞∑
k=1

ak,1f
k
1 + · · ·+

∞∑
k=1

ak,rf
k
r .

Each term on the right is well-defined. Finally, we will show that (a) implies (c) as a intermediate
by-product while proving 3.8. �

Proof of 3.8. The idea is we must show the J-adic limit is also the I-adic limit (assuming it
exists); were they different then there would be two J-adic limits.

First we show the base case r = 1 without using 3.9. Write I = (f), and suppose we have a
sequence ik = akf

k where ak ∈ R. It’s evident that ik ∈ Jk, so it converges J-adically to r, ie. there
is r ∈ R such that for any n, r −

∑n
k=1 ik ∈ Jn+1. But alternatively we write the tail

in+1 + in+2 + · · · = fn+1(an+1 + an+2f + an+3f
2 + · · · ) =: fn+1L.

Then L also converges J-adically to some sn ∈ R. This suggests r −
∑n
k=1 ik = fn+1sn ∈ In+1,

which completes the base case. This proves the (a) implies (c) in the lemma 3.9, so now we can use
the lemma!26

Now for the general case, let’s assume that I = (f1, . . . , fr). By the lemma it’s sufficient to show
that R is (fj)-adically complete for each j = 1, . . . , r. But this is just a repeated use of the base
case. This completes the proof of the proposition. �

Suppose I ⊆ R and R is I-adically complete. If i ∈ I, then 1 + i ∈ R×, since we have

(1 + i)−1 =

∞∑
k=0

(−1)kik.

In particular, I ⊆ Jac(R), where the Jacobson radical is the intersection of all maximal ideals.27

We then have a lemma which is akin to the Nakayama’s lemma but without the finitely generat-
edness condition, but we’ll save it for next time.

October 3, 2018. Wednesday.

We first tailor make a version of Nakayama’s lemma without any finiteness condition.

Lemma 3.10. Suppose we have f : R→ S is a ring homomorphism, I ⊆ R is an ideal, and define
J := f(I)S. Suppose that

(a) R is I-adically complete, and

26It looks like we only use that implication from (c) to (a) in the lemma, but it’s nice to note their equivalence.
27This is due to a characterizaiton of Jac(R): x ∈ Jac(R) iff for any y ∈ R, we have 1 + xy ∈ R×.
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(b) S is J-adically separated,

(c) the composition R f−→ S → S/J is surjective.

Then f is surjective.

Proof.28 Fix s ∈ S, and we will inductively construct ij ∈ Ij such that s − f(
∑n
j=0 ij) ∈ Jn+1,

so s− f(
∑∞
j=0 ij) ∈ ∩Jn+1 = 0 by assumption (b). When j = 0, hypothesis (c) says there is i0 ∈ R

such that s− f(i0) ∈ J , which is our base case.

Next we do the inductive step. Suppose that we have constructed i0, . . . , in−1 such that s −
f(
∑n−1
j=0 ij) ∈ Jn. So we can write

s− f

n−1∑
j=0

ij

 =

m∑
k=0

f(rk)sk

where rk ∈ In and sk ∈ S. Again by (c) or the base case, we can find uk ∈ R,wk ∈ J with
sk = f(uk) + wk. Then

s− f

n−1∑
j=0

ij

 =

m∑
k=0

f(rk)(f(uk) + wk)

and so

s− f

n−1∑
j=0

ij −
m∑
k=0

rkuk

 =

m∑
k=0

f(rk)wk ∈ Jn+1

which completes the proof. �

Let’s take K to be a complete valuation field over Qp. There were two definitions that we gave
for perfectoid fields: see subsection 3.3. Let’s recall it here for convenience.

Proposition 3.11. Let K to be a complete valuation field over Qp. TFAE:

(a) K is not discrete, and the p-power map on OK/(p) is surjective.
(b) There is an element $ ∈ OK such that $p | p, and x 7→ xp induces an isomorphism OK/($)→
OK/($p).

If any of these equivalent conditions is satisfied, we say that K is a perfectoid field.

Proof. Let’s show (a) implies (b). K is nondiscrete, so there is $ ∈ OK with p−1/p ≤ |$| < 1,
and so |$p| ≥ p−1 = |p|, so $p | p.

For the other direction, consider the diagram

OK/($) OK/($p)

OK OK/(p) OK/(p)

g : x 7→ xp

f : x 7→ xppr

π π′

28Writer’s note: I have asked Keerthi why the following usual proof won’t work: For a R-module M , first one can
show that M = IM implies M = 0, and apply this proof to the cokernel. Keerthi told me that this proof will not
work since ∩InM 6= (∩In)M in general, for example when M is the cokernel of Z ↪→ Zp. In fact, the proof of my
claim requires either M is separated, that is ∩InM = 0, or I is nilpotent.
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The vertical maps are surjective since $p | p. The top map g is also always injective. The
bottom arrow f is surjective iff top arrow g is: indeed, if f is, then g is evidently. If g is, then apply
3.10 to the bottom right composition OK

f◦pr−−−→ OK/(p)
π′−→ OK/($p) (with I = ($p)). As noted

previously K is nondiscrete because if x ∈ OK with |x| > |p| = p−1, then |x|1/p ∈ |K×|. �

3.5. Strict p-rings and Witt Vectors.

We define a strict p-ring to be a p-adically complete and flat (ie. torsion free) Zp-algebra R,
such that R/pR is a perfect Fp-algebra. 29

There are plenty of examples, including Zp, and in fact the ring of integers in any unramified
extension of Qp is also a strict p-ring. The upshot is, given a R/pR which is perfect Fp-algebra,
there is a unique strict p-ring that lifts it.

Lemma 3.12. Let R be a Zp-algebra, and x, y ∈ R be such that x ≡ y (mod pn). Then xp ≡ yp

(mod pn+1).

Proof. xp− yp = (x− y)(xp−1 +xp−2y+ · · ·+ yp−1). The first term is 0 (mod pn) and the latter
is pxp−1 (mod pn), so their product is 0 (mod pn+1). �

Lemma 3.13. Suppose R is a perfect Fp-algebra, S is a p-adically complete Zp-algebra, and f :

R → S/pS is a ring homomorphism. Then there exists a unique multiplicative lift f̃ : R → S of f .
That is, f̃(a) (mod p) = f(a), and f̃(ab) = f̃(a)f̃(b), and f̃ is unique such.

S

R S/pS
f

f̃

R S

R S

x 7→ xp

f̃

x 7→ xp

f̃

The proof uses what is traditionally called the Dwork’s trick, or at least a version of it.

Proof. A priori every element of R as a p-th root. If f̃ exists, then it satisfies f̃(ap
−1

)p = f̃(a).
So f̃ is equivariant for the p-power maps on R and S. Dwork’s trick says approximately that the
p-power map is usually a contraction, so we can given a, we can find the fixed point f̃(a) by doing
the p-power map many times.

More precisely, first fix lifts s̃i ∈ S of f(ap
−i

) ∈ S/pS for each i. Then s̃pn, s̃n−1 are both lifts of
f(ap

−n−1

), so s̃pn ≡ s̃n−1 (mod p). Then we can apply 3.12 to raise both sides to p-th power over
and over again to get s̃p

n

n ≡ s̃
pn−1

n−1 (mod pn). So the limit of s̃p
n

n exists in S, and define

f̃(a) := lim
n→∞

s̃p
n

n .

If we picked a different set of lifts, they will differ (mod p), so their p-th powers differ modulo higher
powers of p using 3.12, so they give the same limit, so the definition is well-defined.

We must also check that f̃ is multiplicative: f̃(a)f̃(b) certainly reduces to f(a)f(b) = f(ab).
Multiplicativeness comes for free from how we defined f̃(a) inductively. Finally we must show that

29This means that the Frobenius map on R/pR is an isomorphism.
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such a multiplicative lift is unique, but the only choice we could have made was compatible lifts of
f(ap

−i
), for which we have already proved that f̃ is unique. �

We know f̃ behaves nicely multiplicatively; what happens to f̃(a + b) though? We know from
the proof that

f̃(a+ b) = lim
n→∞

(f̃(ap
−n

) + f̃(bp
−n

))p
n

,

because f̃(a+ b) ≡ (f̃(ap
−n

) + f̃(bp
−n

))p
n

(mod pn+1).

In particular, if R is a strict p-ring, with R/pR = R, then the identity R → R lifts to a
multiplicative map [·] : R → R, which we will call the Teichmüller lift. Moreover, akin to Zp,
every element of R can be written uniquely in the form

∑∞
n=0 p

n[an], with an ∈ R, where an is
determined inductively: Pick

a0 = r mod p

a1 =
r − p[a0]

p
mod p

...

an =
r −

∑n−1
j=0 p

j [aj ]

p
mod p

Torsionfreeness in the definition of a strict p-ring is used to define division by p (otherwise there
won’t have been a canonical choice). We shall call [ai]’s the Teichmüller coordiantes.

It turns out as a consequence that strict p-rings are very rigid :

Theorem 3.14. Let R be a strict p-ring with R = R/pR, and let S be p-adically complete Zp-algebra.
Then the functor

HomZp-alg(R,S)→ HomFp-alg(R,S/pS), given by φ 7→ φ (mod p)

is a bijection with its inverse given by

Θ(f)←[ f, where Θ(f)

( ∞∑
n=0

pn[an]

)
=

∞∑
n=0

pnf̃(an).

As a result, the functor R 7→ R is an equivalence of categories from the category of strict p-rings
to the category of p-adically complete Zp-algebras.

October 4, 2018. Thursday.

Our first goal of today will be to prove 3.14. Before that, we observe that Θ(f) commutes with
multiplication by p (and thus powers of p), because the formula does.

Proof of 3.14. We must show that Θ(f) is a ring homomorphism, so we must show

Θ(f)([a]) + Θ(f)([b]) = Θ(f)([a] + [b]).

The rest follows readily.

34



Since by definition of Θ(f) we have Θ(f)([a]) = f̃(a), it is equivalent to showing

f̃(a) + f̃(b) ≡ Θ(f)([a] + [b]) (mod pn) for all n.

We will do this by induction. For the base n = 1, this amounts to the statement

f(a) + f(b) ≡ f(a+ b) (mod p)

but this is automatic. For the inductive step, you will see that we will unwrap every notation, apply
hypothesis, then wrap everything back up again. Here goes: using the binomial theorem we have
that

f̃(a+ b) ≡ (f̃(ap
−n

) + f̃(bp
−n

))p
n

(mod pn+1)

≡ f̃(a) + f̃(b) +

pn−1∑
i=1

(
pn

i

)
f̃(ap

−n
)p
n−if̃(bp

−n
)i (mod pn+1).

All the binomial coefficients appearing are divisible by p, we can write 1/p and still make sense
of it:

f̃(a) + f̃(b) ≡ f̃(a+ b)− p
pn−1∑
i=1

1

p

(
pn

i

)
f̃(ap

−n
)p
n−if̃(bp

−n
)i (mod pn+1).

Let’s note on the side that in particular, when f is the identity, by definition f̃ = [·], so

[a] + [b] ≡ [a+ b]− p
pn−1∑
i=1

1

p

(
pn

i

)
[(ap

−n
)p
n−i(bp

−n
)i] (mod pn+1). (†)

Finally using the multiplicativity of f̃ , and that f̃(·) = Θ(f)([·]), we can write

f̃(a) + f̃(b) ≡ f̃(a+ b)− p
pn−1∑
i=1

1

p

(
pn

i

)
Θ(f)([(ap

−n
)p
n−i(bp

−n
)i]) (mod pn+1). (∗)

But on the other hand we know from the inductive hypothesis that Θ(f) distributes over addition
mod pn, and along with the discussion that Θ(f) commutes with multiplication by p−1, we know
that

pn−1∑
i=1

1

p

(
pn

i

)
Θ(f)([(ap

−n
)p
n−i(bp

−n
)i]) ≡ Θ(f)

(
pn−1∑
i=1

1

p

(
pn

i

)
[(ap

−n
)p
n−i(bp

−n
)i]

)
(mod pn).

Thus modulo pn+1 from (∗) we have

f̃(a) + f̃(b) ≡ f̃(a+ b)− pΘ(f)

(
pn−1∑
i=1

1

p

(
pn

i

)
[(ap

−n
)p
n−i(bp

−n
)i]

)
(mod pn+1).

But since Θ(f) is defined on each p-adic coordinate, we can factor out Θ(f) on the right hand side:

f̃(a) + f̃(b) ≡ Θ(f)

(
[a+ b]− p

pn−1∑
i=1

1

p

(
pn

i

)
[(ap

−n
)p
n−i(bp

−n
)i]

)
(mod pn+1).
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Finally from (†) and using the fact that Θ(f) is defined on p-adic coordinates, we have

f̃(a) + f̃(b) ≡ Θ(f)

(
[a+ b]− p

pn−1∑
i=1

1

p

(
pn

i

)
[(ap

−n
)p
n−i(bp

−n
)i]

)
≡ Θ(f)([a] + [b]) (mod pn+1)

which completes the proof. �

We have said that this theorem makes strict p-rings very rigid if they exist. For example, as a
consequence, we have

Proposition 3.15. There is at most one strict p-ring R up to unique isomorphism with R/(p) = R.

Proof. If R1, R2 are two strict p-rings with R1/p = R2/p = R, then theorem says identity R→ R

lifts uniquely to isomorphisms Θ1(id) : R1 → R2 and Θ2(id) : R2 → R1 which are inverses of each
other. �

Remarks:

(a) This is interconnected with unramified extensions: one family of examples of strict p-rings are
OK where K is a complete p-adic valuation field with perfect residue field and in which p is
a uniformizer. So the above is another way of saying there can only be one unramified field
extension of Qp lifting a finite residue field.

(b) If R is a strict p-ring, there is also the Frobenius map Frob on R/pR, which is an isomorphism.
By the description of Θ(Frob), Frob lifts to an isomorphism on R too.

Now that we have answer the question about uniqueness of strict p-rings, naturally we will want
to construct strict p-rings. This is where Witt vectors come in.

Let A be a ring. First we define Wn(A) := An for any n. Then for any n, we define the ghost
map gh : Wn(A) = An → An where

gh : (a0, . . . , an−1) 7→ (a0, ap0 + pa1, ap
2

0 + pap1 + p2a2, . . . ,

k∑
i=0

piap
k−i

i , . . .)

Observe that

(a) If p is invertible in A, then gh is a bijection, for we can find the preimage sequentially.

(b) If A is p-torsion free, then gh is injective, for a similar reason as above.

The following characterizes the image of the ghost map under some conditions.

Lemma 3.16 (Dwork). Suppose that

(a) A is p-torsion free, and
(b) A admits a ring homomorphism φ : A→ A that lifts Frobenius, ie. φ(a) ≡ ap (mod p) for all

a ∈ A.

Then (b0, . . . , bn−1) ∈ An is in Im(gh) = gh(Wn(A)) iff for all i, φ(bi−1) ≡ bi (mod pi).

Proof. First note that φ(1) = 1, so φ(pj) = pj for any p-power. The proof uses 3.12 that if
x, y ∈ A, and x ≡ y (mod pn), then xp ≡ yp (mod pn+1) (one can easily check the Zp-algebra
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condition in 3.12 can be dropped). Suppose first that (b0, . . . , bn−1) = gh(a0, . . . , an−1). Then

bi−1 =

i−1∑
j=0

pjap
i−1−j

j .

Hit φ to it. Since φ(aj) ≡ apj (mod p), raising to the p power repeatedly will give φ(aj)
pi−1−j ≡ ap

i−j

j

(mod pi−j), or equivalently pjφ(aj)
pi−1−j ≡ pjap

i−j

j (mod pi) (call this computation (†)). With this,

φ(bi−1) =

i−1∑
j=0

pjφ(aj)
pi−1−j

≡
i∑

j=0

pjap
i−j

j = bi (mod pi).

For the other direction, suppose (b0, . . . , bn−1) ∈ An is such that φ(bi−1) ≡ bi (mod pi). We will
solve this inductively. Base case is obvious – simply write a0 = b0; suppose we have already found
a0, . . . , ai−1 such that

bi−1 =

i−1∑
j=0

pjap
i−1−j

j ,

Then the hypothesis φ(bi−1) ≡ bi (mod pi) gives

0 ≡ bi − φ(bi−1) = bi −
i−1∑
j=0

pjφ(aj)
pi−1−j

≡ bi −
i∑

j=0

pjap
i−j

j (mod pi) (by †),

so one can find ai with bi −
∑i
j=0 p

jap
i−j

j = piai. �

As a consequence, under the same hypothesis on A as in 3.16, gh(Wn(A)) ⊆ An is a subring.
Since gh under this assumption is an injection, given

gh(r0, . . . , rn−1) = b := (b0, . . . , bn−1) and

gh(s0, . . . , sn−1) = c := (c0, . . . , cn−1),

we can ask: what are gh−1(bc) and gh−1(b + c) explicitly?

October 10, 2018. Wednesday.

Let A be a ring. We write Wn(A) = An. We defined the ghost map gh : Wn(A) → An. We
showed that under the hypotheses that

(a) A has no p-torsion, and

(b) A admits a Frobenius lift,

then gh(Wn(A)) is a subring in An. (If p is invertible, then gh is surjective, and condition is vacuous,
concurs with previous observation.)

We apply this to the polynomial ring A = Z[T0, . . . , Tn, U0, . . . , Un−1] with 2n variables, where
φ : Ti 7→ T pi , Ui 7→ Upi . Then what is

gh(T0, . . . , Tn−1) + gh(U0 + . . . , Un−1)?

One can show that it’s gh(P0, . . . , Pn−1) where Pj ∈ A, and similarly for their product gh(T ) gh((U)) =

gh(Q0, . . . , Qn−1) where Qj ∈ A.
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Let B be any ring, and two tuples a = (a0, . . . , an−1),a′ = (a′0, . . . , a
′
n−1) ∈ Wn(B), there is a

unique homomorphism
φa,a′ : A 7→ B,T 7→ a,U 7→ a′.

We also have (diagram)

By construction diagram commutes (whole cube commutes). ghost map on the bottom are likely
to be zero? top face commutes, varying a, a′ and check all of them. So A is the universal ring with
2n tuples. Same diagram holds for Qi multiplications.

We obtain two binary operations, (P0, . . . , Pn−1) and (Q0, . . . , Qn−1), on Wn(B) ×Wn(B) →
Wn(B). Claim: these give rise to ring structure on Wn(B) with additive identity (0, . . . , 0) and
multiplicative identity (1, 0, . . . , 0). (can check all these simply on universal ring of 3 tuples.

Claim: P0(a,a′) = a + a′. take a and a′, take ghost coordinates, then gh(a) + gh(a′).
compare

(a0 + a′0, ?, . . .)
gh−→ (a0 + a′0, a

p
0 + a0

′p + p(a0 + a′0), . . .)

So for P1, need
P1 =

1

p
(ap0 + a0

′p − (a0 + a′0)p) + a1 + a′1

and this really lives in Z[a,a′] by binomial formula! (so can divide by p).

Note: Pj , Qj only depend on U0, . . . , Uj , T0, . . . , Tj . ie. the restriction maps R : Wn(A) →
Wn−1(A) is a ring homomorphism.

When A is a commutative ring, then we write W (A) = lim←−
R

Wn(A). This is the ring of Witt

vectors with coefficients in A. Wn(A) is an n-truncated ring of Witt vectors.

Proposition 3.17. There are two natural (natural in A or functorial in A) group homomorphisms
V : Wn−1(A)→Wn(A), and F : Wn(A)→Wn−1(A), with the following properties:
(a) functorial in A
(b) F is a ring homomorphism
(c) FV = [p] : Wn−1(A)→Wn−1(A)
(d) V (F (y)z) = yV (z) for y ∈Wn(A), z ∈Wn−1(A) (V not a ring homomorphism)
(e) In ghost coordinates we have a diagram.

Proof. First use (e) to prove when A is p-torsion free, and with a frob lift, (check images of F, V
as in e satisfies Dwork’s condition). // Apply Dwork’s lemma in universal situation. Then (a) to (d)
can be checked from diagram. V (1) is a canonical third element, generates kernel of Wn(A) → A

(think?). �

Note: if A has char p, then F : Wn(A)→ Wn−1(A) sends (a0, . . . , an−1) 7→ (ap0, . . . , a
p
n−1). This

comes down to checking when A is p-torsion free

gh(F (a0, . . . , an−1)) compare with gh(ap0, . . . , a
p
n−1) (mod p).

LHS is (ap0 + pa, ap
2

0 + pap1 + p2a2, . . .), and RHS is (ap0, a
p2

0 + pap1, . . .). apply ghost inverse to LHS
and check it matches mod p (ghost inverse makes sense if A is p-torison free....

V is easier: gh ◦V gives (0, pa0, p(a
p
0 + pa1), . . .) which is the ghost of (0, a0, . . . , an−2). So define

V have image this.
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So if A has char p, then V F = FV = p : Wn(A) 7→Wn(A), (a0, . . . , an−1) 7→ (0, ap0, . . . , a
p
n−1).

October 11, 2018. Thursday.

Last time we defined the maps F, V betweenWn(A) andWn−1(A), where we recall V is the right
shift operator in natural coordinates (in Wn(A)):

V (a0, . . . , an−2) = (0, a0 . . . , an−2).

We then had FV = p, and by definition

F (a0, . . . , an−1) ≡ (ap0, . . . , a
p
n−2) (mod p).

There’s a subtlety here – (mod p) is not the natural reduction! But rather it means that the ghost
coordinates30 of the two terms above differ by an element in p Im gh; see below. To prove this,
one can simply check this when A satisfies the hypothesis of Dwork’s lemma 3.16 (since we have a
universal object (Z[T0, . . . , Tn], φ : Ti 7→ T pj )), and this aaounts to seeing that

gh(F (a0, . . . , an−1)) ≡ gh(ap0, . . . , a
p
n−2) (mod p Im gh).

We will leave this for the reader. But when A has characteristic p, we can say something nice,
that we know explicitly what F is, because the phrase (mod p) becomes vacuous. Using FV = p

we then also know what multiplication-by-p-map is:

p(a0, . . . , an−1) = FV (a0, . . . , an−1) = F (0, a0, . . . , an−1) = (0, ap0, . . . , a
p
n−2).

In particular, we make a note that

(a) Even if A has characteristic p, pWn(A) 6= 0.

(b) In this case, we also see that V (a) = V F (F−1(a)) = p(F−1(a)) =
∑

[ap
−1

n ]pn+1.

Next we define W (A) = lim
←−

Wn(A), where the maps in the inverse limit are given by truncation.
The kernel of W (A)→Wn(A) is then given by

ker(W (A)→Wn(A)) = V n(W (A)) = {(0, 0, . . . , 0, an, an+1, . . .)}.

So we can abuse the terminology and say that W is complete with respect to the V -adic topology.
However this is not an honest I-adic topology: for example V (W (A)) · V (W (A)) 6⊆ V 2(W (A)).

However, if A = R is a perfect ring of characteristic p, then F is an isomorphism (because taking
p-powers in A is), thus on W (R) we have

V n(a0, a1, . . .) = pn(ap
−n

0 , ap
−n

1 , . . .).

So V nW (R) = pnW (R), and
W (R) = lim

←−
W (R)/pnW (R)

30That is, the images under the ghost maps.
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is p-adically complete. In addition, W (R)/pW (R) = W (R)/VW (R) = R. Finally, W (R) has no
p-torsion – thus we constructed a strict p-ring W (R) that lifts the modulo-p-quotient R!

Hence to summarize things: if R is a perfect Fp-algebra, and S is a p-adically complete Zp-algebra,
then we have

HomZp–alg(W (R), S)
∼−→ HomFp–alg(R,S/pS)

given by φ 7→ φ (mod p), and it has an inverse Θ(f)←[ f where f̃ : R→ S is the unique multiplica-
tive lift of f , as defined previously.

That’s all about Witt vectors for now. Let’s get back to a perfectoid field.

4. Perfectoid Fields.

Let K/Qp be a perfectoid field: recall this means

(a) K is a complete valuation field,
(b) there is $ ∈ mK such that $p | p, and
(c) the map OK/$

∼−→ OK/$p given by x 7→ xp is an isomorphism.

We defined OK[ = lim←−
x 7→xp

OK/p. This is by construction a perfect Fp-algebra (so far we didn’t use

anything about K being a perfectoid field). Now we define

Ainf(K) = Ainf := W (OK[).

This is a strict p-ring with modulo-p-quotient OK[ . An element in Ainf is a sequence (x̄0, x̄1, . . .)

where each of x̄i ∈ OK[ is a sequence (x̄
(1)
i , x̄

(2)
i , . . .) with entries in OK/p. Notice that by construc-

tion, there is a canonical map OK[ → OK/p where we only remember the first coordinate, namely
(x̄(1), x̄(2), . . .)→ x̄(1). By the theory of strict p-rings, this lifts to a map

ΘK : Ainf → OK where explicitly ΘK :

∞∑
n=0

pn[xn] 7→
∞∑
n=0

pnx]n

and x]n = lim
m≥n

(x(m)
n )p

m−n

and x(m)
n ∈ OK is a lift of x̄(m)

n ∈ OK/p (this is how we defined f̃). Note if K is perfectoid, then
OK/p 7→ OK/p given by x 7→ xp is surjective. So this means OK[ → OK/p is also surjective, and
so using our Nakayama’s lemma 3.10, ΘK is also surjective.31

Lemma 4.1. We have a isomorphism of monoids

lim←−
x 7→xp

OK → lim←−
x 7→xp

OK/p = OK[

which admits an inverse x 7→ (x], (xp
−1

)], (xp
−2

)], . . .).32

So we can write OK[
∼−→ lim←−

x 7→xp
OK as multiplicative monoids. From this, we can see OK[ is a

domain, so taking the fraction field of it really makes sense.

31In fact we can invert all these implications, so K being perfectoid is equivalently to ΘK being surjective
32x here denotes a sequence; (·)] turns a sequence of OK/p entries into an element in OK .
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Next we define a valuation |·|[ : OK[ → R≥0, given by |x|[ = |x]|. Since x] is multiplicative, so
|·|[ is a multiplicative seminorm on OK[ . And it’s a norm since |x]| = 0 means x] = 0 and x = 0.

Proposition 4.2. (K[, |·|[) is a complete valuation field with valuation ring OK[ .

Proof. First we need to show |·|[ is a nonarchimedean norm. But

|x+ y|[ = |(x+ y)]| = lim
−→
|((x])p

−n
+ (y])p

−n
)p
n

|

= lim
−→
|x] + y] +

∑(
pn

i

)
(x])α(y])β | where α+ β = 1.

Note that |
(
pn

i

)
| < 1 if i 6= 0, pn. Now we exploit the nonarchimedean nature of |·|.

(a) If |x]| = |y]|, then |
(
pn

i

)
(x])α(y])β | < |(x])α(y])β | = |x]| = |y]|.

(b) If WLOG |x]| < |y]|, then |
(
pn

i

)
(x])α(y])β | < |(x])α(y])β | < |y]| = |x] + y]|.

So in the case (b), then we have |x+ y|[ = |(x+ y)]| = |x] + y]|.

Next we check that OK[ is the valuation ring. This means x, y ∈ OK[ , y 6= 0 then x/y ∈ K[ and
|x|[ ≤ |y|[ iff x/y ∈ OK[. Can check this using monoid structure (using lemma and fact that OK is
an valuation ring).

Finally we need to show that OK[ is complete – if {x1, . . . , xn, . . .} is such that |xi|[ → 0, then
we must show

∑
xi converges in OK[ . We can check this term by term in OK/p. �

We call (K[, |·|[) the tilt of (K, |·|).

If π ∈ OK[ is such that |π|[ = p−1 = |p|, then OK[/π ∼= OK/p, and so OK[ = lim←−
x 7→xp

OK[/π. This

pins down the structure of a valuation field on K[.

October 15, 2018. Monday.

Let’s quickly recall what we have talked about last time. We started with K which a perfectoid
field over Qp. We defined its tilt OK[ = lim←−

x 7→xp
OK/p. We said that TFAE:

(a) K is perfectoid.
(b) OK[ → OK/p, given by projection onto first coordinate33, is surjective.
(c) The lift of the aforementioned map, given by ΘK : Ainf(K)→ OK , is surjective.

We also defined a norm |·|[ : OK[ → R≥0. OK[ is a perfect complete valuation ring with respect
to this norm. The fact that it is complete can also be seen via the following: we can describe

ker(OK[ → OK/p) = {x ∈ OK[ : p | x]}

but p | x] iff |x]| ≤ p−1 iff |x|[ ≤ p−1.

By construction of |·|[, we have

|OK[ | ∩ (p−1, 1] = |OK | ∩ (p−1, 1].

33This map is the same as taking ] and then modulo p, because ] is defined to be a multiplicative lift of the map
modulo p.
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More explicitly, if x ∈ OK[ is in the left, then x] is in the right; and if x ∈ OK is in right, then any
preimage of x̄ via OK[ → OK/p will give the same norm.

Thus |K[| ∩ (p−1, 1] = |K| ∩ (p−1, 1]. Since K[ is perfect and K is perfectoid, both |K| and |K[|[
are p-divisible (albeit for different reasons), and general principles will imply that the norm groups
|K| and |K[|[ are equal.

In particular there is an element $[ ∈ OK[ whose norm is p−1. The description of the kernel
says that $[ generates it, so OK[/$[ ∼−→ OK/p. This characterizes OK[ because this then says

OK[
∼−→ lim←−

x7→xp
OK[/$[.

That is, OK[ is the unique complete perfect valuation ring in char p with a distinguished
element $[ ∈ OK[ , satisfying |$[|[ = p−1 and admitting a norm compatible isomorphism
OK[/$[ ∼−→ OK/p.

Let’s look at two examples. They will be essentially the two only examples that we know (other
than that an algebraically closed field is automatically perfectoid, because it contains every p-th
root).

The first example is when K = Qp(ζp∞ )̂ . Then OK = Zp[ζp∞ ]̂ . Since direct limits commute
with tensor products, we have

OK/p = Zp[ζp∞ ]/p = lim−→
n

(Zp[ζpn ]/p) = Fp[U1, U2, . . .]/((U
p
1 − 1)/(U1 − 1), Upn = Un−1).

Since U1 is essentially ζp, and (ζp − 1)p−1 = p, 34 thus we have |U1 − 1| = p−1/(p−1). But now
consider

Fp[T p
−∞

]→ OK/p where we send T 7→ U1 − 1.

Then T p−1 generates the kernel, so in Fp[T p
−∞

]̂ , once we declare |T | = p−1/(p−1) and $[ = T p−1,
then according to our previous characterization we see that OK[ = Fp[T p

−∞
]̂ .

As an exercise, one can work out what (T p−1 + 1)] is. 35

The other example is the following slight generalization. Take E to be a complete discrete
valuation field over Qp, and pick a uniformizer π (of OE). Fix an algebraic closure E. Fix {πn}n≥0,
where πpn = πn−1 and π0 = π. Set K = E({πn}n≥1)̂ = E(πn). Note that Kn = E({πi}1≤i≤n) is
obtained by adjoining the polynomial qn(T ) = T p

n − π ∈ OE [T ] which is Eisenstein. Hence

OKn = OE [πn] = OE [T ]/(qn(T )).

34Writer’s note: In characteristic p this is of course 0, but the way I understood it is that to get the correct valuation,
one should still think of this as p. Since we took modulo p to get Fp, the polynomial (Up1 − 1)/(U1 − 1) gets a bit
funky – as functions on Fp it’s the same as (U1 − 1)p−1 say.

35I have yet to complete this.
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This then says that OK = lim−→
n

OE [πn ]̂ = lim−→
n

OE [T ]/(qn(T )) so if we write k = OE/π, then

OK/π = lim−→
T 7→Tp

k[T ]/(T p
n

) = k[U0, U1, . . .]/(U0, U
p
n = Un−1).

Here we took modulo π instead of p, but they’re the same: (?)
(1. checking mod p and mod π is the same using equivalent conditions, and 2. x 7→ xp is indeed

surjective here). Consider the map

k[T p
−∞

]̂→ OK/π where we send T p
−n
7→ Un,

then $[ := T e generates the kernel, so we can declare |T | = p−1/e and k[T p
−∞

] = K[.

In general it’s hard to decide whether a field is perfectoid, other than using the almost purity
theorem (3.6) on already explicitly known cases. We also briefly note here that the tilt operation is
not necessarily injective: for example there is a field other than Cp whose tilt is C[p.36

October 18, 2018. Thursday.

First we prove

Theorem 4.3. Let K/Qp be a perfectoid field. Then K is algebraically closed iff K[ is algebraically
closed.

Proof. First we will prove that if K[ is algebraically closed, then so is K. Fix a monic f(T ) ∈
OK [T ] of degree d. We will inductively produce xn ∈ OK such that

(a) |f(xn)| ≤ p−n, and
(b) |xn+1 − xn| ≤ p−n/d.

This will suffice, since then x = limxn exists and f(x) = 0.

Any x0 ∈ OK works for n = 0. Suppose that we have already produced x0, . . . , xn. Consider the
auxillary monic polynomial g(T ) = f(T + xn) ∈ OK [T ]. Write g(T ) =

∑
aiT

i where a0 = f(xn).
We want to produce δ (think of δ as xn+1 − xn) with

(a) |g(δ)| = |
∑
aiδ

i| ≤ p−(n+1), and

(b) |δ| ≤ p−n/d.

If a0 = f(xn) = 0, then xn is already a root, so we are already home. So let’s suppose a0 6= 0. It
then suffices to find δ with |

∑
(ai/a0)δi| ≤ p−1.37 Hence let’s consider

∑
(ai/a0)T i ∈ K[T ].

First pick c ∈ K such that |c| = mini>0{|a0/ai|1/i}. In particular, |c| ≤ |a0|1/d ≤ p−n/d. By
choice of c, we have |ai/a0||ci| ≤ 1 for all i (and equality holds for a specific i). We next consider
the modified polynomial

h(T ) =
∑ ai

a0
ciT i ∈ OK [T ].

36Writer’s note: Keerthi mentioned that a prerequisite for the functor K 7→ K[ to be injective is when K is
spherically closed, but I have no idea what this means.

37Morally speaking this is quite natural, since OK/p is the only link between K[ and K; and OK/p only detects
whether an element α has norm |α| ≤ p−1 or not, or equivalently whether α ∈ OK is trivial in OK/p or not.
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It’s now sufficient to find u ∈ O×K such that |h(u)| ≤ p−1, for then |cu| = |c| ≤ p−n/d and we can
take δ = cu. To do this, we choose h̃(T ) ∈ OK[ [T ] of degree d such that h̃(T ) reduces to h(T )

(mod p) in (OK/p)[T ] = (OK[/$)[T ]. It is then enough to show that h̃(T ) has a root u[ ∈ O×
K[ , for

then we can take u = (u[)].

There is a nice gadget to determine the norm of roots – Newton polygons. More explicitly,
for h̃ =

∑
biT

i ∈ OK[ [T ], define the Newton polygon NP(h̃) to be the convex hull of the points
{(i,− logp|bi|[)}. The theory of Newton polygons asserts that the negative slopes of NP(h̃) are the
set of valuations of the roots of h̃ (one would have been more careful with what “roots” mean if K[

is not algebraically closed). Using this, if there are two points on NP(h̃) with y-coordinates zero,
then there is a segment of slope zero, so we are done. It now remains to show that this is indeed the
case.

Indeed, first observe that when i = 0, h(T ) has coefficient 1, so this already provides one of such
points. Furthermore, we chose c such that we can still have coefficient 1 for some i > 0.

The other direction of the theorem can be proved similarly. This concludes the proof. �

Next we’ll prove the Almost Purity theorem (3.6). Let’s restate the theorem more generally.

Theorem 4.4. {L̃/K[ finite} → {L/K finite}, where L̃ 7→W (OL̃)⊗W (O
K[

)K (note finite of perfect
is perfect). There is another functor {L/K finite perfectoid} → {L̃/K[ finite} by L 7→ L[. These
are all equivalence of categories and are well defined.

Proof. First consider W (OL̃)⊗W (O
K[

)OK . Note OK = W (OK[)/ ker ΘK . So the tensor product
is just W (OL̃)/ ker(ΘK) ·W (OL̃).

Let F be any perfectoid field over Fp, then define z ∈ W (OF ) to be primitive if z = [z0] + pw

where |z0| = p−1 and w ∈W (OF )×. Latter is equivalent to saying w =
∑
pi[wi] where w0 ∈ O×F .

EG if F = K[, ΘK is surjective, There is $ ∈ OK[ such that |$|[ = p−1. Then $] = φK([$]) ∈
OK , and $] = up where u ∈ O×K . There is w ∈ W (OK)× such that ΘK(w) = u−1. Then
ΘK(w[$]) = p, and ΘK(w[$]−p) = 0, so ΘK([$]−pw−1) = 0. Then z = [$]−pw−1 is a primitive
element in ker ΘK .

Real example: K = Qp(p1/p∞). Then p = (p, p1/p, . . .) ∈ lim←−
x7→xp

OK = OK[ . Then [p] − p is in

ker ΘK and is primitive.

Real lemma: this primitive element generates the kernel of ΘK . Rephrase: Suppose z ∈W (OF )

is primitive, then Oz = W (OF )/z, then Oz is a complete valuation ring with fraction field Kz

perfectoid, and K[
z
∼−→ F canonically. (in some sense untilt)

October 22, 2018. Monday.

Let F be a perfectoid field of characteristic p.

Let z ∈W (OF ). We said z is primitive if z = [z0] + pw where |z0|F = p−1 38 and w satisfies any

38|·|F is the norm on F .
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of the following equivalent conditions:

(a) w ∈W (OF )×.

(b) [w0] ∈ O×F .
(c) |w0|F = 1.

[z0] is the zero-th Teichmüller coefficient.

Now we also define u ∈W (OF ) to be stable if u = [u0]w where u0 ∈ OF and w ∈W (OF )×. In
verbal terms, u is a Teichmüller lift up to a unit.

Proposition 4.5. Let z be primitive.

(a) Every nonzero coset in W (OF )/(z) has a stable representative.
(b) If x, y ∈W (OF ) are stable with x ≡ y (mod z), then |x0|F = |y0|F . 39

(c) If x ∈W (OF ) is stable, then x 6∈ (z).

We shall omit the proof for now (see next lecture), and focus on the following

Theorem 4.6. Kz := (W (OF )/(z))[p−1] is a perfectoid field with ring of integers Oz := W (OF )/(z),
and we have a canonical isomorphism K[

z
∼−→ F .

Proof. We shall assume 4.5. First observe that Oz is a domain: product of stable elements can
easily be seen to be a stable element via the definition (which invokes the multiplicativity of the
Teichmüller lift); and since W (OF ) is a domain, product of nonzero stable elements is a nonzero
stable element.

Next we have to define a norm on Oz: which we do so by considering |·|z : Oz → R≥0 where
|x|z := |x0|F where x ∈W (OF ) is any stable lift of x. This is well-defined by 4.5. 40

This extends to a multiplicative non-archimedean norm on Kz such that Oz is the valuation ring:

(a) For multiplicativity: we have |x̄ȳ|z = |x0y0|F = |x0|F |y0|F = |x|z|y|z.
(b) For non-archimedeanness: Postponed to next lecture.

(c) For Oz being the valuation ring: we must show that |x|z ≤ |y|z implies y | x. Indeed, if
|y|z ≥ |x|z, then |y0|F ≥ |x0|F , and y0 | x0, so [y0]v | [x0]u (if x = [x0]u, y = [y0]v are stable
lifts of x̄, ȳ respectively, so in particular u, v are units in W (OF )), and finally ȳ | x̄.

In Kz, we inverted p and p−1 is a element with negative valuation, so Kz is indeed a field.

Finally we must show that Oz is complete and Kz is perfectoid with tilt F :

(a) Oz is complete: we postpone the proof till next lecture, and will assume this for what follows.

(b) Kz is perfectoid with tilt F : We have Oz/p = W (OF )/(p, z). But z = [z0] + pw, so
Oz/p

∼−→ OF /z0. Since |z0|F = p−1 by definition of primitive elements, this isomorphism
is norm compatible (assuming |p|z = p−1), so by the characterization of perfectoid fields, Kz

is perfectoid with tilt F .

39In particular, if x = [x0]w = [x′0]v, then |x0|F = |x′0|F .
40Here’s how one can think about x0 using an analogy. Treat W (OF ) ∼ OF [[T ]], and z ∼ p− T . Then every coset

of OF [[T ]]/(p − T ) has a constant representative f0 given by evaluation f ∈ OF [[T ]] at T = p. In our situation, we
pick this corresponding f0, namely x0.
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This completes the proof. �

Before we prove 4.5, we have to set up a technical gadget called Gauss norms. For a more general
theory, see 5.1.

Given a :=
∑∞
n=0[an]pn ∈ W (OF ), we define the Gauss norm of a to be |a|1 = supn≥0|an|F .

Verbally, the Gauss norm is the supremum of the norm of the Teichmüller coefficients.

Lemma 4.7. |·|1 is a multiplicative non-archimedean norm on W (OF ). 41

Proof. For a nonnegative integer k, we defineNk(a) = maxn≤k|an|. Notice that |a|1 = limkNk(a).
It suffices show for x, y ∈W (OF ), we have

(a) Nk(x+ y) ≤ max{Nk(x), Nk(y)},
(b) Nk(xy) ≤ Nk(x)Nk(y) (so (a),(b) says Nk is a submultiplicative seminorm), and

(c) Nk(x)Nl(y) ≤ Nk+l(xy).

Note the obvious observation that x ∈ W (OF ) then Nk(x) ≤ |$|F for some $ ∈ OF , or
equivalently x (mod pk+1W (OF )) ∈ [$](W (OF )/pk+1).

If Nk(x) = |$1|F and Nk(y) = |$2|F , thenx (mod pk+1) ∈ [$1]W (OF )/pk+1

y (mod pk+1) ∈ [$2]W (OF )/pk+1
⇒ x+ y (mod pk+1) ∈ ([$1], [$2])W (OF )/pk+1

which is [$i]W (OF )/pk+1 where |$i|F = maxj=1,2|$j |F . So Nk(x+ y) ≤ max{Nk(x), Nk(y)}.

Nk(xy) ≤ Nk(x)Nk(y) is proved similarly: xy (mod pk+1) ∈ [$1][$2]W (OF )/(pk+1). For a more
explicit explanation, see ??.

Finally for (c), if Nk(x) = |xr|F where r ≤ k and Nl(s) = |ys|F for some s ≤ l, where WLOG
r, s is smallest such, thenx = [x0] + p[x1] + · · ·+ pr[xr] + pr+1(other terms)

y = [y0] + p[y1] + · · ·+ ps[ys] + ps+1(other terms)
⇒ xy = · · ·+ pr+s[xrys] + · · · .

In addition, by our choice of r and s, in the (r+s)-th Teichmüller coordinate, [xrys] has the greatest
term and the unique such. Hence Nk+l(xy) ≥ Nk(x)Nl(y) as desired. �

October 24, 2018. Wednesday.

Let’s briefly recap what we have done last lecture. We had a proposition (4.5) as follows: let
z ∈W (OF ) be a primitive element. Then

(a) Every coset in W (OF )/(z) has a stable representative w (where stable means that w = [x]u

for some x ∈ OF and u ∈W (OF )×).

(b) If x, y ∈W (OF ) is stable with x ≡ y (mod z), then |x0|F = |y0|F .

41This is the equivalent of Gauss’s Lemma, which states that over Z, the product of two primitive polynomials is
again primitive.
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(c) No nonzero multiple of z is stable.

To prove this, we developed the Gauss norm: for a =
∑

[an]pn ∈ W (OF ), we defined the Gauss
norm to be |a|1 := sup|an|F ≤ 1. We saw that this is a nonarchimedean multiplicative norm on
W (OF ).

Now we will give a proof to the 4.5. We make three observations:

(a) x ∈W (OF ) is stable iff |x|1 = |x0|F .

Proof. x is stable iff x can be written as x = [x0] + [x0x
′
1]p+ [x0x

′
2]p2 + · · · . �

(b) If u ∈W (OF )× (equivalently u0 = O×F ) then |u|1 = |u0|F = 1.

Proof. The equivalence is clear. u0 ∈ O×F hence |u|1 = |u0|F = 1. �

(c) If z is primitive, then |z|1 = 1.

Proof. Use part (b). �

Now we are ready to prove 4.5.

Proposition (Restatement of 4.5). Let z be primitive.

(a) Every nonzero coset in W (OF )/(z) has a stable representative.
(b) If x, y ∈W (OF ) are stable with x ≡ y (mod z), then |x0|F = |y0|F . 42

(c) If x ∈W (OF ) is stable, then x 6∈ (z).

Proof of 4.5. By assumption z is primitive. Define the additive operators S, T : W (OF ) →
W (OF ) where

T (a) = T

( ∞∑
n=0

[an]pn

)
=

∞∑
n=0

[an+1]pn = p−1(a− [a0])

S(a) = a− w−1T (a)z where we write z = [z0] + pw.

We obviously have a ≡ S(a) (mod z).

The upshot is this: S(a) is “more” stable – we shall make what this means more precise in the
following. We observe that

S(a) =
∑

[an]pn − (w−1[z0] + p)
(∑

[an+1]pn
)

= [a0]− w−1[z0]T (a).

Since z is primitive, |w|1 = 1, and |z0|F = p−1, hence |S(a)|1 ≤ max{|a0|F , p−1|T (a)|1}. In particu-
lar, if a is not stable, then |a|1 is not attained by |a0|F , so |T (a)|1 = |a|1.

In what follows, we aim to find a stable representation that is in the same coset as a. If a is
stable, we are home. So let’s assume otherwise. Then a priori |S(a)|1 ≤ max{|a0|F , p−1|a|1}.

Case (i). If |a0|F > p−1|a|1, then the non-archimedean property says |S(a)|1 = |a0|F . Since the
zero-th Teichmüller coefficient S(a)0 = a0 − w−1

0 z0a1, we also have |S(a)0|F = |a0|F =

|S(a)|1. So S(a) is stable.

42In particular, if x = [x0]w = [x′0]v, then |x0|F = |x′0|F .
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Case (ii). If |a0|F ≤ p−1|a|1, then |S(a)|1 ≤ p−1|a|1. So we keep iterating, and we always stay in
the same coset as a, S(a), . . .. In other words, we exhibited a sequence of elements in this
coset whose norms tend to zero. This forces us to be in the zero coset in the first place.

In both cases, |S(a)|1 ≤ |a|1. Thus we can conclude that, if a is unstable, and b is stable
representative of the coset of a (mod z), then |b|1 ≤ |a|1. This proves (a), in fact a stronger
statement of (a).

Next we prove (c) before (b): Note that if a ∈ Ω(OF ), then |(az)0|F = |a0|F |z0|F = p−1|a0|F ,
and |az|1 = |a|1|z|1 = |a|1 ≥ |a0|F > p−1|a0|F . Hence |(az)0|F 6= |az|1, and this means az is never
stable.

Finally for (b), let’s assume that x, y stable with x ≡ y (mod z). Then |x0|F = |y0|F is equiva-
lently to asking |x|1 = |y|1. Suppose the otherwise that |x|1 > |y|1. Then |x− y|1 = |x|1 = |x0|F =

|x0 − y0|F = |(x − y)0|F . So x − y is stable, but it’s a multiple of z, now invoke (c) to yield a
contradiction. �

Next we fill in the holes of in the proof of 4.6.

Theorem (Restatement of 4.6). Let Oz = W (OF )/(z) and Kz = Oz[p−1]. Let |·|z : Oz → R≥0 be
an absolute value where we define |x̄|z = |x|1 = |x0|F , where x is any stable representative for x̄.
Then

(a) Oz is a complete valuation ring with respect to the norm |·|z,
(b) Kz is the fraction field field of Oz,
(c) Kz is perfectoid, and
(d) Kz has tilt K[

z canonically isomorphic to F .

Idea: stable rep = rep with least gauss norm.

Proof. It remains to prove that

(a) |·|z is non-archimedean. This is immediate since it’s true for Gauss norms.

(b) Oz is complete with respect to |·|z.
(c) |p|z = p−1.

Let’s first check that |p|z = p−1. Since z = [z0] +pw, we have p = w−1(z− [z0]), so p ≡ −w−1[z0]

(mod z). In addition, |−w−1[z0]|1 = |w0|F |z0|F = |w0z0|F (which is equal to 1 · p−1 = p−1), so
−w−1[z0] is a stable representative for p (mod z). So |p|z = |w0z0|F = p−1.

Next we show (b). To check that Oz is complete with respect to |·|z, it’s enough to check that
W (OF ) is complete with respect to |·|1. Note that the norm topology for |·|1 onW (OF ) is equivalent
to the [z0]-adic topology. Indeed, |z0|F = p−1 < 1, so heuristically small |·|1 is equivalently to saying
it’s divisible by high powers of [z0], since |x|F < |y|F is equivalent to y | x. So now we must check
that W (OF ) is [z0]-adically complete. This follows from (1) W (OF ) is p-adically complete, and (2)
OF = W (OF )/p is z0-adically complete. This completes the proof. �

Let’s wrap up. Suppose K/Qp is perfectoid and F := K[, then we constructed a map ΘK :

W (OF ) → OK , which is surjective since K is perfectoid. We can construct a primitive element
of W (OF ) as follows: Pick z0 ∈ OF with |z0|[ = p−1. Then by definition of |·|[, we have |z]0| =
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|ΘK([z0])| = |z0|[ = p−1, and so |p−1z]0| = 1, p−1z]0 ∈ O
×
K . Now choose by surjectivity u ∈W (OF )×

with ΘK(u) = p−1z]0. So z := [z0]− pu is primitive, and furthermore it satisfies ΘK(z) = ΘK([z0]−
pu) = z]0 − pp−1z]0 = 0.

So ΘK must factor throughW (OK[)/(z), giving a composition of mapsW (OK[)→W (OK[)/(z)�

OK , where the latter is a surjective map of valuation rings, so it’s an isomorphism. 43 Hence OK is
of the form Oz for a primitive element z ∈W (OK[).

This gives an equivalence of categories:

{Perfectoid fields K/Qp} ←→
{

Pairs (F, (z)) where F/Fp is perfectoid and
(z) ⊆W (OF ) an ideal generated by a primitive element

}
given by K 7→ (K[, ker(ΘK)) and (W (OF )/(z))[p−1]← [ (F, (z))

October 25, 2018. Thursday.

Our goal today will be to prove the Almost Purity Theorem (3.6), which states the following: if
K is a perfectoid field, and L/K is finite, then L is perfectoid too. We remark that if K/Fp, this
theorem amounts to saying the finite extension of a perfect field is also perfect, which is easy to see.
We will assume this in what follows.

Zariski-Nagata: regular scheme, finite flat morphism over it, then there’s discriminant associated.
In general if A → B is finite flat, can ask is it etale and unramified? unramifiedness is given
by discriminant: there is TrB/A : B → A. So this gives a pairing 〈·, ·〉 : B × B → A sending
(b1, b2) 7→ TrB/A(b1b2). Disc is the determinant of this pairing. Disc only determined up to squares
(because one can choose basis...) Is it invertible? The locus of when this is invertible is exactly the
locus of A which is etale. Locus of etale is pure of codim 1, namely vanishing locus.

Last time we saw there is an equivalence

{Perfectoid fields K/Qp} ←→
{

Pairs (F, I) where F/Fp is perfectoid and
I ⊆W (OF ) an ideal generated by a primitive element

}
(†)

given by K 7→ (K[, ker(ΘK)) and (W (OF )/I)[p−1]← [ (F, I)

Let’s fix a perfectoid field K/Qp. We will establish a diagram of categories:

{L/K finite perfectoid} {L̃/K[ finite}

{L/K finite} {L̃/K[ perfectoid}

Evidently we already have the solid injective arrow. Our aim will be to show that this arrow is

43The only element that can be mapped to 0, which has norm 0, is 0 itself.
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actually an equivalence. We also have the squiggly arrow from (†) for completion, given by L 7→ L[,
but of course the hard work lies in showing the other direction, that there is a canonical untilt, and
this is what we will use.

First we establish the dashed arrow. Note that if L̃/K[ is a finite extension, and z is a primitive
element in W (OK[), then it’s primitive in W (OL̃) too.

Lemma 4.8. Let L̃/K[ be a finite extension. Then

L := W (OL̃)/(ker ΘK)W (OL̃)[p−1]

is also finite over K with [L : K] = [L̃ : K[]. In addition, if L̃/K[ is Galois with Gal(L̃/K[) = G,
then Gal(L/K) = G too.

Proof. Assume first that L̃/K[ is Galois with Gal(L̃/K[) = G, and |G| = [L̃ : K[]. Then G acts
on L coordinate-wise, and it’s enough to show that LG = K.

Note that W (OL̃)G = W (OK[), because G acts on the Teichmüller coefficientss entry-by-entry.
So if ker ΘK = (z) ⊆ W (OK[), since z is fixed by G, we have (zW (OL̃))G = zW (OK[). Consider
the short exact sequence

0→ zW (OL̃)[p−1]→W (OL̃)[p−1]→ L→ 0

of Q-vector spaces with a G action. Since G is finite, this allows an averaging process by G, so
taking G-invariants is exact, and K = LG. In general, we pass L̃ to a Galois closure L̃′, giving the
results for L̃′/K and L̃/K, and use the tower law bring us home. �

The above gives an equivalence from B → A. Now remains to show B → D is an equivalence.
the map is the composition B → A→ D.

Consider the field
K∞ := (lim

−→
L)̂ = (

⋃
L)̂ ⊆ K̂,

where the direct limit and union are over all L/K such that L̃/K[ that is finite Galois. First we
claim that K∞ is perfectoid. Indeed, OK∞/p = lim

−→
OL/p, and x 7→ xp is surjective on each term on

the right, so x 7→ xp must still be surjective on the left.

However, OK∞/p = lim
−→
OL/p = lim

−→
OL̃/$ = O

K[/$, we have that K[
∞ = K̂[. Krasner’s Lemma

says K̂[ is algebraically closed, and this together with K being perfectoid says K is algebraically
closed too. So K∞ = K̂. Hence any finite extension of K is contained in an untilt L of a finite
Galois extension L̃/K[.

But once we have this, we are good, because Galois theory covers the rest – intermediate exten-
sions L/K of a Galois extension F/K correspond to subgroups of Gal(F/K), which is the same as
Gal(F [/K[), and in turn we can find every intermediate extension, one of which is L̃/K[.

This also firmly establishes tilting and untilting as inverse operators. This result is interesting,
in the sense that we never checked OL/p has a surjective Frobenius map, we never even figured out
what OL looks like!
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4.1. Module of Differentials.

Let A → B be a map of commutative rings. This induces a map B ⊗A B → B given by
b1 ⊗ b2 7→ b1b2. Suppose this map has kernel I. We define the module of differentials to be
Ω1
B/A := I/I2.

A priori Ω1
B/A is only a B⊗B-module, but we claim Ω1

B/A is canonically a B-module: note that
1⊗ b− b⊗ 1 ∈ I. If ω ∈ I/I2, then (1⊗ b− b⊗ 1)ω = 0 ∈ I/I2, so (1⊗ b)ω = (b⊗ 1)ω ∈ I/I2. So
we can define the B action on either coordinate.

In fact, as a B-module, Ω1
B/A is generated by elements of the form db := 1⊗ b− b⊗ 1 ∈ Ω1

B/A.
Suppose that B = A[x1, . . . , xr]/(f1, . . . , fs), then Ω1

B/A = (Bdx1 ⊕ · · · ⊕ Bdxr)/(df1, . . . , dfs).
In particular, if r = s = 1, Ω1

B/A = Bdx/(f ′(x)dx), and so Ω1
B/A = 0 iff f ′(x) ∈ B×.

Applying this to the case K be a complete discrete valuation field, and L/K be a finite extension,
we know that

Ω1
OL/OK = 0 iff L/K is unramified.

October 29, 2018. Monday.

Let’s make our observation from last time more precise:

Proposition 4.9. Let K be a complete discrete valuation field over Qp and L/K be a finite exten-
sion. Then TFAE:

(a) L/K is unramified.
(b) Ω1

OL/OK = 0.
(c) The trace pairing OL × OL → OK given by (x, y) 7→ TrL/K(xy) is non-degenerate. And as

such OL can be identified with O∨L as OK-modules.
(d) OL is étale over OK . We have not formally discussed what this means, but for what matters

we can just assume this is the definition in this case.

In addition if L/K is Galois with Galois group G = Gal(L/K), then these are also equivalent to

(e) The map OL ⊗OK OL →
∏
γ∈GOL given by x⊗ y 7→ (xγ(y))γ∈G is an isomorphism.

Proof. Omitted or an exercise for readers. This uses the explicit description of OL as an OK-
module. Write down a basis of OL as an OK-module. �

(e) says that, given a descent datum with respect to OL/OK for an OL-module M , is equivalent
to given a G-action on M compatible with G action on OL. This along with faithfully flat descent,
says that in this case, OL ⊗OK MG ∼−→M .

Let’s move onto the setup where K is perfectoid over Qp, and L/K is finite. Since in this case
K is not discrete, we cannot use 4.9 at all, but let’s dissect and see what we can say about it.

Theorem 4.10. We have Ω1
OL/OK = 0.

Proof. Since L/K is finite, we can choose a primitive α ∈ OL such that L = K(α). Write
x = m′α(α). Since we OK [α] is finitely presented as an OK-module, we still have OK [α] ⊆ OL ⊆
OK [α]∨ = x−1OK [α] (see remark after 2.10). Hence in particular, xOL ⊆ OK [α]. Since we are in a
valuation field, there is n > 0 such that pnOL ⊆ OK [α].
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Notice that mα(α) = 0 gives xdα = 0. Given u ∈ OL, from what we have in the first place,
pnu ∈ OK [α] for some n (same n as before), and pndu ∈ OLdα, thus xpndu = 0 for all u ∈ OL. By
our choice of n, this means p2n kills Ω1

OL/OK .

On the other hand, the Almost Purity Theorem (3.6) says that L is perfectoid. This says that
if u ∈ OL, then u has a p-th root modulo p, which means explicitly that there are w, y ∈ OL with
wp = u+py. So pwp−1dw = du+pdy ∈ Ω1

OL/OK , or we can write du = p(wp−1dw−dy) ∈ pΩ1
OL/OK .

Since Ω1
OL/OK is generated by {du : u ∈ OL}, this means that pΩ1

OL/OK = Ω1
OL/OK .

Combining these results, we have Ω1
OL/OK = pΩ1

OL/OK = p2Ω1
OL/OK = · · · = p2nΩ1

OL/OK = 0. �

Let’s make some remarks.

(a) If Ω1
OL/OK = 0, we say that L/K is almost étale. We have just proved that if K is a

perfectoid field and L/K is a finite extension, then L/K is almost étale.

(b) As previously foreshadowed, we never write down what OL looks like as an OK-module, and
it’s difficult to do so. In fact, in this case, OL is étale over OK iff OL is a finitely presented
OK-algebra.

(c) Verbally one can interpret this theorem this way: perfectoid fields contain so much ramified-
ness, that any finite extension of it is always almost étale.

From what follows, our setup will be where K is a perfectoid field over Qp and L/K is a finite
Galois extension with Galois group G. We will see how condition (e) of 4.9 behaves.

Theorem 4.11. The natural map

OL ⊗OK OL →
∏
γ∈G
OL given by x⊗ y 7→ (xγ(y))γ∈G

is an almost isomorphism, ie. the kernel and cokernel of this map are both killed by mL.

Remark:

(a) Again, we know that OL is usually not finite generated as a OK-module, so after a base change
to OL, the left is usually not a finitely generated OL-module. But the right is always finitely
generated as an OL-module, so it’s not correct to expect this to be an isomorphism in general.

(b) We would really like to see an explicit example of this map, but it’s just not easy: even in the
basic (and nontrivial) case where we adjoin √p to Qp(ζp∞), we already dont know what OL
looks like (it’s not finitely generated!). However this map is always injective. (why?)

We have been trying to add the adjective “almost” everywhere, and this is exactly what almost
algebra does. This will be what we will talk about next time.

October 31, 2018. Wednesday.

4.2. Almost Algebras.

A good reference here will be Gabber and Romero.

52



Let’s fix a perfectoid field K/Qp and let L/K be a Galois extension with Galois group G. We do
not assume that L/K is finite; in fact the interesting part comes in when it’s not.

First we define some terminologies. Let M,N be objects in the category ModOK , and let f be a
morphism from M to N .

(a) M is almost zero if mKM = 0.

(b) f : M → N is almost injective if ker f is almost zero.

(c) f is almost surjective if coker f is almost zero.

(d) f is an almost isomorphism if both ker f and coker f are almost zero.

Lemma 4.12. An OK-module M is almost zero iff mK ⊗OK M = 0.

Proof. Let’s assume that mK ⊗OK M = 0. Consider the bilinear map mK ×M → mKM given
by (a,m) 7→ am. This map factors through mK ⊗OK M , and so it’s zero, which means am = 0 for
all a ∈ mK and m ∈M , or mKM = 0. The other direction is obvious. �

Lemma 4.13. The full subcategory of almost zero OK-modules is a Serre subcategory, ie. it is
closed under subobjects, quotients and extensions.

Proof. The lemma is clear for subobjects and quotients. For a perfectoid field K, we have m2
K =

mK . If 0 → A
f−→ B

g−→ C → 0 is a short exact sequence of OK-modules, and mKA = mKC = 0, it
now suffices to show m2

KB = 0. suppose b ∈ B, y ∈ mK , then g(yb) = yg(b) = 0, so there is a ∈ A
so that f(a) = yb. So if x ∈ mK , then xyb = xf(a) = 0. �

Lemma 4.14. f : M → N is almost surjective iff 1⊗ f : mK ⊗M → mK ⊗N is surjective.

Proof. This is simply due to the fact that mK ⊗ coker(f) = coker(1⊗ f). �

4.14 will come up handy in the future, because morally speaking it allows us to reduce almost
surjectivity statements to usual surjectivity ones. We will talk about this when it shows up later.

Last time we proposed a question: If K is perfectoid and L/K is finite and Galois with Galois
group G = Gal(L/K), what can we say about the map OL ⊗OK OL →

∏
γ∈GOL (given by x⊗ y →

(xγ(y))γ∈G)?

Theorem (Restatement of 4.11). Let S = OL ⊗OK OL and R =
∏
γ∈GOL. Then the natural map

S → R is an almost isomorphism.

Proof. We consider the tilts, where we abuse the notation and write R[ =
∏
γ∈GOL[ and

S[ = OL[ ⊗OK[ OL[ . (This already uses the fact that L is perfectoid too.)

So now we have a map from S[ → R[. The nondegeneracy of the trace pairing says that there is
β[ ∈ OK[ with β[R[ ⊆ S[ (where we abuse the notation and write S[ instead of Im(S[)). If β[ is
invertible, then the extension would have been étale so we were done. So let’s assume β[ ∈ mK[ .

Now that we have promoted the situation to their tilts, we know that R[ and S[ are perfect, so we
can take p-th roots on both sides, and say that (β[)p

−r
R[ ⊆ S[ for all r ≥ 1. Since in the sequence

{(β[)p−r}r≥0, the norm of the entries goes to 1, we can say that S[ → R[ is almost surjective, and
thus an almost isomorphism, and so is S/p→ R/p.
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Next we claim S/pn → R/pn is an almost isomorphism for all n, which we will prove so by
induction on n. Consider

0 S/pn−1 S/pn S/p 0

0 R/pn−1 R/pn R/p 0

Snake’s lemma and 4.13 will then prove the claim.

More explicitly, this means that for any α ∈ mK , r ∈ R and n ≥ 1, we can find sn ∈ S such
that αr − sn ∈ pnR. Since S is p-adically complete, we have αr = lim sn ∈ S, and this finishes the
proof. �

The next thing on the discussion table is Galois descent. We have seen that if L/K is (finite and)
unramified, in the sense that OL/OK is etale, then OL ⊗OK OL →

∏
γ∈GOL is an isomorphism. In

this case faithfully flat descent is equivalent to Galois descent, and says that if M is an OL-module
with a compatible G-action, then OL ⊗MGal(L/K) ∼−→ M . We already know Ω1

OL/OK = 0 remains
true if K is perfectoid. In our case if OL/OK is not étale (we only know L/K is almost étale) and
K is perfectoid, what can we say about Galois descent? No surprises:

Corollary 4.15. If K is perfectoid and L/K is finite and Galois, and M is an OL-module with
a compatible G = Gal(L/K)-action, then the natural map OL ⊗OK MG → M is an almost iso-
morphsim.

In particular, this implies that if M,N are two OL-modules with compatible Gal(L/K)-action,
andM → N is a Galois-equivariant surjection, then the natural mapMG → NG is almost surjective,
because this condition can be checked after −⊗OK OL by faithful flatness. 44

If we apply this specific case to M = OL and N = OL/pn, then we see that OK = OGL →
(OL/pn)G is almost surjective. Verbally, if we have an x ∈ OL such that all its Galois conjugates
are close to each other, then there’s an actual element x′ ∈ OK and α ∈ mK with αx′ = x. 45

Next we move onto infinite extensions. A long time ago we have talked about RepcontΓ (C), let’s
recall what this notation means:

Let K/Qp be a finite extension, and let C = K̂,Γ = Gal(K/K) acting on C, and Ax-Sen-Tate
(2.16) says that CΓ = K. We defined

RepcontΓ (C) = {finite dimensional C-vector spaces V with a continuous compatible Γ-action}.

What does “continuous” mean? If we fix a basis Cn ∼−→ V , then the action of Γ on V is given by
a homomorphism ρ : Γ → GLn(C). Γ comes with a profinite topology, and GLn(C) comes with a
p-adic topology. Hence continuity says that for every m ≥ 1, there is a finite index subgroup Γm ⊆ Γ

such that ρ(Γm) ⊆ Aut(pmOn2

C ).

44Rephrasing, if we have a short exact sequence 0 → K → M → N → 0 of OL-modules, then H1(G,K) is almost
zero.

45It might be helpful to some to work out what this means when L = Qp(
√
p) and K = Qp, even though K here is

not perfectoid.
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Theorem 4.16. If V ∈ Repcont
Γ (C), then it is trivial in our sense, ie.

C ⊗K V Γ ∼−→ V, or equivalently dimK V
Γ = dimC V.

Hence Repcont
Γ (C)→ VectfdK given by V 7→ V Γ is an isomorphism.

November 1, 2018. Thursday.

Last time we ended with a theorem, with the setup as follows: let C = K̂, where K is perfectoid
over Qp. Write Γ = Gal(K/K).

Theorem. If V ∈ Repcont
Γ (C) is finite dimensional, then C ⊗K V Γ ∼−→ V as C-vector spaces.

Proof. First we reduce to the case where an finite index OC-lattice V0 ⊆ V is preserved by Γ.
We will show that OC⊗OK V Γ

0 → V0 is an almost isomorphism. This will suffice, since coker and ker

here are torsion, they will be killed after C⊗OC −, and we recover an isomorphism C⊗K V Γ ∼−→ V .

Since the natural map C ⊗K V Γ → V is always injective, the map OC ⊗OK V Γ
0 → V0 is always

injective too. Thus it will suffice to show almost surjectivity.

OC ⊗OK (V Γ
0 /p

m) V0/p
m

OC ⊗OK (V0/p
m)Γ

f

g
h

It suffices to show that f is almost surjective for all m ≥ 1, and here’s our strategy.

Step (1) We show that the natural map V Γ
0 /p

m → (V0/p
m)Γ is almost surjective.

Step (2) We show that h : OC ⊗OK (V0/p
m)Γ → V0/p

m is an almost isomorphism.

Let’s start with the second step. We start by fixing a basis OnC → V0. The action of Γ on V0

is then given by ρ : Γ → GLn(OC). For m ≥ 1, since ker(GLn(OC) → GLn(OC/pm)) is open,
by continuity, there is a finite index subgroup Γm that is normal in Γ, and such that ρ(Γm) acts
trivially on OnC/pm. As OC-modules with a Γm-action, we then have (OnC/pm)Γm,ρ ∼−→ (V0/p

m)Γm ,
where the superscript ρ means Γm acts on (OnC/pm)Γm via ρ. More precisely, if the basis OnC

∼−→ V0

is given by {e1, . . . , en}, and v =
∑
viei, then γ(v) = ρ(γ)(γ(v1), . . . , γ(vn))t.

Write Km = CΓm = K̂
Γm

= K
Γm which is finite Galois over K. Next we claim OnKm/p

m →
(OnC/pm)Γm is an almost isomorphism. Since we have restricted the source to OKm , ρ is now trivial
and thus irrelevant.

For this, it suffices to show that OKm/pm → (OC/pm)Γm is an almost isomorphism. We know
that

(OC/pm)Γm = lim−→
Km⊆L⊆K

L/Km finite Galois

(OL/pm)Gal(L/Km).

With this description, the claim is now clear, as we have previously discussed that this map is always
injective, and OKm/pm → (OL/pm)Γm is almost surjective for all L, since L/Km is finite Galois.
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OC ⊗OKm (OnKm/p
m) OC ⊗OKm (V0/p

m)Γm

OnC/pm V0/p
m

al ∼

∼

∼

We knew from what we have discussed that the top map is an almost isomorphism. The bottom
map arises from the choice of basis, and thus is an isomorphism. The left map is also an isomorphism.
Hence the commutative diagram says the map of interest, denoted with a squiggly arrow, is an almost
isomorphism. This proves step (2) for Γm.

Now we wish to relate back to OC ⊗OK (V0/p
m)Γ → V0/p

m, which is the map in the step (2)
after all. We know that OC ⊗OK (V0/p

m)Γ = OC ⊗OKm (OKm ⊗OK (V0/p
m)Γ). Since Km/K is

finite, we can apply almost Galois descent and say that

OKm ⊗OK (V0/p
m)Γ al∼−−→ (V0/p

m)Γm .

Combining everything, we know that

OC ⊗OK (V0/p
m)Γ = OC ⊗OKm (OKm ⊗OK (V0/p

m)Γ)
al∼−−→ OC ⊗OKm (V0/p

m)Γm al∼−−→ V0/p
m.

This concludes step (2).

Next we prove step (1), which states that V Γ
0 /p

m → (V0/p
m)Γ is almost surjective. First we

claim that if V0 is p-adically complete, and Γ acts continuously with respect to the p-adic topology,
then V Γ

0
∼−→ lim←−

r

(V0/p
r)Γ. Indeed, we know that V Γ

0 ↪→ V0 and lim←−
r

(V0/p
r)Γ ↪→ lim←−

r

(V0/p
r), and

V0
∼−→ lim←−

r

(V0/p
r) by p-adic completeness. Taking Γ-invariants yields the answer (Γ acts on the

inverse limit entry-by-entry).

Finally now to prove step (1), it suffices to show that V Γ
0 → (V0/p

m)Γ is almost surjective. We
now know that V Γ

0 = lim←−
r

(V0/p
r)Γ. We invoke the following lemma:

Lemma 4.17. If {Mn} is an inverse system of OK-modules, such that Mr → Ms (for r > s) is
almost surjective for all r, s, then lim←−

r

Mr →Ms is almost surjective.

Proof. This statement is obviously true if almost surjectivity is replaced by usual surjectivity,
but we can do so by using 4.14. �

So now it remains to show that (V0/p
r)Γ → (V0/p

s)Γ is almost surjective for r > s, for which we
can check after OC ⊗OKm − by faithful flatness. Consider the following diagram:

OC ⊗OKm (V0/p
r)Γ V0/p

r

OC ⊗OKm (V0/p
s)Γ V0/p

s

al ∼

al ∼
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We know the horizontal maps are almost isomorphisms. The right map is a surjection, so the
left map, our map of interest, is an almost surjection, which completes our proof. �

Let’s look at some applications. Fix a finite extension E/Qp and let K = E(ζp∞ )̂ . Since
K/Q(ζp∞) is finite, we know that K is perfectoid. Write ∆ := Gal(E(ζp∞)/E). We know that
∆ ↪→ Gal(Qp(ζp∞)/Qp)

∼−→ Z×p via the cyclotomic character, so ∆ is a finite index subgroup.

Suppose Γ = Gal(E/E), inside of which we have a normal subgroup Γ∞ = Gal(E/E(ζp∞)). Let
C = Ê = Cp, and we have ∆ = Γ/Γ∞. Then CΓ∞ = K.

Corollary 4.18. In this setup, applying Γ = Γ∞ in the theorem, we see that the functor

Repcont
Γ (C)→ Repcont

∆ (K) given by V 7→ V Γ∞

is an equivalence of categories, with inverse given by C ⊗K M ← [ M , where Γ acts on C ⊗K M
diagonally.

Morally speaking since we know ∆ is a finite index subgroup of Z×p , this makes Repcont∆ (∆) easier
to study.

To conclude the section of perfectoid fields, we will state a few complements.

(a) Let’s write Kfin := E(ζp∞) and K = E(ζp∞ )̂ .

5Suppose Γ = Gal(E/E), inside of which we have normal subgroup Γ∞ = Gal(E/E(ζpn))).
C = Ê = Cp. ∆ = Γ/Γ∞. Corollary: taking Γ∞ invariants give RepctsΓ (C) → Repcts∆ (K). Note
CΓ∞ = K.

Complements:

(1) Kfin := E(ζp∞). Suppose M ∈ Repcts∆ (K). Inside M we find Mfin = {m ∈ M :

∆m generated a fd Qp − vs}. This property is preserved by Kfin since Kfin collects finite dim
stuff. Then K ⊗KfinMfin ∼−→M (decompletion). Can show there exists r ≥ 1 if Kr = E(ζpr ), then
there exists Mr ∈ Repcts∆ (Kr) with K ⊗Kr Mr

∼−→M which is ∆ equivariant. This is because choose
basis for Mfin, and basis element is already defined over some finite extension of K... Mr is not
canonical but decompletion is.

November 5, 2018. Monday.

5. Fargues-Fontaine Curves.

Our goal before the end of the course will be to make sense and prove the catchphrase “Weakly
admissible implies admissible”, which is a statement first proved by Colmez and Fontaine 46, and
later Fargues and Fontaine gave another proof. We have not made sense of what “weakly admissible”
means; for now it suffices to know that this is a statement about filtered φ-modules, asking which
ones arise from Galois representations (which is the definition of admissible). Weakly admissible is
a linear or algebraic condition.

46in their paper titled “Construction des représentations p-adiques semi-stables.”
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5.1. Gauss Norms.

First we will develop more theory to Gauss norms. We fix a perfectoid field F over Fp, and
write Ainf := W (OF ). We have a (lift of) Frobenius φ acting on Ainf via each of the Teichmüller
coordinates. Fixing ρ ∈ (0, 1], we define the Gauss norm

|·|ρ : Ainf → R≥0 by |x|ρ = sup
k
|xk|F ρk.

We write Nk(x) := maxn≥k|xn|F . Observe that:

(a) Since |p|ρ = ρ−1, we can extend |·|ρ to Ainf [p
−1] by defining |x/pn|ρ = ρ−n|x|ρ.

(b) If ρ < 1, then the supremum appearing in the definition of |·|ρ is actually a maximum, because
|xn|F is bounded between 0 and 1, forcing |xk|F ρk → 0 as k →∞.

(c) If x ∈ Ainf and ρ1 < ρ2, then clearly |x|ρ1 ≤ |x|ρ2 . However if x ∈ Ainf [p
−1], then the same

cannot be said; the best we can say is if ρ1 ≤ ρ ≤ ρ2, then |x|ρ ≤ max{|x|ρ1 , |x|ρ2}.
(d) A priori if ρ = 1, then we saw that supkNk(x) = |x|1. In general we have

sup
k
Nk(x)ρk = sup

k
sup
n≤k
|xn|F ρk = sup

n
sup
k≥n
|xn|F ρk = sup

n
|xn|F ρn = |x|ρ.

We have seen in 4.7 that |·|1 is a multiplicative non-archimedean norm on Ainf . This still holds
in general:

Proposition 5.1. Let x, y ∈ A∞[p−1]. Then we have |x + y|ρ ≤ max{|x|ρ, |y|ρ} (with the natural
condition for when the equality holds) and |xy|ρ = |x|ρ|y|ρ.

Proof. We will simplify the situation and prove for when x, y ∈ Ainf . We leave the reduction to
this case an exercise for the readers.

Note that Nk(x) ≤ |c|F where c ∈ mF iff x (mod pk+1) ∈ [c]Ainf/p
k+1 as before. We can again

see, as in 4.7, thatNk(x+y) ≤ max{Nk(x), Nk(y)}. Hence supkNk(x+y)ρk ≤ supk max{Nk(x)ρk, Nk(y)ρk},
and this implies the first part of the proposition. We will leave the second part till next lecture.

November 7, 2018. Wednesday.

Last time we have yet to prove that the norm |·|ρ is multiplicative.

Proof continued. Using the similar observation from last time, one can deduce that |·|ρ is a
seminorm, and we leave this for the readers. Assume that ρ < 1 for now. In this case, a priori there
are n,m with |x|ρ = |xn|F ρn and |y|ρ = |yn|F ρm and are the minimal such. Write

x = (front terms) + [xn]pn + pn+1(tail)

y = (front terms) + [ym]pm + pm+1(tail)

and their product is

xy =

z︷ ︸︸ ︷
(sum of products involving front terms) +[xnym]pn+m + pn+m+1(tail).

One can check that |z|ρ < |x|ρ|y|ρ by the minimality of n,m. Now on one hand we know
by definition that Nn+m(xy)ρn+m ≤ |xy|ρ, but on the other hand it’s the same as Nn+m(z +
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[xnym]pn+m)ρn+m (ie. we cut off the tail). SinceNn+m(z)ρn+m < |x|ρ|y|ρ andNn+m([xnym]pn+m)ρn+m =

|x|ρ|y|ρ, using the non-archimedean property we now have

|x|ρ|y|ρ = Nn+m(z + [xnym]pn+m)ρn+m = Nn+m(xy)ρn+m ≤ |xy|ρ.

This gives the reverse inequality. For ρ = 1, we note that |x|1 = limρ→1− |x|ρ. �

Next we make a definition. Fix an interval I ⊆ (0, 1), and define

BI := the completion of Ainf [(p[$])−1] with respect to }{|·|ρ : ρ ∈ I}

where [$] is any Teichmüller lift. More precisely, BI consists of all the sequences that are Cauchy
with respect to all the norms {|·|ρ : ρ ∈ I}. We also define B := B(0,1). 47

We make a few quick ovservations:

(a) If J ⊆ I, then there is a natural map BI → BJ . We will eventually see that this natural map
is injective.

(b) In addition, if I = ∪Jn is an increasing union, then BI = lim
←−

BJn .

(c) If J = [ρ1, ρ2] is compact, since we know for ρ ∈ [ρ1, ρ2] we have |x|ρ ≤ {|x|ρ1 , |x|ρ2}, the
topology with respect to |·|ρ : ρ ∈ J} is equivalent to the topology with respect to ‖·‖J =

max{|·|ρ1 , |·|ρ2}.
(d) If ρ1 = |a|F and ρ2 = |b|F where a, b ∈ mF , then

x ∈ Ainf [(p[$])−1] : ‖x‖J ≤ 1} = Ainf [[a]/p, p/[b]].

(At least this sounds convincing since |[a]/p|ρ1 = ρ1ρ
−1
1 = 1 and similarly for p/[b].)

(e) Moreover, ‖·‖J -topology on BJ is equivalent to the p-adic or [$]-adic or [a]-adic or [b]-adic
topology. Completing with respect to the p-adic topology, we get

BJ = Ainf [[a]/p, p/[b]]̂ [1/p].

In fact, using this description, we could have defined BJ without using norms at all for compact
intervals, and extend such to non-compact intervals using the inverse limit.

How can one geometrically think about BJ? From a functor-of-points point of view, maps out
of Zp[[t]][a/T, T/b]̂ are same as specifying the image of T where |x| > |a| and |x| < |b|. Similarly,
maps out of Zp 〈T 〉 [a/T, T/b]̂ correspond to specifying x with |b| ≥ |x| ≥ |a|. Thus very heuristically
speaking, BJ can be thought as functions on a annnulus with ‖a‖ ≤ ‖p‖ ≤ ‖b‖.

So where are we headed? Consider the map ρ : (0, 1)→ (0, 1) sending x 7→ xp. This induces a map
(abuse of notation) ρ : B(0,1) → Bρ(0,1). On the other hand, we also have the (SOMETHING’S NOT
RIGHT) — Last time we have ρ : Ainf

∼−→ Ainf , and now I ⊆ (0, 1), so we consider ρ : BI → Bρ(I),
where ρ : (0, 1)→ (0, 1), x 7→ xp, in particular ρ : B

∼−→ B.

If x =
∑

[xn]pn, then φ(x) =
∑

[xpn]pn, then |φ(x)|ρ = sup|xn|pF ρn = (|x|ρ1/p)p.

47One can ask what topology BI is equipped with; we will briefly discuss this in what follows. One can also read
about Fréchet spaces.
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— Our goal will be to study Bφ=pn .

Once we have computed what Bφ=pn is, we can define

X = XF := Proj
⊕
n≥0

Bφ=pn ,

and it turns outX is a complete curve overQp. Completeness here means that it’s a Dedekind scheme
satisfying H0(X,OX) = Qp (hence “complete”), with a degree function |X|max → Z. However it’s
not proper becaue it’s not of finite type over Qp! Some closed points have residue fields as untilts of
F if F is algebraically closed, otherwise they will be finite extensions of F . The construction XF is
functorial in F .

5.2. (Fargues’s) Newton Polygons and Legendre Transform.

If x ∈ Ainf [(p[$])−1], then x =
∑
n�−∞[xn]pn where xn ∈ F and sup|xn|F <∞. Hence we can

define the Newton polygon of x to be

NP(x) := the convex hull of {(n, vF (xn)) : n ∈ Z}

where vF (·) = − logp|·|F . This is essentially the traditional Newton polygon but now we work with
power series in p. Our goal will be to define the Newton polygon on BI , but we immediately run
into a brick wall: there’s no Teichmüller cofficients for a general x ∈ BI ! Even if they exist, it’s not
entirely clear why they should be unique anyway. So we are going to need a roundabout way to
construct Newton polygons for x ∈ BI , namely the Legendre transform.

Let f : R→ (−∞,∞] be a function that is not identically∞. We define its Legendre transform

L(f) : R→ [−∞,∞) given by L(f)(r) = inf
t
{f(t) + rt}.

Conversely if g : R → [−∞,∞) is a function that is not identically −∞, we define the inverse
transform to be

L−1(g) : R→ (−∞,∞] given by L−1(g)(t) = sup
r
{g(r)− tr}.

November 8, 2018. Thursday.

Last time we have defined the Legendre transforms L and L−1.

Since this subsection is rather technical, it is beneficial to first give a brief overview. Our logic
for this subsection will be to

(Step 1) first understand L in generality and see that L−1L describes the convex hull,

(Step 2) understand L(x) for x ∈ Ainf [(p[$])−1],

(Step 3) show that L(x) behaves reasonably nicely under Cauchy sequences (with respect to a family
of norms) in Ainf [(p[$])−1], and thus

(Step 4) extend L(x) to BI for an interval I ⊆ (0, 1), and define the Newton polygon on BI using
L−1L (and study its properties thereafter).
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Readers deserve to be warned that once we reach (c), there will be two parameters simultaneously:
n for the n-th term in a Cauchy sequence, and r for parametrizing the family of norms. We will
remind the reader when we reach there.

Let’s begin with (Step 1). Let’s define

(a) ∆−f = {(x, y) : y ≤ f(x)}, the points below the graph of f , and

(b) ∆+
f = {(x, y) : y ≥ f(x)} for the points above the graph.

A straightforward computation sees that

∆−L(f) = {(r, s) : s ≤ L(f)(r)}

= {(r, s) : s ≤ f(t) + rt for all t}

= {(r, s) : s− rt ≤ f(t) for all t} . . . (†)

= {(r, s) : `−r,s lies entirely below the graph of f},

where `a,b is the line `a,b(t) = at+ b. In addition, we see that

∆+
L−1(L(f)) = {(t, u) : u ≥ L−1(L(f))(t)}

= {(t, u) : u ≥ L(f)(r)− rt for all r}

= {(t, u) : `t,u(r) ≥ L(f)(r) for all r}

= {(t, u) : ∆−L(f) ⊆ ∆−`t,u}

= {(t, u) : `−r,s lying under Γf implies (r, s) ∈ ∆−`t,u},

but since b > −ra+ s iff ar + b > s, we have (a, b) ∈ ∆+
`−r,s

iff (r, s) ∈ ∆−`a,b . Hence

∆+
L−1(L(f)) = {(t, u) : `−r,s lying under Γf implies (t, u) ∈ ∆+

`−r,s
}

=
⋂

`−r,s lies under Γf

∆+
`−r,s

.

Thus L−1(L(f)) is precisely the convex hull of Γf .

Furthermore, one can observe from (†) that L(f) is concave for any f , and similarly L−1(g) is
convex for any g. Finally, if f is convex, then evidently L−1(L(f)) = f .

We will eventually apply L and L−1 in cases related to Newton polygons. Following Fargues’s
idea, we first fix some terminology. One can skip the bullet points and just read the picture if one
desires.

(a) We say that L transforms from the Newton side to the Gauss side, and the converse for
L−1, from the Gauss side back to the Newton side.

(b) On the Newton side, we will eventually modify the Newton polygon to only record the negative
slopes (ie. the decreasing convex hull), so all slopes will be negative. We will denote this
modified Newton polygon by Newt(x) as opposed to NP(x). Then and hence we apply the
convention where slopes will mean the negative of the (usual) slope of a linear segment. So
slopes will only measure the steepness of the line: the steeper the line, the greater the slope.
We will provide examples later for readers to verify their intuition. I will also write slopeN

from now on to emphasize that it’s the modified slope in the Newton side.
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(c) On the Gauss side, we keep the traditional notion of slope.

(d) On the Newton side, we define multiplicity (or length) of a slope to be length of the
segment when projected onto the x-axis, as per the traditional notion of the Newton polygon.

Here’s an example for when x = [x0]+[x1]p+[x2]p2+[x3]p3, where |x0|F = |x1|F = p−1, |x2|F = 1

and |x3|F = p−2.

Newton side: Newt(x).

Gauss side: L(Newt(x)).

LL−1

n

vp(xn)

0 1 2 3

1

2

3

• •

•

•
(slopeN ∞) −→

(slopeN 1/2, mult. 2) −→ ↓
(slopeN 0, mult. ∞)

r

L(Newt(x))(r)

1 2 3

−1

0

1

•

•

(slope ∞) −→

(slope 2) −→

↓
(slope 0)

Next, we define the break points on both sides to mean the x-coordinates of the corners. One
can suitably extend this definition to ∞ or −∞ suitably, but for the current discussion this will be
a red herring.

Lemma 5.2. If f is piecewise linear, convex, and continuous, then L(f) is piecewise linear, and
there is a duality

{slopes(N) of f} = {break points of L(f)} and {break points of f} = {slopes of L(f)}.

(Again, one can still make sense of this at ∞ or −∞ values, but much caution is advised.)

Proof. PROOF NEEDED. �

•

•
•

•

•

s2

s1

t1

↓
slopeN λ2

↓
slopeN λ1

apply L−−−−−−−−−−→

•

•

• •

(λ1, s1)

(λ2, s2)

slope t1 →

mult. λ2 − λ1
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Next we do (Step 2), where we start with the Newton polygon. Last time we have defined the
Newton polygon for x ∈ Ainf [(p[$])−1] (where x =

∑
n�−∞[xn]pn, xn ∈ F and sup|xn|F < ∞) to

be
NP(x) = the convex hull of {(n, vF (xn)) : n ∈ Z}.

We will modify NP(x) to

Newt(x) = the decreasing convex hull of NP(x).

More precisely, Newt(x) only holds onto the negative slopes (ie. positive slopesN ) of NP(x). If
supn|xn|F = |x|1 is not attained, then Newt(x) = NP(x). Otherwise, Newt(x) is asymptotic to the
horizontal line with y-intercept v0(x) = − logp|x|1.

For instance, if x = [x0] + p[x1], then we have (0, vp(x0)) and (1, vp(x1)), and Newt(x) will look
like one of the following two diagrams.

n

vp(xn)

0 1 2 3

1

2

3

•

•

Newt(x)

if vp(x0) ≤ vp(x1).

n

vp(xn)

0 1 2 3

1

2

3

•

• Newt(x)

if vp(x0) > vp(x1).

Finally, we wish to define vx := L(Newt(x)) (as functions of r). Next time we will see that vx
can be (re)defined alternatively without invoking Newt(x) at all.

November 14, 2018. Wednesday.

Previously we have started talking about Newton polygons. Again, our motivation is to define
it for x ∈ BI , and our main obstruction is that x does not admit Teichmüller coefficients.

If x ∈ Ainf [(p[$])−1], we can consider the function

vx(r) :=

vr(x) := infn{vF (xn) + rn} if r ≥ 0,

−∞ otherwise.

This time we start (Step 3), where we show that vr behaves nicely (ie. stabilizes) under Cauchy
sequences, and so we can define vr(x) for x ∈ BI . As promised, we remind the readers that, once
we have a Cauchy sequence {xn}n ⊆ Ainf [(p[$])−1], there are two parameters: n for the n-th term
in the sequence, and r ∈ (0,∞) to parametrize the norm |·|p−r .

We warn that

(a) as one might have guessed, xn will from here on denote the n-th term in a Cauchy sequence,
as opposed to the xn in [xn], the n-th Teichmüller coefficient, and

63



(b) it might be more justified to write v(r, x) instead of vx(r) or vr(x), but the reader should have
little trouble understand the notes knowing that they are all the same. We write vx(r) or vr(x)

mainly to put emphasis on the argument, and nothing more.

Lemma 5.3. Let ρ ∈ (0, 1), and suppose {xn}n ⊆ Ainf [(p[$])−1] is Cauchy for |·|ρ and is not
equivalent to 0. Write r = − logp ρ ∈ (0,∞).

(a) The sequences {vr(xn)}n, {∂Lvxn(r)}n and {∂Rvxn(r)}n stabilize (in n, as opposed to r), ie.
they are independent of n when n� 0.

(b) If {yn}n is another Cauchy sequence that is equivalent to 0 under |·|ρ, then when n � 0,
vxn(r) = vxn+yn(r) and ∂?vxn(r) = ∂?vxn+yn(r) where ? ∈ {R,L}.

Proof. For part (a), we observe that vxn(r), as a function of r, is continuous. Using Cauchyness,
choose N � 0 such that for all n ≥ N , vr(xn − xN ) > vr(xN ). Then for any fixed n, there is a
neighbourhood (r − εn, r + εn) of r, such that for any r′ in it, we have vr(xn − xN ) > vr(xN ), and
so vr(xn) = vr((xn − xN ) + xN ) = vr(xN ). Hence the sequence {vr(xn)}n stabilizes, and from here
it’s easy to see {∂?vxn(r)}n stabilize too, since they are determined by {vr(xn)}n.

For part (b), since {yn}n is equivalent to 0, this means the yn has very large valuation when
n� 0, so vr(xn + yn) = vr(xn). �

Corollary 5.4. Suppose {xn}n is Cauchy for {|·|ρ : ρ ∈ I}, and {xn}n is not equivalent to 0 for
some ρ0 ∈ I. (If r0 := − logp ρ0, this means {v− logp ρ(xn)} is bounded above). Then {xn}n is not
equivalent to 0 for all norms ρ ∈ I. In other words, if J ⊆ I, then the natural map BI → BJ is
injective.

Proof. (NEEDS EDITING.) Choose N � 0 such that ∂?vxn(r0) (where ? ∈ {L,R}) are stable
for n ≥ N . �

Lemma 5.5. Let I = [p−r2 , p−r1 ] and let {xn}n be Cauchy for {|·|ρ : ρ ∈ I}. Then there is N > 0
such that vr(xn) = vr(xN ) for all n ≥ N and all r ∈ − logp I = [r1, r2].

Proof. Using 5.3, choose M > 0 such that {vri(xn)}n and {∂?vxn(ri)}n stabilize for n ≥M and
i ∈ {1, 2} and ? ∈ {L,R}. Recall vxn(r) is concave as a function on r, and as such, we have

vr(xn) = vxn(r) ≤ vxn(r1) + (r − r1)∂Rvxn(r1) . . . (†)

= vxM (r1) + (r − r1)∂RvxM (r1) due to stability.

•
(r1, vxn(r1)

slope = ∂Rvxn(r1) →
vxn(r)

vxn(r1) + (r − r1)∂Rvxn(r1)

A pictorial depiction of the argument (†).

Since vxM (r1) + (r− r1)∂RvxM (r1) is a linear function, it must be bounded above by some A > 0

that is independent of r ∈ [r1, r2]. Now using the Cauchyness of {xn}n with respect to both r1
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and r2, choose N ≥ M such that for all n,m ≥ N , we have vri(xn − xm) > A for i = 1, 2. By
construction,

(a) on one hand we know that vr(xn − xm) > A for all r ∈ [r1, r2] by concavity of vr(x) in r, and

(b) on the other hand we have vr(xN ) < A as discussed.

Hence if n ≥ N , this forces vr(xn) = vr((xn − xN ) + xN ) = vr(xN ), as required. �

Finally we are ready to go to (Step 4).

If x ∈ BI where I ⊆ (0, 1) is an interval, then x is represented by a Cauchy sequence {xn}n ⊆
Ainf [(p[$])−1]. We now established that: for any r ∈ − logp I, we know {vr(xn)} and {∂?vxn(r)}n
(for ? ∈ {L,R}) stabilize for n � 0, and are independent of the choice of the representing Cauchy
sequence {xn}.

Hence from x ∈ BI we obtain a function vx : − logp I ⊆ (0,∞) → R, sending r 7→ vx(r) (where
vx(r) = vxn(r) for all n � 0). Furthermore, vx has well-defined left and right slopes ∂?vx(r) for
all r ∈ − logp I, even at the boundary points! – even if vx is undefined (or ill-defined) outside of
− logp I.

Finally, for any compact interval J ⊆ I, there is N > 0 such that for any n ≥ N , vx = vxn when
restricted to − logp J . In particular, on − logp J , vx has integer slopes with finite multiplicities.

(DIAGRAM MISSING)

Now it’s only a matter of gluing the compact intervals J together to get an arbitrary interval
I. Given J = [p−r2 , p−r1 ] and x ∈ BJ , first we extend vx to the entirety of (0,∞) (and to R). We
define

vJx : r 7→



vx(r), r ∈ [r1, r2]

vx(r1) + ∂Rvx(r2)(r − r2), r > r2

vx(r1) + ∂Lvx(r1)(r − r1), r ∈ (0, r1)

−∞, r ≤ 0.

In this case, we can define Newt◦J(x) = L−1(vJx ). In general where I is an arbitrary interval, we first
define vIx with the property that vIx |− logp J= vJx for all compact subintervals J ⊆ I, and subsequently
define Newt◦I(x) := L−1(vIx).

November 15, 2018. Thursday.

Today we start by paraphrasing what we have established. If J = [p−r2 , p−r1 ] ⊆ (0, 1) is a
compact interval, and x ∈ BJ , then we have defined vJx , which describes the picture on the Gauss
side. For such a compact J , we have defined Newt◦J(x) to be the Newton polygon via Newt◦J(x) :=

L−1(vJx ).

To extend from a compact interval to a general interval, we can first consider NewtJ(x), which is
the Newton polygon with the lines of slopesN 0,∞ removed. In other words, NewtJ(x) is essentially
the Legendre transform on vx, before we extended vx to vJx – of course this would not make sense
technically since Legendre transform is only defined for functions out of R.
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In any case, we have since that if J ⊆ J ′ are both compact intervals, then NewtJ(x) ⊆ NewtJ′(x),
so for a general interval I ⊆ (0, 1), we can do the union or direct limit:

NewtI(x) :=
⋃

J⊆I compact
NewtJ(x).

We also note that NewtI(x) have slopesN lying in − logp I, for this is true if I is replaced by a
compact J = [p−r2 , p−r1 ]: slopesN of NewtJ(x) are break points of vx, which lie in [r1, r2] by
definition.

Is it really worthwhile to spend so much time to develop this Newton polygon business? Yes! As
we will see, there are a lot of results that we can prove using this, and is really difficult without the
Newton polygons.

As a brief diversion, here are our next two goals:

(a) Show that B := B(0,1) is a PID, by studying divisibility questions using the Newton polygon,
and

(b) Construct and study the curve Proj⊕Bφ=pd .

Anyway, here’s a concrete example: if x = [$] + p where
c = vF ($) > 0, then vx sends r to min{r, c} if r > 0, and
−∞ otherwise (see diagram).

NewtI(x) = L−1vx is the union of line segments in Newt(x)

of slopesN λ where λ ∈ − logp I (since these are the break
points one can see on the interval − logp I, ignoring break-
points at 0,∞), and so in this case is empty (more precisely,
consists of vertical and horizontal lines only) if c 6∈ − logp I.

r

vx(r)

•
(0, 0)

•
(c, c)

← slope 1

What does it mean if NewtI(x) = ∅? In fact, this means that x is invertible in B×I . Before we
prove this, we have to expand our definition of a primitive element.

If x =
∑∞
n=0[xn]pn ∈ Ainf , we say that x is primitive of degree 148 if

(a) |x0|F < 1 and x0 6= 0, and

(b) x1 ∈ O×F , or equivalently |x1|F = 1.

We write Prim1 for the set of primitive elements of degree 1. Earlier for a primitive element x, we
required |x0|F = p−1, which we used to determine that p has norm p−1, and hence (Ainf/x)[p−1] is
a perfectoid field with tilt F . However, there is really no canonical reason why p should have norm
p−1, because tilting kills p.

Theorem 5.6. Let x ∈ Prim1, then (Ainf/x)[p−1] is a perfectoid field with tilt F , where |p| = |x0|F .

Here’s how one should think about Prim1 elements. Given x ∈ Prim1, we can associate x to the
maximal ideal mx := (x) ⊆ Ainf [(p[$])−1] (maximal since quotient is a field). Then we can ask when
its extension mxBI is still a maximal ideal (in BI). In fact, by the succeeding proposition (along

48In general, we can define x ∈ Ainf to be primitive of degree d if |xi|F < 1 for all i < d, and x0 6= 0, and xd ∈ O×F .
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with the black box that proper ideals are maximal), we will see that this is the case precisely when
vF (x0) ∈ − logp I. We will come back to this next lecture.

Proposition 5.7. If x ∈ BI , then x is invertible iff NewtI(x) = ∅.

Proof. In general

Proof of proposition. in general, if x, y ∈ BI , then check that for any J ⊆ I compact, vJxy = vJx+vJy

(simply because vp(xy) = vp(x) + vp(y). Hence NewtJ(xy) = L−1(vJx + vJy ). since break points of
sum = union of break points, this means that slopes of NewtJ(xy) is the slopes of NewtJ(x) union
slopes of NewtJ(y). If xy = 1, then left hand side is empty (check). So both sets on the right is
empty. In general exhaust I with compact Js. This shows only if. (this is not easy without legendre
transform, even for Ainf elements!)

For if, first assume that x =
∑
n≤N [xn]pn ∈ Ainf [(p[$])−1] with (N, vF (xN )) a break point of

Newt(x) (equivalently vF (xN ) < vF (xn) for all n < N , just check using naive defn of newt), and
that I = [p−r2 , p−r1 ] is compact. In this case, x = pN [xN ](1 +

∑
n<N [x−1

N xn]pn−N ). pN [xN ] ∈
Ainf [(p[$])−1]. So we must show the bracket term is invertible too. Also add in assumption that all
the slopesof Newt(x) are > r2.

Claim: with these assumptions, for all r ∈ [r1, r2] and all n < N , vr([x−1
N xn]pn−N ) > 0. Then

vr(
∑
n<N [x−1

N xn]pn−N ) > 0 for all r ∈ [r1, r2]. So the bracket guy is topologically nilpotent.

November 16, 2018. Friday.

Last time we saw that when given x ∈ BI , one can associated with it the Newton polygon
NewtI(x), which unlike the traditional Newton polygon, is not defined wholly on R. We also talked
about when to detect whether x ∈ BI is invertible:

Proposition (Restatement of 5.7). For x ∈ BI , TFAE:

(a) x ∈ B×I is invertible.
(b) NewtI(x) = ∅.
(c) For all compact intervals J ⊆ I, the pre-Newton polyon Newt◦J(x) = L−1(vJx ) has no slopes in

the interval − logp J .

Recall that Primd := {x ∈ Ainf : x is primitive of degree d}. We also saw

Theorem (Restatement of 5.6). If x ∈ Prim1, then Kx := (Ainf/x)[p−1] is a perfectoid field with a
canonical identification O[Kx

∼−→ OF that is norm compatible if we define |p|x = |x0|F , where |·|x is
the natural norm on Kx.

Today we will talk about how divisibility is encapsulated in Newton polygons. As suggested by
the preceding theorem, for x ∈ Prim1, we define the slope of x to be − logp|p|x = − logp|x0|F .

Theorem 5.8. Assume F is algebraically closed. If y ∈ BI and NewtI(y) admits a line segment of
slopeN λ, then there exists x ∈ Prim1 of slope λ such that x | y in BI .

In other words, any non-primitive element is divisible by a primitive element, or in a greater
generality, the slopesN of NewtI(y) say precisely how y factorizes.
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If x ∈ Prim1, then we can associate with it (x) = mx ∈ mSpecAinf [p
−1]. Again, invoking the

black box that a proper ideal is maximal in BI , the theorem then says TFAE:

(a) mxBI is a maximal ideal;

(b) x 6∈ B×I ;
(c) vF (x0) ∈ − logp I;

(d) the slopeN λ of x satisfies λ ∈ − logp I.

To conclude, viewing y ∈ BI as a function on mSpecAinf [p
−1] via y(mx) := y (mod mx), then y has

a zero x in mSpecBI of slopeN λ iff λ is a slope of NewtI(y).

•
1

|x0|F
I

BI

•← mx
•mx′ −→

Figure. A depiction of mSpecAinf [p
−1] which contains mSpecBI . BI

only sees the annulus corresponding to the interval I in mSpecAinf [p
−1].

The specified point mx represents a maximal ideal in both Ainf [p
−1] and

mxBI ∈ mSpecBI . On the other hand, m′x is maximal in Ainf [p
−1] but

its extension is no longer proper in BI . Also note that we have drawn a
closed non-punctured unit disk rather than an open punctured unit disk,
suggesting BI is still relevant when I includes 0 or 1.

Now we extend the notion of BI for when I also includes 0 or 1. For x ∈ BI ,

(a) if 0 ∈ I, we say that x ∈ BI∪{0} if there is a Cauchy sequence {xn} for all {|·|ρ : ρ ∈ I} and
for the p-adic norm and converges to x for all |·|ρ, ρ ∈ I.

(b) if 1 ∈ I, then we say x ∈ BI∪{1} if the same aforementioned criterion is satisfied with the
p-adic norm replaced by |·|1 (which is the same as the $-adic norm).

Lemma 5.9. Suppose x ∈ BI .

(a) If 0 ∈ I and NewtI(x) is bounded to the left (ie. there is a ∞ slopeN to the left), then
x ∈ BI∪{0}.

(b) If 1 ∈ I and NewtI(x) is bounded below, then x ∈ BI∪{1}.

Proof. (a) If NewtI(x) is bounded to the left, then NewtI(p
nx) lies strictly in the positive x-axis

region for some n � 0, which means all break points are positive too. Hence before the Legendre
transform, vx(r) only admits positive slopes. (?)

(b) (?)

[[Lemma (i) is equivalent to saying there is n ≥ 0 such that supρ→0+ |pnx|ρ < ∞. Lemma (ii) is
saying supρ→1− |x|ρ <∞.]]
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Lemma 5.10. The φ-invariants of B, namely Bφ=1, is precisely Qp.

Proof. First assume that x ∈ Ainf [(p[$])−1]. Then x is φ-invariant precisely when [xpn] = [xn] for
all n. For what is the same, xn ∈ Fp for all n, so x ∈ Qp.

Now suppose x ∈ B is WLOG nonzero. φ(x) = x means that for all r > 0, we have vφ(x)(r) =

vx(r). If x is represented by the Cauchy sequence {xn}n ⊆ Ainf [(p[$])−1], we have vxn(r) = vφ(xn)(r)

for n� 0. Write y = xn for a moment. Then we have

vy(r) = vφ(y)(r) = inf
n
{vF (ypn) + rn} = p inf

n
{vF (yn) + rn/p} = pvy(r/p).

Replacing r/p by r, we have vy(pr) = pvy(r). Since the y’s approximate x, we have vx(pr) = pvx(r).
This implies vx is a linear function in r passing through the origin (with extrapolation), or in other
words, there is an integer N such that vx(r) = Nr for all r > 0. This then forces 0 to be the only
break point of vx(r).

r

vx(r)

•

← slope N

The graph of vx(r).

Newt◦(0,1)(x)

•
N

The graph of Newt◦(0,1)(x) after applying L−1.

In particular, since the only slopesN are 0 and ∞, we can see that x must be invertible too, but
this will not be important for us for now.

After applying L−1, we see that the only break point of Newt◦(0,1)(x) must be atN , so in particular
the Newton polygon is bounded to the left and below. By 5.9, x can be extended to B[0,1]. Now we
claim that B[0,1] = Ainf [(p[$])−1].

Indeed, if y ∈ Ainf [(p[$])−1] is

(a) small in p-adic topology (ie. the first power of p with a nonzero Teichmüller coefficient is
large), and

(b) small in 1-norm (or equivalently [$]-adic topology) (ie. supk|xk|F is small),

then it is also small with respect to all norms |·|ρ with ρ ∈ (0, 1). Hence B[0,1] is the completion of
Ainf [(p[$])−1] with respect to the topology given by the supremum of the 1-norm and the p-adic
norm, but Ainf [(p[$])−1] is already complete with respect to the (p, [$])−1-adic norm.

Now that we have reduced to the case where x ∈ Ainf [(p[$])−1], we are done. �

Remark. Following the same argument, we see that if x ∈ B is invertible, then x ∈ Ainf [(p[$])−1]

and has a Teichmüller representation.

November 19, 2018. Monday.
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Our standing assumption from now on will include F being algebriacally closed, and one can
usually reduce general statements to ones with this restriction using Galois descent. We won’t dwell
over it here.

Last time we have seen

Theorem (Restatement of 5.8). Let y ∈ BI and λ is a slope appearing in NewtI(x) (hence neces-
sarily λ ∈ − logp I)). Then there is x ∈ Prim1 of slope λ such that x | y ∈ BI .

Remark. If F is algebraically closed, then given x ∈ Prim1, we can assume x = [$]− p for some
$ ∈ mF − {0}, up to multiplying by A×inf . (Why not clear?) For this, it suffices to show that if
(x) contains some element of the form [$] − p. Indeed, Θx : Ainf → OKx takes [β] to β], where
if we write β = (β(n))n≥0, β

(n) ∈ OKx and (β(n))p = β(n−1). Then β] = β(0). So it’s enough to
show that there is ($(n)) with $(0) = p. But this is right, because F is algebraically closed, so Kx

is algebraically closed, and such a sequence exists (we are simply taking p-th roots over and over
again).

(Side discussion. x ∈ Prim1 is in bijection with (Kx, |·|x), when we also remember the norm on
the untilt.)

We have also seen

Lemma (Restatement of 5.9). x ∈ B such that Newt(0,1)(x) is bounded to the left and below, then
x ∈ Ainf [(p[$])−1].

This yields three consequences:

(a) Bφ=1 = Qp. We have seen this in 5.10.

(b) The units in B = B(0,1) lie in Ainf [(p[$])−1]. In other words, B× = Ainf [(p[$])−1]×.
Proof. x ∈ B× iff Newt(0,1)(x) = ∅, and use 5.9. �

(c) If d < 0, then Bφ=pd = 0.
Proof. Let x ∈ Bφ=pd − {0} (for any d) then φ(x) = pdx by definition. As in the proof of 5.9,
for r ∈ (0,∞), we have vr(φ(x)) = pvr/p(X). Replacing r by pr, we have vpr(pdx) = pvr(x).
Hence (with approximation by elements in Ainf [(p[$])−1] omitted)

pvx(r) = pvr(x) = vpr(p
dx) = inf

n
{vF (pdxn) + prn}

= inf
n
{vF (xn−d) + prn}

= inf
n
{vF (xn) + prn+ prd} = prd+ vpr(x) = prd+ vx(pr).

Now one can check that if d < 0, then x 6∈ B×. So suppose λ is a break point of right slope N ,
then pλ is also a break point with right slope N − d (one can check this using differentiation,
ignoring some technnicalities).

Using duality between break points and slopes, now we know λ is a slopeN of Newt(0,1)(x),
which appears at the break point N ; and pλ is a slopeN which appears at the break point
N − d. If d > 0, then λ 6= 0, because it cannot have right slopes N and N − d simultaneously,
and pλ > λ, but N − d > N , contradicting Newt(0,1)(x) being a decreasing convex hull. �
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Remark. One can see using this argument that if x ∈ Bφ=pd − {0} where d > 0, then in
Newt(0,1)(x), the slopesN of x must approach ∞ on the left. This is another glimpse of the slogan
that Newton polygons give useful information about x ∈ B where one cannot deduce otherwise.

5.3. Formalisms of “curves”.

We define the graded algebra
PF =

⊕
d≥0

Bφ=pd .

Recall that F is the underlying perfectoid field. We wish to study PF , which we will do so formally
in a general setting.

Our setup will be as follows: suppose we have a graded algebra P =
⊕
Pd with the following

properties:

(A1) P0 = K is a field. (In our case (PF )0 = Qp.)
(A2)

⋃
d≥0(Pd − {0})/K× is a monoid is freely generated by (P1 − {0})/K×. (Something about

Picard group being trivial.)

(A3) For all t ∈ P1 − {0}, there is a field extension Ct/K such that

P/tP = Dt := {f(T ) ∈ Ct[T ] : f(0) ∈ K}

as graded algebras. (In our case Ct is the untilt of F .)

The polynomial ring in 2 variables K[x, y] shall satisfy these conditions, for example.

Theorem 5.11. Let X = Proj(P ). Then

(a) for all t ∈ P1 − {0}, Proj(P/t) ∼= SpecCt. 49

(b) for all t ∈ P1 − {0}, Bt = (P [t−1])0 is a PID.
(c) X is a Dedekind scheme with H0(X,OX) = K and H1(X,OX) = 0, and for all f ∈ K(X),

we have ∑
∞t

ord∞t
(f) = 0

where |X| is the set of closed points.
(d) (P1 − {0})/K×

∼−→ |X| by ξt : t 7→ ∞t.

Proof. First let us recall the Proj construction. If Q =
⊕
Qd is any graded algebra, then as a

set we have

Proj(Q) = {homogeneous primes P ⊆ Q not containing the irrelevant ideal},

and its structure as a scheme is described by

Proj(Q) =
⋃

f∈Qd,d>0

Spec(Q[f−1])0.

By (A3), one has Proj(P/t) = Proj(Dt) ⊇ Spec((Dt[T
−1])0). We observe that (Dt[T

−1])0
∼−→ Ct.

This gives the first inclusion. To finish (a), it now suffices to show that the only nonzero homogeneous
prime ideal of Dt is TCt[T ].

49This is saying that any divisor cuts out a degree 0 variety, which reinforces the idea that Proj(P ) is a curve.
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Suppose P is such an ideal. Clearly P ⊆ TCt[T ]: if p(t) ∈ P has nonzero constant term, then
there must be at least one (homogeneous) generator that is a constant, but this would mean P is
the unit ideal. Now suppose aT i is a generator of P with minimal degree. We can multiply by
a−1T ∈ Dt, regardless of whether a ∈ K or not, to get T i+1 in P, and we are home.

We will continue the proof next lecture.

November 26, 2018. Monday.

Proof of 5.11 continued. Last time we completed the proof of part (a), so we will proceed to part
(b) now. We will show a stronger statement, that if t ∈ P1−{0}, then Bt = (P [t−1])0 is a PID with
irreducible elements {x/t : x ∈ P1 −Kt}.

By definition, Bt = {y/td : y ∈ Pd}. Recall that for x ∈ P1 − {0}, we define Dx := {f(T ) ∈
Cx[T ] : f(0) ∈ K}. By assumption, the identification in (A3) ξx : P/xP → Dx preserves the degree
1 piece, thus maps t 7→ αT where α ∈ Cx − {0}. Inverting t, along with the fact that Bt only
records degree zero elements, we see that ξx : Bt/(x/t)Bt

∼−→ Dx[T−1]0, and degree zero elements in
Dx[T−1] are precisely Cx.

Since Bt quotiented by x/t gives a field, (x/t) is a maximal ideal. (Not entirely sure how to finish
it.)

Up till this point, we know that X is a Dedekind scheme, and the set of closed points |X| =

{∞t : t ∈ P1 − {0}}, where {∞t} = Proj(P/tP ).

Given t ∈ P1 − {0}, we define deg∞t
: K(X) → Z≥0 ∪ {∞}, sending f 7→ − ord∞t f . This

is well-defined since we are working in a PID, so the term ord∞t
makes sense. More explicitly, if

f = tdy1/y2 where t - y1, y2, then deg∞t
(f) = −d. Since f has the same degree for its numerator

and denominator, we have
∑
∞t∈|X| deg∞t

(f) = 0.

To finish off (c), we must show that H0(X,OX) = K and H1(X,OX) = 0. So far we have been
using the projective line as the intuition for such formalisms, in which case these two criteria on
cohomologies are satisfied, but we can also do better and say that H1(P1,OP1(−1)) = 0. It will not
be true in this generality, and is the fundamental difference.

Anyway, write the open set Ut := SpecBt for a fixed t ∈ P1 − {0}. Write j : Ut → X and
i : {∞t} ↪→ X. Then we have an exact sequence of sheaves

0→ OX → j∗OUt → j∗OUi/OX → 0.

But the last term is concentrated at ∞t, so it’s simply i∗(K(X)/OX,∞t
). Taking the long exact

sequence, with the fact that Ut is affine, we have

0→ H0(X,OX)→ Bt → K(X)/OX,∞t
→ H1(X,OX)→ 0.

Hence now it remains to show that H0(X,OX) = Bt ∩OX,∞t , and that H1(X,OX) = K(X)/(Bt +

OX,∞t
) = 0, or equivalently K(X) = Bt +OX,∞t

.
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Let’s write down explicitly that

Bt = {y/td : y ∈ Pd}

K(X) = {y1/y2 : y1, y2 ∈ Pd and y2 6= 0}

OX,∞t = {y1/y2 : y1, y2 ∈ Pd and y2 6= tP}.

Staring at these descriptions, it’s not hard to see that H0(X.OX) = K. H1(X.OX) = 0 essentially
comes from partial fractions. This finishes the proof. �

Why did we switch from ord∞t
to deg∞t

? How should one think about K(X) = Bt + OX,∞t
?

This says that if f ∈ KX(), then there exists b ∈ Bt such that deg∞t
(f − b) ≤ 0. If we write

f = a1/a2 where a1, a2 ∈ Bt, then we have deg∞t
(a1/a2 − b) ≤ 0, or equivalently

deg∞t
(a1 − ba2) ≤ deg(a2).

As such, we call Bt pseudo-Euclidean. The adjective pseudo is due to the fact that one would expect
a strict inequality for an Euclidean domain. Had Bt be Euclidean, then this would be equivalent to
saying K(X) = Bt + mX,∞t

, or that H1(X,OX(−∞t)) = 0 (but this is false anyway in our general
setting).

Let’s go on a short diversion on line bundles, that will be crucial for what is upcoming: since Bt
is a PID for all t, we have Pic(Ut) = 0, and the degree map deg : Pic(X) → Z sends a line bundle
L 7→

∑
∞t

ord∞t(s) where s is any section of the line bundle. This has an inverse m 7→ OX(m∞t).
One can check that OX(m∞t) = P̃ [m], where P [m] is the shifted graded P -module with P [m]d =

Pm+d.

To conclude the lecture, let us talk about where we are headed. Let’s write PQp =
⊕

d≥0B
φ=pd .

We will also consider the graded algebras

PQpr =
⊕
d≥0

Bφ
r=pd where r ≥ 1.

In fact, Xr := ProjPQpr still satisfies properties (A1,2,3).

There is a natural map from PQp → PQpr sending a ∈ Bφ=pd to a ∈ Bφr=pdr . This map acts like
the Veronese map. This natural map induces a map after taking Proj, and thus we get an inverse
system {Xr}r≥1.

Write X = X1. Then in fact, Xr
∼= Qpr ⊗Qp X, and Pic(Xr) ∼= Z for every r. Write the map

πr : Xr → X, and in fact this map is finite and étale.

Define OX(d, r) := πr,∗OXr (d), which is a rank r vector bundle. We define for λ = d/h ∈ Q
in lowest terms that OX(λ) = OX(d, h), then a main result in p-adic hodge theory says that every
vector bundle E on X is of the form E =

⊕
λOX(λ) for λ ∈ Q. This result indeed requires the

algebraically closed assumption on the perfectoid field F .

November 28, 2018. Wednesday.
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As briefly mentioned last time, today we will consider, for r ≥ 1, the graded algebra

PQpr :=
⊕
d≥0

Bφ
r=pd ,

and write Xr = Proj(PQpr ) and X := X1. Note that we have Qpr = W (Fpr )[1/p] ↪→ Ainf [1/p] ↪→ B

so we can define the map

Bφ=pd ⊗Qp Qpr → Bφ
r=pdr , sending x⊗ a 7→ ax.

One can check that this is an isomorphism, hence Xr
∼= X ⊗Qp Qpr .

Today we will show that these graded rings have the desired property (A2).

Theorem 5.12.
⋃
d≥0(Bφ

r=pd)/Q×pr is freely generated by the degree 1 elements (Bφ
r=p−{0})/Q×pr .

Remark. We saw that Bφ=pd = 0 if d < 0 and equals Qp if d = 0. In fact, the same argument
will imply that Bφ

r=pd = 0 if d < 0 and equals Qpr if d = 0. Moreover, every maximal ideal of B is
of the form mx = (x) with x ∈ Ainf primitive of degree 1. We also showed that in fact one can take
x to be of the form [x0]− p where x0 ∈ mF .

The idea of the proof will be to identify the graded algebra P with a graded monoid, that will
be obviously freely generated by the degree 1 elements.

Let us first define a few terminologies. Define

D̃iv+ =


∑

mx∈mSpecB

ax[mx] :

(1) (effectiveness condition) ax ∈ Z≥0,
(2) (local finiteness condition) for every compact

interval I ⊆ (0, 1), there exists finitely many mx
with slopes in − logp I with ax 6= 0.

 .

We remark with caution that there’s no requirement on an element in D̃iv+ being a finite sum: we
merely require that it’s a finite sum when restricted to a compact interval. In addition. there is a
natural action of φ on D̃iv+, (induced by) sending mx to mφ(x). Next we define

Div+(Xr) := {D ∈ D̃iv+ : D = φr(D)}.

the subset of divisors invariant under φr. Eventually we will see that we can identify Div+(Xr) with
the effective divisors on Xr, thus justifying the notation.

Lemma 5.13. (a) If b ∈ B is nonzero, then Div(b) :=
∑

mx
ordx(b)[mx] is in D̃iv+.

(b) If b ∈ Bφr=pd is nonzero, then Div(b) ∈ Div+(Xr).

Proof. (a) If I is a compact interval, then the ideal (b) is principal in BI , and both conditions for
D̃iv+ follow immediately. (b) The statement simply boils down to φr(b) = pdb implying Div(φr(b)) =

Div(b). �

Let us recall again that we are working with the assumption where F is algebraically closed, or

one can simply assume that F = Q̂p
[

= C[p.
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Proposition 5.14. The map⋃
d≥0

(Bφ
r=pd − {0})/Q×pr → Div+(Xr) sending z 7→ Div(z)

is an isomorphism of monoids.

Remark. This is not true if F is not algebraically closed, in which case Pic(Xr) 6= Z, and there
are irreducible elements not of degree 1.

Proof. First we show injectivity. Let z1 ∈ Bφ
r=pd1 − {0} and z2 ∈ Bφ

r=pd2 with d2 ≥ d1 and
Div(z1) = Div(z2). Restricting to any compact interval I, over BI , z2 can only differ from z1 by a
unit, and so the same must still hold in B. Writing z1 = uz2 for u ∈ B×, we have u ∈ Bφr=pd1−d2 .
Since d1 − d2 ≤ 0 and u is a unit, this forces d1 = d2 (recall that if d < 0, then Bφ

r=pd = {0}). But
Bφ

r=1 = Q×pr , so we are done. Note that up until this point we still have not used the assumption
that F is algebraically closed.

Next we show surjectivity, which is the hard part of the proposition. First we make an observation:
fix an mx(= (x) where x ∈ Prim1) and consider Dx :=

∑
n∈Z φ

nr([mx]), to which we claim lies in
Div+(Xr). By construction it satisfies φr-invariance and the effectiveness condition. For the local
finiteness condition, consider the interval J = (ρp

r

, ρ]. If |p|x ∈ J , then |p|φnr(x) 6∈ J for any n 6= 0.
Since any compact interval I ⊆ (0, 1) can be covered up by finitely many such J ’s, this gives the
local finiteness condition, and subsequently our claim.

Our next step is to observe that Div+(Xr) is freely generated by {Dx : mx ∈ mSpec(B)}. This
is obvious essentially from definition of Div+(Xr).

Now the third step is to identify degree 1 elements in Bφ
r=p with the generators {Dx}. More

precisely, we show that there is tx ∈ Bφ
r=p such that Div(tx) = Dx, which we prove by showing that

there are t+x and t−x responsible for the positive and negative shiftings of [mx] by φr respectively.

1
|x0|F

•← mx
•••
• } negative shiftings

••••positive shiftings {

Figure. We separate the construction of tx into t+x and t−x .

By replace x by −x if necessary, we assume x = p − [x0]. The positive part is straightforward:
we consider the infinite product t+x =

∏
n≥0(φrn(x)/p) along with some tweaking for convergence

issues, to which we claim it converges in B. To see this, we first note that
∏
n≥0(φrn(x)/p) =∏

n≥0(1 − [xp
rn

0 ]/p). To see the product converges, it suffices to see that lim|[xp
rn

0 ]/p|ρ = 0, and
indeed we have |[xp

rn

0 ]/p|ρ = ρ−1|x0|p
n

ρ . By construction we then have Div(t+x ) =
∑
n≥0[φrn(mx)].
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Finally, now we have in fact φr(t+x ) = (p/x)t+x , so it remains to show there is t−x ∈ Ainf , unique up
to Q×pr , such that φr(t−x ) = xt−x , then tx := t+x t

−
x will be ptx and do the job. However as one might

expect now, the naïve guess t−x = φ−r(x)φ−2r(x) · · · does not converge, so we will need something
more clever.

November 29, 2018. Thursday.

Today we will continue to prove the surjevtivity of the divisor map. Let’s recall the

Lemma. For all x = [x0]−p ∈ Prim1, there is tx ∈ Bφ
r=p such that Div(tx) = Dx =

∑
n∈Z[φnr(mx)].

We have constructed the plus part t+x =
∏
n≥0(φnr(x)/p)) ∈ B which satisfies φ(t+x ) = (p/x)t+x

and Div(t+x ) = D+
x =

∑
n≥0[φnr(mx)]. Today we will start by proving there is t−x ∈ Ainf , unique up

to Q×pr (or equivalently Z×pr ), such that φr(t−x ) = xt−x . To do so, we will construct {bn}n ⊆ Ainf such
that

(a) bn ≡ bn−1 (mod pn), and

(b) φr(bn) ≡ xbn (mod pn+1).

Then t−x can be defined as the p-adic limit of bn in Ainf .

For b0, we simply need b0 to be such that φr(b0) ≡ xb0 (mod p), or equivalently bp
r

0 ≡ [x0]b0

(mod p), or again equivalently bp
r−1

0 ≡ [x0] (mod p). Hence we can simply take b0 = [x
1/(pr−1)
0 ],

which is well-defined up to (pr − 1)-th roots of unity, all of which convenient lie in F×pr .

We then move onto the inductive step. Suppose we have found b0, . . . , bn−1. We wish to take
bn = bn−1 + pnzn where zn is to be determined. Given φr(bn−1) ≡ xbn−1 (mod pn), we can write
φr(bn−1)− xbn−1 = pny for some y ∈ Ainf .

Then we have

φr(bn)− xbn = φr(bn−1) + pnφr(zn)− xbn−1 − pnxzn

= pny + pn(φr(zn)− xzn)

= pn(y + φr(zn)− xzn).

Hence we need to pick zn such that φr(zn)−xzn+y ≡ 0 (mod p), or equivalently zp
r

n − [x0]zn+y ≡ 0

(mod p). Write y = y (mod p). Using the algebraically closed condition of F , the polynomial
T p

r − x0T + y has a root z ∈ OF , so we can take zn = [z] and we are done.

Here’s the heuristic idea: though the infinite product φ−r(x)φ−2r(x) · · · does not exist literally,
we exploited the fact that this element is characterized by a functional equation, to which the solution
exists.

Now it remains to show that our candidate chosen this way indeed does the job, that Div(t−x ) =

D−x :=
∑
n<0[φnr(mx)].

Let’s write D′ = Div(t−x ). By construction we know that φr(t−x ) = xt−x , and hence on level of
divisors Div(x) +D′ = φr(D′). Hit this with φ−r to get

φ−r(Div(x)) + φ−r(D′) = D′.
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Self iterate this relation to see that for any k, we have

k∑
n=1

[φ−nr(mx)] + φ−kr(D′) = D′.

Here’s where the magic happens: since t−x ∈ Ainf , we have great understanding of its Newton
polygon. By definition Newt(t−x ) is bounded to the left by the y-axis, and bounded below by the
horizontal line y = v0(t−x ) = − logp|t−x |1. Hence there is an upper bound on {slopesN of Newt(t−x )}.
Since the slopesN of Newt(t−x ) governs the factorization of t−x , we conclude that there is a lower
bound to how close a factor of t−x can be located towards the origin on the punctured disk.

However, for any compact interval I ⊆ (0, 1), there is k � 0 such that φ−kr(D′) is not supported
at any point with slope in − logp I, since applying φ−r pictorially pushes D′ towards the boundary
and eventually outside of any fixed compact annulus.

Let’s concretize this by defining a notation. For D =
∑
ax[mx] ∈ D̃iv+, we set

D|I =
∑

slope of x∈− logp I

ax[mx].

Then our discussions is saying that φ−nr(D′)|I is eventually 0 for any compact interval I ⊆ (0, 1). So
for any compact interval I, there is k � 0 such that

∑k
n=1[φ−kr(mx)] |I= D′|I . The same reasoning

now gives
∑k
n=1[φ−nr(mx)] |I= D−x |I . So for all compact I, we have D−x |I = Dx|I .

Now of course, combining everything together, we see that if tx := t+x t
−
x ∈ Bφ

r=p, then Div(tx) =

D+
x +D−x = Dx. This completes the proof that

Div :
⋃

d geq1

(Bφ
r=pd − {0})/Q×pr → Div+(Xr)

is an isomorphism, and in particular, the LHS is freely generated by degree 1 elements. �

Next let us fix x = [x0] − p ∈ Prim1, which gives an untilt Kx = Ainf [p
−1]/(x) of F . This then

gives a map Θx : Ainf [p
−1]→ Kx.

Lemma 5.15. Θx extends to a map Θx : B → Kx. Equivalently, Θx : Ainf [p
−1]→ Kx is continuous

for all Gauss norms |·|ρ for ρ ∈ (0, 1).

Proof. First note that Θx is defined by Θx(
∑
n�−∞[zn]pn) =

∑
n�−∞ z]np

n. Then |
∑

[zn]pn|ρ <
ε and |

∑
z]np

n| < ε are easily equivalent since |z]n| = |zn|F . �

We will see next time that the restricted map Θx : Bφ
r=pd → Kx has kernel txBφ

r=pd−1

, and in
particular Pr/txPr

∼−→ {f(T ) ∈ Kx[T ] : f(0) ∈ Qpr}. In addition, for the case d = 1, we get a short
exact sequence

0→ Qpr
tx−→ Bφ

r=p → Kx → 0,

which is referred to as the fundamental short exact sequence in p-adic hodge theory.

Dec 3, 2018. Monday.

Let’s summarize our progress so far.
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So far we have been assuming that F = K[ is algebraically closed. We are interested in Xr =

Proj(PQpr ), where PQpr is the graded algebra
⊕

d≥0B
φr=pd . This Proj construction satisfies the

axioms (A1-3) for a curve over K = Qp (see 5.3). Restating under our setting, we have showed that

(A1) Bφ
r=1 = Qpr ,

(A2)
⋃
d≥1(Bφ

r=pd − {0})/Q×pr is freely generated by the degree 1 part (Bφ
r=p − {0})/Q×pr , and

(A3) for t ∈ Bφr=p, we have PQpr /tPQpr
∼= {f(T ) ∈ Kx[T ] : f(0) ∈ Qpr}, where x ∈ Prim1 is such

that/obtained by

(a) first considering the image of t under the Div map: Div(t) =
∑
n∈Z[φrn(mx)] ∈ Div+(Xr),

(b) and then looking at the untilt Ainf [p
−1]/mx where mx = (x).

We remark that such an x requires a choice of mx, and hence mx is determined only up to a φr-
translate. Even if a specific mx is chosen, x, being the generator of mx, is still not unique.

We make a few observations in particular:

(a) |Xr|, the set of closed points of Xr, is in bijection with (Bφ
r=p − {0})/Q×pr , via the map

(V +(t) ⊆ Xr)← [ [t]. (This is essentially summarizing the proof of (A3).)

(b) Xr is a Dedekind scheme, with H0(Xr,OXr ) = Qpr , and H1(Xr,OXr ) = 0. (See November
26.)

(c) There is a (trivial) degree function on |X|, with deg(x) = 1 for all points x, and such that for
all f ∈ K(X),

∑
y∈|X| ordy(f) deg(y) = 0. (See November 26.)

(d) The Picard group of Xr is generated by a point and so Pic(Xr) ∼= Z. (?)

Last lecture we ended with a glimpse of the fundamental short exact sequence, and this time we
will prove it. Fixing a pair of choices t and x, we saw that the map Θx : Ainf → Kx can be extended
to B → Kx.

Proposition 5.16. For all d ≥ 1, we have a short exact sequence

0→ Bφ
r=pd−1 ·t−→ Bφ

r=pd Θx−−→ Kx → 0.

Proof. First we prove exactness in the middle. Suppose z ∈ Bφr=pd , then

Θx(z) = 0 iff [mx] appears in Div(z) with nonzero coefficient

iff Div(t) =
∑

[φnr(mx)] appears as a summand in Div(z)

iff t | z.

Now it remains to show surjectivity on the right, for which it’s enough to consider the d = 1 case,
since if 1 ∈ Kx has preimage z ∈ Bφr=p, then by multiplying with suitably large power of z, one
can prove the surjectivity for any d. Though we will not prove the surjectivity here, let us make two
remarks:

(a) The surjectivity does not require F to be algebraically closed, and

(b) The proof is analogous to the surjectivity of ` : mCp − {0} → Cp (` for log), given by x 7→
log(x+ 1).

One can refer to the term periods of cyclotomic groups. �
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When d = r = 1 and F = C[p, for some certain choice of t, whose divisor Div(t) is the φr-translates
of mx, we can retrieve Kx

∼= Cp as an untilt of C[p. We call this choice of t the Fontaine’s cyclotomic
period. We then retrieve the short exact sequence

0→ Qp
·t−→ Bφ=p → Kx

∼= Cp → 0.

In literature, it’s more common to write (B+
cris)

φ=p := Bφ=p.

5.4. Vector Bundles on the Fargues-Fontaine Curves.

Consider the two curves Xrm = Proj(
⊕

d≥0B
φrm=pd) and Xr = Proj(

⊕
d≥0B

φr=pd). Then we
have a natural map

π(m)
r : Xrm → Xr given by Bφ

r=pd → Bφ
rm=pdm sending z 7→ z.

This map of Qpr -algebras induces Bφ
r=pd ⊗Qpr Qprm

∼−→ Bφ
rm=pdm , hence π(m)

r is

(a) finite étale (because it is a base change of a finite étale map), and is

(b) totally split over every closed point (ie. the fiber of any closed point is m distinct points)50

We also know that

Pic(Xr)
∼−→ Z with inverse given by d 7→ OXr (d) ∼= P̃Qpr [d].

Let’s setup some notations:

(a) For all d, h ∈ Z, we define OXr (d, h) := (π
(h)
r )∗OXrh(d), and

(b) for λ = d/h ∈ Q with (d, h) = 1, define OXr (λ) := OXr (d, h).

(c) In addition, for λ ∈ Q, define o(λ) to be the order of λ ∈ Q/Z. 51

We shall use the following main result without proof:

Theorem 5.17. Let F be an algebraically closed field as all along. Then every vector bundle on Xr

is of the form of direct sums of OXr (λ). (Aut group?)

In any case, let’s investigate some properties of the vector bundles OXr (λ) and OXr (d, h).

Proposition 5.18. Let λ ∈ Q.

(a) Without assuming (d, h) = 1, we have OXr (d, h) = OXr (d/h)gcd(d,h).
(b) (Rank) OXr (λ) is a vector bundle of rank o(λ).
(c) Considering the map π(m)

r : Xrm → Xr, we have
(i) (Pushforward) (π

(m)
r )∗OXr (d, h) = OXrm(md, h), and

(ii) (Pullback) (π
(m)
r )∗OXrm(d, h) = OXr (d,mh).

In particular, we have (π
(m)
r )∗OXr (λ) = OXrm(mλ)o(λ)/o(oλ).

(d) (Tensor) We have
(i) OXr (d1, h1)⊗OXr (d2, h2) ∼= OXr (h2d1 + h1d2, h1h2).
(ii) OXr (λ1)⊗OXr (λ2) ∼= OXr (λ1 + λ2)o(λ1)o(λ2)/o(λ1+λ2).

(e) (Derived Hom) We have

50This is a usual phenomenon for a curve over Qp.
51I believe Fontaine might have used m(λ) for this, but using o(λ) as the notation will avoid some unfortunate

terminology complications.
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(i) Hom(OXr (λ1),OXr (λ2)) = 0 if λ2 < λ1, and
(ii) Ext1(OXr (λ1),OXr (λ2)) = 0 if λ2 ≥ λ1.

Dec 5, 2018. Wednesday.

Recall that Xr = Proj(PQpr ) and we have a natural map π(m)
r : Xrm → Xr. Today we will prove

most of the claims in 5.18.

Let us start by (a), the claim OXr (d, h) = OXr (d/h)gcd(d,h).

Observe that (π
(h)
4 )∗OXrh = OXr ⊗Qpr Qprh ∼= OhXr , and that (π

(h)
r )∗OXr (d) = OXrh(dh).

Writing δ = gcd(d, h), we then have a factoring

π = π(h)
r : Xrh

π2=π
(δ)

r(h/δ)−−−−−−−→ Xr(h/δ)
π1=π(h/δ)

r−−−−−−→ Xr.

Hence we have

OXr (d, h) = π∗OXrh(d)

= π2,∗π1,∗OXrh(d)

= π2,∗π1,∗OXrh(d/δ · δ)

= π2,∗π1,∗π
∗
1OXr(h/δ)(d/δ)

= π2,∗(OXr(h/δ)(d/δ)⊗O
δ
Xr(h/δ)

) (†)

= OXr (d/h)δ,

where in (†) we used the projection formula. �

Next we will prove part (b), the claim that OXr (λ) is a vector bundle of rank o(λ). Equivalently,
if λ = d/h in lowest terms, then o(λ) = h. Let us first restate the claim in another way. Let us
define for M a vector bundle on Xr, the degree of M is deg(M) = degXr (M) := deg(det(M)) =

det(
∧rankm

M). We also define the slope of M to be µ(M) = deg(M)/ rank(M). Part (b) will then
say that µ(OXr (λ)) = λ.

Proof. The rank is o(λ) from the definition, since it’s the pushforward of OXrh(d) via (π
(h)
r ),

where OXrh(d) is a line bundle and π(h)
r is a degree h (finite) étale cover. For the claim on the slope,

we see that
degXr det(OXr (λ)) = (1/h) degXrh((π(h)

r )∗ det(OXr (λ))).

Now it’s a matter of understanding what this is. We claim that if M is a vector bundle over Xr,
then det((π

(h)
r )∗M) ∼= (π

(h)
r )∗ det(M). This follows from the following three facts:

(a) Tensors behave well under pullbacks.

(b) Exterior powers are quotients of tensors.

(c) Quotients behave well under flat maps.

So now we transfer our study to det((π
(h)
r )∗OXr (λ)). We claim that (π

(h)
r )∗OXr (λ) = (π

(h)
r )∗(π

(h)
r )∗OXrh(d)

is just OXrh(d)h. To see this, we translate this back to commutative algebra language, which says
that if R → S is a finite Galois(?) map, then M ⊗R S ∼= M ⊗S (S ⊗R S) ∼=

∏
Gal(S/R)M as

R-modules.
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Hence det((π
(h)
r )∗OXr (λ)) = det(OXrh(d)h) = OXrh(dh). Hence deg(OXr (λ)) = (1/h) deg(OXrh(dh)) =

dh/h = d, and µ(OXr (λ)) = d/h = λ as claimed. �

We also note that with this, we conclude that the slope of a vector bundle is insensitive to taking
powers of the vector bundle. (?)

We shall postpone the proof of part (c) till next lecture.

So part (d), we must show that OXr (d1, h1)⊗OXr (d2, h2) ∼= OXr (h2d1 + h1d2, h1h2). Consider
the diagram [[hmm]]

—

Observe that the slope of a vector bundle is insensitive to taking powers of the vector bundle.

(iii) π(m)
r : Xrm → Xr. Prop says that (π

(m)
r )∗OXr (d, h) = OXrm(md, h), and (π

(m)
r )∗OXrm(d, h) =

OXr (d,mh), and in particular, (π
(m)
r )∗OXr (λ) = OXrm(mλ)m(λ)/m(mλ).

Proof. Consider the (diamond figure: Xrhm
p1−→ Xrh

π1−→ Xr and p2−→ Xrm
π2−→ Xr and

composition is q). Then OXr (d, h) = π1,∗OXrh(d) and OXrm(md, h) = p2,∗OXrmh(md). WTS
π∗2π1,∗OXrh(d) ∼= p2,∗OXrmh(md). Faithfully flat descent says we can pullback everything to Xrhm

and work it out, so let’s do so via p∗2. Then

LHS ∼= q∗π1,∗OXrh(d) (not very sure. let’s move on.)

(iv) OXr (d1, h1)⊗OXr (d2, h2)
∼−→ OXr (h2d1 + h1d2, h1h2).

Proof. Draw a similar diamond diagram (with h becoming h1 and m becoming h2). p1 has degree
h2 and p2 has degree h1. Consider q∗(Oh1h2r(h2d1) ⊗OXh1h2r OXh1h2r (h1d2), which is definitely
same as RHS. On the other hand, this is also q∗(p∗1OXh1r ⊗OXh1h2r p

∗
2OXh2r (d2)). Claim this is

∼= p1,∗p
∗
1OXh,r (d1) ⊗OXr p2,∗p

∗
2OXh2,r (d2). This is just commutative algebra: On level of modules,

first thing is (S3 ⊗S1
M1)⊗S3

(S3 ⊗S2
M2) ∼= M1 ⊗S1

S3 ⊗S2
M2
∼= (M1 ⊗S1

S1)⊗R (M2 ⊗S2
S2) =

the second guy. The main claim is S3 = S1 ⊗R S2. This is because Xh1r ×Xr Xh2r = (Qph1r ⊗Qpr

Xr)×Xr (Qph2r ⊗Qpr Xr) = ... seems right if relatively prime, otherwise use (a) to bootstrap it up.

In particular, OXr (λ1)⊗OXr OXr (λ2) ∼= OXr (λ1 + λ2)something.

Finally for Hom and Ext statements, can be checked after pullback to any Xrm (along finite flat
maps...) Hence can assume that λ, λ ∈ Z and write d1, d2 for clarity. In this case, this becomes the
assertion H0(Xr,O(d2, d1)) = 0 if d2 < d1. This follows from the fact that PQpr has no negative
degree graded term, (used also that λ1 > λ2 is preserved by pullback, since just multiply by degree
of cover)

Finally Ext: proof: Can assume that λ1, λ2 = d1, d2 ∈ Z, because this becomes H1(Xr,OXr (d2−
d1)) = 0 if d1 ≤ d2. But we know that H1(Xr,OXr ) = 0. Since we have a nonzero map OXr →
OXr (d) for all d ≥ 0, we have H1(Xr,OXr ) � H1(Xr,OXr (d)). Coker is torsion, so has no H1....
also kernel is 0? dedekind scheme so torsion free is free....

Dec 12, 2018. Wednesday.
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Recall: f : A → A′ such that Aη
∼−→ A′η, then deg(A) ≤ deg(A′) and equality holds iff f is an

isomorphism.

Lemma. B ⊆ A is a subobject of minimal rank such that µ(B) ≥ µ(A) and µ(B) maximal, then
B is semistable and is a strict subobject.

Proof. By schematic closure, there is B ⊆ B′ ⊆ A such that B′ strict inA and Bη = B′η. But
then deg(B) ≤ deg(B′), and equality by maximality, and B = B′. Check that subobject of B has
smaller µ – this is semistability.

Want to build semistable guys because slope filtration gives this, and one would want to know
how to build semistable guys.

Last time we talked about C = FilVectK , and C → C′ = VectK . All our filtrations are exhaustive,
descending, separated... Then deg((M,Fil•)) = i where i ∈ Z is such that griFil•

∧top
M 6= 0. Then

check that i =
∑
i∈Z idim griFil•M .

Idea: We have M⊗k �
∧top

M , and FilnM⊗k =
∑
i1+···+ij=n Fili1 M ⊗ · ⊗ FilikM , and endow

the quotient filtration to
∧top

M . One way to check is that to write down M =
⊕

i∈ZM
i such

that FilnM = ⊗i≥nM i. Choose bases {e(i), . . . , e
(i)

dim griFilM
} for Mi, then

∧top
M is spanned by∧

i∈Z,1≤m≤griFilM
e

(i)
m .

Check that degree satisfies the degree axiom.

Choose K/K0 totally ramified, then K0 = W (k)[1/p] where k = char p is perfect (no need
alg closed). Look at C = MFφK → C′ = IsocK0

where MFφK is triples (M,φ,Fil•MK) where
(M,φ) ∈ IsocK0

and Fil•MK is a filtration on M ⊗K0
K. Rank is the obvious one, filtration has

usual conditions, and deg = −deg(M,φ) + deg(MK ,Fil•MK). Need target to be IsocK0 (cannot be
M itself, or else cant satisfy the degree).

Remark: Can also use MFφK → FilVectK for generic fiber functor, in this case, can take degree
to be deg(M,φ)− deg(MK ,Fil•MK), but target is not abelian.

Next define Category of Modifications.

Choose a point ∞ ∈ X, a closed point, and consider C := ModX,∞, containing (E1, E2, ξ), where
E1, E2 ∈ VectX (vbs) and ξ : E1 |X−{∞}

∼−→ E2 |X−{∞}.

Set B+
dR,∞ = ÔX,∞. Also, up to a Qp multiple, ∞ correspond to t∞ ∈ Bφ=p. Set BdR,∞ =

ÔX,∞[t−1
∞ ].

Consider Θ∞ : Ainf [p
−1]→ C∞, then B+

dR,∞ = lim←−
n

Ainf [p
−1]/(ker Θ∞)n.

There is a functor (E1, E2, ξ) 7→ ξ−1(Ê2,∞) ⊆ Ê1,∞[t−1
∞ ], where Êi,∞ = Ei ⊗ OXB+

dR,∞. This
induces an equivalence between ModX.∞ and category of pairs (E , Ê∞), where E ∈ VectX is a vb
(that is E1), and Ê∞ ⊆ Ê∞[t−1

∞ ] is a B+
dR,∞-lattice. Only works because working over dedekind

domain.

In other words, there is a unique E ′ ⊆ E |X−{∞} such that Ê ′∞ ⊆ Ê∞ and for all x 6= ∞ ∈ |X|,
we have Ê ′x = Êx.
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Fix K/K0, and write L = K̂nr be the max unram extn of K0 in K̂, and write F = K̂
[

. E
arises from an isocrystal M ∈ IsocL. Let Be = B[1/t∞]φ=1. Then (1) SpecBe = X − {∞}.
(X = Proj

⊕
Bφ=pd , and degree 0 with t∞ inverted is φ invariant.)

E = ˜⊕
d≥0(M ⊗L B)φ=pd , then (2) E |X−{∞}↔ (M ⊗L B[1/t∞])φ=1.

Observation: Ê∞[1/t∞] = ((M⊗LB[t−1
∞ ])φ=1⊗BeB[t−1

∞ ])⊗B[1/t∞]BdR,∞) = M⊗LB[1/t∞])⊗B[1/t∞]

BdR,∞ = M ⊗L BdR,∞.

Be ↪→ B[1/t∞] ↪→ BdR,∞. (Reasoning.)

So we have to find a B+
dR,∞-lattice.

What ∞ should we take? There’s a canonical choice because we started without [.

ΓK acts on K̂, so by functoriality of tilting, ΓK acts on F = K̂
[

. Concretely, K̂
[

= lim
←−

K̂ as

monoids, and RHS has ΓK action. So ΓK acts on Ainf = W (O
K̂
[). Then Θ∞ : Ainf [p

−1] → K̂ is
ΓK-equivariant, hence kernel is ΓK-stable. Can check that ΓK acts on B in a φ-equivariant way
(from action on Ainf), so ΓK acts on X. So we have a category VectΓKX of ΓK-equivariant vbs on X.
Concretely, it’s a category of pairs (E , {aσ}σ∈ΓK ) where ασ : σ∗E ∼−→ E with 1-cocycle condition.

So if (M,φ) ∈ IsocK0
, then E(M,φ) = ˜⊕

d≥0(M ⊗K0
B)φ=pd . There’s a ΓK action acts on second

factor (ΓK fixes K and hence on K0 so we are ok). So E(M,φ) ∈ VectΓKX . [[K wont embed inside
Ainf unless K/K0 is unram.]]

This gives a functor from IsocK0
→ VectΓKX . Look at modifications to include the galois data.

Consider ModΓK
X,∞ = (E1, E2, ξ) where E1, E2 ∈ VectΓKX and ξ is ΓK-equivariant isom. Then as saw

before, ModΓK
X,∞ is equivalent to the category of pairs (E , Ê∞), where E ∈ VectΓKX and Ê∞ ⊆ Ê∞[t−1

∞ ]

is a ΓK-stable B+
dR,∞-lattice. If E = E(M,φ), where (M,φ) ∈ IsocK0

, then Ê∞ ⊆ M ⊗K0
BdR,∞ is

a ΓK-stable lattice (and a trivial object in RepΓK (BdR,∞)).

Proposition. there’s a canonical bijection from ΓK-stable B+
dR,∞-lattices Ê∞ ⊆M ⊗K0 BdR,∞ to

filtrations Fil•MK on MK .

In other words, ModΓK ,cris
X,∞ = (E1, E2, ξ) ⊆ ModΓK

X,∞ where E1 = E(M,φ), for some (M,φ) ∈
IsocK0

, is equivalent to MFφK .

Proof. Bijection is given by the assignment: Ê∞ 7→ Fili
Ê∞

MK = (ti∞Ê∞)ΓK ⊆ (M ⊗K0

BdR,∞)ΓK = (M ⊗K0
BΓK
dR,∞ since ΓK only acts on second factor. To see this is well defined,

we have to check the following: BΓK
dR,∞ = K. Proof: B+

dR,∞ is a DVR with residue field K̂. Its
kernel is generated by t∞. We saw earlier on in the term that if χ : ΓK → Z×p is the cyclotomic
character, then K̂(χi)ΓK is K if i = 0 and 0 otherwise. Main point that becomes ΓK acts on t∞ via
the cyclotomic character χ. This is because elements of Bφ=p can be described as follows:

Choose α ∈ mF−{0}, then look at [1+α] ∈ A∞ and claim that |[1+α]−1|ρ < 1 for any ρ ∈ (0, 1).
With claim, we then have log[1 + α] (the usual power series) is

∑∞
n=1(−1)n−1([1 + α]− 1)n)/n ∈ B

(converges), and its image under φ is multiplication by p, so log[1 + α] ∈ Bφ=p. Take 1 + α = ε

where ε = (ζpn)n≥0 ∈ O
K̂
. Then
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[ε]− 1 ∈ ker(Θ∞) ⊆ Ainf . Then log[ε] ∈ ker(Θ∞) ⊆ B is a multiple of t∞. So we can take log[ε]

to be t∞. This then implies ΓK acts on t∞ via χ (because it does so on log[ε]).

With this, so B+
dR,∞ = (

⋃
i∈Z t

i
∞B

+
dR,∞)ΓK . But

0→ (ti−1
∞ B+

dR,∞)ΓK → (ti∞B
+
dR,∞)ΓK → K̂(χi)ΓK

but RHS is nonzero if i = 0. So unless i = 0, we have (ti−1
∞ B+

dR,∞)ΓK = (tiB+
dR,∞)ΓK . When i = 0,

middle is nonzero, but left is zero, so one can show that B+,ΓK
dR,∞ = K. This amounts to showing that

H1(ΓK , t∞B
+
dR,∞) = 0 (equivalently that H1(ΓK , K̂(χi)) = 0 if i > 0.

After all this, we show that Ê∞ 7→ MK . How to think about the inverse? It’s given by follows:
Take a filtration Fil•MK 7→ Ê∞ =

∑
i∈Z t

−i
∞B

+
dR,∞ ⊗K FiliMK .

One direction of inverse is easy: filtration to lattice to filtration is easy. (you do get FilkMK).
Other direction: Any lattice from inverse functor from a filtration is isomorphic to

∑n
i=1 t

ki
∞B

+
dR,∞

as ΓK-reps. Key observation: every Ê∞ is isom to such a lattice (or ΓK-rep). This is proved by
induction on dimM . 1-dim is fine... For induction, if 0 → M ′ → M → M ′′ → 0, and hit with
BdR,∞, then inside of middle we have Ê∞, and its image on the right and intersection on the left
both are ΓK-stable, and so by hypothesis looks like desired form.

The result comes down to seeing ker(H1(ΓK , t
i
∞B

+
dR,∞) → H1(ΓK , BdR,∞)) = 0. (trivial after

⊗BdR,∞ is trivial to begin with).

There’s a degree function on modifications, which is deg(E2). OnMF , the degree is deg(M,FilM)−
deg(M,φ), and upshot is they are the same. (wrong degree on MF , should be +).

Semistability notions: if {SλE2} is the slope filtration and {Sλ(M,φ,Fil•)} is too, then SλE2 is
obtained from Sλ(M,φ,Fil•) for any λ.

Show semistable of degree zero in MF
∼−→ ModΓK ,cris,ss=0

X,∞ . But RHS has that E2 is ss of slope
0 iff E2 = H0(X, E2) ⊗Qp OX . Since ΓK acts on the left, and ΓK acts on H0, so we can define a
functor from Mod → RepΓK (Qp), and to conclude, gets galois reps from MFK . Image in Rep is
actually RepcrisΓK (Qp), the category of crystalline galois reps. ss = 0 is classically weakly admissible.
This functor to reps is really where classification of vector bundles is needed to ensure the rep is of
the correct rank.

What would happen without classification? M ∈ MF maps to E1 = E(M,φ), and Ê2,∞ =

Fil0(M ⊗K0
BdR,∞ =

∑
i+j=0(FiliM ⊗ tj∞B

+
dR,∞). H0(X, E2) ↪→ H0(X − {∞}, E2) = H0(X −

{∞}, E1) = (M ⊗K0
B[1/t])φ=1. Patch in ∞ condition to get H0(X, E2) = (M ⊗K0

B[1/t]))φ=1 ∩
Fil0(M ⊗K0 BdR,∞).

What is this really though: if we have seen this before, then we’ll know: H0(X,OX(λ)) = Qp if
λ = 0, 0 if λ < 0, and inf dim if λ > 0. For example, H0(X,OX(1)) = Bφ=p, and from the fund
lemma 0→ Qpt∞Bφ=p → K̂ → 0. So H0(X, E2) is inf dim unless it’s ss of slope 0.
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Yet to be updated.
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