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August 27, 2018. Monday.

1. Motivation.

Let X be a smooth projective (algebraic) variety over C. Forgetting any algebraic structures, we
can associate with it a smooth compact manifold X (C), and we can look at its singular cohomology
H(X(C),Q) with rational coefficients. But the initial algebraic/projective structure on X equips

these cohomologies with a Hodge structure, ie.

H'(X(C),Q)®qC= @ H", where H”Y = HY(X, Q") with H"® = H%P.
ptq=i
p,q=>0

This structure arises from a comparison
Hp(X,Q) @ C = Hgg(X/C) = H'(X,Q%,c),

where we write Hj for singular cohomologies for clarity. We can think of this as taking forms on
the right and integrating them along the cycles given from the left hand side — illustrated by an
example very soon. This isomorphism is also nice since we are comparing topological and algebraic

data.

This becomes interesting when X is defined over number fields or even simply over Q. For the
sake of simplicity, let’s just suppose for a moment that X is defined over Q. Then we have the de
Rham complex 2%, already over Q, and the de Rham cohomology Hip(X/Q) = HY(X, Q% q) (we
can think of this as taking cohomology of the coherent sheaf Qx,q) with

HiR(X/Q) ©q C = Hir (X/C).
And so we have arrived at the comparison isomorphism
Hp(X,Q) ®¢ C = Hir(X/Q) ®q C.

In words, we have two vector spaces over QQ, for which after tensoring with C is naturally iso-
morphic. Let’s consider the example when X = G,,,. When i = 1, we can think of this isomorphism

as a pairing
Hl(Gma (C) X H&R(X/(C) —C
( O . [dz/Z] >:/ dz/z = 2mi
O
This is called a period for G,,. This concludes the story for C, and we move on to Q,.

We should think of C as completing Q at infinite place (yielding R) and taking its algebraic
closure. The infinite prime is as good as any other prime, p-adic Hodge theory is trying to mimic
the above for finite places. Let’s think about what happens when we naively replace C with @
for a moment. Topology isn’t good on left, since it’s totally disconnected. So here the appropriate

analogue of H% (X, Q) will be the p-adic étale cohomology.

Let’s start with the example where E is an elliptic curve over Q,, then we can look at E[p"] =
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{zx € E(Qp) : [p"]zr = 0}. We can then define the Tate module T,E = lim E[p"], whch is a

n
2-dimensional finite free Z,-module. Our analogue of H} is

Hét (E, Qp) = Homzp (TpE’ Qp)'

As an upshot, ' := Gal(Q,/Q,) acts on E[p"], so T,E is also a continuous representation of T

We will talk about how I acts on the various terms in the comparison isomorphism later.

Let’s go back to G, (over Q) even if it’s not projective because it’s simple. We would like to
compare H} (G,,,Q,) and H}z (G, /Qp).

We can describe H (G, Qp) as Homy, (1,Gm, Qy), where T,G,, = lim gy and ppn = {z €

n
X n

Q," :a?" = 1}. T acts on TG, and after dualizing, we get Homgz, (T,Gyn, Qp) which is a 1-
dimensional continuous representation of I', given by a character x, : I' — Z, satisfying v -z =
27" for v €T (on T,G,,). We can next identify the I'-action on T,G,, with Z, and see that
the action on Z, is given by multiplication by x,. Dualizing it, the action on Homgz, (T,Gn,,Q,) is

simply given as multiplication by x, L

On the other hand, H} (G,,/Q,) is a 1-dimensional Q,-vector space generated by [dz/z]. What’s
a natural isomorphism between H¢, and Hly then? First of all, Q, is not big enough — it’s not com-
plete, so let’s define C,, to be the completion of @p, which turns out conveniently to be algebraically
closed. Is there then a natural isomorphism after tensoring with C,? Or what does natural here

even mean?

To answer this, one way is to think about the I'-action — there is a I-action on both H} and
C, (but on H}y the action is trivial since HJy is already defined over Q,). We can then ask for
natural to mean T-equivariant. Hi (G, Qp) ® C, as a [-representation is isomorphic to Cy,(x, '),
a 1-dimensional C,-vector space with a I'-action given by v - a = x,(7)"*(ya) (o € C,) (we can
think of this as the usual Galois action with a twist by x,). Hig(G;,/Qp,) @ C,, is just C, with its

canonical I'-action.

Thus we are asking for a I'-equivariant isomorphism ¢ : (Cp(X; b = C,. This is equivalent to
specifying 0 # o = ¢(1) € Cp, with yoo = x,(7) ' for all y € T, or equivalently o € Cp(x;, )" —{0}.

This will be our analogue for 27i.

However, Tate proved the following

Theorem. (a) (Cg = Q, (ie. completion from Q, to C, does not introduce anything extra in terms
of T-invariants), and

(b) Cp(xp)" =A{0} forie Z—{0}. (cf. Tate twists)

And so there is no such a! One solution to this is to consider the graded polynomial ring Byt
(HT stands for Hodge and Tate), defined as

BHT = @ (CP(X;)
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along with a I'-action. Then there is a canonical comparison isomorphism
H (G xq, Qp, Qp) ®q, Bur —* Hir(Gin/Qy) ®q, Bur.

Tate next showed

Theorem. For an abelian variety A over Qp, there is a canonical I'-equivariant isomorphism

H (A xq, Qp, Q) ®q, Bur — Hir(A/Qp) ®q, Bur.

Moreover, this arises from a I'-equivariant isomorphism over Cy-vector spaces:
Hf}t(A XQ, @pa Qp) ® (Cp = (WA/Q,, & Cp(Xp)) SB) (LieA & Cp)

where w4 g, = H°(A, 9114/@?); A the dual abelian variety and Lie(ﬁ) its Lie algebra.

Note that there is a short exact sequence 0 — wa,q, = Hig(A/Qp) — Lie(;{) — 0, and we can
find a splitting (cf. Hodge Tate decomposition) thought it is not canonical.

Faltings then showed a geometric version for this theorem:
Theorem. For a smooth projective variety X/Q,, we have a I'-equivariant isomorphism

Hi(X xg, @pQp) ®Cp = P (HM(X,0%/g,) @ Co(x)-

m4n=i

Note that if we twist both sides by x,™, we get H"(X, Q}‘/Qp) = (HL(X xq, Qp,Qp) ®

Cp(x, ™))%, so Hodge cohomology can be recovered from the p-adic étale cohomology.
Fontaine then defined a complete DVR B(TR with

(a) residue field C,,

(b) maximal ideal Fil' Bj; € Bz,
(c)

(d)

a I'-action on it,
and a canonical uniformizer ¢ € Fil' B(TR (depending on the choice of compatible p-power roots

of unity),

and if we set Bgr := Bd+R[t_1] its fraction field, and Fil' Bqg = tiB;R7 then there is a canonical

isomorphism gr Bar — Byt with gr' Bar — Cp(x; ).

With this new construction, Faltings proved that the isomorphism from previous theorem arises

from a canonical isomorphism H{, (X xq, @p, Q) @ Bar — Hig (X/Qp) @ Bag of Bar-vector spaces.

Using first theorem of Tate, we find that Hip (X/Qp) = (Hi (X xq, Qp, Qp) ® Bar)" (recovering
de Rham cohomology), and the filtration Fil! H’; (X/Q,) on it can be recovered from (H, (X, Q,)®
Fil/ Bgr)" (cf. Hodge spectral sequence).

There is actually an additional hidden structure on de Rham cohomology, namely the Frobenius.
Grothendieck proved the following

Theorem. Assume that smooth projective varieties X, X' have good reduction, both with smooth
projective special fibre Xo/F, (after identifications if necessary). Then there is a canonical isomor-

phism between Hp(X/Q,) — Hiz(X'/Qp).



(In this theorem, Q, here is essential, as opposed to finite extensions of @Q,.) Frobenius on X

then endows Hig (X/Q,) with a canonical endomorphism ¢.

August 29, 2018. Wednesday.

Let’s take a finite extension K/Q,, then there is a largest unramified subextension Ky which is
generated by prime-to-p roots of unity. Take a smooth projective variety X over K. Let’s write X

for X@ for convenience.
2

Let’s recall what we have talked about. We have discussed two cohomologies H¢ (X, Q,) and
H!x(X/K), and T'x = Gal(Q,/K) acts on H} (this Galois action is rarely continuous). Hip is
a filtered K-vector space. Last time we have seen a result due to Faltings: there is a canonical
isomorphism

Hi(X xq, Qp, Qp) ® Bar = Hip(X/Qp) ® Bar.

There is a natural filtration on the right hand side: there is one on H, éR and one of Bgr, and hence
on tensor products. H}, has a trivial filtration, and this isomorphism also preserves the filtration.
We can recover the de Rham cohomology from Hig(X/K) = Fil’(H} (X /Q,) ® Bar)"'¥.

Last time we have ended with a result by Grothendieck; let’s try to generalize it to K/Q,.
Suppose that X has good reduction with special fibre X(/k (where k the residue field of K), so now
X is a smooth projective variety over k. We have the crystalline cohomology (a cohomology that

works in characteristic p) H! . (Xo/Ko) which is a Ko-vector space.

cris

This has an additional structure which arises from the Frobenius. We have a diagram

l r J
FP
Speck —— Speck

Here F}, is the Frobenius, and Fx, /, is the relative Frobenius: if Xo = Speck[T1, ..., T,]/(f1,. .-, fr),
then Xé”) = Spec[T1,. .. ,Tn]/(fl(p), ey T(p)), where fi(p)(T) =>d'Thif fi(T) = a;T".

On the other hand, let o : Ky = K be the Frobenius automorphism — it’s the unique automor-
phism satisfying o({,) = ¢? for all prime-to-p roots of unity ¢,, € K (recall that K is predetermined
by prime-to-p roots of unity).

With this, the additional structure on H?

cris

(Xo/Kp) is encapsulated in the following commutative

diagram:
) Fxo/n .
Hi (XS /Ko) — Hiy(Xo/Ko)
[l
) ¢
0" Hl o (Xo/ Ko)

Note that ¢ is o-semilinear.

Berthelot and Ogus proved

Theorem. There is a canonical isomorphism H! . (Xo/Ko) @k, K — Hig(X/K).
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Remark: Grothendieck showed that if [ # p, then there is a canonical isomorphism H'(X,Q;) =
H'(Xo, Q).

This isomorphism allows us to move properties on H'y to H. ;. (though we have to apply ®x, K.

cris

For example, I' ¢ acts on H, fiR via the gth-power Frobenius, and thus gives an action on the left hand

side as well.

There is a subring Be,is € Bgr with the following properties:

(a) BLE = K, (instead of K as suggested by Tate previously for Bgr), and

cris

(b) there is a Frobenius lift ¢ : Beris — Beris (ie. ¢ (mod p) is the pth-power map) with BTl n

cris

Fil’ Bar = Q, (cf. the fundamental short exact sequence).

These properties suggest the idea that Bg,s can only detect the unramified part, and taking ¢

invariants tend to make things nicer.

Faltings then proved the following

Theorem. There exists a canonical isomorphism
H}, (X, Qp) ®q, Beris = Heyis(Xo/Ko) ®xy Beris-

This isomorphism also respects

(a) the I'k-action (¢ ® g on the left and 1 ® g on the right),

(b) the filtration (a priori the filtration on Be,s is inherited from Bgr) after a base change to K
(for the filtration on H,;s to make sense via Berthelot-Ogus; also note that Bcs does not
contain K but only Kj), and

(¢) the o-semilinear map ¢.

We can recover crystalline cohomology from étale cohomology:
Héris(XO/KO) = (Hét(ya Qp) ®Qp Bcris)FK

as Ko-vector spaces: this is because the latter equals (H! ;. (Xo/Ko)® o, Beris)'* = HE 1 (Xo/Ko) @k,
BLX . Conversely, if we hit both sides by (—)?=' N Fil’(— ®p,,,. Bar), we can also recover étale co-

homology from crystalline and de Rham cohomologies:

H(X,Q,) = (H.i(Xo/Ko) @Ky Beris)*™* NFil’(Hig (X/K) ®k Bar).

cris

(We have secretly used the isomorphism by Berthelot-Ogus in the latter term.) (cf. Grothendieck’s

mysterious functor)

There exists a version of Berthelot-Ogus for the case semistable reduction, dealing with mon-

odromy over singularities.

Let’s define the category Rep(I'x) of continuous representations of ', on finite dimensional

Qp-vector spaces. Next we define the functor D5 which sends

V € Rep(I'x) = Deris(V) = (V &g, Beris)'®



For example, if V = H} (X,Q,) where X has a good reduction, we then recover Des(V) =
Héris(XO/KO)'

In general, D.,is(V) is a finite dim Ky-vs, with dimension dim g, Deis(V) < dimg, V. Let’s write
D := D¢,is(V) for simplicity. D has some additional structure:

(a) From ¢ : Beis — Beris we obtain a canonical isom o*D = D. In general, anything that does

not interact with I'x will be preserved.
(b) D C (V ®q, Bar)'® =: Dqr(V), which is a finite dimensional filtered K-vector space. So
D ®g, K inherits a filtration.

Define the category I\/IF?( of filtered ¢-modules over K, by
MF% = {(D, ¢, Fil* (D @k, K))},
where

(a) D is a finite dimensional K-vector space,
(b) ¢:0*D = D, and
(c) FiI*(D ®k, K) is a descending filtration by K-vector subspaces.

These objects are called isocrystals, and there is a complete classification of isocrystals by Manin.

Next we say that V' is crystalline if dimg, Deis(V) = dimg, (V'), or in other words, the equality

holds in the previous inequality.
Here are some examples:

(a) The trivial representation Q, is crystalline, since B(l;r’lfs = Ky and thus dimg, Deis(V) =
dime V=1

b) Q,(x%) is crystalline for any cyclotomic character.

p Xp y y Cy

(c) f n:Tx — Zy, then Qp(n) is crystalline iff 7 |, is unramified.

(d) By Faltings, the étale cohomology of any smooth projective variety X with good reduction is
crystalline.

(e) (Non-example.) The Galois representation of the Tate curve, an elliptic curve without good

reduction, is not crystalline.

Let’s write Rep,.;s(I') be the category of crystalline Galois representations. This category is
closed under reasonable operations such as tensors. Then the functor D5 to MF}#} which is fully
faithful. Now here is the important question: Can we describe its image? The answer is positive!
(cf. Hodge polygon and Newton polygon by Mazur) We define, for D € MFf{, the quantities
tn(D),tu(D) as follows:

(a) For dimg, D = 1:
(i) tz(D) is the unique i € Z such that gr' Fil(D @, K) # 0.
(ii) tn(D) = vp(a) where ¢(d) = ad, after choosing d € D — {0}.
(b) In general, we set t7(D) = t2(AY™P D) (where ? = H or N).



For example, in the second example previously, Deis(Qp(x})) = Ko with tx(D) = tg(D) = i.

We say that D is weakly admissible if t;; (D) =ty (D), and for all D’ C D (inclusion in MF‘;;7
so this inclusion respects filtration and ¢) with D’ € MF% (ie. D’ is stable under Frobenius), we
have ty(D') < tn(D').

Finally, Colmez and Fontaine proved

Theorem. D is in the image of Deis |Rep,,, (rx) iff D is weakly admissible.

September 6, 2018. Thursday.

2. Valuation Fields.

2.1. Complete Discrete Valuation Fields.
Recall that Q has a p-adic norm ||, : Q% — R+ where one sends = + p~*»(@)_ If 2 = r/s, then
vp(x) = vp(r) — vp(s). By convention we also set |0], = 0. This norm has a few properties:
(a) |z|p # 0 for x € Q*,
(b) [aylp = |z[ly|, and
(©) [z +ylp < max{|z[y, lylp}. Furthermore, if [z[, < [ylp, then |z +ylp = [y,-

In general, an extension K/Q is a p-adic valuation field if there is a multiplicative norm
||, : K* — Ry satisfying the three above properties, and in addition this norm has to restrict to

the ordinary |-|, on Q*.

We can look at the ring Ok ||, = {z € K : |z[, <1} C K. If the norm is clear, we simply write
Ok. This is a local ring with maxiaml ideal mg = {x € L : |z|, < 1}. Caution: This ring is not

necessarily Noetherian.

If [-[}, : K* — Ry is another such norm on K, then TFAE:

(@) [-lp = Il
(b) Ok )1, = Oy,
(©) O, € Oxc - [l

Any such norm equips K with a topology, where a basis of neighbourhoods of zero is given by
{U(r):r € Ryo} where U(r) = {x € K : |z|, <r}.

We say that K is complete if it is complete with respect to this topology. As a non-example, Q is

not complete for the p-adic norm.

However, any metric space admits a completion, using Cauchy sequences up to equivalence.

Hence we can complete a p-adic valuation field (K, |-|,,) to get (K, |-|,), where

K = set of equivalent classes of Cauchy sequences (z1,2,...) in K for |-|,

(1,22, )l = limfaa.

1One might need the fact that if z € KX, then either  or 7! is in OK | 1p-
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In particular, we can complete (Q, |-|,) to obtain (Qp, |-|,). For example, 1+p+p?+--- converges
in Q, to 1/(1 — p).

Every other complete p-adic valuation field contains a Q,: if (K,|-|,) — (L,]|-|p) is a map of
p-adic valuation fields with L complete, then we have K C K C L, where we embed K into K by

constant Cauchy sequences.

Proposition 2.1. Let (K, |-|,) be a complete p-adic valuation field, and let L/ K be q finite extension.
Then there is a unique extension of |-|, to ||, : L™ — Rsq, given by

]y = [Ny () |25

We will delay the proof till later.

In addition, is not true if K is not complete: consider the case where K = Q and L = Q(¢),

and let p = 5. Then there are two ways to extend |-|5 to L, namely

57'UF1(I)
x € Z[i] —
5_UF2(E)’

where (5) = (2+14)(2 — i) =: p1po.

Corollary 2.2. If L/K is Galois and K is a complete p-adic valuation field as before, and o €
Gal(L/K), then for any L, we have |z|, = |o(x)|,.

Proof. ||, and |o(-)|, are two ways to extend the norm on K. O

Corollary 2.3 (Krasner’s Lemma). Let o, 8 € L be such that |5 — | < |o(a) — «| for all o €
Gal(L/K) with o(a) # . Then a € K(8).

Proof. Replace K by K(8) and assume 8 € K. Then we just need to show that o € K. We
know that for any o € Gal(L/K), either o(a) = a or |o(a) — a|] > |3 — a| by assumption. Note
that by we know that |8 — a| = |8 — o(a)|, and hence |o(a) — a| = |o(a) =B+ — o] <
max{|o(a) — B, |a— 5|} = |a — B|. This means that the latter case cannot occur, thus o(a) = « for
all o, and o € K. O

Rephrasing [2.3] all conjugates of a € L are equally far away from elements of K.

Next we introduce the Hensel’s Lemma. We shall introduce a more technical version of it. First

we extend the norm on K to K[T], by defining

|q(T)|, = max|as|, where ¢(T) =Y a;T".

Let K be a complete p-adic valuation field as beforeﬂ Suppose that f(T), go(T), ho(T) € Ok |[T]

are such that

(a) f(T),g0(T) are monic,

2There are non-complete DVR’s for which Hensel’s Lemma stays true, and those are called Henselian. These
DVR’s still have the norm extension property!
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(b) [/(
(©) go(
Ok |t] such that |r(T)go(T) + s(T)ho(T) — 1|, = f < 1.

T) — go(T)ho(T)|p, =: @ < 1, and

T), ho(T) are relatively prime modulo the maximal ideal, or equivalently, there are r(T), s(T) €

Theorem 2.4 (Hensel’s Lemma). Under these conditions, we can find g(T),h(T) € O[T with

(a) g(T) is monic,
(b) |g(T) — go(T)|, <1 and |A(T) — ho(T)|, < 1, and
(¢) F(T) = g(T)N(T).

Verbally, Hensel’s Lemma is stating that once we have an approximate factorization, we can

tweak it to become an actual factorization.

Proof. The proof does not differ from the usual one — we will still use successive approximations.
Choose w € Ok, with |w|, = max{«, f} < 1. By induction, we can define ¢,,(T), h,(T) € O[T
such that

(@) gn(T) = gn—1(T), hn(T) — hy—1(T) € w" Ok [T,
(b) f(T) — gn(T)hn(T) € w1 OK|[T], and
(¢) gn(T) is monic.

We then define g(T') = lim g,,(T) and h = lim h,,(T'), which makes sense by completeness.

By hypothesis, n = 0 holds, so we proceed straight into the induction step. Suppose that we
have g;(T), h;(T) where 0 < ¢ < mn — 1 such that the three criteria hold.

Write f(T)—gn(T)hn(T) =: @"1q(T). From assumption (c) we have f(T) := ¢(T)—[gn(T)r(T)q(T)+
hn(T)s(T)q(T)] € wOk|T)]. Define

(a) sp11(T) = s(T)q(T)—gn(T)p(T) where p(T) is a choice made so that deg s,,+1(T) < deg g, (T,
(b) rn1(T) = r(T)q(T) + p(T)ha(T),

(©) gn41(T) = gu(T) + @™ 5041(T), and

(d) hps1(T) = ho(T) + @1 (T)

(
Then ¢(T) — [gn(T)7n+1(T) + hn(T)$n41(T)] = f(T) € wOk[T]. (yet to be fixed)

Corollary 2.5. Let L/K be a finite extension and o € L. Let the minimal polynomial of « be
mo(T) € K[T), and write mo(T) =T™ + ap_1T" 1 + -+ ag. Then
Ima(T)|p = max{lao|p, 1}
Proof. Tt i € {1,...,n—1} such that |ag|, = |ma(T)|, > max{1, |ag|,}, then a; *m(T) € Ok|[T]

and is irreducible. But
a; 'ma(T) = T'q(T) (mod mg)

so we can use Hensel’s Lemma to factorize m(T") in K[T], but this is absurd. (]
In particular, TFAE:

(a) ma(T) € Ok[T].
(b) « is integral over Ok.
(¢) ag € Ok.
10



(d) INp/k(a)|p <1 (because Ny, (a) = ag up to a sign).

September 10, 2018. Monday.

Now we are in a ready position to prove

Proof. First we show that || := |N(J:)|1[DL:K]

is a norm on L. The only real content here is to
show the non-archimedean property, ie. |Np,x(z +y)| < max{|Np, x(z)|, [N k(y)|}. Assume that
ly| < ||, then by replacing by 1, y by 1y, it suffices to show that INL/k(1+y)| < 1. This
is true iff 1 4+ y is integral over Ok, or equivalently y is integral over Ok, or in turn the same as

INL i (y)| < 1. So we are good here.

Next we show the uniqueness of such an extension of norms. Recall the fact that if |-[,, |-}, are

two norms, then O ||, € Op ., iff ||, = |-|},. Now it suffices to show that if z is integral over O,
then |z| < 1. Let’s look at m,(T) = T™ + -+ 4 ag. Then |z|" < max|z|*|a;|,, thus for some i we
have |z|"~% < |a;], < 1. O

Lemma 2.6. For a complete valuation field K, TFAE:

(a) mg is finitely generated.
(b) mg is principal.

(¢) Ok is Noetherian.

(d) Ok is a DVR.

If K satisfies any of the above equivalent conditions, we say K is in addition discrete.

Proof. This is a basic fact and thus left as an exercise. The only real ingredient is to prove that
(a) implies (b), to which we can start by assuming a is the one with the maximal norm among a

chosen set of generators of my. O

Before we proceed, we will from now on restrict our focus to complete discrete valuation fields
(CDVFEs). For simplicity, we also require k := Ok /mg to be perfect. Note that the property of
being a CDVF (along with k being perfect) is stable under finite extensions. E|

Definition 2.7. (a) A uniformizer wk of K is a generator for mKE|
(b) The ramification index ey x for L/K is the unique integer e such that mxOp = mg, or
equivalently, that @, O, = w{Op.
(c) The inertial degree f; i for L/K is [k : kk].

In fact, we have [L : K] = e /i fr/k. Furthermore, ey i = [L : K] iff k;, = kr, in which case
we say that L/K is totally ramified.

Totally ramified extensions are closely related to Eisenstein polynomials:

Theorem 2.8. [

3This uses the topological fact that if K is complete, then any finite dimensional K-vector space with a norm is
complete.

4Typer’s note: I shall try my best to restrict to the notation w for uniformizers, but 7 might also unintentionally
come up.

5To prove this, one might find the following exercise useful: Let © C L be a DVR which contains a generator
for L/K (as a field extension). Then O = Op. This in turn uses the fact that DVRs are normal, and so they are
integrally closed in their field of fractions.
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(a) If f(T) € K[T] is Eisenstein, then f(T) is irreducible in K[T|, and K[T|/(f(T)) is a totally
ramified field extension of K, with O, = Ok [T]/(f(T)).
(b) If L/K is totally ramified, then my, (T) is Eisenstein, and O, = Ok [wr].

Using this, we can exhibit a famous example of a totally ramified extension, namely L = Q({yn)
and K = Q,. One can check explicitly that ®,» (T + 1) is a Eisenstein polynomial, and thus (p» — 1

is a uniformizer in O, and O, = Zp[(pn].

September 12, 2018. Wednesday.

As per last time, we will assume that K is a CDVF (which by definition includes the assumption
that k = Ok /mg is perfect). If L/K is a finite extension, then L is a CDVF as well. We defined
the ramification index ey x and the inertial degree fr,x. Recall that L/K is totally ramified if
er/x = [L : K], or equivalently, kr, = kx. We saw last time if L/K is totally ramified, and @y, € L

is a uniformizer, then

(a) Mg, (T) € Ok|[T] is Eisenstein,

(b) Or = OxklwL].
The example to keep in mind should be where L = Q,({p») and K = Q,, where we can take
wp = G — 1.

Today we will look at the opposite case, where we say L/K is unramified if e, ,x = 1, or
equivalently, [kr, : kx| = [L : K], or mgOp, = my,. Our goal will be to characterize such extensions
in terms of the residue fields. In addition, in fact all extensions of CDVFs are obtained by first

adjoining an unramified extension and then a totally ramified extension.

Suppose that L = K(«) and m,(T) € Og[T). E| Then
O = Okla] = Ok[T]/(ma(T)) C Of.

We have a trace map Try, /i : L — K, which is defined by Try, /g (z) = Tr(z : L — L). From this we
get a trace pairing

<', > tLx L— K? (l',y) = TrL/K(xy)

For a finite separable extension L/K, this is then non-degenerate, because Tr(zz~!) = [L : K].

Lemma 2.9. We have

T ot 0 fo<i<n—w
. _
LIK\ i (@) 1 ifi=n—1.

Sketch of Proof of Lemmam Write f = m, and aq,...,a, be the Galois conjugates of a. For
any 7 =0,...,n — 1, we have the identity

/)

N f(T) o _ i
— Tfaif’(az)_T'

i=1

6 All finite separable extensions can be obtained by adjoining one element.
TWriter’s note: I have edited this proof to incoporate a proof I learnt from Dr. Jack Thorne.
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This is because both sides are polynomials of degree at most n — 1, and they agree at n points

T=oay,...,a,. Consider the coefficient of 7"~ on both sides to get the lemma. O

Corollary 2.10. The dual (0')Y = {x € L: (O, x) C Ok} is equal to m.,(a)~1O".

Proof. shows that m.,(a)~1O" C (O")V. Let {$3;}; be a dual basis of {1,,...,a""'}. Then
[2:9] says that we have

0o --- 0 1
atad CR T
Trr/x > =
( () i 0
* e *
Hence 3, = m/(a)™!, and one can see from the matrix that 8,_; € <Bn,...,,8n,(i,1)> +
m!,(a)71O’. Induction then gives {3;}; € m/ (o) 10O'. O

In fact, {-,-) : O x Op = Ok, and O’ C O C (O')V.
Corollary 2.11. If m/ (a) € (O0')*, then O' = O, = (O")".

Suppose that m/ (o) € Og[a]*. Then we have

(a) Okla] = Oy,
(b) L/K is unramified,

(¢) If M/K is another finite extension with a commutative diagram

(’)L/mL ‘L—[J) OM/mM

NS

OK/mK

then (¢ lifts to a unique embedding.

Proof. (a) is immediate. (b) Consider
Or/mgOL = Okla]/miOkla] = Ok[T]/(mx + (ma(T))) = K[T]/(Ma(T)).
One can show that g, (T) is separable (or even stronger that m/, (@) is invertible), and is irreducible
by Hensel’s Lemma. Thus Op/mg Oy is a field, and mxgOp, = my. (c) Exercise. O

Note that I/k is a finite separable extension, then [ = k[T]/(f(T)) where f(T) is irreducible and
separable. We can lift f(T') to a monic f(T) € O[T, then f(T) stays irreducible, and K[T]/(f(T))

is an unramified extension of K.
Proposition 2.12. (a) The functor
{L/K unramified extensions} — {finite separable L/K}, L+~ Or/mp,

is an equivalence of categories.

13



(b) In addition, if M/K is finite and L/K is unramified with | = Or /mp = O /myy, then there
is a canonical embedding

L—— M | —————1
\ / lifting \ /
K k
with M /L totally ramified.

In particular, if k is finite, then any extension of k is obtained by adjoining prime-to-2 roots of
unity, thus by the above this is also the case for any unramified extensions of K. Furthermore, we
can see in this case (where k is finite) that all unramified extensions are Galois (and in fact abelian).

In general, for any k perfect, there is a gadget named étale ¢-modules that studies p-power

extensions of k.

September 13, 2018. Thursday.

2.2. Dropping Discreteness, and the algebraically closed field C,.
Let K be a complete p-adic valuation field. This will be our assumption throughout today. Today
our goal will be to prove that
(a) K is algebraically closed, and
(b) Tk = Gal(K/K) acts on K, and we will show that its ' g-invariants are K.

Recall the following
Lemma 2.13 (Krasner). If L/K is finite Galois, and o, € L such that for any o € Gal(L/K)
with o(a) # a and |8 — o] < |o(a) — o|, then o € K(B).
Proof. Replace K with K(). For any o € Gal(L/K), we have |o(a) —a| = |o(a) =+ —«a <
o = 8. O
As a consequence, if « is algebraic over K, my(T) € K[T], then for any monic ¢(T') € K[T] “close
enough” to mq(T), we have
(a) ¢q(T) is irreducible, and
(b) « is contained in the extension of K generated by a root of ¢(7T).

Or if one prefers, it can be rephrased as: if «, S are algebraic over K and mq(T), mg(T) are
“close enough”, then K(«) = K(8). In addition, if a polynomial f(T) is irreducible and another
g(T) is close enough to f(T'), then g(T) is irreducible too. So in some sense irreducibility is an open

condition.
Now we are ready to prove
Proposition 2.14. K is algebraically closed.

Proof. If « is algebraic over K, then m(T) € K|[T] can be approximated by ¢(T') € K[T]. But
q(T) has all its roots in K, so does m (T). O

Let’s consider the following more interesting
14



~I'k

Theorem 2.15. We have K =K.

_ — — = ~
More concretely, this is saying that if F C K, 'y := Gal(K/FE) C Gal(K/K), then K ")
For this we will need a clever lemma.

Lemma 2.16 (Ax-Sen-Tate). Let E/K be a finite extension and let o« € K, and

Ap(a) = UEF;I}&(};)#JU(Q) —al.

Then there is C > 1 which is independent of a, and exists a € E such that o — a| < CAg(a).

is assuring that for any o € K, there is always a € E such that a and « are “nicely” close.
Assuming [2.16] it is then easy to prove

~I'g

Proof of|2.15. Pick B € K . For any n > 1, there is a,, € K such that |8 — ay,| < 1/n (simply

due to completion). Thus for any ¢ € T'g, we have

|o(an) — an| < max{[o(an) = B, [ — anl} = lan = B] < 1/n

since |o(ayn) — B| = |lo(an) — o(B)] = |an — B]. Thus Ag(ay,) < 1/n. By lemma, there is o, € E
such that |oy, — a,| < C-1/n. So 8 =lima, € E. O

Proof of. Let i € Z( and define C; = p'/®" "' (=) Then define C := 2, ¢ = pp/ (P=1)°
We will show that there is @ € F such that |a — a| < (Hi(:nl) C;)Ag(a) where l(n) = max{i :
|deg mq,5/p’| # 0} (where n = degma k).

We proceed by induction on n := degmq, g. If n = 1, this is trivial. In general, write f(T) :=
mea,5(T) € E[T]. Consider

9(T) = f(T +0) € B@[T] = T" 4+ T + - + arT.

This has zero constant term since f(a) = 0. Consider ¢'(T)/n =T" ! +---+a;/n. This hasn — 1
roots, say Yi,...,Yn—1. We have |y1 -+ v,_1| = |a1/n|. But |a1] < Ap(a)™~! (this is the sum of

product of n — 1 nonzero roots of g). So |a1/n| < |n|"!Ag(a)”"1. So there is iy such that
io| < In|7/ "D Ap(a).

Write § = 7, +a. Then f(8) = ¢'(7i,) = 0 and |8 — a] < [n|~"Y/ =D Ap(a).

Applying hypothesis to f’, there is b € F such that o — (b—;,)| = |8 —b| < (Hé(:"l_l) Ci)AE(B).
But also |3—0(8)| = |8—a-+a(a)—a(8)| < max{|8—al, lo(@)~(B)|} = |8—al < [n|"Y/"~VAk(a).
But this is not good enough (eg when n = p¥).

To fix this, we have to look at higher derivatives and apply the same idea. Write n = p"d where
either (d,p) = 1,d > 1 or d = p. Write ¢ = p". Repeat the same argument, but now look at
hT) = fUT + ) - (n — ¢)!/n! € E(a)[T] to make it monic. The constant term is (2)71%. The
point: (Z) cannot be very large! Show that under these hypothesis, |(Z)| is either p~! if d = p, or 1

otherwise.
But |a,] < Ag(a)” 7 and so h(0) < Ag(a)" 7 if (d,p) = 1, and pAg(a)* 7 if d = p. So

there is v such that h(y) = 0, equivalently f(9(y + ) = 0, such that |y| < Ag(a) if (d,p) = 1,
15



or pt/"=DAg(a) if p = d, but pt/=9 = C,;;. And f =+, so Ag(B) < Cri1Ap(a). Use
hypothesis. ]

September 17, 2018. Monday.

Let K be a complete p-adic valuation field. Last time we showed that if K C E C K and
_ ~T ~ ~
I'g = Gal(K/E) C Tk, then K “ — E. In the case where E/K is finite, then E = E in addition.

Consider the case where K/Q, is finite. Write K, for the maximal unramified subextension.
XT’(U)71
Jo

n > 1. This governs the I'x-action on the p-th power roots of unity. In particular, we can restrict

Suppose we have a cyclotomic character x, : I'g, — Z,; determined by o ((yn) = for all

P

Xp to K, by which we mean to look at x, |r,. Write C, = @p. We will be primarily interested in
Cp(x)'™ :={z €Cp: forall 0 € Tx,0(x) = xp(0) '}

Note that

(a) we write ¢ instead of —¢ for the index, and
(b) the superscript does not exactly mean “fixed by I'x”, but rather fixed with a twist. (This is

what x/, means.)

Theorem 2.17 (Tate). For a finite extension K/Q,, we have

€0 = {K ii=0,
0 otherwise.

Remark: This is a special case of a theorem of Tate, which says that for any n : ' — Z,
we then have C,(n)'% = 0 unless 7 |;, has finite image, where Ix = Gal(K/K"") with K" C K
being the maximal unramified subextension. More explicitly, K™" is the extension of K adjoining
all prime to p-th power roots of unity. This general statement is too elaborated to prove, so we’ll

focus on our simpler case.

We have also proved the case ¢ = 0 in the previous lecture, so for what remains, we will focus on

the latter case.

Here is our upshot: unramified and totally ramified extensions are always linearly disjoint. So a

cyclotomic character when restricted to K is still non trivial.

Proof of [2.17 First assume that Ky, = K, ie. K is unramified. In this case, for all n > 1, we

have
Qp(Gpr) N K = Qp,
or for what is the same, [K((pn) : K] = [Qp(¢pn) : Qp]. The polynomial ®,» (T + 1) is still the

minimal one over K and Eisenstein, and so we still have Ok (¢,.) = Ok [¢p] by the correspondence

between Eisenstein polynomials and totally ramified extensions.

Equivalently, let’s make the following observation. Suppose we have fixed a compatible sequence

of choices for (pn. If we set K,, = K((n) and Ko = U2, K,,, then every element x € Oz~ has a
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unique expression of the form
T = Z ar(z)e,
re p%.ozm[o,n
where a,(r) € Z, (or equivalently a compatible sequence of elements in Fjn) and e, = (;. where
r = s/p" in lowest terms. However we do note that not all such things are in (9}/{; : ar(x) needs to

“go smaller” to get a convergent sequence and for = to make sense.

Pick 2 € Cp(x},)"% C Cp(x}) . First we observe that x € K. Indeed, for any o € Tk, we
have o(z) = xp(0) "'z but x,(c) = 1 since T = ker(x, |r ). So 2 € Cp"> = K, by

We can WLOG assume x € Oz, so we can write x = ) a,(z)e,. Then for all o € Gal(K./K),

= gl

we have o(r) = }_ a.(x)o(e,); and for &, = (;n, we have o(e,) = €y,(o)-1r- TLhis

notation is fine, because x,(0)~! € Z,* will not interfere with the denominator in r = s/p™.

So o(z) = > ar(x)o(e,) = Zar(x)axp(a)ar = Zaxp(a)r(m)sr and o(z) = x,(0) i (z) =
> xp(0)"a.(x)e,. Equating, this is saying that for any r, we have

Xp(0) " ar(2) = ay, (o)r(2)-

P
b~%a,(z) = ap-(z). On the right hand side there are finitely many possibilities: when 7 is fixed, the

But x,(0), as o varies, can be any element of Z,’. So we are saying that for any b € Z,, we have
denominator is then fixed, and br does not change the denominator of r, so there are only finitely
many choices. But there are infinitely many possibilities on the left: again, K is unramified so x,

surjects onto Z,. Thus this condition fails horribly! This proves the case when K is unramified.

In general, we have shown that C,(x,)" %o = 0if i # 0. If z € C,(x},)", first it suffices to show for
the case assuming K is Galois over Q,,, since if L/K is the Galois closure, then Cp,(x5)"* C Cp(x5)" .
Let’s look at the extension K/Kj. Take {o1,...,0.} C ', which is a set of coset representatives
for Gal(K/Ky) = 'k, /T'k, and define y = [[ 0;(x). In general y depends on {c;};, but the Q,-line
of y is easily seen to be well defined (and independent of {o;};): if o; is replaced by o} + o where

%

o € 'k, then o acts on = by multiplication by x,(c)~".
Then one can check readily that

(a) the Q,-line generated by y in C, is 'k, -invariant (a general feature of the averaging process),
and
(b) fixing o € 'k, and a coset representative o,, we have oo, = 04,04, for some o, € T'k,. This
gives
Xp(0a6) " = Xp(05) Xp(0) " xp(00) 7"
Hence o(y) = xp(0) ™"y

In other words, given z € C,(x})'*, we have cooked up y € Cp(xi)"*0. This reduces the

problem to unramified case. But we showed that C,(x)"*o is zero if i # 0, forcing z = 0, so we

are done. O

September 19, 2018. Wednesday.

17



3. Formalisms and Setups.

Today we will set up the formalism of the Galois representations we will be interested in.

3.1. Admissible Representations.
Let T" be a group and F' be a field of characteristic zero. Let B be a ringﬁ which has a I'-action

on it. We require

(a) B to be a F-algebra and the I'-action to be F-linear,
(b) this I'-action to preserve the ring structure, and

(¢) B to be a domain with no non-trivial I'-stable ideals. This will be our main assumption.

At this stage, we can think about it as if B with this I'-action structure behaves like a field.

Let M be a B-module with a compatible I'-action, ie. for any v € I'ym € M,b € B, we have
v(bm) = y(b)y(m).
Then we can look at M, := M ®p Frac(B). Consider
Repp(B) = { projective B-modules with a I'-action of finite rank }.
and the functor from this to Repp(Frac(B)), sending M +— M,,.

Lemma 3.1. This functor is fully faithful.

In particular this means that any map from M, — N, comes from M — N, or Hompgpj(My, M>) =
Hompyac(g)(r) (M1, Ma,y). Note that Homgpj(My, Ma) = Homp (M, M2)" and Hompyae(s)r) (M1, Ma,,;) =
HOIHB(Ml,Mz)g.

Proof. Let M" = {m € M : ym = m for all v € I'}. This maps to M := (M,)". We claim that

this is a bijection.

Indeed, suppose m € M} —{0}. Consider {b € B :bm € M} C B. It is easy to check that this

is a nonzero I'-stable idealEI So this ideal is all of B, and in particular m =1-m € M.

If My, My € Repr(B), then Homp (M7, M) = My ®p Ms is also a projective B-module of finite

rank, which also has a natural ['-action, given by (vf)(m) = v(f(y~"'m)). Moreover, as we noted

previously, Homp (M7, M>)'' = {T' — equivariant f : M; — M5}, so we deduced that
HOH?[B(Z\417 MQ)F = HomB(Ml, Mg)g

and we are done. O

In light of this, if we let K = BT, then K = (Frac B)'', and K is a field, since for example if z is

I-invariant, then so is =1 evidently. Next we will look at

Repr(F') := { finite dimensional F-vector spaces with a I-action }.

8 All rings in this course will be commutative.
9Keerthi claims this argument only requires M to be torsion free as opposed to M being projective, but it seems
to me that we can even drop this assumption.
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This notation for good reason should be compatible with the previous one and indeed it is. Let us
define a functor
Dp : Repp(F) — Vecty, sending V — (B@p V)F

where I" acts on the right by v(b ® v) = v(b) ® v(v).

Proposition 3.2. (a) Dp = Dgyac g as functors.

(b) We have the inequality

with equality iff
apy : B ®k DB(V) — BrpV, sending b® (ij & ’Uj) — bej Q@ vy

18 an isomorphism of T'-equivariant B-modules. Here I' acts on B in the usual sense and on
Dg(V) trivially on the left.

Let us make two remarks before we proceed.

(a) ap,y being an isomorphism is equivalent to saying that B @ V = B¢ as objects in Repp(B),
with d = dimg DB(V)E This is in turn the same as saying that B @ V is generated as a
B-module by I'-invariant elements in it.

(b) It’s good to keep track of how we will use this formalism practically. In our future use, F' will
usually be Q,, and I' will be a Galois group, which comes with a profinite topology, and we

might require the representations here to be continuous.

In light of remark (a), it’s good to make the following definition: let M € Repp(B). We say that
M is trivial if M is generated as a B-module by M'. Then the equality holds in (b) it BopV

is trivial in the above sense.

Proof of. We have already shown (a). For (b) we must show dimg Dpyac(p)(V) < dimp(V),
and it does no harm to assume that B is a field sine we can replace B by Frac B in both assertions.
Indeed, specifically for the equality assertion, by full faithfulness from we see that apy is an

isomorphism iff aprac B,V is an isomorphism.

Given now B is a field, I claim that ap v is always injective. Indeed, suppose z1,...,z, € Dp(V)
are linearly independent over K with > b;z; = 0 being a minimal linear dependence over B. We
can WLOG assume that by = 1, and we can also assume b € B — K, so there is v € T such
that v(bg) # ba. We hit this linear dependence with v to get 0 = y(>_ b;xz;) — Y b;x; which is a
nontrivlal linear dependence with fewer terms, giving a contradiction. This proves dimg Dg(V) <
dimp (B ®r V) = dimp(V).

Equality holds here iff B&x Dp(V) and B&p (V) have the same dimension over B, but injectivity

shows it’s an isomorphism as finite dimensional B-vector spaces. O
Rephrasing, for V' € Repp(F), the following are equivalent:

(a) apv is an isomorphism.

101t’s easy to see that taking I-invariants in B gives K¢, and this gives B?% once again after tensoring with B.
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(b) dimK DB(V) = dimF V.
(¢) B@pV € Repp(B) is trivial.

If any of the above conditions holds, we say that V is B-admissible.

Here’s an example. Let F' = Q,, and let K/Q, be a finite extension, I' = I'x and B = C,,.
Last lecture we showed that Q,(x}) € Repr, (Q,) is Cp-admissible iff i = 0, since B = K by
the Ax-Sen-Tate lemma. In general, a continuous representation of I'k is C,-admissible iff inertia
subgroup of I'k acts through a finite quotient (a result due to Sen), generalizing Tate’s theorem on
characters.

Next time we will see that B-admissible representations have some nice properties, and are stable

under dualizing.

September 20, 2018. Thursday.

Last time we started with F' a field of characteristic 0, B a domain which is a F-algebra, and T’
a group acting on B linearly. We had the assumption that B has no nontrivial I'-stable ideals. This
always holds when B is a field.

We defined the category
Repr(B) = { projective B-modules M of finite rank with a compatible I'-action }.

Then we had a fully faithful functor M +— M, from Repp(B) — Repp(Frac B). We defined K =
BY = (Frac B)' and we looked at the functor

Dp : Repp(F) — Vectg,V i (Bor V)L

We had the proposition which asserts that

(a) DB = DFracBa and
(b) apyv :B®k Dp(V) - B®p V is always injective, and is an isomorphism iff dimg Dp(V) =
dimF V.

Towards the end, we defined that V' is B-admissible if a g is an isomorphism, or equivalently
if dimg Dp(V) = dimp V. We write

RepZ (F) for the full subcategory of such B-admissible V’s

B can be thought of measuring how complex the representations of V' can be.

Proposition 3.3. We have
(2) Repr (F) = Repr ™ (F).
(b) RepE(F) is closed under the following:

(i) subrepresentations and and quotients.
(i) tensor products.

114Full” means we do not change the set of morphisms.
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(iii) dualsH

(¢) The functor Dp : Rep? (F) — Vecty is faithful, and respects tensor products and duals

Proof. (a) is clear. For (b)(i), assume that we have an exact sequence 0 — V; — Vo — V3 — 0 in
Repp(F) with Vo B-admissible. Hit it with B ® p — to get another exact sequence 0 -+ B ®@p Vi —
B®p Vo — B®p V3 — 0in Repp(B). Now take I'-invariants, which is a left exact functor, to get

0 — Dp(Vi) = Dp(Va) = Dp(Vs)
which is exact in Vecty. Hence
dimp va = dimK DB(VQ) S dimK DB(V1) + dimK DB(V&) S dlmF V1 + dimp Vzg = dlmF va

This forces equality everywhere. For (b)(ii), pick V;,V5 € Rep?(F). Consider Dp(V; ® Vo) =
(B®r (V1 @F Va))''. We know that

Dp(V1) @k Dp(Va) C(BRr V1) ®p (B®r V2) 2 BRp (V1 @p Va).

The inclusion is injective, and so we have a canonical injective map from Dgp(Vi) @ x Dp(V3) —
Dp(Vy ® V). But this implies

dlmF(V1 ®F VQ) = dimF V1 dlmF ‘/2 = dlmK DB(Vl) dimK DB(‘/Q) S dimK DB(‘/l ®F ‘/2)

We always have the reverse inequality, so we are good. For (b)(iii), pick V € Repf (F). First assume
that the dimp (V) = 1. This means that there is x : I' — F'* such that for any v € V,v € T', we
have v - v = x(vy)v. Dp(V) is spanned by an element b ® v, where for it to be I'-invariant, we have
y(b) = x(7)~tb for all v € I'. Consider b~! € Frac B, then v(b~1) = x(7)b~L. If ¢ € V¥ — {0}, then

Y @)L @v) = x(Mb o) =0T @ d(1@ ).

So we exhibited a nonzero element in Dpyac 5(V'Y), proving that dimg Dppac p(VY) > 1 = dimp(V).
So V'V is Frac B-admissible, and it’s B-admissible (and so b=! € B).

In general, for d = dimg V > 1, first we observe that A%V is B-admissible, for this is a quotient
of ®%.V. We also observe that det(V") = AYVY 2 det(V)Y = (A?V)Y is also B-admissible, using

our previous one-dimensional result.

There is a perfect pairing

d—1 d
/\V@FV—>/\V=det(V), given by (v1 A+ Avg_1) @V = vy A+ Avg_1 Av.

Hence we can identify V¥ =5 ALV @p det(V)Y, which is B-admissible too

We leave (c) as an exercise. This is quite similar to the proof of O

121n the literature, usually this is the main assumption that is made, instead of our assumption we had on B. In
other words, the assumption is that if b is acted on via a character, then b~ is also in B.

13This functor cannot possibly be full: morphisms on the left form a F-vector spaces, and morphisms on the right
form K-vector spaces.

4 Writer’s note: Keerthi jokes that he can never get around why this proof works, and while editing this I can only
say the same, though I have the same feeling for plenty of other proofs.
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3.2. Gualois Descent and Faithfully Flat Descent.
Now let’s assume that K/F is a extension of fields and B = K. Let I'x = Gal(K/K). We'll

always reserve the notation I'y for this Galois group.

Theorem 3.4 (Hilbert 90). We have

RepkX (F) = { finite dimensional representations V/F of I'k }
Pry | on which the action is through a finite quotient J

Proof. Suppose that V € RepF?K (F). Then
Oé?’v : F@K Df(V) l} ?®F V.

Fix bases {v1,...,vq} for V and {ws,...,wq} for D%(V). Then we can write v; = Y a;;w;, and if
A := (a;j), then since there are only finitely many entries in A, A lives in My(L) (d-by-d matrices

with entries in L) for some finite extension L/K.

By construction, if v € I'g, then « fixes V. Indeed,

v(vi) =7 Zaijwj = Z’Y(aij)")/(wj) > ai)w; = Zaijwj = Vi

So the kernel of the I'kx-action on V' contains a finite index subgroup I'y,. This proves the inclusion
of the left into the right.

The other inclusion amounts to Hilbert 90 and Grothendieck’s proof of it (hence the name of this
theorem). Consider the finite Galois extension L/K, where I' = Gal(L/K) is the supposed finite
quotient and B = L. Then by definition

Repr(L) = { L-vector spaces M acted on by I = Gal(L/K) },

and there is a functor

Vecty — Repp(L) given by V= L ®g V.

Note that I acts on L ®x V by v({ ® v) = y(I) ® v, since V is defined over K. One formulation of
Hilbert 90 then says that this is an equivalence of categories, with inverse M — MT = MGal(L/K),
(cf. Galois descent)

For this we must show for M € Rep(L) where I' = Gal(L/K), we have L ®x MT = M. This
map is always injective, with the same essential proof from last time exploiting a minimal linear
dependence and hitting by v € I'. So it is enough to show that the natural map L @x MT — M
is an isomorphism, which we can do so after tensoring with L over K. This means we can check
whether

Loxg Log M" - Loxg M

is an isomorphism. Notice that L ® g L is isomorphism to L= 11 yer L as L-algebra, where one sends
L1 ®ly — (Liy(l2)). T acts on Lk L only in the second copy of L. To make this equivariant though,
we have to endow the right with a not-so-typical I'-action: think of L as functions f:T"— L, and
endow the action vf(-) = f(-v). In other words, v - (ay), = (ay),~-1. Note that L embeds into

L diagonally; and that L is not a field — one should not expect any less with L ® g L.
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Since the I-action on L has kernel L, it descends onto an I'-action on Z/ L. Let’s consider
Repp(L) = { finite free L-modules M with a compatible T-action .

We have a functor Vect;, — Repp(L), sending W+ L @, W. Next time we will see that this is

an equivalence with an inverse M — M?T, where a priori we can write M = nyel“ M.,,. Here M, is

a L-vector space with a I'-action by vo : My — M, lm — v ({)y0(m).

September 26, 2018. Wednesday.

Today we will assume that K is a field of characteristic 0, and let K be its algebraic closure.
Let I' = Gal(K/K), and K/F an extension of fields. Last time we claimed there is an equality of
categories

Rep?(F) = {V € Repp(F) : T acts on V via a finite quotient }.

We proved the C inclusion. For the other inclusion, let’s look at the following abstract situation.
Let T be a finite group, A a commutative ring, and tile A-algebra A= llyel‘ A, icted on by I
using the description from last time. A embeds into A diagonally Let M be a A-module with
a compatible T'-action. Since we have idempotents in A, namely 1 at one entry and 0’s at the

remaining entries, we can always hit these to M to break up M= II M.,. Explicitly, we have an

~el
isomorphism M., = M., -1, with the following compatible diagram for group action.

M, —=— M,

\M}

—-1_-2
YY1 V2

Consider M" which consists of elements {(v(m1))y : m1 € M;}. In otherwords, once m; € M; =

M;q is fixed, we can uniquely determine a element in MYV T claim that the natural map
A®a M" = M, (aw)v ® ('Y(ml))v = (a77<m1))v

is an isomorphism. We leave this as an exercise for the readersE This is completely generall We

have imposed none of the finiteness, freeness or projectiveness (etc.) conditions.

There’s another way to think about the above isomorphism. Consider the composition of maps

A(‘”"(a)w AV (ay)y—raz A.

This composes to identity. If I = ker(r : A — A), then M; = M/IM, and the above is saying
that we can break up A=Ao I, and similarly M = My & I]T/f, and since M; = MF, we have
T N/INT = 0T,

151t’s useful to remark at this point that A embeds into A diagonally, and we can also retrieve A from as a quotient
by projecting onto A;4;. We'll see this soon.

16Writer’s note: I have worked it out, and the proof that I have goes something like this. So we can assume a
minimal linear independence, and all the a; ;4 = 1 by altering my’s. This will force a; ;g = a;, = 1 for all v € T".
Then we can “factor out” 1 ® — to see that the original element (which a priori is a sum of m’s) in M' has to be
(0,0,...,0) already. This proves injectivity. Thinking about surjectivity...
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In any case, let’s restrict our focus on where we were previously: L/K is a finite Galois extension,
and I' = Gal(L/K); M is a L-vector spac@ with a compatible I'-action. Then Hilbert 90 says
L ®x MV =5 M. Let’s see why this is true.

We have a natural map ar v @ L ® MY — M. We can regard o as a map of K-vector
spaces, then we can tensor up to L and check whether 1 ® ay, ar is an isomorphism. We can write
L®x M =(L®k L)®, M, in which L ®x L = L.

As suggested, consider 1 ® oy, as : L®; (L@ M") — L®; M. By what we have established in
the general theory, it suffices to show that L ® x MT = (Z @ M)' |'8] for which we claim it is true.
This is not difficult to check, so we again leave it to the readers. This concludes the proof of [3.4] O

Let’s package all of these up one last time: consider the exact sequence

0= MT — p 22O Ay gy,
yer

Tensoring with L over K, we will get another exact sequence

0 — > LR MY — L@ M —— L ®g @M
~ver
[ [ [

0—— (Lo, M) ——~ Lo, M — P (Lo, M)
yel
We note in the rightmost equality we have exploited the fact that @ distributes over a finite

direct sum. In full generality we would have needed some extra condition on I'.

This is all from a gadget named faithfully flat descent. The property that we used is that
we can check isomorphisms after tensoring up to a larger field, in which things simplify and so the
verifications are nice and easy. In general, suppose we have a map of rings R — .5, the correct analogy
is faithful flatness. We say that S is faithfully flat over R if the following holds for all R-modules
My, Ms: a morphism f : My — M of R-modules is an isomorphism iff 1 ® f: S®r M1 = S®gr M

is an isomorphism of S-modules. For example, field extensions are faithfully flat.

Here are some observations that we can make:

(a) The following are equivalent@
(i) S is faithfully flat over R.
(ii) S is flat as an R-module, and Spec .S — Spec R is a surjective map of schemes.
(b) If R — S is a map of local rings, then S is faithfully flat over R iff it is flat over R.
(¢) Thus in particular, if L/K is an extension of p-adic valuation fields, then Oy is faithfully flat

over O.

We will talk more about faithfully flat descent next time.

17Previously we restricted ourselves to finite dimensional L-vector spaces, but in fact we can drop this assumption.
The idea is that once we have picked, say, a linear dependence, which is a finite sum, we can immediately restrict
ourselves back to a finite dimensional case.
~ 18Remark: If we trace the L’s correctly, we will see that I" does not act on the L on the left here; and acts on
L ®1, M diagonally

19A reference for this is Atiyah & Macdonald, Exercise 3.16.
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September 27, 2018. Thursday.

Let’s continue our discussion faithfully flat descent. Let’s recall our setup, where we have a map
of rings f : R — S, and a base change functor Modr — Modg given by M — f*M = S ®pg Mm
We would like to describe the image of this functor. More explicitly, given a S-module N, how can

we detect whether IV is coming from a base change of a R-module M?

The simple example we should keep in mind throughout this discussion is the case where f :
K — L and L/K is finite and Galois. The base change functor is given by Vectx — Vect; with
V—LegV.T'=Gal(L/K) acts on L ® V on the first coordinate, endowing L ® g V an extra
structure for us to exploit. Thus the functor factors through Vectx — Repp(L); and as mentioned

last time, taking I'-invariants provide an inverse to this functor.

Let’s start with an observation. Suppose M = f*N, where N is a R-module and M a S-module,

then it has the following property: there is a canonical isomorphism aj; of S ® g S-modules.

~

Qo M ®pg S - S®r M
Il Il
(S®r N)®g S S®r(S®rN)

\ /

(S®rS)®r N

Both sides have an S®pg S-action. More explicitly, (S®g.S) acts on M ®@p S via (s1®s52)-(m®s) =
s1m®s9s, and on S®r M by s158® sgm. The isomorphism «y, is thus saying that these two actions

are compatible.

Here’s an alternative method to think about the isomorphism a;. We are given apyy : M@gS —
S®pr M, and two maps ¢1, ¢ : S — A of R-algebras. Then we have a map ¢ := ¢p1R¢o : SQrS — A.
There are two ways to pull this back to maps from S, namely via j; :=1® s and js := s ® 1.

j1=(s—1®s) P

S { S®rS — A
jo=(s—>s®1)

Then the isomorphism ays : M ®r S =+ S ®g M is saying that j7M = j3M. Taking ¢* now
will give another commutative diagram
M ———> ¢ j5 M
I I

o1 am(¢1, ¢2) %2

Here j1, jo should be thought of as a universal pair of such maps, ie. if we are given an isomorphism

for this pair of maps, then we have virtually given an isomorphism for all pairs as shown above.

Again, an example to keep track of things in mind is the Galois case. If 71,y € T', then we have

two maps 71,72 : L == L . If M € Vecty, then there is an isomorphism a(vy1,72) : viM — v3 M. In

200ne should think of f* as pulling back of coherent sheaves, so in short on the level of modules f* “does not really
behave like a pullback as it might seem” on a naive level.
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particular when 72 = 1, then we have fixed an isomorphism v; M = M, ie. L ® Ly M — M. This

data is same as saying 7y induces an isomorphism M — M and is y;-linear, ie. v1(Im) = 1 (1)1 (m).

Furthermore, consider the following situation: if ¢, ¢2, ¢3 : S — A, then we require it to satisfy

the commutative diagram (let’s call it (x) for convenience)

am (b1, P2)
PTM = o5 M

04M(¢2,m ZMO‘M(QE, ?3)

¢3M

In the Galois example, this simply translates to the fact that the automorphism v : M = M

with v € T" varies form a group action.

In any case let us move on. Here is the upshot. If the starting map f : S — R is already faithfully
flat, then the observaton that we make, namely the existence of the isomorphism ay; : M @r S =
S ®pr M, already gives a sufficient (and necessary a priori) condition for M to come from extension
from R.

Let’s be more precise. Let’s take M € Modg. A descent datum on M for the map f: R — S
is an isomorphism of S @ S-modules ap; : M @z S — S ®r M with the property that diagram ()
commutes for all R-algebras A and all triples ¢, ¢2, ¢35 : S — A. (Once again, in the Galois setting,

this means that the action by group elements actually fits into a group action.)

Then we can look at the category
Modg ={(M,an) : M € Modpg, aps a descent datum on M }.
(In this Galois setting, this is equivalent to the Vectx = Repp(L) data.) There is a natural functor
Modr — Mod%, N — (f*N,as-y).

(In the Galois setting this corresponds to the functor Vectx — Repp(L).) The theorem of faithfully
flat descent states that
Theorem 3.5 (Faithfully flat descent). The above functor
Mod g — ModZ, gien by N — (f*N,asn)
is an equivalence of categories, with the inverse given by
(Myap)—~{meM:ay(me1)=1Qm}.
In terms of Galois situation, aj; should be thought of as a galois action, and the condition is

same as saying m is Galois fixed (ie. m € M").

It’s good to get away from the formalism for a while, so let’s see where we are headed. Let’s

consider the case

(a) I/(:o/(@p7 where Ko = p/(Cp\oo), and over which we have Cp/l/(-o\o.
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(b) Take I' = Gal(Koo, Ko0).

Then Krasner’s lemma says this is same as Gal(K /K ). We would have loved to study Repr(Q,),
but a better object to look at is the C,-admissible representations Repg” (Qp). Even with this, things
get pretty horrible since C, is too big. So more precisely we would look at the representations which

are continuous.

You might ask though, what does it mean for a representation of I' to be continuous? I' has
a (profinite) topology where open subgroups are the ones of finite index. Giving V' € Repp(Q,) is
the same as giving py : I' - GL,(Q,), where we endow GL,,(Q,) with the p-adic topology: two
matrices A, B are close iff A7!B is close to 1 p-adically), and we say that V is continuous if py is

continuous.

Then we have a functor Reph = (Q,) — Repg” (Qp), which is actually an equivalence; or for what

is the same, every object in Repf*(C,) is trivial — this is because every object in Reph>=(Q,) is

trivial. Concretely, C, @ z— M I' 2y M. So by requiring representations to be continuous, we have
a similar statement to Vectx = Repp(L). This is what we call almost étale descent, which due to

fontaine. We will give a more modern perspective. The map f : R — S will be our I/(; - C,.

All these will definitely not be true if K, replaced by Q,; because that would say every C,-
admissible representation of I'g is generated by invariants. This amounts to a property of I/(; — it

is what we call a perfectoid field. We will see how to do this later.

We will end today’s class with an example. Let L/K be a finite Galois extension of valuation
fields with T' = Gal(L/K), then f : Ox — Oy, is faithfully flat. Faithfully flat descent says that

Modo, —~» Mod}, |,
but we claim that
I\/IodfOL # Repr(OL).

As opposed to L @ L = []p L, the map

OL ®o, O — ] Oc

yel

is usually not an isomorphism because of ramification.

Let’s take L = Q,(¢p), K = Q, and Oy, = Z,[(,]. Then I = (Z/pZ)*. Consider the map

O ®o, O — H Or.
~el’

The left side has Op-basis z; ;== 1 ® C;, while the right has the standard Op-basis {e,} er. With
respect to these basis, this map  ® y — (2v(y)), has matrix

1 & e C,’.f‘l

1 ¢ 5(1’*1)

1 ¢p-1l ... )7
Cp CP
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which is a Vandermonde matrix, and thus its determinant is ]| j>i(§g — CZ,), which has valuation at

least 1 evidently and so it is not invertible in Z,[(,)].

In fact, in this case, the map is an isomorphism iff L/K is unramified.

September 28, 2018. Friday.

3.8. Introduction to Perfectoid Fields.

Today we will talk about I?O\o, which we will see soon is a perfectoid field. There are two

observations that we can make:

(a) K is not discrete, and

(b) the p-power map on Oz—/(p) is surjective.
These two observations are equivalent to saying

(a’) there exists an element @ € Op— |E| such that w? | p, and that

(b)) Og/w — Ok /w? is an isomorphism.
The proof to this can be found in

The existence of w can be checked readily. For example, one can take w = ({p2 — 1)P~1, where
(p2 — 1) is a uniformizer of Z,[(,2]. In addition, (b) implies  +— 2P induces an isomorphism
Op [@w = Op /[wP. This will then show Koo is not discrete, since |I/{:OX| C Ry is p-divisible.

So the heart of the equivalence lies in proving (b) assuming (a’) and (b’).

One can also check (b) directly. Write K, = Q,(¢n), then Ok, = Zy[T]/(®4n(T)), so Ok, /p =
F,[T]/((T — 1)?®")) = F,[U]/(U*?®")) by a change of variable U = T — 1. Hence

i . _F[U] F,olU1,Us, .. .,]
OA/p:OKOO/p:hmOKn/p: lim P —— = Pi .
- " wr (UA) @) UP = U, _y)

3

Now it can readily be verified that the p-power map is indeed surjective.

These observations motivate the following definition. A perfectoid field K is a complete non-
discretd®? valuation field such that there is @ € O with

(a) w? | p, and

(b) x ~ 2P induces an isomorphism Ok /@ — O /wP.

We can still make sense of this when char K = p, in which case K is a nondiscrete complete
perfect valuation field. We also require nondiscreteness because we would like to rule out finite fields
being perfectoid. In fact, a perfect valuation field is either a finite field or nondiscrete. Indeed, being
perfect means group of valuation is p-divisible, so it is either trivial (in which case it is a finite field)

or non-trivial. So we can replace nondiscreteness by nontrivialness in the definition.

211 is not necessarily a uniformizer despite the notation.

22Non-discreteness is automatic for characteristic 0 fields given (a) and (b), as explained above.
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Theorem 3.6 (Almost purity). |§| If K is perfectoid, and L/K a finite separable emtensio@ then
L is perfectoid.

The proof can be found at .4}

One can try to prove this for the characteristic p case which is easier; though it is also true for
the characteristic 0 case. Onme difficulty is that it’s not easy to describe O, if L is non discrete:
Oy, is not even finitely generated over Ok in general. In fact, Oy being a finitely generated O
algebra is equivalently to O, being the unique “unramified” lift of a finite separable extension of kx
(Henselian still works for nondiscrete setting). Here “unramified” is in quotations because it’s not
entirely clear anymore what it means. Even worse Ok is not Noetherian, though it is still a Bezout

domain: finitely generated ideals are principal.

Let K be a perfectoid field. We define

O = l(ian Ok /(p), and K’ := Frac O ..
r—x
(Verbally we call this K-tilt.) More explicitly, O consists of infinite sequences (xg,x1,...) where

z; € Og/(p) and z¥ = x;_1. We give two examples:

(a) If K has characteristic p, then x — z? is already an isomorphism, so Oy, = Ok.
(b) () If K = Koo = Q,(Cpes ), then K> =TF,((1))(t1/77).

Theorem 3.7. Suppose K is perfectoid, then

(a) Ok has a noncanonical valuation || : Ox» — {0} — Rwg and is complete with respect to this.
(b) O is an integral domain, so K is well-defined, and is a perfectoid field with char K° = p.
(c) For every finite extension E/Kb, there is a canonical perfectoid finite extension L/K such that
L’ =L with[L: K] =[L: K]
(d) If K" is algebraically closed, then K is also algebraically closed.
Here is one trick to use the theorem: Take union of all perfectoid guys from (iii), take tilt/flat of

union, then you get union of all finite extensions of K”, which is algebraically closed, and use (iv).

Witt Vectors.

Classical motivation: Question: Z,, for every n, there exists a unique unramified extension
Zyn | Z,, with residue field Fn. (For Z,, choose coset reps for F,, then power series in such coefficients
— same story for Zy,n.) Is there a canonical choice of coset reps, ie. a canonical injection Fpn < Zpyn
of sets?

Question 2: If o : Fyn < Zpn is such an injection, how does multiplication and addition work

when we write © € Zyn in the form Y7 o o(t,)p™?
Answer: Witt vectors.

(1) Every t € Fpn satisfies " —t=0.So XP' - X ¢ Zyn|X] is a separable polynomial mod p.
Hensel says that for every ¢ € F,n, there is a unique [t] € Z,» such that (a) [t]P" —[t] = 0, and [t] = ¢

23This is a special case of the traditional version of the theorem.
240ne can deduce from the discussion above that separateness is automatic, because K is perfect in both char0
and char p cases. In addition, one can think of finite separateness here as a special case of a finite étale map.
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(mod p). Exercise: if t1,to € Fyn, then [t1t2] = [t1][t2]. (NOTE: for Zyn, {0,...,p™ — 1} is not the

answer!ll) So [] : Fpn — Zpn is the unique multiplicative section of Z,n — Fpn.

(2) is the thing answered by Witt vectors: gives canonical polynomials P,, @, over Z such
that >0 ([tn]p™ + Do [snlp™ = 3 Pu([ta],- - - [ta], [s1]s - - -, [sn])p™, and similarly for product (coeff
is Qn([t1], .-, [ta], [s1],- - [Sn])-

October 1, 2018. Monday.

3.4. Completions.

Usually commutative algebra books deal with completion under a Noetherian setting, but that’s

not good enough for us. That’s why we have to set up our own formalism here.

Let R be a (commutative) ring, and as motivated we will not require R to be Noetherian. A
countable linear topology on R is a topology for which a basis of open neighbourhoods of 0 is

given by a countable descending sequence of ideals
L21,2---21,2-- [

With this, we endow R with a topological ring structure. In other words, for any other element
r € R, a basis of open neighbourhoods around r is given by translates from 0. More precisely, usually
we say that (R, {I;}) is a linearly topological ring. Two such sequences {Ij }; and {Ji}; endow
R with the same topology iff for any k, there is ny, my such that I, C J,, and Ji C I, .

If I C R is an ideal, then the I-adic topology is the one associated with the sequence {I* : k >
1}. For example, the norm topology on Oc, is the (p)-adic topology, and in contrast the mc,-adic

topology is uninteresting, because m%p =mgc,-

We then say (R, {I;}r) is complete if for all sequences {iy : ix, € I}, there exists a unique r € R
such that r — ZZ=1 ix € I,+1. In this case we should think of r as the limit of the sequence {iy},

or more precisely
n

oo
T:hLQE i = E k.
n

k=1 k=1
We remark that if (R, {I}) is complete, then it’s separated or Hausdorff, ie. Ng>1I; = {0}. For
example, since C, = Q,, by construction, Oc, is complete for the p-adic (or (p)-adic) topology.

Here’s one question that we can ask: If I C J C R where I, J are ideals in R, when does R being

J-adically complete imply that it’s I-adically complete? The following gives a sufficient condition.

Proposition 3.8. Suppose J C R is an ideal such that R is J-adically complete. Suppose I =
(f1,---, fr) € J is a finitely generated ideal (while J is not necessarily finitely generated). Then R
is I-adically complete.

We shall prove this in conjunction with the following

25We want to define it this way as opposed to simply specifying a set of ideals as open sets, for then we would have
more than a countable sequence.
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Lemma 3.9. Suppose I = (f1,...,fr) C R. Then TFAE:

(a) R is I-adically complete.
(b) (R, {Ix}x) is complete where I, = (fF, ..., f¥).
(c) For each j, R is (fj)-adically complete.

Proof of, (a) and (b) are equivalent because the topologies are the same: I*"*1 C [, for

example, while I, C I* is obvious. Furthermore (c) implies (b): if ix = a1 fF + -+ + agfF, then

oo oo oo

. k k
E iy = 5 agfy +-0+ E g frr -
k=1 k=1 k=1

Each term on the right is well-defined. Finally, we will show that (a) implies (c) as a intermediate

by-product while proving (3.8 O

Proof of[3.8 The idea is we must show the J-adic limit is also the I-adic limit (assuming it

exists); were they different then there would be two J-adic limits.

First we show the base case » = 1 without using Write I = (f), and suppose we have a
sequence iy = akfk where aj, € R. It’s evident that i;, € J*, so it converges J-adically to r, ie. there

is r € R such that for any n, r — > ;_, i € J"1. But alternatively we write the tail

Z.n+1 + in+2 +-= fn+1(an+1 + an+2f + an+3f2 + - ) = fn+1L'

Then L also converges J-adically to some s, € R. This suggests r — > ;_ i = frtls, € 1t
which completes the base case. This proves the (a) implies (c) in the lemma SO NOW We can use
the lemmaf®|

Now for the general case, let’s assume that I = (f1,..., f). By the lemma it’s sufficient to show
that R is (f;)-adically complete for each j = 1,...,r. But this is just a repeated use of the base

case. This completes the proof of the proposition. O
Suppose I C R and R is I-adically complete. If i € I, then 1+ i € R*, since we have

(1+i)™ ' = i(—l)’%”f.
k=

0

In particular, I C Jac(R), where the Jacobson radical is the intersection of all maximal idealsE

We then have a lemma which is akin to the Nakayama’s lemma but without the finitely generat-

edness condition, but we’ll save it for next time.

October 3, 2018. Wednesday.
We first tailor make a version of Nakayama’s lemma without any finiteness condition.

Lemma 3.10. Suppose we have f: R — S is a ring homomorphism, I C R is an ideal, and define
J:= f(I)S. Suppose that

(a) R is I-adically complete, and

261t looks like we only use that implication from (c) to (a) in the lemma, but it’s nice to note their equivalence.
27This is due to a characterizaiton of Jac(R): = € Jac(R) iff for any y € R, we have 1 + zy € R*.
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(b) S is J-adically separated,
(c) the composition R ERN S/J is surjective.

Then f is surjective.

Proof@ Fix s € S, and we will inductively construct i; € I/ such that s — f(Z?:o ij) € JHL
SO s — f(Z;io i;) € NJ"1 =0 by assumption (b). When j = 0, hypothesis (c) says there is ip € R

such that s — f(ig) € J, which is our base case.

Next we do the inductive step. Suppose that we have constructed g, ...,%¢,—1 such that s —
f(zy;ol ij) € J". So we can write

n—1 m
s—f Zij ZZf(Tk)Sk
j=0 k=0

where 1, € I™ and s, € S. Again by (c) or the base case, we can find vy € R,wy € J with
s = f(ux) + wg. Then

n—1 m
s= 1| D iy | =D Fo)(f (un) +wy)
=0 k=0
and so
n—1 m m
S — f Z ’ij — Z’I‘kuk = Z f(rk)wk S Jn+1
=0 k=0 k=0
which completes the proof. |

Let’s take K to be a complete valuation field over Q,. There were two definitions that we gave

for perfectoid fields: see subsection [3.3] Let’s recall it here for convenience.

Proposition 3.11. Let K to be a complete valuation field over Q,. TFAE:

(a) K is not discrete, and the p-power map on Ok /(p) is surjective.
(b) There is an element w € Ok such that w?P | p, and x — P induces an isomorphism Ok [ (w) —

OK/(WP).
If any of these equivalent conditions is satisfied, we say that K is a perfectoid field.

Proof. Let’s show (a) implies (b). K is nondiscrete, so there is @ € Ok with p~'/? < |w| < 1,

1

and so |@wP| > p~' = |p|, so @wP | p.

For the other direction, consider the diagram

g:zw— 2P

(’)KT(W) OK/T(WP)
O — 2 Ok /() 22 Ok /()

28Writer’s note: I have asked Keerthi why the following usual proof won’t work: For a R-module M, first one can
show that M = IM implies M = 0, and apply this proof to the cokernel. Keerthi told me that this proof will not
work since NI"™"M # (NI™)M in general, for example when M is the cokernel of Z < Z,. In fact, the proof of my
claim requires either M is separated, that is N/™ M = 0, or [ is nilpotent.
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The vertical maps are surjective since w? | p. The top map g is also always injective. The
bottom arrow f is surjective iff top arrow g is: indeed, if f is, then g is evidently. If g is, then apply
to the bottom right composition Ok Jorr, Ox/(p) Ll Ok /(w?) (with I = (w?)). As noted
previously K is nondiscrete because if z € O with |z| > [p| = p~?, then |z|'/P € |[K*|. O

3.5. Strict p-rings and Witt Vectors.

We define a strict p-ring to be a p-adically complete and flat (ie. torsion free) Z,-algebra R,
such that R/pR is a perfect F,-algebra. @

There are plenty of examples, including Z,, and in fact the ring of integers in any unramified
extension of Q) is also a strict p-ring. The upshot is, given a R/pR which is perfect F,-algebra,

there is a unique strict p-ring that lifts it.

Lemma 3.12. Let R be a Zy-algebra, and x,y € R be such that x = y (mod p™). Then aP = y?
(mod p"t1).

Proof. aP —y? = (z —y)(aP~L + 2P 2y + - - +yP~1). The first term is 0 (mod p") and the latter
is p2P~! (mod p™), so their product is 0 (mod p™+1). .

Lemma 3.13. Suppose R is a perfect Fp-algebra, S is a p-adically complete Z,-algebra, and f :
R — S/pS is a ring homomorphism. Then there exists a unique multiplicative lift f : R — S of f.
That is, f(a) (mod p) = f(a), and f(ab) = f(a)f(b), and f is unique such.

s r—71 g
///// l z +— xP {w»—)wp
R S/pS R— 5§
f

The proof uses what is traditionally called the Dwork’s trick, or at least a version of it.

Proof. A priori every element of R as a p-th root. If f exists, then it satisfies f(apfl)p = f(a).
So f is equivariant for the p-power maps on R and S. Dwork’s trick says approximately that the

p-power map is usually a contraction, so we can given a, we can find the fixed point f(a) by doing

the p-power map many times.

More precisely, first fix lifts 5; € S of f(a? ') € §/pS for each i. Then 3¢,5,_; are both lifts of
fla?™""), s0 32 = 5,_1 (mod p). Then we can apply to raise both sides to p-th power over

n n—1 n
and over again to get s =35 | (mod p™). So the limit of s exists in S, and define

~ n

— lim 3P
fla):= nh_)ngo st

If we picked a different set of lifts, they will differ (mod p), so their p-th powers differ modulo higher
powers of p using so they give the same limit, so the definition is well-defined.

We must also check that f is multiplicative: f(a)f(b) certainly reduces to f(a)f(b) = f(ab).

Multiplicativeness comes for free from how we defined f(a) inductively. Finally we must show that

29This means that the Frobenius map on R/pR is an isomorphism.
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such a multiplicative lift is unique, but the only choice we could have made was compatible lifts of

f (a”ﬂv)7 for which we have already proved that f is unique. O

We know f behaves nicely multiplicatively; what happens to f(a + b) though? We know from
the proof that
fla+b) = lim (fla” ")+ f&" )",

n— oo

because f(a+b) = (f(a? ")+ f(b? "))P" (mod p" ).

In particular, if R is a strict p-ring, with R/pR = R, then the identity R — R lifts to a
multiplicative map [-] : R — R, which we will call the Teichmiiller lift. Moreover, akin to Ly,
every element of R can be written uniquely in the form > °°  p"[a,], with a,, € R, where a,, is

determined inductively: Pick

apg =1 mod p

a; = I~ Pldo] — plao] mod p

-1
C_reyirile]
n = D p

Torsionfreeness in the definition of a strict p-ring is used to define division by p (otherwise there

won’t have been a canonical choice). We shall call [a;]’s the Teichmiiller coordiantes.

It turns out as a consequence that strict p-rings are very rigid:

Theorem 3.14. Let R be a strict p-ring with R = R/pR, and let S be p-adically complete Zyp-algebra.
Then the functor

Homy, a1 (R, S) — Homg,-aig(R, S/pS), given by ¢ — ¢ (mod p)

is a bijection with its inverse given by
o) 1. wter 001 () = 34l
n=0 n=0

As a result, the functor R +— R is an equivalence of categories from the category of strict p-rings

to the category of p-adically complete Z,-algebras.

October 4, 2018. Thursday.

Our first goal of today will be to prove Before that, we observe that O(f) commutes with

multiplication by p (and thus powers of p), because the formula does.

Proof of [3.14] We must show that ©(f) is a ring homomorphism, so we must show

O(f)(la]) +O(£)([]) = ©(f)([al + [b])-

The rest follows readily.
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Since by definition of ©(f) we have ©(f)([a]) = f(a), it is equivalent to showing

J(a)+ F(6) = ©(f)([a] + b)) (mod p") for all n.

We will do this by induction. For the base n = 1, this amounts to the statement

fla)+ f(b) = fla+b) (mod p)

but this is automatic. For the inductive step, you will see that we will unwrap every notation, apply
hypothesis, then wrap everything back up again. Here goes: using the binomial theorem we have
that

fla+b)=(fla” ")+ & ")P"  (mod p"*t)
pnil 1 ~ — L~ —n
= f(a) + f(b) + Z (pz )f(ap PIEFBP") (mod ptth).
i=1
All the binomial coefficients appearing are divisible by p, we can write 1/p and still make sense

of it:
pt—1

Fla) + Fb) = 3 ( )HP‘")Z’”f(bP‘")Z‘ (mod p™*1).

Let’s note on the side that in particular, when f is the identity, by definition f = [[], so
p 71
40 =l —p 3 (7)Y mod )
Finally using the multiplicativity of f, and that f() = 0O(f)([-]), we can write

Fla) + F(b) = Fa+b) - Z () U@ P @Y (mod pY. (x)

But on the other hand we know from the inductive hypothesis that O(f) distributes over addition

1

mod p", and along with the discussion that O(f) commutes with multiplication by p~!, we know

that

F (7)o =y = e (Z (") [(ap"v”-i(bp“)i]) (mod ).

7
i=1 p i=1

Thus modulo p"*! from (*) we have

Fla) + F(b) = F(a +b) — pO(f) ( T 1(2’.") Ay "'(b“)"]) (mod p*+1),

i=1 p

But since O(f) is defined on each p-adic coordinate, we can factor out ©(f) on the right hand side:

Fa)+ Fv) = 0() (a+b pi HI )P”(bp‘"m) (mod p™+1).
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Finally from (f) and using the fact that ©(f) is defined on p-adic coordinates, we have

£ (b)) = 1 p" "\ =i pp "y
f(a)+f(b)=®(f)<[a+b]—p;p<i)[(a T >1>
=O(f)(la] + [b]) (mod p"*)
which completes the proof. O

We have said that this theorem makes strict p-rings very rigid if they exist. For example, as a

consequence, we have

Proposition 3.15. There is at most one strict p-ring R up to unique isomorphism with R/(p) = R.

Proof. If Ry, Ry are two strict p-rings with Ry /p = Ry/p = R, then theorem says identity R — R
lifts uniquely to isomorphisms ©1(id) : Ry — Rs and ©2(id) : Ry — Ry which are inverses of each
other. O

Remarks:

(a) This is interconnected with unramified extensions: one family of examples of strict p-rings are
Ok where K is a complete p-adic valuation field with perfect residue field and in which p is
a uniformizer. So the above is another way of saying there can only be one unramified field
extension of Q, lifting a finite residue field.

(b) If R is a strict p-ring, there is also the Frobenius map Frob on R/pR, which is an isomorphism.
By the description of ©(Frob), Frob lifts to an isomorphism on R too.

Now that we have answer the question about uniqueness of strict p-rings, naturally we will want

to construct strict p-rings. This is where Witt vectors come in.

Let A be a ring. First we define W, (A) := A™ for any n. Then for any n, we define the ghost
map gh: W, (A) = A" — A™ where

2 . k—1i
gh: (ag,...,an_1) = (ag, af+pay, af +pda}+pas, ..., szaf y )

Observe that

(a) If p is invertible in A, then gh is a bijection, for we can find the preimage sequentially.

(b) If A is p-torsion free, then gh is injective, for a similar reason as above.

The following characterizes the image of the ghost map under some conditions.

Lemma 3.16 (Dwork). Suppose that

(a) A is p-torsion free, and
(b) A admits a ring homomorphism ¢ : A — A that lifts Frobenius, ie. ¢(a) = aP (mod p) for all
a € A

Then (b, ..., by—1) € A™ is in Im(gh) = gh(W,,(A)) iff for all i, ¢(b;—1) = b; (mod p*).

Proof. First note that ¢(1) = 1, so ¢(p’) = p’ for any p-power. The proof uses that if
z,y € A, and z = y (mod p"), then 27 = y? (mod p"*!) (one can easily check the Z,-algebra
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condition in can be dropped). Suppose first that (bg,...,b,—1) = gh(aog,...,an—1). Then

1—1 1

_ § : j

bi—l = pjaj .
Jj=0

Hit ¢ to it. Since ¢(a;) = a? (mod p), raising to the p power repeatedly will give qﬁ(aj)pi = a?i_j

(mod p*=7), or equivalently pj(b(aj)piflﬂ = pjaglﬂ (mod p*) (call this computation (f)). With this,

—1—j

i—1 . i i 4
$bic1) =Y Po(a;)? =D plab T =b; (mod p).
j=0 §=0

For the other direction, suppose (bg,...,b,_1) € A™ is such that ¢(b;_1) = b; (mod p?). We will
solve this inductively. Base case is obvious — simply write ag = bp; suppose we have already found

ag, - - -, a;_1 such that
1—1 1
_ j p' T
bi—1 = g pa; g
=0

Then the hypothesis ¢(b; 1) = b; (mod p?) gives
it . i—1— i . i—j .
0=b; — ¢(bi—1) =bi — > _p'¢(a;)" =bi—» pa} (mod p*)  (by 1),
=0 =0

so one can find a; with b; — Z;:o pjagﬂ = pla;. O

As a consequence, under the same hypothesis on A as in |3.16] gh(W,,(A4)) C A™ is a subring.

Since gh under this assumption is an injection, given

gh(rg,...,mn—1) =b:=(bo,...,bp—1) and

gh(sg,...,8n—1) =c:=(coy.--,Cn—1),

we can ask: what are gh™!(bc) and gh™* (b + ¢) explicitly?

October 10, 2018. Wednesday.
Let A be a ring. We write W,,(A) = A™. We defined the ghost map gh : W,,(A) — A". We
showed that under the hypotheses that

(a) A has no p-torsion, and
(b) A admits a Frobenius lift,

then gh(W,,(A)) is a subring in A™. (If p is invertible, then gh is surjective, and condition is vacuous,

concurs with previous observation.)

We apply this to the polynomial ring A = Z[Ty,...,T,,Uo,...,U,—1] with 2n variables, where
¢ :T;— TP, U; — UP. Then what is

gh(To, ..., To-1) + gh(Uo + ..., Upn—1)?

One can show that it’s gh(Pp, .. ., P,—1) where P; € A, and similarly for their product gh(T) gh((U)) =

gh(Qo, ..., Qn—1) where Q; € A.
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Let B be any ring, and two tuples a = (ag,...,an—1),a’ = (ag,...,al,_1) € Wp(B), there is a
unique homomorphism

baa A BT a,Uw—a
We also have (diagram)

By construction diagram commutes (whole cube commutes). ghost map on the bottom are likely
to be zero? top face commutes, varying a,a’ and check all of them. So A is the universal ring with

2n tuples. Same diagram holds for ); multiplications.

We obtain two binary operations, (FPp,...,P,—1) and (Qo,...,@n-1), on W,(B) x W,(B) —
Wp(B). Claim: these give rise to ring structure on W, (B) with additive identity (0,...,0) and

multiplicative identity (1,0,...,0). (can check all these simply on universal ring of 3 tuples.

Claim: Py(a,a’) =a+ a’. take a and a’, take ghost coordinates, then gh(a) + gh(a’).
compare

h
(ap +ab,?,...) £ (ag + ab,ab + ag’” + plag + al),...)

So for Py, need .
P = E(QS +ag’” — (ao + ap)?) + a1 +a}

and this really lives in Z[a, a’] by binomial formula! (so can divide by p).

Note: P;,Q; only depend on Uy,...,U;,Ty,...,T;. ie. the restriction maps R : W,(4) —
Wp—1(A) is a ring homomorphism.
When A is a commutative ring, then we write W (A) = lim W, (A4). This is the ring of Witt

R
vectors with coefficients in A. W,,(A) is an n-truncated ring of Witt vectors.

Proposition 3.17. There are two natural (natural in A or functorial in A) group homomorphisms
V :Wh_1(A) = W,(A4), and F : W,(A) — W,,_1(A4), with the following properties:

) F is a ring homomorphism

) FV = [p] : Wn—l(A) - Wn—l(A)

) V(F(y)z) = yV(2) fory € Wy(A),z € Wy,_1(A) (V not a ring homomorphism)
)

Proof. First use (e) to prove when A is p-torsion free, and with a frob lift, (check images of F,V
as in e satisfies Dwork’s condition). // Apply Dwork’s lemma in universal situation. Then (a) to (d)
can be checked from diagram. V(1) is a canonical third element, generates kernel of W, (A) — A
(think?). O

Note: if A has char p, then F : W, (A) — W,,_1(A) sends (ag, ... ,an—1) — (af,...,al_;). This

n—1

comes down to checking when A is p-torsion free

gh(F(ag,...,a,—1)) compare with gh(af,...,aP ;) (mod p).

n

LHS is (af + pa, ag2 + pa} + p*az,...), and RHS is (af, a]SQ + pal,...). apply ghost inverse to LHS

and check it matches mod p (ghost inverse makes sense if A is p-torison free....

V is easier: ghoV gives (0, pag, p(ah +pay),...) which is the ghost of (0,a,...,a,—2). So define
V' have image this.
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So if A has char p, then VF = FV =p: W, (4) = W,(A), (ao,--.,an-1) = (0,af,...,ab_,).

n

October 11, 2018. Thursday.
Last time we defined the maps F, V between W, (A) and W,,_1(A), where we recall V' is the right
shift operator in natural coordinates (in W,,(A4)):
V(ao, ey an,g) = (0, ag ..., an,g).

We then had F'V = p, and by definition

F(ag,...,an—1) = (ab,...,ak_,) (mod p).

There’s a subtlety here — (mod p) is not the natural reduction! But rather it means that the ghost
coordinateﬂ of the two terms above differ by an element in pImgh; see below. To prove this,
one can simply check this when A satisfies the hypothesis of Dwork’s lemma (since we have a
universal object (Z[Ty, ..., T,),¢: T; — Tf)), and this aaounts to seeing that

gh(F(ag,...,an—1)) = gh(ah,...,al _,) (mod pImgh).

n

We will leave this for the reader. But when A has characteristic p, we can say something nice,
that we know explicitly what F' is, because the phrase (mod p) becomes vacuous. Using F'V = p

we then also know what multiplication-by-p-map is:
plag,...,an—1) = FV(ag,...,an—1) = F(0,a0,...,an_1) = (0,af,...,al _,).

In particular, we make a note that

(a) Even if A has characteristic p, pW,,(A4) # 0.
(b) In this case, we also see that V(a) = VF(F~(a)) = p(F(a)) = Y [a? ' Jp"*!.

Next we define W (A) = h£1 W, (A), where the maps in the inverse limit are given by truncation.
The kernel of W(A) — W,,(A) is then given by

ker (W (A) — Wi (A)) = V(W(A)) = {(0,0,...,0,an, ani1,...)}-

So we can abuse the terminology and say that W is complete with respect to the V-adic topology.
However this is not an honest I-adic topology: for example V(W (A)) - V(W (A)) € V(W (A)).

However, if A = R is a perfect ring of characteristic p, then F is an isomorphism (because taking

p-powers in A is), thus on W(R) we have

V™(ag,a1,...) =p"(ah ,d ...

30That is, the images under the ghost maps.
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is p-adically complete. In addition, W (R)/pW (R) = W(R)/VW(R) = R. Finally, W(R) has no
p-torsion — thus we constructed a strict p-ring W (R) that lifts the modulo-p-quotient R!

Hence to summarize things: if R is a perfect F,-algebra, and S is a p-adically complete Z,-algebra,
then we have
Hompralg(W(ﬁ), S) = Homg 410 (R,S/pS)

given by ¢ — ¢ (mod p), and it has an inverse O(f) <= f where f:R — S is the unique multiplica-
tive lift of f, as defined previously.

That’s all about Witt vectors for now. Let’s get back to a perfectoid field.

4. Perfectoid Fields.

Let K/Q, be a perfectoid field: recall this means

(a) K is a complete valuation field,
(b) there is w € mg such that w? | p, and

(¢) the map O /w —» Ok /wP given by z + xP is an isomorphism.

We defined Oy = lim Ok /p. This is by construction a perfect F,,-algebra (so far we didn’t use
x—a?

anything about K being a perfectoid field). Now we define
Ainf(K) = Ajns := W(Oks).

This is a strict p-ring with modulo-p-quotient O». An element in Aj,¢ is a sequence (Zg, 1, - ..)
where each of Z; € Og» is a sequence (fz(-l), j§2), ...) with entries in O /p. Notice that by construc-
tion, there is a canonical map Og» — Ok /p where we only remember the first coordinate, namely

M,z ) = (1), By the theory of strict p-rings, this lifts to a map

o0 o0
O : Aips — Ok where explicitly O : Zp" [zn] — Zp"a:fl
n=0 n=0

and zf = lign (zlmyp™ "
and 2™ € Ok is a lift of 2™ € Ok /p (this is how we defined f). Note if K is perfectoid, then
Ok /p— Ok/p given by x +— aP is surjective. So this means Ox» — Ok /p is also surjective, and

so using our Nakayama’s lemma O is also surjective’T]

Lemma 4.1. We have a isomorphism of monoids

lim Ox — lim Ok /p= Ok
r—z? P

which admits an inverse  — (2%, (2P )E, (zP )4, ..)

So we can write Oy — 1&“ Ok as multiplicative monoids. From this, we can see Og» is a
P

T—T
domain, so taking the fraction field of it really makes sense.

31In fact we can invert all these implications, so K being perfectoid is equivalently to © x being surjective
322 here denotes a sequence; ()ﬁ turns a sequence of Ok /p entries into an element in Of.
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Next we define a valuation |-|, : Ox» — Rsq, given by |z|, = |2¥|. Since z* is multiplicative, so
|-|, is a multiplicative seminorm on Q. And it’s a norm since |z¥| = 0 means 2 = 0 and z = 0.
Proposition 4.2. (K”,|-|,) is a complete valuation field with valuation ring Oy .

Proof. First we need to show ||, is a nonarchimedean norm. But

—n

& +yly = (2 + )| = lim| (%) " + (55" )"
= limfa® +y* + <pi )@c”)‘“(yﬁ)"l where o+ =1.

Note that |(? :)| < 1if i+ 0,p". Now we exploit the nonarchimedean nature of |-|.
(a) I | = [y#, then | (%) (@) ()] < |(a#)*(y")°| = [a¥] = |y*].

n

(b) If WLOG |z#] < [y*], then |("; ) (2%)*(y%)°| < |(z%)*(y")°] < ly*] = [a* + yF|.
So in the case (b), then we have |x + y|, = |(z + y)*| = |2* + v¥|.
Next we check that O, is the valuation ring. This means z,y € O,y # 0 then x/y € K° and

|z], < |y, iff ©/y € Okp. Can check this using monoid structure (using lemma and fact that Ok is

an valuation ring).

Finally we need to show that Oy is complete — if {z1,...,@y,...} is such that |z;|, — 0, then

we must show Y x; converges in Og,». We can check this term by term in O /p. O
We call (K, |-|,) the tilt of (K, |-|).
If 7 € Ok is such that ||, = p~' = |p], then O /m = Ok /p, and so O = lim Oy /7. This

z—>xP
pins down the structure of a valuation field on K°.

October 15, 2018. Monday.

Let’s quickly recall what we have talked about last time. We started with K which a perfectoid
field over Q,. We defined its tilt Og» = lim Ok /p. We said that TFAE:

P

(a) K is perfectoid.
(b) O» — Ok /p, given by projection onto first coordinatei§|7 is surjective.
(¢) The lift of the aforementioned map, given by Ok : Aine(K) — Ok, is surjective.

We also defined a norm ||, : Og» — R>g. O is a perfect complete valuation ring with respect

to this norm. The fact that it is complete can also be seen via the following: we can describe
ker(Op» — Ok [p) = {x € O :p | 2%}
but p | 2% iff [2f| < p~'iff [z], <p~.
By construction of |-|,, we have

O | N (1] = |0k N (p~ 1, 1].

33This map is the same as taking # and then modulo p, because # is defined to be a multiplicative lift of the map
modulo p.

41



More explicitly, if 2 € O is in the left, then x* is in the right; and if x € Ok is in right, then any

preimage of Z via O — Ok /p will give the same norm.

Thus |K°|N(p~', 1] = |[K|N(p~ 1, 1]. Since K’ is perfect and K is perfectoid, both |K| and |K®|,
are p-divisible (albeit for different reasons), and general principles will imply that the norm groups
|K| and |K°|, are equal.

1

In particular there is an element @’ € O, whose norm is p~!. The description of the kernel

says that w” generates it, so O /@’ = O /p. This characterizes Qs because this then says

OKD; = 1{&11 OKb/wb.
P

That is, Og» is the unique complete perfect valuation ring in charp with a distinguished

b

element @’ € Ok, satisfying |wb|b = p~! and admitting a norm compatible isomorphism

(’)Kb/wb :> OK/p.

Let’s look at two examples. They will be essentially the two only examples that we know (other
than that an algebraically closed field is automatically perfectoid, because it contains every p-th

root).

The first example is when K = Q,((p~)" Then O = Z,[(p~]- Since direct limits commute

with tensor products, we have

Ok [p = L[] fp = (2, [Gyr ) p) = B[, U, .. /(U = 1)/ (Ur = 1), UE = Uy ).

n

Since U; is essentially (p, and (¢, — 1)?~! = p, Y| thus we have |U; — 1| = p~/@®=1_ But now
consider

F,[T? "] = Ok /p where we send T + U; — 1.

Then TP~! generates the kernel, so in F,[T? [} once we declare |T| = p~*/(P=1) and &” = 777,

then according to our previous characterization we see that O =F, [Tpfoor.
As an exercise, one can work out what (T7~! 4 1)% is. |f|

The other example is the following slight generalization. Take E to be a complete discrete
valuation field over Q,, and pick a uniformizer 7 (of Of). Fix an algebraic closure E. Fix {m,},>o0,
where 72 = m,_1 and mp = 7. Set K = E({m,}n>1) = E(m,). Note that K,, = E({mi}1<i<n) is
obtained by adjoining the polynomial ¢, (T) = TP" — 7 € Og[T] which is Eisenstein. Hence

Ok, = Oglmn] = OglT]/(gn(T)).

34Writer’s note: In characteristic p this is of course 0, but the way I understood it is that to get the correct valuation,
one should still think of this as p. Since we took modulo p to get Fp, the polynomial (UY —1)/(U; — 1) gets a bit
funky — as functions on F,, it’s the same as (U; — 1)P~! say.

351 have yet to complete this.
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This then says that Ok = lim Op[m,] = lim Op[T]/(¢.(T)) so if we write k = O/, then

n n

Ok/m = lim K[T|/(T"") = k[Uo, Uy, .. .]/(Uo, UL = Un_1).
T—TP

Here we took modulo 7 instead of p, but they’re the same: (7)
(1. checking mod p and mod 7 is the same using equivalent conditions, and 2. x +— P is indeed

surjective here). Consider the map
k(TP “T— Ok /m where we send TP "+ U,,,

then w” := T° generates the kernel, so we can declare |T'| = p~/¢ and k[T? ~] = K".

In general it’s hard to decide whether a field is perfectoid, other than using the almost purity
theorem ([3.6]) on already explicitly known cases. We also briefly note here that the tilt operation is
not necessarily injective: for example there is a field other than C, whose tilt is (C;

October 18, 2018. Thursday.
First we prove

Theorem 4.3. Let K/Q, be a perfectoid field. Then K is algebraically closed iff K’ is algebraically
closed.

Proof. First we will prove that if K” is algebraically closed, then so is K. Fix a monic f(T) €
Ox|T] of degree d. We will inductively produce z,, € Ok such that

(a) |f(z,)] <p~", and
() |Zni1 — zn| < p~ ™/

This will suffice, since then « = lim z,, exists and f(z) = 0.

Any zy € Ok works for n = 0. Suppose that we have already produced zg, ..., z,. Consider the
auxillary monic polynomial g(T) = f(T + x,) € Ok|[T]. Write g(T) = >_ a;T* where ag = f(zy,).
We want to produce § (think of ¢ as z,41 — x,) with

(a) 19(9)] = X a;d’| < p~"+V, and
(b) [6] <p~m/d.

If ap = f(x,) = 0, then z,, is already a root, so we are already home. So let’s suppose ag # 0. It
then suffices to find & with |3 (a;/ao)d?| < p~*P"] Hence let’s consider Y (a;/ao)T" € K[T.

First pick ¢ € K such that |c| = min;so{|ao/a;|'/*}. In particular, |c| < |ag|/¢ < p~™/¢. By
choice of ¢, we have |a;/ag||c’| < 1 for all i (and equality holds for a specific 7). We next consider

the modified polynomial
WT) =" “eT! € Ok[T).

agp

36Writer’s note: Keerthi mentioned that a prerequisite for the functor K — K° to be injective is when K is
spherically closed, but I have no idea what this means.

3"Morally speaking this is quite natural, since Ok /p is the only link between K" and K; and Ok /p only detects
whether an element « has norm |a| < p~! or not, or equivalently whether a € O is trivial in O /p or not.
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It’s now sufficient to find u € O} such that |h(u)| < p~, for then |cu| = |¢| < p~™/¢ and we can
take § = cu. To do this, we choose h(T) € O[T of degree d such that h(T) reduces to h(T)
(mod p) in (O /p)[T] = (O /@)[T). It is then enough to show that i (T) has a root u’ € O, for

then we can take u = (u’)*.

There is a nice gadget to determine the norm of roots — Newton polygons. More explicitly,
for h = Y. b;T" € O[T, define the Newton polygon NP(h) to be the convex hull of the points
{(é, —log,|bil;) }. The theory of Newton polygons asserts that the negative slopes of NP(h) are the
set of valuations of the roots of h (one would have been more careful with what “roots” mean if K°
is not algebraically closed). Using this, if there are two points on NP(%) with y-coordinates zero,
then there is a segment of slope zero, so we are done. It now remains to show that this is indeed the

case.

Indeed, first observe that when ¢ = 0, h(T) has coefficient 1, so this already provides one of such

points. Furthermore, we chose ¢ such that we can still have coefficient 1 for some i > 0.
The other direction of the theorem can be proved similarly. This concludes the proof. O

Next we'll prove the Almost Purity theorem ([3.6]). Let’s restate the theorem more generally.

Theorem 4.4. {L/K" finite} — {L/K finite}, where L — W(0z)®w(o,,) K (note finite of perfect

is perfect). There is another functor {L/K finite perfectoid} — {L/K" finite} by L — L°. These
are all equivalence of categories and are well defined.

Proof. First consider W(Of) ®w (o, ,) Ok Note Ox = W(Ok»)/ker ©. So the tensor product
is just W(Oz)/ker(Ok) - W(O5).

Let F' be any perfectoid field over F,, then define 2 € W(Op) to be primitive if z = [zo] + pw
where |zo| = p~! and w € W(Op)*. Latter is equivalent to saying w = Y p*[w;] where wy € OF.

EG if F = K°, O is surjective, There is @ € O such that |w|, = p~'. Then @’ = ¢ ([w]) €
Ok, and @w® = up where u € Of. There is w € W(Og)* such that Ok (w) = u~!. Then

1

Ok (w[w]) = p, and Ok (w[w] —p) =0, so Ok ([w] —pw™') = 0. Then z = [w] — pw~! is a primitive

element in ker O .

Real example: K = Q,(p*/?™). Then p = (p,p'/?,...) € lim Ox = Of. Then [p] —p is in
ker O and is primitive. o

Real lemma: this primitive element generates the kernel of © . Rephrase: Suppose z € W(Op)
is primitive, then O, = W(Op)/z, then O, is a complete valuation ring with fraction field K,

perfectoid, and K? =5 F canonically. (in some sense untilt)

October 22, 2018. Monday.
Let F be a perfectoid field of characteristic p.

Let 2 € W(Op). We said z is primitive if z = [29] + pw where |zo|r = p~! |§| and w satisfies any

38|.| is the norm on F.
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of the following equivalent conditions:

(a) weW(Or)*.
(b) [wo] € OF.
(C) "LU()‘F =1.

[20] is the zero-th Teichmdiller coefficient.

Now we also define u € W(Op) to be stable if u = [up]w where ug € Op and w € W(Op)*. In

verbal terms, u is a Teichmiiller lift up to a unit.

Proposition 4.5. Let z be primitive.

(a) Every nonzero coset in W(Op)/(z) has a stable representative.
(b) If x,y € W(OF) are stable with x =y (mod z), then |xo|r = |yo|F- |§|
(¢) If x € W(OFp) is stable, then x & (2).

We shall omit the proof for now (see next lecture), and focus on the following

Theorem 4.6. K, := (W(Or)/(2))[p™] is a perfectoid field with ring of integers O, := W (OF)/(2),

and we have a canonical isomorphism K] — F.
Proof. We shall assume [£.5] First observe that O, is a domain: product of stable elements can
easily be seen to be a stable element via the definition (which invokes the multiplicativity of the

Teichmiiller lift); and since W(Op) is a domain, product of nonzero stable elements is a nonzero

stable element.

Next we have to define a norm on O,: which we do so by considering |-|, : O, — Rx(¢ where
||, := |zo|r where x € W(Op) is any stable lift of Z. This is well-defined by @

This extends to a multiplicative non-archimedean norm on K, such that O, is the valuation ring:

(a) For multiplicativity: we have |Zj|, = |zoyo|r = |Zo|r|yo|Fr = |Z|:|7].-

(b) For non-archimedeanness: Postponed to next lecture.

(¢) For O, being the valuation ring: we must show that |Z|, < [g|, implies § | Z. Indeed, if
[7l. > |Z|., then |yo|r > |xo|r, and yo | Zo, so [yo]v | [xo]u (if © = [xo]u,y = [yo]v are stable

lifts of Z, § respectively, so in particular u, v are units in W (Op)), and finally 7 | Z.

1

In K., we inverted p and p~— " is a element with negative valuation, so K, is indeed a field.

Finally we must show that O, is complete and K is perfectoid with tilt F:

(a) O, is complete: we postpone the proof till next lecture, and will assume this for what follows.

(b) K, is perfectoid with tilt F: We have O,/p = W(Op)/(p,z). But z = [2] + pw, so
O./p = Op/z. Since |z|r = p~! by definition of primitive elements, this isomorphism
is norm compatible (assuming |p|, = p~!), so by the characterization of perfectoid fields, K,
is perfectoid with tilt F'.

39In particular, if z = [zo]w = [z}]v, then |zo|F = |z§|F-

40Here’s how one can think about zo using an analogy. Treat W(Or) ~ Or[[T]], and z ~ p — T. Then every coset
of Op[[T]]/(p — T') has a constant representative fo given by evaluation f € Op[[T]] at T = p. In our situation, we
pick this corresponding fo, namely zq.
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This completes the proof. ([l

Before we prove we have to set up a technical gadget called Gauss norms. For a more general
theory, see [5.1}

Given a := Y ([an]p™ € W(OF), we define the Gauss norm of a to be |al; = sup,,>olan|r.

Verbally, the Gauss norm is the supremum of the norm of the Teichmiiller coefficients.

Lemma 4.7. |-|; is a multiplicative non-archimedean norm on W(OFr). |f|

Proof. For a nonnegative integer k, we define Ni(a) = max,<x|a,|. Notice that |a|; = limj Ni(a).
It suffices show for z,y € W(Op), we have

(a) Ni(z +y) < max{Ny(z), Ni(y)},
)

(b) Ni(zy) < Np(x)Ni(y) (
(¢) Ni(x)Ni(y) < Niri(zy).

so (a),(b) says Nj is a submultiplicative seminorm), and

Note the obvious observation that x € W(Op) then Ni(z) < |w|p for some w € Op, or
equivalently z (mod p* W (Op)) € [@](W(OF)/p*1).

If Ni(z) = |w1|r and Ng(y) = |w2|r, then

z  (mod p*t) € [ |W(Op)/p**

(mod p**1) € [w2] W (Op)/p*H! =z +y (mod p) € ([wi], [wa])W (Op)/p**
y (modp w2 F)/P

which is [o;]W (OFp)/p*+! where |w;|r = max;—1 2|@;j|r. So Ni(z +y) < max{Ng(z), Ni(y)}.

Ni(zy) < Ni(x)Ng(y) is proved similarly: zy (mod pF*1) € [oy][w2] W (Or)/(pk*1). For a more
explicit explanation, see 77.

Finally for (c), if Ni(z) = |z,|r where r < k and N;(s) = |ys|r for some s < I, where WLOG

r, s is smallest such, then

x = [xo] + plr1] + - - + p"[z,] + p" T (other terms
o] + ploa) 2] + 71 T
y = [yo] +ply1] + - - + p*[ys] + p*T* (other terms)

In addition, by our choice of r and s, in the (r+ s)-th Teichmiiller coordinate, [x,ys] has the greatest
term and the unique such. Hence Ngy;(zy) > Ni(z)N;(y) as desired. O

October 24, 2018. Wednesday.

Let’s briefly recap what we have done last lecture. We had a proposition (4.5) as follows: let
z € W(Op) be a primitive element. Then

(a) Every coset in W(Op)/(z) has a stable representative w (where stable means that w = [z]u
for some x € O and u € W(Op)*).
(b) If z,y € W(Op) is stable with x =y (mod z), then |zo|r = |yo|F.

41This is the equivalent of Gauss’s Lemma, which states that over Z, the product of two primitive polynomials is
again primitive.
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(¢) No nonzero multiple of z is stable.

To prove this, we developed the Gauss norm: for a = Y [a,]|p" € W(Or), we defined the Gauss
norm to be |a|; := supla,|r < 1. We saw that this is a nonarchimedean multiplicative norm on

W(Op).
Now we will give a proof to the We make three observations:

(a) x € W(Op) is stable iff |x|; = |xo|F.

Proof. x is stable iff x can be written as @ = [zo] + [zoz)]p + [zoxb]p? + - - -. O
(b) If u € W(Op)™ (equivalently ug = Of) then |uly = |ug|p = 1.

Proof. The equivalence is clear. uy € OF hence |u|; = |up|p = 1. O
(¢) If z is primitive, then |z|; = 1.

Proof. Use part (b). O

Now we are ready to prove
Proposition (Restatement of 4.5). Let z be primitive.

(a) Ewery nonzero coset in W(Or)/(z) has a stable representative.
(b) If z,y € W(OF) are stable with x =y (mod 2), then |xolr = |yo|F- |E|
(c) If x € W(OF) is stable, then x & (z).

Proof of . By assumption z is primitive. Define the additive operators S, T : W(Op) —
W(Op) where

T(a) =T (Z[%]ﬁ) = lanu]p" =p~"(a - [ao))

n=0 n=0

S(a) = a —w T (a)z where we write z = [2o] + pw.
We obviously have a = S(a) (mod z).

The upshot is this: S(a) is “more” stable — we shall make what this means more precise in the

following. We observe that

S(a) = > lanlp" = (™ [z0] + ) (P lansalp" ) = lao] = w™ [20]T ().

Since z is primitive, |w|; = 1, and |z0|p = p~!, hence |S(a)|1 < max{|ao|r,p~*|T(a)]1}. In particu-

lar, if a is not stable, then |a|; is not attained by |ag|r, so |T(a)|1 = |al;-

In what follows, we aim to find a stable representation that is in the same coset as a. If a is

stable, we are home. So let’s assume otherwise. Then a priori |S(a)|; < max{|ag|r,p |al1}.

Case (i). If |ag|r > p~!|al1, then the non-archimedean property says |S(a)|; = |ag|r. Since the
zero-th Teichmiiller coefficient S(a)g = ag — walzoal, we also have |S(a)o|r = |ao|lr =
|S(a)|1. So S(a) is stable.

42In particular, if = [zo]w = [z)]v, then |zo|F = |z{|F.
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Case (ii). If |ag|r < p~tlali, then |S(a)|1 < p~tlali. So we keep iterating, and we always stay in
the same coset as a, S(a), . ... In other words, we exhibited a sequence of elements in this

coset whose norms tend to zero. This forces us to be in the zero coset in the first place.

In both cases, |S(a)ly < Jal;. Thus we can conclude that, if a is unstable, and b is stable
representative of the coset of a (mod z), then |b|; < |a|;. This proves (a), in fact a stronger

statement of (a).

Next we prove (c) before (b): Note that if a € Q(OF), then |(az)o|r = |ao|r|2z0lF = p~Yaolr,
and |az|; = |al1|z|1 = |a|li > |ao|r > p~t|ag|r. Hence |(az)o|r # |az|1, and this means az is never
stable.

Finally for (b), let’s assume that z,y stable with z =y (mod z). Then |zo|r = |yo|r is equiva-
lently to asking |z|; = |y|1. Suppose the otherwise that |x|; > |y|1. Then |x — y|1 = |z]1 = |2o|F =
|xo — yolr = [(x — y)o|r. So x — y is stable, but it’s a multiple of z, now invoke (c¢) to yield a

contradiction. O

Next we fill in the holes of in the proof of [£.6]

Theorem (Restatement of. Let O, = W(Op)/(z) and K, = O,[p7']. Let ||, : O, — Rxq be
an absolute value where we define |Z|, = |z|1 = |zo|F, where x is any stable representative for T.
Then

(a) O, is a complete valuation ring with respect to the norm ||,
) K, is the fraction field field of O,

(¢) K, is perfectoid, and
) K. has tilt K° canonically isomorphic to F.

Idea: stable rep = rep with least gauss norm.

Proof. It remains to prove that

(a) ||, is non-archimedean. This is immediate since it’s true for Gauss norms.

(b) O, is complete with respect to |-|.

(c) Ipl- =p~".
Let’s first check that |p|, = p~1. Since z = [20] + pw, we have p = w1 (2 — [20]), so p = —w ™! [20]
mod z). In addition, |—w™"|29||1 = |wo|F|20|F = |wozo|r (Which is equal to 1-p™ = p™ ), so
d In additi 1 hich i 1 1 1 1

—w L

1[20] is a stable representative for p (mod z). So |p|. = |wozo|r = p~

Next we show (b). To check that O, is complete with respect to ||., it’s enough to check that
W (Or) is complete with respect to |-|;. Note that the norm topology for |-|; on W(OF) is equivalent
to the [z0]-adic topology. Indeed, |29/ = p~! < 1, so heuristically small |-|; is equivalently to saying
it’s divisible by high powers of [z], since |z|p < |y|F is equivalent to y | . So now we must check
that W (Op) is [#0]-adically complete. This follows from (1) W(Op) is p-adically complete, and (2)

O = W(Op)/p is zo-adically complete. This completes the proof. |

Let’s wrap up. Suppose K/Q, is perfectoid and F := K", then we constructed a map Ok :
W(Or) — Ok, which is surjective since K is perfectoid. We can construct a primitive element

of W(OF) as follows: Pick zy € O with |z|, = p~!. Then by definition of |-|,, we have |zg| =
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10k ([z0])] = |20l = p~ %, and so [p~128| =1, p~ 12} € Oj. Now choose by surjectivity u € W(Op)*
[

Zo] —

with O (u) = p_lzg. So z := [z0] — pu is primitive, and furthermore it satisfies Ok (z) = Ok (

pu) = zg —pp’lzg = 0.

So © i must factor through W (O )/(z), giving a composition of maps W (O ) — W(Ogs)/(2) —
Ok, where the latter is a surjective map of valuation rings, so it’s an isomorphism. |E| Hence Ok is

of the form O, for a primitive element z € W(Og»).

This gives an equivalence of categories:

{Perfectoid fields K/Q,} «— Pairs (F, (z)) where F/F), is perfectoid and
P n

(2) CW(OF) an ideal generated by a primitive element
(

given by K — (K’ ker(Ok)) and (W(Op)/(2))[p] < (F,(2))

October 25, 2018. Thursday.

Our goal today will be to prove the Almost Purity Theorem (3.6)), which states the following: if
K is a perfectoid field, and L/K is finite, then L is perfectoid too. We remark that if K/F,, this
theorem amounts to saying the finite extension of a perfect field is also perfect, which is easy to see.

We will assume this in what follows.

Zariski-Nagata: regular scheme, finite flat morphism over it, then there’s discriminant associated.
In general if A — B is finite flat, can ask is it etale and unramified? unramifiedness is given
by discriminant: there is Trg,4 : B — A. So this gives a pairing (-,-) : B x B — A sending
(b1,b2) = Trp/4(b1b2). Disc is the determinant of this pairing. Disc only determined up to squares
(because one can choose basis...) Is it invertible? The locus of when this is invertible is exactly the

locus of A which is etale. Locus of etale is pure of codim 1, namely vanishing locus.

Last time we saw there is an equivalence

{Perfectoid fields K/Q,} «— { Pairs (F,I) where F/F, is perfectoid and } )

I C W(Op) an ideal generated by a primitive element
given by K — (K’ ker(O)) and (W (Op)/I)[p~Y] « (F,I)

Let’s fix a perfectoid field K/Q,. We will establish a diagram of categories:

{L/K finite perfectoid} «--------- {L/K" finite}

{L/K finite} {L/K" perfectoid}

Evidently we already have the solid injective arrow. Our aim will be to show that this arrow is

43The only element that can be mapped to 0, which has norm 0, is 0 itself.
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actually an equivalence. We also have the squiggly arrow from (f) for completion, given by L — L,
but of course the hard work lies in showing the other direction, that there is a canonical untilt, and

this is what we will use.

First we establish the dashed arrow. Note that if L /K ® is a finite extension, and z is a primitive

element in W (Op:» ), then it’s primitive in W (Oz) too.
Lemma 4.8. Let Z/Kb be a finite extension. Then
L:=W(0z)/(ker© )W (Oz)[p"]

is also finite over K with [L : K] = [L : K°]. In addition, if L/K" is Galois with Gal(L/K") = G,
then Gal(L/K) = G too.

Proof. Assume first that L/K” is Galois with Gal(L/K") = G, and |G| = [L : K*]. Then G acts

on L coordinate-wise, and it’s enough to show that L¢ = K.

Note that W (07)¢ = W(Ok ), because G acts on the Teichmiiller coefficientss entry-by-entry.
So if kerOg = () € W(Ok»), since z is fixed by G, we have (:W(0z))% = 2W(Ok»). Consider

the short exact sequence
0— zW (O 1= WOp)p '] =>L—0

of Q-vector spaces with a G action. Since G is finite, this allows an averaging process by G, so
taking G-invariants is exact, and K = L%. In general, we pass L to a Galois closure L’ , giving the
results for L’/K and L/K, and use the tower law bring us home. O

The above gives an equivalence from B — A. Now remains to show B — D is an equivalence.

the map is the composition B -+ A — D.

Consider the field
Ko = (m L) = (JLrekK,

where the direct limit and union are over all L/K such that E/ K’ that is finite Galois. First we
claim that K is perfectoid. Indeed, Ok __/p = hi>n Or/p, and x — 2P is surjective on each term on

the right, so z — P must still be surjective on the left.

—

However, Ok __ /p = lii>n(9L/p = li_n}OZ/w = O35 /w, we have that K’ = K’. Krasner’s Lemma

says K’ is algebraically closed, and this together with K being perfectoid says K is algebraically
closed too. So K., = K. Hence any finite extension of K is contained in an untilt L of a finite
Galois extension L/K”.

But once we have this, we are good, because Galois theory covers the rest — intermediate exten-
sions L/K of a Galois extension F'/K correspond to subgroups of Gal(¥/K), which is the same as

Gal(F®/K"), and in turn we can find every intermediate extension, one of which is L/K”.

This also firmly establishes tilting and untilting as inverse operators. This result is interesting,
in the sense that we never checked Op, /p has a surjective Frobenius map, we never even figured out
what Op, looks like!
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4.1. Module of Differentials.

Let A — B be a map of commutative rings. This induces a map B ® 4 B — B given by
b1 ® by — b1by. Suppose this map has kernel I. We define the module of differentials to be
Q}B A= I/12.

A priori Q} /4 is only a B ® B-module, but we claim Q5 /4 i canonically a B-module: note that
l@b—b®lel Ifwel/l? then (1®b—b@1)w=0€I/I* so(1®bw=(b® 1)we I/I% So
we can define the B action on either coordinate.

In fact, as a B-module, Q}B/A is generated by elements of the form db:=1®b—-b® 1 € Q}B/A.

Suppose that B = Alzy,...,z.|/(f1,.--, [s), then Q}B/A = (Bdxy @ --- ® Bdz,)/(df1, ..., dfs).
In particular, if r = s = 1, Qp , = Bdz/(f'(x)dz), and so Qp,, = 0 iff f'(z) € B*.

Applying this to the case K be a complete discrete valuation field, and L/K be a finite extension,
we know that
Q%DL/OK =0 iff L/K is unramified.

October 29, 2018. Monday.

Let’s make our observation from last time more precise:

Proposition 4.9. Let K be a complete discrete valuation field over Q, and L/K be a finite exten-
sion. Then TFAE:

(a) L/K is unramified.
1 _
(b) QOL/OK =0.
(c) The trace pairing Op x Op — Ok given by (x,y) — Trp /i (xy) is non-degenerate. And as
such Oy, can be identified with O} as O -modules.

(d) Oy is étale over O. We have not formally discussed what this means, but for what matters
we can just assume this is the definition in this case.

In addition if L/ K is Galois with Galois group G = Gal(L/K), then these are also equivalent to
(e) The map Op ®o, O = [[,eq OL given by x @ y — (27(y))rec is an isomorphism.

Proof. Omitted or an exercise for readers. This uses the explicit description of O, as an Og-

module. Write down a basis of Oy, as an Og-module. O

(e) says that, given a descent datum with respect to O /O for an Op-module M, is equivalent
to given a G-action on M compatible with G' action on Op,. This along with faithfully flat descent,
says that in this case, O ®o MG = M.

Let’s move onto the setup where K is perfectoid over Q,, and L/K is finite. Since in this case

K is not discrete, we cannot use [£.9] at all, but let’s dissect and see what we can say about it.

Theorem 4.10. We have Q}QL/OK =0.

Proof. Since L/K is finite, we can choose a primitive o« € Op, such that L = K(a). Write
x = ml, (). Since we Okla] is finitely presented as an Og-module, we still have Ok[a] C Of C
Okla]V = 2710k[a] (see remark after . Hence in particular, O C Okla]. Since we are in a
valuation field, there is n > 0 such that p"Or C Ok|a].
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Notice that mq (o) = 0 gives zda = 0. Given u € O, from what we have in the first place,
p"u € Okla] for some n (same n as before), and p"du € Opda, thus zp"du = 0 for all u € Op. By

our choice of 7, this means p*" kills Qg Ok

On the other hand, the Almost Purity Theorem (3.6 says that L is perfectoid. This says that
if u € O, then u has a p-th root modulo p, which means explicitly that there are w,y € O with
wP = u+py. So pwP~ldw = du+pdy € Q}QL/OK7 or we can write du = p(wP~dw —dy) € pQéL/OK.
Since Q¢,, /¢, is generated by {du :u € Or}, this means that pQy, o, = Qb 0,

- =p?"Ql 0.0

Combining these results, we have Q%OL/OK = pQéL/OK =p*Qp 0L /0K =

L/OK:”

Let’s make some remarks.

(a) If Q}DL/OK = 0, we say that L/K is almost étale. We have just proved that if K is a
perfectoid field and L/K is a finite extension, then L/K is almost étale.

(b) As previously foreshadowed, we never write down what Oy, looks like as an Og-module, and
it’s difficult to do so. In fact, in this case, Oy, is étale over O iff Oy, is a finitely presented
O-algebra.

(¢) Verbally one can interpret this theorem this way: perfectoid fields contain so much ramified-

ness, that any finite extension of it is always almost étale.

From what follows, our setup will be where K is a perfectoid field over Q, and L/K is a finite
Galois extension with Galois group G. We will see how condition (e) of [4.9| behaves.

Theorem 4.11. The natural map

Or @0, O = [[ O1 given by x @ y = (29(y))rec
yeG

is an almost isomorphism, ie. the kernel and cokernel of this map are both killed by my,.

Remark:

(a) Again, we know that Oy, is usually not finite generated as a O x-module, so after a base change
to O, the left is usually not a finitely generated Op-module. But the right is always finitely
generated as an Op-module, so it’s not correct to expect this to be an isomorphism in general.

(b) We would really like to see an explicit example of this map, but it’s just not easy: even in the
basic (and nontrivial) case where we adjoin \/p to Q,((p=), we already dont know what Oy,

looks like (it’s not finitely generated!). However this map is always injective. (why?)

We have been trying to add the adjective “almost” everywhere, and this is exactly what almost

algebra does. This will be what we will talk about next time.

October 31, 2018. Wednesday.

4.2. Almost Algebras.

A good reference here will be Gabber and Romero.
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Let’s fix a perfectoid field K/Q, and let L/K be a Galois extension with Galois group G. We do

not assume that L/K is finite; in fact the interesting part comes in when it’s not.

First we define some terminologies. Let M, N be objects in the category Modp,., and let f be a
morphism from M to N.

b)
(©)
()

(a) M is almost zero if mgM = 0.

(b) f: M — N is almost injective if ker f is almost zero.
f is almost surjective if coker f is almost zero.
f

is an almost isomorphism if both ker f and coker f are almost zero.

Lemma 4.12. An Og-module M is almost zero iff mg ®o, M = 0.

Proof. Let’s assume that mg ®p, M = 0. Consider the bilinear map mg x M — mgM given
by (a,m) — am. This map factors through mx ®e,. M, and so it’s zero, which means am = 0 for

all a € mg and m € M, or mxg M = 0. The other direction is obvious. O

Lemma 4.13. The full subcategory of almost zero Ok -modules is a Serre subcategory, ie. it is
closed under subobjects, quotients and extensions.

Proof. The lemma is clear for subobjects and quotients. For a perfectoid field K, we have m%. =
mg. If0— A LB % ¢ = 0is a short exact sequence of Ox-modules, and mxgA = miC =0, it
now suffices to show m% B = 0. suppose b € B,y € m, then g(yb) = yg(b) = 0, so there is a € A
so that f(a) = yb. So if x € mg, then zyb = xf(a) = 0. O

Lemma 4.14. f: M — N is almost surjective iff 1 ® f:mg @ M — mg @ N is surjective.
Proof. This is simply due to the fact that mg ® coker(f) = coker(1® f). a

will come up handy in the future, because morally speaking it allows us to reduce almost

surjectivity statements to usual surjectivity ones. We will talk about this when it shows up later.

Last time we proposed a question: If K is perfectoid and L/K is finite and Galois with Galois
group G = Gal(L/K), what can we say about the map O ®o, Or — []

(@7(Y))vec)?

4ec OL (given by z®@y —

Theorem (Restatement of . Let S = O, ®o, Op and R =1]
S — R is an almost isomorphism.

e Or,. Then the natural map

Proof. We consider the tilts, where we abuse the notation and write R® = 11
S =0, ®o0,., Or- (This already uses the fact that L is perfectoid too.)

vec Opy and

So now we have a map from S” — R”. The nondegeneracy of the trace pairing says that there is
B’ € O with B”R> C S” (where we abuse the notation and write S” instead of Im(S”)). If 8 is

invertible, then the extension would have been étale so we were done. So let’s assume 3’ € m Kb

Now that we have promoted the situation to their tilts, we know that R* and S” are perfect, so we
can take p-th roots on both sides, and say that (8°)? " R” C S” for all r > 1. Since in the sequence
{(ﬁb)pﬂ}go, the norm of the entries goes to 1, we can say that S* — R’ is almost surjective, and

thus an almost isomorphism, and so is S/p — R/p.
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Next we claim S/p™ — R/p™ is an almost isomorphism for all n, which we will prove so by

induction on n. Consider

0 S/prt ——— S/p" - S/p ~0
| | |
0 R/p"~' —— R/p" - R/p -0

Snake’s lemma and [£.13] will then prove the claim.

More explicitly, this means that for any € mg,r € R and n > 1, we can find s, € S such
that ar — s, € p"R. Since S is p-adically complete, we have ar = lims,, € S, and this finishes the
proof. O

The next thing on the discussion table is Galois descent. We have seen that if L/K is (finite and)
unramified, in the sense that O /Ok is etale, then O ®p, O, — nyeG Oy is an isomorphism. In
this case faithfully flat descent is equivalent to Galois descent, and says that if M is an Op-module
with a compatible G-action, then Oy @ MGa(L/K) =y N We already know Q}QL/OK = 0 remains
true if K is perfectoid. In our case if O /O is not étale (we only know L/K is almost étale) and

K is perfectoid, what can we say about Galois descent? No surprises:

Corollary 4.15. If K is perfectoid and L/K is finite and Galois, and M is an Or-module with
a compatible G = Gal(L/K)-action, then the natural map Op R0, M® — M is an almost iso-
morphsim.

In particular, this implies that if M, N are two Op-modules with compatible Gal(L/K)-action,
and M — N is a Galois-equivariant surjection, then the natural map M — N¢ is almost surjective,

because this condition can be checked after — ®o,, O, by faithful flatness. |E|

If we apply this specific case to M = Op and N = O /p", then we see that Ox = (’)g —
(O /p™)€ is almost surjective. Verbally, if we have an = € Op, such that all its Galois conjugates

are close to each other, then there’s an actual element 2’ € Ok and o € mg with az’ = z.

Next we move onto infinite extensions. A long time ago we have talked about Rep{™™(C), let’s

recall what this notation means:

Let K/Q, be a finite extension, and let C' = %,F = Gal(K/K) acting on C, and Ax-Sen-Tate
(2.16)) says that CT = K. We defined

Rep®™(C) = {finite dimensional C-vector spaces V with a continuous compatible T'-action}.

What does “continuous” mean? If we fix a basis C" =+ V, then the action of I' on V is given by
a homomorphism p : I' = GL,(C). T comes with a profinite topology, and GL,,(C) comes with a
p-adic topology. Hence continuity says that for every m > 1, there is a finite index subgroup I';,, C T’
such that p(T'y,) C Aut(meg?).

44Rephrasing, if we have a short exact sequence 0 — K — M — N — 0 of Op-modules, then H(G, K) is almost
Z€ro.

457t might be helpful to some to work out what this means when L = Qp(y/p) and K = Qp, even though K here is
not perfectoid.
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Theorem 4.16. If V € Repi”™(C), then it is trivial in our sense, ie.
Cox VI 5V, or equivalently dimg V' = dime V.

cont

Hence Repp?™(C) — Vect];? given by V + V¥ is an isomorphism.

November 1, 2018. Thursday.

Last time we ended with a theorem, with the setup as follows: let C' = %, where K is perfectoid
over Q,. Write I' = Gal(K /K).

Theorem. If V € Repf®™(C) is finite dimensional, then C @ VI =5V as C-vector spaces.

Proof. First we reduce to the case where an finite index O¢-lattice Vj C V is preserved by I
We will show that Oc ®o, VOF — Vj is an almost isomorphism. This will suffice, since coker and ker

here are torsion, they will be killed after C ®¢, —, and we recover an isomorphism C @ VI = V.

Since the natural map C ®x VI — V is always injective, the map O¢ ®o, Vi — Vp is always

injective too. Thus it will suffice to show almost surjectivity.

OC ®OK (%F/pm)

|

Oc @0y (Vo/p™)"

Vo/p™

It suffices to show that f is almost surjective for all m > 1, and here’s our strategy.

Step (1) We show that the natural map Vi /p™ — (Vo/p™)! is almost surjective.
Step (2) We show that h : Oc ®0, (Vo/p™)' — Vo/p™ is an almost isomorphism.

Let’s start with the second step. We start by fixing a basis O — Vi. The action of I on Vg
is then given by p : I' = GL,(O¢). For m > 1, since ker(GL,(Oc) — GL,(Oc/p™)) is open,
by continuity, there is a finite index subgroup I';, that is normal in T', and such that p(T,,) acts
trivially on OZ/p™. As Oc-modules with a I'y,-action, we then have (O /p™)Fmr = (Vo /p™)tm,
where the superscript p means I'y,, acts on (O / p™)l'm via p. More precisely, if the basis O =V
is given by {e1,...,en}, and v = > v;e;, then v(v) = p(7)(Y(v1), ..., ¥(va))t.

~Im

. ——Lm . . . . .
Write K, = C' = K = K ™ which is finite Galois over K. Next we claim Of% /p™ —
(0% /p™)F'm is an almost isomorphism. Since we have restricted the source to Of,,, p is now trivial

and thus irrelevant.

For this, it suffices to show that O, /p™ — (Oc/p™)F'™ is an almost isomorphism. We know
that

(Oc/pm)l"m _ ll_I)n (OL/pm)Gal(L/Km).
K, CLCK
L/K,, finite Galois

With this description, the claim is now clear, as we have previously discussed that this map is always

injective, and Ok, /p™ — (Or/p™)'™ is almost surjective for all L, since L/K,, is finite Galois.
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al ~

Oc ®oy,, (OF%. /p™) Oc ®oy,, (Vo/p™)'m

O¢/p™ = - Vo/p™

We knew from what we have discussed that the top map is an almost isomorphism. The bottom
map arises from the choice of basis, and thus is an isomorphism. The left map is also an isomorphism.
Hence the commutative diagram says the map of interest, denoted with a squiggly arrow, is an almost

isomorphism. This proves step (2) for T,,.

Now we wish to relate back to Oc¢ ®e, (Vo/p"™)' — Vo/p™, which is the map in the step (2)
after all. We know that O¢ ®o, (Vo/p™)' = Oc ®0,, (Ok,, ®o, (Vo/p™)"). Since K,,/K is

finite, we can apply almost Galois descent and say that
mAI al~ m\ I
Ok,, ®@ox (Vo/p™) — (Vo/p™)" ™.
Combining everything, we know that
m m al~ mAl, al~ m
Oc ®o, Vo/p™)" = Oc ®0,., (Ok,, ®o, Vo/p™)") == Oc ®o,., (Vo/p"™) ™ =5 Vo /p™.

This concludes step (2).

Next we prove step (1), which states that Vi /p™ — (Vo/p™)! is almost surjective. First we
claim that if 1} is p-adically complete, and I' acts continuously with respect to the p-adic topology,
then VI = LiLn(Vo/p’")F. Indeed, we know that Vi < V; and 1<iLn(V0/p”")F = lim(Vo/p"), and

T T

K
Vo = lim(Vo/p") by p-adic completeness. Taking I-invariants yields the answer (I' acts on the

T
inverse limit entry-by-entry).

Finally now to prove step (1), it suffices to show that Vi — (Vo/p™)! is almost surjective. We

now know that V§ = lim(Vo/ p")I'. We invoke the following lemma:

Lemma 4.17. If {M,} is an inverse system of O -modules, such that M, — My (for r > s) is

almost surjective for all r,s, then @MT — My is almost surjective.
T

Proof. This statement is obviously true if almost surjectivity is replaced by usual surjectivity,
but we can do so by using .14 O

So now it remains to show that (Vo/p")" — (Vo/p*)' is almost surjective for r > s, for which we

can check after Oc ®o,, — by faithful flatness. Consider the following diagram:

1~
Oc ®oy, (Vo/p")* - S Voot

al ~
Oc @0, (Vo/p*)' ----> Vo/p*

56



We know the horizontal maps are almost isomorphisms. The right map is a surjection, so the

left map, our map of interest, is an almost surjection, which completes our proof. O

Let’s look at some applications. Fix a finite extension E/Q, and let K = E((p~). Since
K/Q((pe) is finite, we know that K is perfectoid. Write A := Gal(E((p~)/E). We know that
A = Gal(Qy(Gpe)/Qp) — Z, via the cyclotomic character, so A is a finite index subgroup.

Suppose I' = Gal(E/E), inside of which we have a normal subgroup ', = Gal(E/E({p=)). Let
C = E =C,, and we have A =T'/T'»,. Then CT>~ = K.

Corollary 4.18. In this setup, applying I' = ' in the theorem, we see that the functor
Rep”™(C) — RepX™(K) given by V s V=

is an equivalence of categories, with inverse given by C Qg M <+ M, where I' acts on C @ M
diagonally.

Morally speaking since we know A is a finite index subgroup of Z,;, this makes Repi™(A) easier

to study.

To conclude the section of perfectoid fields, we will state a few complements.
(a) Let’s write K" := E((y) and K = E((p )"
5Suppose I' = Gal(E/E), inside of which we have normal subgroup I's = Gal(E/E((yn))).
C=FE=C, A=T/Ty. Corollary: taking I'y, invariants give Rep{’*(C) — RepX*(K). Note
Cl= =K.

Complements:

(1) K/ := E((y~). Suppose M € RepX®(K). Inside M we find M/™ = {m € M :
Am generated a fd Q, — vs}. This property is preserved by K/ since K/ collects finite dim
stuff. Then K ®pcsin M/ =5 M (decompletion). Can show there exists r > 1 if K,. = E((,r), then
there exists M, € RepX*(K,) with K ®x, M, = M which is A equivariant. This is because choose
basis for Mf"" and basis element is already defined over some finite extension of K... M, is not

canonical but decompletion is.

November 5, 2018. Monday.

5. Fargues-Fontaine Curves.

Our goal before the end of the course will be to make sense and prove the catchphrase “Weakly
admissible implies admissible”, which is a statement first proved by Colmez and Fontaine @ and
later Fargues and Fontaine gave another proof. We have not made sense of what “weakly admissible”
means; for now it suffices to know that this is a statement about filtered ¢-modules, asking which
ones arise from Galois representations (which is the definition of admissible). Weakly admissible is

a linear or algebraic condition.

46in their paper titled “Construction des représentations p-adiques semi-stables.”
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5.1. Gauss Norms.

First we will develop more theory to Gauss norms. We fix a perfectoid field F' over F,, and
write Ay := W(Op). We have a (lift of) Frobenius ¢ acting on Aj,s via each of the Teichmiiller

coordinates. Fixing p € (0, 1], we define the Gauss norm
HP s A — RZO by |:l?|p = Sllip|33k|Fpk~

We write Nj(z) := max,>i|zn|r. Observe that:

(a) Since |p|, = p~*, we can extend ||, to Ain¢[p~'] by defining |z/p"|, = p~"|z],.
(b) If p < 1, then the supremum appearing in the definition of ||, is actually a maximum, because
|z, | is bounded between 0 and 1, forcing |xx|pp* — 0 as k — oc.
(c) If z € Aipe and p1 < po, then clearly |z|,, < |z|,,. However if € Aj,¢[p~!], then the same
cannot be said; the best we can say is if p1 < p < po, then |z|, < max{|z|,,, |z, }
(d) A priori if p =1, then we saw that sup, Ni(z) = |z|;. In general we have
sup Nk(x)pk = sup sup\xn|ppk = sup sup|acn|ppk = sup|z,|rpp" = |z,
k k n<k n k>n n
We have seen in that |-|; is a multiplicative non-archimedean norm on Aj,s. This still holds
in general:
Proposition 5.1. Let x,y € Ax[p™!]. Then we have |z + y|, < max{|z|,, |y|,} (with the natural
condition for when the equality holds) and |xy|, = |z|,|yl,-

Proof. We will simplify the situation and prove for when x,y € Aj . We leave the reduction to

this case an exercise for the readers.

Note that Ni(z) < |c|r where ¢ € mp iff 2 (mod p**1) € [¢]Aine/p*T! as before. We can again
see, as in|4.7} that Ny (z+y) < max{Ny(z), Nx(y)}. Hence sup; Ni(z+y)p* < sup, max{Ny(z)p®, N(y)p*},

and this implies the first part of the proposition. We will leave the second part till next lecture.

November 7, 2018. Wednesday.
Last time we have yet to prove that the norm ||, is multiplicative.

Proof continued. Using the similar observation from last time, one can deduce that ||, is a
seminorm, and we leave this for the readers. Assume that p < 1 for now. In this case, a priori there

are n,m with |z|, = |z,|pp" and |y|, = |yn|rp™ and are the minimal such. Write

x = (front terms) + [z,]p" + p" 1! (tail)
y = (front terms) + [y,,]p™ + p™ ! (tail)

and their product is

z

xy = (sum of products involving front terms) 4|z, y,, ]p" ™ 4 p" "+ (tail).

One can check that |z|, < |z|,|y|, by the minimality of n,m. Now on one hand we know
by definition that Ny, (zy)p"t™ < |zy|,, but on the other hand it’s the same as Ny, (z +
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[T Y Jp" ) p" ™ (ie. we cut off the tail). Since Nyyp,(2)p" ™ < |2|,|yl, and Ny ([20Ym ™ T™) p" " =

|z|,|y|,, using the non-archimedean property we now have

n+m

n+m) n+m

P T = Npg (zy)p" ™™ < |2yl,.

|x‘p|y|p = n+m(z + [wnym}p
This gives the reverse inequality. For p = 1, we note that |z|; = lim,_,;-|z],. a

Next we make a definition. Fix an interval I C (0,1), and define
By := the completion of Aj¢[(p[w])™*] with respect to }{|:|,: p € I}

where [w] is any Teichmiiller lift. More precisely, By consists of all the sequences that are Cauchy
with respect to all the norms {|-|, : p € I}. We also define B := B(q 1). |Z|

We make a few quick ovservations:

(a) If J C I, then there is a natural map By — B;. We will eventually see that this natural map
is injective.

(b) In addition, if I = UJ, is an increasing union, then By = {iLnBJn.

(c) If J = [p1,p2] is compact, since we know for p € [p1, p2] we have |z|, < {|z|,,, |z}, the

topology with respect to |-|, : p € J} is equivalent to the topology with respect to ||-||; =

max{||p,, [, }-

(d) If py = |a|r and pe = |b|r where a,b € mp, then

@ € Aume[(pl]) ™ ¢ 2lls < 1} = Aune([al /p, p/[B]].

(At least this sounds convincing since |[a]/p|,, = p1p; " = 1 and similarly for p/[b].)
(e) Moreover, [|-||j-topology on Bj is equivalent to the p-adic or [w]-adic or [a]-adic or [b]-adic

topology. Completing with respect to the p-adic topology, we get

By = Anl[al/p,p/ DI 1/].

In fact, using this description, we could have defined B; without using norms at all for compact

intervals, and extend such to non-compact intervals using the inverse limit.

How can one geometrically think about B;? From a functor-of-points point of view, maps out
of Zy[[t]][a/T,T/b] are same as specifying the image of 7" where |z| > |a| and |z| < |b|. Similarly,
maps out of Z, (T') [a/T, T /b] correspond to specifying x with |b| > |x| > |a|. Thus very heuristically

speaking, By can be thought as functions on a annnulus with ||a|| < [|p]] < |||

So where are we headed? Consider the map p: (0,1) — (0,1) sending x + zP. This induces a map
(abuse of notation) p : B(g,1) — Bpy(0,1)- On the other hand, we also have the (SOMETHING’S NOT
RIGHT) — Last time we have p : Aj,f — Ajne, and now I C (0, 1), so we consider p : Br — By,
where p: (0,1) — (0,1), 2 +— 2P, in particular p : B = B.

If © = Y [z,]p", then ¢(x) = Y [2E]p", then |p(x)|, = sup|z,|hp™ = (1] p1/0)P.

470ne can ask what topology B is equipped with; we will briefly discuss this in what follows. One can also read
about Fréchet spaces.
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— Our goal will be to study B#=F".

Once we have computed what B=P" is, we can define

X = Xp :=Proj @ B*="",
n>0
and it turns out X is a complete curve over Q,. Completeness here means that it’s a Dedekind scheme
satisfying HY(X,Ox) = Q, (hence “complete”), with a degree function |X|max — Z. However it’s
not proper becaue it’s not of finite type over Q,,! Some closed points have residue fields as untilts of
F if F is algebraically closed, otherwise they will be finite extensions of F'. The construction X is

functorial in F'.

5.2. (Fargues’s) Newton Polygons and Legendre Transform.

If # € Aint[(p[w]) Y], then z = 5
define the Newton polygon of = to be

> —oo [ Tn|p™ Where x, € I and sup|x,|r < co. Hence we can

NP(z) := the convex hull of {(n,vp(z,)) : n € Z}

where vp(-) = —log,|-|F. This is essentially the traditional Newton polygon but now we work with
power series in p. Our goal will be to define the Newton polygon on By, but we immediately run
into a brick wall: there’s no Teichmiiller cofficients for a general z € B! Even if they exist, it’s not
entirely clear why they should be unique anyway. So we are going to need a roundabout way to

construct Newton polygons for = € By, namely the Legendre transform.

Let f : R — (—o00, 00] be a function that is not identically co. We define its Legendre transform
L(f): R — [—00,00) given by L(f)(r) = irtlf{f(t) + rt}.

Conversely if g : R — [—00,00) is a function that is not identically —oco, we define the inverse

transform to be

L7(g) : R = (—o00, 00| given by L7 (g)(t) = st:p{g(r) —tr}.

November 8, 2018. Thursday.
Last time we have defined the Legendre transforms £ and £71.

Since this subsection is rather technical, it is beneficial to first give a brief overview. Our logic

for this subsection will be to

(Step 1) first understand £ in generality and see that £~1£ describes the convex hull,

(Step 2) understand L(z) for x € Ai¢[(p[w]) 1],

(Step 3) show that £(x) behaves reasonably nicely under Cauchy sequences (with respect to a family
of norms) in Aj¢[(p[ew])™!], and thus

(Step 4) extend L(x) to By for an interval I C (0,1), and define the Newton polygon on By using
L71L (and study its properties thereafter).
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Readers deserve to be warned that once we reach (c), there will be two parameters simultaneously:
n for the n-th term in a Cauchy sequence, and r for parametrizing the family of norms. We will

remind the reader when we reach there.

Let’s begin with (Step 1). Let’s define

(a) Ay ={(z,y) :y < f(z)}, the points below the graph of f, and
(b) A}' ={(x,y) : y > f(x)} for the points above the graph.

A straightforward computation sees that

{(r,s) : s < L(f)(r)}

{(r,s) : s < f(t) + rt for all t}

={(r,s) :s—rt < f(t) for all t}...(¥)
{(r,s)

: ¢_, s lies entirely below the graph of f},

where £, ; is the line 4, ;(t) = at + b. In addition, we see that

AL > L7HL())(0))

)

)iu > L(f)(r) —rt for all r}
tyu) i by (r) > L(f)(r) for all r}

)

)

FALp S ALY

: £ s lying under I'y implies (r,s) € A, '},
but since b > —ra + s iff ar + b > s, we have (a,b) € Aj_m iff (r,s) € A, . Hence

Az,l(ﬁ(f)) ={(t,u) : {_, 5 lying under I'y implies (t,u) € AZT,S}

= N A

¢_, s lies under 1y
Thus £71(L(f)) is precisely the convex hull of I'.

Furthermore, one can observe from (1) that £(f) is concave for any f, and similarly £71(g) is

convex for any g. Finally, if f is convex, then evidently £L=1(L(f)) = f.

We will eventually apply £ and £7! in cases related to Newton polygons. Following Fargues’s
idea, we first fix some terminology. One can skip the bullet points and just read the picture if one

desires.

(a) We say that £ transforms from the Newton side to the Gauss side, and the converse for
L£71, from the Gauss side back to the Newton side.

(b) On the Newton side, we will eventually modify the Newton polygon to only record the negative
slopes (ie. the decreasing convex hull), so all slopes will be negative. We will denote this
modified Newton polygon by Newt(x) as opposed to NP(z). Then and hence we apply the
convention where slopes will mean the negative of the (usual) slope of a linear segment. So
slopes will only measure the steepness of the line: the steeper the line, the greater the slope.
We will provide examples later for readers to verify their intuition. I will also write slope’”

from now on to emphasize that it’s the modified slope in the Newton side.
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(¢) On the Gauss side, we keep the traditional notion of slope.

(d) On the Newton side, we define multiplicity (or length) of a slope to be length of the

segment when projected onto the z-axis, as per the traditional notion of the Newton polygon.

Here’s an example for when o = [xg]+ [21]p+[12]p? + [23]p3, where |2o|r = |71|F = p7 1, |22|F = 1
and |z3|F = p~2.

Up (@)
3
(slope™ o0) —
2
Newton side: Newt(x).
III/ \\\ 1 N
(slope™ 1/2, mult. 2) (fl"le 0, mult. o)
III \\\ n
j ,‘ o 1 2 3
z:—li EL
l\ i L(Newt(z))(r)
\\ / (slope 0)
\ j !
\\ // 1 »-
\ / (slope 2) —»
Gauss \side' E(Neivt(m)) 0 1 2 3 '
' ’ (slope c0) —
-1

Next, we define the break points on both sides to mean the z-coordinates of the corners. One

can suitably extend this definition to oo or —oo suitably, but for the current discussion this will be
a red herring.

Lemma 5.2. If f is piecewise linear, convex, and continuous, then L(f) is piecewise linear, and
there is a duality

{slopes™) of f} = {break points of L(f)} and {break points of f} = {slopes of L(f)}.
(Again, one can still make sense of this at oo or —oo values, but much caution is advised.)

Proof. PROOF NEEDED.

O

EPY Y ‘ (A2, 52)
\ |
|
apply £ slope t; — |
51 (A1, 81) ‘ !
|
! |
! |
| ‘ !

tl mult. )\2 — )\1
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Next we do (Step 2), where we start with the Newton polygon. Last time we have defined the

Newton polygon for x € Ai[(p[w]) '] (where z =Y o~ [za]p", 2n € F and suplz,|p < c0) to
be

NP(z) = the convex hull of {(n,vr(x,)) : n € Z}.

We will modify NP(z) to
Newt(z) = the decreasing convex hull of NP(z).

More precisely, Newt(x) only holds onto the negative slopes (ie. positive slopes™) of NP(z). If
sup,,|Tn|F = |x|1 is not attained, then Newt(x) = NP(z). Otherwise, Newt(z) is asymptotic to the

horizontal line with y-intercept vo(z) = —log, |z|;.

For instance, if z = [xo] + p[z1], then we have (0,v,(zo)) and (1,v,(z1)), and Newt(z) will look

like one of the following two diagrams.

Up(Tn) Up(Tn)
3 3
2 2
1 Newt(z) 1 Newt(z)
n n
0 1 2 3 0 1 2 3
if vy (o) < vp(w1). if v, (o) > vp(m1).

Finally, we wish to define v, := L£(Newt(z)) (as functions of r). Next time we will see that v,

can be (re)defined alternatively without invoking Newt(x) at all.

November 14, 2018. Wednesday.

Previously we have started talking about Newton polygons. Again, our motivation is to define

it for z € By, and our main obstruction is that x does not admit Teichmiiller coefficients.

If z € Aine[(p[ww]) ], we can consider the function

) vp(x) :=inf,{vp(z,) +rn} if r >0,
vz (1) 1=
—00 otherwise.

This time we start (Step 3), where we show that v, behaves nicely (ie. stabilizes) under Cauchy

sequences, and so we can define v,.(x) for z € By. As promised, we remind the readers that, once

we have a Cauchy sequence {z,},, C Ain[(p[w]) 1], there are two parameters: n for the n-th term

in the sequence, and r € (0,00) to parametrize the norm |-[,-.
We warn that

(a) as one might have guessed, x,, will from here on denote the n-th term in a Cauchy sequence,

as opposed to the x, in [z,], the n-th Teichmiiller coefficient, and
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(b) it might be more justified to write v(r, z) instead of v, (r) or v,.(z), but the reader should have
little trouble understand the notes knowing that they are all the same. We write v, (r) or v, (z)

mainly to put emphasis on the argument, and nothing more.

Lemma 5.3. Let p € (0,1), and suppose {xn}n C Ainel(p[w])™t] is Cauchy for |-|, and is not
equivalent to 0. Write r = —log, p € (0,00).

(a) The sequences {v,(xp)}n, {0Lvs, (r)}n and {Orvs, (r)}n stabilize (in n, as opposed to r), ie.
they are independent of n when n > 0.

(b) If {yn}n is another Cauchy sequence that is equivalent to 0 under |-|,, then when n > 0,
Vi, (1) = Vg oy, (1) and Orvg,, (1) = Orva, 4y, (r) where 7 € {R, L}.

Proof. For part (a), we observe that v, (1), as a function of r, is continuous. Using Cauchyness,
choose N > 0 such that for all n > N, v,(z, — zn§) > vy(xn). Then for any fixed n, there is a
neighbourhood (r — e, 7 + &) of r, such that for any r’ in it, we have v,.(z, — zy) > v,(zn), and
$0 Up(2n) = vr((xn, — zN) + 2N) = v-(zn). Hence the sequence {v,.(z,)}, stabilizes, and from here

it’s easy to see {Q2vy, (1)}, stabilize too, since they are determined by {v.(xy)}n.

For part (b), since {y,}n is equivalent to 0, this means the y, has very large valuation when
n >0, 80 (T + Yn) = vp(Tn). O

Corollary 5.4. Suppose {x,}n is Cauchy for {||, : p € I}, and {z,,}n is not equivalent to 0 for
some po € I. (If ro :== —log, po, this means {v_1og, p(zn)} is bounded above). Then {x,}, is not
equivalent to 0 for all norms p € I. In other words, if J C I, then the natural map By — By is
injective.

Proof. (NEEDS EDITING.) Choose N > 0 such that dyv,, (r9) (where ? € {L, R}) are stable
for n > N. O

Lemma 5.5. Let I = [p~"2,p~ "] and let {xy}, be Cauchy for {|-|, : p € I}. Then there is N >0
such that v, (z,) = v.(rn) for alln > N and all r € —log, I = [r1,72].

Proof. Using choose M > 0 such that {v,,(zy)}, and {O7vs, (1)}, stabilize for n > M and

i€{1,2} and ? € {L, R}. Recall v, (r) is concave as a function on r, and as such, we have

Ur(xn) = Vg, (T) < Ve, (7'1) + (T — 7’1)83@% (Tl) - (J[)

= vy, (r1) + (r — r1)ORva,, (r1) due to stability.

o g, (r1) + (r = 711)0RVS, (1)

slope = vy, (r1) =,

(r1, vz, (r1)

A pictorial depiction of the argument (7).

Since vg,, (r1) + (r —r1)OrVs,, (r1) is a linear function, it must be bounded above by some A > 0
that is independent of r € [ry,r2]. Now using the Cauchyness of {x,}, with respect to both r;
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and rqg, choose N > M such that for all n,m > N, we have v, (x, — z;,) > A for i = 1,2. By

construction,

(a) on one hand we know that v, (2, — z,,,) > A for all r € [ry, 73] by concavity of v.(x) in r, and

(b) on the other hand we have v,(xn) < A as discussed.
Hence if n > N, this forces v,.(z,) = v.((x, — n) + zn§) = v:(TN), as required. g

Finally we are ready to go to (Step 4).

If £ € By where I C (0,1) is an interval, then x is represented by a Cauchy sequence {x,}, C
Aine(p[w])~1]. We now established that: for any r € — log, I, we know {v,(z,)} and {9rvs, () }n
(for 7 € {L, R}) stabilize for n > 0, and are independent of the choice of the representing Cauchy

sequence {T, }.

Hence from z € By we obtain a function v, : —log, I C (0,00) — R, sending r + v, (1) (where
v (r) = vy, (r) for all n > 0). Furthermore, v, has well-defined left and right slopes 9»v,.(r) for
all r € —log, I, even at the boundary points! — even if v, is undefined (or ill-defined) outside of

—log, I.

Finally, for any compact interval J C I, there is N > 0 such that for any n > N, v, = v, when

restricted to —log, J. In particular, on —log, J, v, has integer slopes with finite multiplicities.
(DIAGRAM MISSING)

Now it’s only a matter of gluing the compact intervals J together to get an arbitrary interval
I. Given J = [p~",p "] and z € By, first we extend v, to the entirety of (0,00) (and to R). We
define

’1)1(71)7 T e [Tl,’l’g]
; Vg (1) + Orvz (r2)(r — re), r>19
v T
ve(r1) + Opve(r)(r —r1), 7€ (0,7m1)
—00, r < 0.

In this case, we can define Newt5(z) = £71(v/). In general where I is an arbitrary interval, we first
define v! with the property that vl | _ log, J= v for all compact subintervals J C I, and subsequently
define Newt(x) := L1 (vl).

November 15, 2018. Thursday.

Today we start by paraphrasing what we have established. If J = [p~"2,p~"] C (0,1) is a
J

T

compact interval, and = € B, then we have defined v?, which describes the picture on the Gauss

side. For such a compact J, we have defined Newt5(x) to be the Newton polygon via Newt(z) :=
L7 (v]).

To extend from a compact interval to a general interval, we can first consider Newt ;(x), which is
the Newton polygon with the lines of slopes” 0, cc removed. In other words, Newt ;(x) is essentially
the Legendre transform on v, before we extended v, to 1155] — of course this would not make sense

technically since Legendre transform is only defined for functions out of R.
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In any case, we have since that if J C J’ are both compact intervals, then Newt ;(z) C Newt j (z),

so for a general interval I C (0,1), we can do the union or direct limit:

Newt,(z) := U Newt s (z).
JCI compact
We also note that Newt;(z) have slopes” lying in —log,, I, for this is true if I is replaced by a
compact J = [p~"2,p~"]: slopes” of Newt;(x) are break points of v,, which lie in [ry,rs] by

definition.

Is it really worthwhile to spend so much time to develop this Newton polygon business? Yes! As
we will see, there are a lot of results that we can prove using this, and is really difficult without the

Newton polygons.
As a brief diversion, here are our next two goals:

(a) Show that B := B,) is a PID, by studying divisibility questions using the Newton polygon,
and

(b) Construct and study the curve Proj &B*=F".

Anyway, here’s a concrete example: if © = [w] 4+ p where g (1)
¢ = vp(w) > 0, then v, sends r to min{r,c} if r > 0, and

—o0o otherwise (see diagram).

Newt;(x) = L~ tv, is the union of line segments in Newt(x) (c,c)

of slopes™ A where \ € — log,, I (since these are the break

points one can see on the interval —log, I, ignoring break- « slope 1

points at 0,00), and so in this case is empty (more precisely, r
(0,0)

consists of vertical and horizontal lines only) if ¢ ¢ —log,, I
What does it mean if Newt;(z) = @7 In fact, this means that z is invertible in B;'. Before we

prove this, we have to expand our definition of a primitive element.
If £ =377 o[zn]p™ € Ains, we say that z is primitive of degree 1@ if
(a) |zo|lF <1 and g # 0, and
(b) z1 € OF, or equivalently |z1|p = 1.
We write Prim; for the set of primitive elements of degree 1. Earlier for a primitive element x, we
required |zo|r = p~!, which we used to determine that p has norm p~!, and hence (Aj,¢/x)[p~!] is

a perfectoid field with tilt F'. However, there is really no canonical reason why p should have norm

p~ L, because tilting kills p.

Theorem 5.6. Let x € Primy, then (Aine/x)[p~1] is a perfectoid field with tilt F, where |p| = |xo|r.

Here’s how one should think about Prim; elements. Given x € Primy, we can associate x to the
mazximal ideal m, := (z) C Aine[(p[ww]) '] (maximal since quotient is a field). Then we can ask when

its extension m, By is still a maximal ideal (in By). In fact, by the succeeding proposition (along

48Tn general, we can define & € Aj,¢ to be primitive of degree d if |2;|F < 1 for all i < d, and x¢ # 0, and x4 € (’);i.
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with the black box that proper ideals are mazimal), we will see that this is the case precisely when

vr(rg) € —log, I. We will come back to this next lecture.

Proposition 5.7. If x € By, then x is invertible iff Newtr(z) = &.
Proof. In general

Proof of proposition. in general, if 2, y € By, then check that for any J C I compact, v}, = v;]+v;
(simply because v, (zy) = vp(x) + vp(y). Hence Newt(zy) = L (v] + v;). since break points of
sum = union of break points, this means that slopes of Newt ;(xy) is the slopes of Newt ;(x) union
slopes of Newt ;(y). If zy = 1, then left hand side is empty (check). So both sets on the right is
empty. In general exhaust I with compact Js. This shows only if. (this is not easy without legendre

transform, even for A;,¢ elements!)

For if, first assume that x = 3 _ y[za]p" € Aing[(p[ew]) 1] with (N,vr(zx)) a break point of
Newt(x) (equivalently vr(zy) < vp(xy,) for all n < N, just check using naive defn of newt), and
N
P
Aine[(p[w]) 7. So we must show the bracket term is invertible too. Also add in assumption that all

n—N)'

that I = [p~"2,p~"] is compact. In this case, z = pN[zn](1 + X, ylzN'T0lp TN] €

the slopesof Newt(x) are > ra.

Claim: with these assumptions, for all r € [ry,79] and all n < N, v, (x5 z,]p" ™) > 0. Then

(e n @y 2n]p" V) > 0 for all 7 € [r1,75]. So the bracket guy is topologically nilpotent.

November 16, 2018. Friday.

Last time we saw that when given x € By, one can associated with it the Newton polygon
Newt;(z), which unlike the traditional Newton polygon, is not defined wholly on R. We also talked

about when to detect whether x € Bj is invertible:
Proposition (Restatement of. For x € By, TFAE:
(a) @ € B is invertible.
(b) Newts(x) = @.

(¢) For all compact intervals J C I, the pre-Newton polyon Newt$(z) = L7(v]) has no slopes in
the interval —log,, J.

Recall that Primg := {& € Ajy¢ : « is primitive of degree d}. We also saw

Theorem (Restatement of. If x € Primy, then K, := (Aint/z)[p~Y] is a perfectoid field with a
canonical identification Og(m = O that is norm compatible if we define |p|, = |xo|r, where |-|; is
the natural norm on K.

Today we will talk about how divisibility is encapsulated in Newton polygons. As suggested by

the preceding theorem, for € Prim;, we define the slope of x to be —log,|p|. = —log,|zo|F-

Theorem 5.8. Assume F is algebraically closed. If y € By and Newty(y) admits a line segment of
slopeN A, then there exists x € Prim; of slope \ such that x | y in By.

In other words, any non-primitive element is divisible by a primitive element, or in a greater

generality, the slopes™ of Newt;(y) say precisely how y factorizes.
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If € Prim;, then we can associate with it (r) = m, € mSpec Ai,¢[p~!]. Again, invoking the

black box that a proper ideal is maximal in By, the theorem then says TFAE:

To conclude, viewing y € By as a function on mSpec Ain¢[p~?!] via y(m,) :=y (mod m,), then y has

a zero x in mSpec By of slope™ ) iff \ is a slope of Newt;(y).

\$0|F

Figure. A depiction of mSpec Aj,¢[p~!] which contains mSpec B;. Bj
only sees the annulus corresponding to the interval I in mSpec A, ¢[p~1].
The specified point m, represents a maximal ideal in both Ainf[pil} and
m, B; € mSpec B;. On the other hand, m/, is maximal in Aj;,¢[p~!] but
its extension is no longer proper in B;. Also note that we have drawn a
closed non-punctured unit disk rather than an open punctured unit disk,

suggesting By is still relevant when I includes 0 or 1.

Now we extend the notion of By for when I also includes 0 or 1. For x € By,

(a) if 0 € I, we say that = € Bjyqoy if there is a Cauchy sequence {z,,} for all {|-|, : p € I'} and
for the p-adic norm and converges to z for all |-|,,p € I.
(b) if 1 € I, then we say = € Brugiy if the same aforementioned criterion is satisfied with the

p-adic norm replaced by |-|; (which is the same as the w-adic norm).

Lemma 5.9. Suppose x € Bj.

(a) If 0 € T and Newtr(z) is bounded to the left (ie. there is a oo slopeN to the left), then
S BIU{O}'
(b) If 1 € I and Newt;(z) is bounded below, then x € By

Proof. (a) If Newt;(x) is bounded to the left, then Newt(p"x) lies strictly in the positive z-axis
region for some n > 0, which means all break points are positive too. Hence before the Legendre

transform, v, (r) only admits positive slopes. (?)

(b) (?)

[[Lemma (i) is equivalent to saying there is n > 0 such that sup,_,q+|p" |, < co. Lemma (ii) is
saying sup,_,;-[z], < 0o.]]
68



Lemma 5.10. The ¢-invariants of B, namely B®=', is precisely Qp.

Proof. First assume that x € Aju¢[(p[ew])7!]. Then x is ¢-invariant precisely when [z2] = [z,,] for

all n. For what is the same, z,, € I, for all n, so x € Q,.

Now suppose z € B is WLOG nonzero. ¢(x) = x means that for all » > 0, we have vy, (1) =
vg(r). If 2 is represented by the Cauchy sequence {a;, },, € Aine[(p[w]) '], we have vy, (1) = vg(s,,)(r)

for n > 0. Write y = z,, for a moment. Then we have

vy(r) = vy (r) = f{vr (y7) + rn} = pinf{or(ya) +rn/p} = pvy(r/p).

Replacing r/p by r, we have vy (pr) = pv,(r). Since the y’s approximate x, we have vy (pr) = pvy(r).
This implies v, is a linear function in r passing through the origin (with extrapolation), or in other
words, there is an integer N such that v,(r) = Nr for all » > 0. This then forces 0 to be the only
break point of v, (r).

Uy (7’) Newt?ojl) (SC)
% slope N
r
N
The graph of v, (r). The graph of Newt‘(jo’l)(m) after applying £71.

In particular, since the only slopes”™ are 0 and oo, we can see that = must be invertible too, but

this will not be important for us for now.

After applying £, we see that the only break point of Newt?o,l) (z) must be at N, so in particular
the Newton polygon is bounded to the left and below. By x can be extended to Bjp 1;. Now we
claim that By 1) = Ainel(pl=]) 1]

Indeed, if y € Aine[(p[ww]) 7] is

(a) small in p-adic topology (ie. the first power of p with a nonzero Teichmiiller coefficient is
large), and

(b) small in 1-norm (or equivalently [z]-adic topology) (ie. supy|zg|F is small),

then it is also small with respect to all norms |-|, with p € (0,1). Hence By yj is the completion of
Aine|(p[w])~1] with respect to the topology given by the supremum of the 1-norm and the p-adic

norm, but Ai,¢[(p[ew]) ] is already complete with respect to the (p, [ew]) ~!-adic norm.
Now that we have reduced to the case where x € Ai¢[(p[ww])~!], we are done. O

Remark. Following the same argument, we see that if z € B is invertible, then z € Aj¢[(p[w]) ]

and has a Teichmiiller representation.

November 19, 2018. Monday.
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Our standing assumption from now on will include F' being algebriacally closed, and one can
usually reduce general statements to ones with this restriction using Galois descent. We won’t dwell

over it here.

Last time we have seen

Theorem (Restatement of. Let y € By and X is a slope appearing in Newty(z) (hence neces-
sarily A € —log, I)). Then there is x € Prim; of slope A such that x | y € By.

Remark. If F is algebraically closed, then given « € Prim;, we can assume x = [w] — p for some
w € mp — {0}, up to multiplying by A ;. (Why not clear?) For this, it suffices to show that if
(x) contains some element of the form [w] — p. Indeed, ©, : A — Ok, takes [] to 8%, where
if we write 8 = (B™),,>0, 8™ € Ok, and ()P = B"~1. Then g# = (). So it’s enough to
show that there is (w(”)) with w(® = p. But this is right, because F is algebraically closed, so K,
is algebraically closed, and such a sequence exists (we are simply taking p-th roots over and over

again).

(Side discussion. x € Prim; is in bijection with (K, ||;), when we also remember the norm on
the untilt.)

We have also seen

Lemma (Restatement of. x € B such that Newtq 1)(z) is bounded to the left and below, then
2 € Aine(plw]) 7).

This yields three consequences:

(a) B?=! =Q,. We have seen this in
(b) The units in B = By 1y lie in Ajne[(p[ew]) ~']. In other words, B* = Aju¢[(p[ww])~1]*.
Proof. x € B* iff Newt g 1)(7) = @, and use O
(¢c) If d < 0, then B*=r" = 0.
Proof. Let © € BY=7" — {0} (for any d) then ¢(x) = p?x by definition. As in the proof of
for r € (0,00), we have v,(¢(x)) = pv,/,(X). Replacing r by pr, we have v,.(p?z) = pv, ().

Hence (with approximation by elements in Aj,¢[(p[c]) ~!] omitted)
pug(r) = pop(x) = vy (pa) = igf{vp (ptxy) + prn}
= igf{vp(xn,d) + prn}
= igf{vp(xn) + prn + prd} = prd + vy, (z) = prd + vy (pr).
Now one can check that if d < 0, then x € B*. So suppose A is a break point of right slope N,

then p is also a break point with right slope N — d (one can check this using differentiation,

ignoring some technnicalities).

Using duality between break points and slopes, now we know A is a slope™ of Newt g, 1)(z),
which appears at the break point N; and p) is a slope” which appears at the break point
N —d. If d > 0, then X\ # 0, because it cannot have right slopes N and N — d simultaneously,
and pA > A, but N —d > N, contradicting Newt o 1)(x) being a decreasing convex hull. |
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Remark. One can see using this argument that if z € B=P" — {0} where d > 0, then in
Newtg,1)(z), the slopes’ of z must approach co on the left. This is another glimpse of the slogan

that Newton polygons give useful information about = € B where one cannot deduce otherwise.

5.8. Formalisms of “curves”.

We define the graded algebra

Pp = @B¢=Pd.

d>0
Recall that F' is the underlying perfectoid field. We wish to study Pr, which we will do so formally

in a general setting.
Our setup will be as follows: suppose we have a graded algebra P = @ P; with the following
properties:

(Al) Py =K is a field. (In our case (Pr)o = Q,.)

(A2) Ugso(Pa —{0})/K* is a monoid is freely generated by (P — {0})/K*. (Something about
Pic;rd group being trivial.)

(A3) For all t € P, — {0}, there is a field extension C;/K such that

P/tP = D, == {f(T) € G4[T] : f(0) € K}

as graded algebras. (In our case C} is the untilt of F.)
The polynomial ring in 2 variables K[z, y] shall satisfy these conditions, for example.
Theorem 5.11. Let X = Proj(P). Then
(a) for allt € Py — {0}, Proj(P/t) = Spec C;. @

(b) for allt € Py — {0}, B, = (P[t™1])o is a PID.
(¢) X is a Dedekind scheme with H*(X,0x) = K and H'(X,Ox) = 0, and for all f € K(X),

we have
Z ordee, (f) =0

where | X| is the set of closed points.

~

(d) (P = {0})/K> — [ X[ by & : t = 00y

Proof. First let us recall the Proj construction. If Q = € Qg is any graded algebra, then as a

set we have
Proj(Q) = {homogeneous primes P C @ not containing the irrelevant ideal},

and its structure as a scheme is described by

Proj(@ = [J  Spec(Qlf'o-
f€Qaq,d>0
By (A3), one has Proj(P/t) = Proj(D;) 2 Spec((D:[T~])o). We observe that (D;[T~])g = C;.
This gives the first inclusion. To finish (a), it now suffices to show that the only nonzero homogeneous
prime ideal of D; is TC[T].

49This is saying that any divisor cuts out a degree 0 variety, which reinforces the idea that Proj(P) is a curve.
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Suppose B is such an ideal. Clearly  C T'Cy[T]: if p(t) € B has nonzero constant term, then
there must be at least one (homogeneous) generator that is a constant, but this would mean ‘B is
the unit ideal. Now suppose aT" is a generator of B with minimal degree. We can multiply by

a~'T € Dy, regardless of whether a € K or not, to get 7°*! in 93, and we are home.

We will continue the proof next lecture.

November 26, 2018. Monday.

Proof of continued. Last time we completed the proof of part (a), so we will proceed to part
(b) now. We will show a stronger statement, that if t € P, — {0}, then B, = (P[t™1])¢ is a PID with
irreducible elements {x/t: x € P, — Kt}.

By definition, B, = {y/t? : y € P;}. Recall that for x € P — {0}, we define D, := {f(T) €
C.[T]: f(0) € K}. By assumption, the identification in (A3) &, : P/xP — D, preserves the degree
1 piece, thus maps t — o1 where o € C, — {0}. Inverting ¢, along with the fact that B; only
records degree zero elements, we see that &, : By/(x/t)B; — D,[T 1]y, and degree zero elements in

D,[T~1] are precisely C,.

Since B; quotiented by x/t gives a field, (z/t) is a maximal ideal. (Not entirely sure how to finish
it.)

Up till this point, we know that X is a Dedekind scheme, and the set of closed points | X| =
{00t : t € Py — {0}}, where {o0:} = Proj(P/tP).

Given t € P — {0}, we define deg.,, : K(X) — Z>o U {oo}, sending f + —ords, f. This
is well-defined since we are working in a PID, so the term ord.,, makes sense. More explicitly, if
f = t%1 /ys where t { y1,yo, then deg.,(f) = —d. Since f has the same degree for its numerator

and denominator, we have Zoote|x\ degwt(f) =0.

To finish off (c), we must show that H°(X,Ox) = K and H'(X,Ox) = 0. So far we have been
using the projective line as the intuition for such formalisms, in which case these two criteria on
cohomologies are satisfied, but we can also do better and say that H! (P!, Op:(—1)) = 0. It will not

be true in this generality, and is the fundamental difference.

Anyway, write the open set U; := Spec B; for a fixed t € P, — {0}. Write j : U; — X and

i: {00t} — X. Then we have an exact sequence of sheaves
0— OX — j*OUt — ]*OUL/OX — 0.

But the last term is concentrated at oo, so it’s simply 4. (K (X)/Ox c,). Taking the long exact

sequence, with the fact that U; is affine, we have
0— H%X,0x) = By = K(X)/Ox 00, = H'(X,0x) = 0.

Hence now it remains to show that H%(X,0x) = B;NOx ,, and that H'(X,O0x) = K(X)/(B: +
Ox,00,) = 0, or equivalently K(X) = By + Ox oo, -
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Let’s write down explicitly that

B, = {y/td cy € Py}
K(X) ={y1/y2 : y1,y2 € Py and yo # 0}
Ox,o0, = {y1/y2 : y1,y2 € Py and ya # tP}.

Staring at these descriptions, it’s not hard to see that H(X.Ox) = K. H'(X.Ox) = 0 essentially

comes from partial fractions. This finishes the proof. O

Why did we switch from ord., to deg,,,? How should one think about K(X) = B; + Ox o,?
This says that if f € KX(), then there exists b € B; such that deg., (f —b) < 0. If we write

[ =ai1/az where ay,az € By, then we have deg, (a1/az —b) <0, or equivalently
deg,, (a1 — bag) < deg(az).

As such, we call B; pseudo-FEuclidean. The adjective pseudo is due to the fact that one would expect
a strict inequality for an Euclidean domain. Had B; be Fuclidean, then this would be equivalent to
saying K (X) = B; + mx ,, or that H*(X,Ox(—oc¢)) = 0 (but this is false anyway in our general
setting).

Let’s go on a short diversion on line bundles, that will be crucial for what is upcoming: since By
is a PID for all ¢, we have Pic(U;) = 0, and the degree map deg : Pic(X) — Z sends a line bundle
L3, orde, (s) where s is any section of the line bundle. This has an inverse m — Ox (mooy).
One can check that Ox(moo;) = %, where P[m] is the shifted graded P-module with P[m]s =
Pria.

To conclude the lecture, let us talk about where we are headed. Let’s write Po, = @ - B*=r",

We will also consider the graded algebras

Py, = @ B¢ =P" where r > 1.
d>0

In fact, X, := Proj Py, still satisfies properties (A1,2,3).

There is a natural map from Py, — Py, sending a € B=?" to a € B¢"=P"" This map acts like
the Veronese map. This natural map induces a map after taking Proj, and thus we get an inverse

system {X, },>1.

Write X = X;. Then in fact, X, = Q,r ®q, X, and Pic(X,) = Z for every . Write the map
7, : X, — X, and in fact this map is finite and étale.

Define Ox(d,r) := 7, .Ox, (d), which is a rank r vector bundle. We define for A = d/h € Q
in lowest terms that Ox(A\) = Ox/(d, h), then a main result in p-adic hodge theory says that every
vector bundle £ on X is of the form F = @, Ox()) for A € Q. This result indeed requires the

algebraically closed assumption on the perfectoid field F'.

November 28, 2018. Wednesday.
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As briefly mentioned last time, today we will consider, for » > 1, the graded algebra

Py, = @Bd”‘:pd’
d>0
and write X, = Proj(Pyp,,) and X := X;. Note that we have Q,r = W (F,-)[1/p] < Aint[1/p] — B

so we can define the map
B*=r" ®q, Qpr — B(V:pw, sending z ® a — ax.
One can check that this is an isomorphism, hence X, = X ®q, Q,-.

Today we will show that these graded rings have the desired property (A2).

Theorem 5.12. UdzO(Bw:pd)/Q;T is freely generated by the degree 1 elements (B‘z’T:p—{O})/Q;r.

Remark. We saw that B¢=?" = 0 if d < 0 and equals Q, if d = 0. In fact, the same argument
will imply that B =" = 0if d < 0 and equals Q- if d = 0. Moreover, every maximal ideal of B is
of the form m, = (z) with © € Aj,¢ primitive of degree 1. We also showed that in fact one can take

2 to be of the form [z¢] — p where g € mp.

The idea of the proof will be to identify the graded algebra P with a graded monoid, that will
be obviously freely generated by the degree 1 elements.

Let us first define a few terminologies. Define

(1) (effectiveness condition) a, € Z>o,
T _(2) (local finiteness condition) for every compact
Div™ = Z az[m] interval I C (0,1), there exists finitely many m,

me €EmSpec B with slopes in — log, I with a, # 0.

We remark with caution that there’s no requirement on an element in Div*t being a finite sum: we
merely require that it’s a finite sum when restricted to a compact interval. In addition. there is a

e

natural action of ¢ on Div™", (induced by) sending m, to My ;). Next we define

—_—

Divt(X,):={D € Divt : D = ¢"(D)}.

the subset of divisors invariant under ¢". Eventually we will see that we can identify Div' (X,.) with

the effective divisors on X, thus justifying the notation.

e

Lemma 5.13. (a) Ifb € B is nonzero, then Div(b) := ) ord,(b)[m,] is in Div™.
(b) Ifbe B®" =" is nonzero, then Div(b) € Div'(X,).

Proof. (a) If I is a compact interval, then the ideal (b) is principal in By, and both conditions for
Div" follow immediately. (b) The statement simply boils down to ¢" (b) = p?b implying Div(¢" (b)) =
Div(b). O

Let us recall again that we are working with the assumption where F' is algebraically closed, or

—b

one can simply assume that F' = @ = (C;).
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Proposition 5.14. The map

U (Btﬁr:pd —{0})/Qy — Div"(X,) sending z — Div(z)
d>0

is an isomorphism of monoids.

Remark. This is not true if F' is not algebraically closed, in which case Pic(X,) # Z, and there

are irreducible elements not of degree 1.

Proof. First we show injectivity. Let z; € B =r" _ {0} and 2z € B¢ =r™ with dy > di and
Div(z1) = Div(z2). Restricting to any compact interval I, over By, 2z can only differ from z; by a
unit, and so the same must still hold in B. Writing z; = uzs for u € B*, we have u € Be =p T
Since dy — dy < 0 and u is a unit, this forces di = ds (vecall that if d < 0, then B*"=P" = {0}). But
BY"™=1 = Q;r, so we are done. Note that up until this point we still have not used the assumption
that F' is algebraically closed.

Next we show surjectivity, which is the hard part of the proposition. First we make an observation:
fix an m,(= () where x € Prim;) and consider D, =}, #""([m;]), to which we claim lies in
DivT(X,). By construction it satisfies ¢"-invariance and the effectiveness condition. For the local

finiteness condition, consider the interval J = (p?", p|. If |p|, € J, then [p

prr(z) & J for any n # 0.
Since any compact interval I C (0,1) can be covered up by finitely many such J’s, this gives the

local finiteness condition, and subsequently our claim.

Our next step is to observe that Div'(X,.) is freely generated by {D, : m, € mSpec(B)}. This

is obvious essentially from definition of Div*(X,.).

Now the third step is to identify degree 1 elements in B® =P with the generators {D,}. More
precisely, we show that there is t, € B® =P such that Div(t,) = D,, which we prove by showing that

there are ¢ and ¢, responsible for the positive and negative shiftings of [m,] by ¢" respectively.

positiye shiftings { ..0.

Figure. We separate the construction of ¢, into ¢} and ¢ .

By replace x by —x if necessary, we assume x = p — [zg]. The positive part is straightforward:
we consider the infinite product ¢} = [],,~,(¢""(x)/p) along with some tweaking for convergence
issues, to which we claim it converges in B. To see this, we first note that [[, ~,(¢""(x)/p) =

[I50(1 — [xgm]/p). To see the product converges, it suffices to see that lim|[x]87 1/pl, = 0, and

indeed we have |[:Ugm]/p|p = p_1|x0|g". By construction we then have Div(t}) = 37, 5 o[¢"" (mz)].
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Finally, now we have in fact ¢"(t}) = (p/x)t}, so it remains to show there is ¢, € Ajy¢, unique up
to Q,, such that ¢"(t, ) = xt,, then t, := t}t, will be pt, and do the job. However as one might
expect now, the naive guess t; = ¢~ "(2)¢p~2"(z)--- does not converge, so we will need something

more clever.

November 29, 2018. Thursday.

Today we will continue to prove the surjevtivity of the divisor map. Let’s recall the

Lemma. For allz = [xo]—p € Primy, there ist, € B® =P such that Div(t,) = D, = Y onezl@" (mg)].

We have constructed the plus part t} = [],5,(¢""(z)/p)) € B which satisfies (t) = (p/x)t;
and Div(ty) = Df =3, -,[¢""(m,)]. Today we will start by proving there is ¢, € Ajur, unique up
to Q- (or equivalently Z,.), such that ¢"(t, ) = xt; . To do so, we will construct {b, }n, C Ajnt such
that

(a) by, =b,—1 (mod p"), and
(b) ¢"(b,) = xb, (mod p"*1).
Then ¢, can be defined as the p-adic limit of b,, in Ajyus.

For by, we simply need by to be such that ¢"(by) = zbg (mod p), or equivalently bgr = [zo]bo

(mod p), or again equivalently bgri1 = [zo] (mod p). Hence we can simply take by = [:vé/(pr_l)],
which is well-defined up to (p” — 1)-th roots of unity, all of which convenient lie in IE‘;
We then move onto the inductive step. Suppose we have found by, ...,b,_1. We wish to take

by, = bp_1 + p"z, where z, is to be determined. Given ¢"(b,—1) = xb,_1 (mod p"), we can write

@"(bp—1) — xby—1 = p"y for some y € Ajy,s.
Then we have

¢ (bn) — 2bp = ¢ (bn—1) + " 9" (2n) — b1 — p"w2p
=p"y+p"(¢"(2n) — 22n)
=p"(y +¢"(2n) — x2s).
Hence we need to pick z, such that ¢"(z,) —z2z, +y = 0 (mod p), or equivalently 22" — [z0]z, +y = 0

(mod p). Write § = y (mod p). Using the algebraically closed condition of F, the polynomial

TP — 20T + 7 has a root Z € Op, so we can take z, = [Z] and we are done.

Here’s the heuristic idea: though the infinite product ¢="(z)¢~2"(x)--- does not exist literally,
we exploited the fact that this element is characterized by a functional equation, to which the solution

exists.

Now it remains to show that our candidate chosen this way indeed does the job, that Div(t;) =
D, = En<0[¢m(mw)]-

Let’s write D’ = Div(t; ). By construction we know that ¢" () = xt;

=, and hence on level of
divisors Div(z) + D' = ¢"(D’). Hit this with ¢~" to get

¢~ (Div(x)) + ¢~ (D) = D
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Self iterate this relation to see that for any k, we have

k
> lo™ (ma)] + 67 (D) = .
n=1
Here’s where the magic happens: since ¢, € Ains, we have great understanding of its Newton
polygon. By definition Newt (¢, ) is bounded to the left by the y-axis, and bounded below by the

horizontal line y = vo(t,;) = —log,|t; |1. Hence there is an upper bound on {slopes™ of Newt(t;)}.

=, we conclude that there is a lower

Since the slopes’ of Newt(t; ) governs the factorization of ¢

bound to how close a factor of ¢ can be located towards the origin on the punctured disk.

However, for any compact interval I C (0, 1), there is k >> 0 such that ¢~*"(D’) is not supported
at any point with slope in —log,, I, since applying ¢~" pictorially pushes D’ towards the boundary

and eventually outside of any fixed compact annulus.

e

Let’s concretize this by defining a notation. For D = 3" a,[m,] € Div', we set

Dl[ = Z am[mx]

slope of ze—log, I

Then our discussions is saying that ¢~""(D’)|; is eventually 0 for any compact interval I C (0,1). So
for any compact interval I, there is k > 0 such that 22:1 [¢p~*"(m,)] |r= D’|r. The same reasoning
now gives Zszl[q&*m(mz)] |r= D |1. So for all compact I, we have D |; = D;|s.
Now of course, combining everything together, we see that if t, := ¢t € B?®"=P_ then Div(t,) =
D} + D, = D,. This completes the proof that
Div: | J (BY =" —{0})/Q) — DivF(X,)
d geql

is an isomorphism, and in particular, the LHS is freely generated by degree 1 elements. (]

Next let us fix © = [z¢] — p € Prim;, which gives an untilt K, = Ajy¢[p~!]/(z) of F. This then
gives a map O, : Aje[p~t] — K.

Lemma 5.15. O, extends to a map ©,, : B — K,. Equivalently, O, : Ain[p~'] — K, is continuous
for all Gauss norms |-|, for p € (0,1).

Proof. First note that ©, is defined by 0,(3 s _ oo [2nlp™) = 3,5 _ o 2hp™. Then [Y[z,]p"], <

e and | zfp"| < e are easily equivalent since |2f| = |2, |p. O

We will see next time that the restricted map O, : B =r" K, has kernel tzB‘bT:pd_l, and in
particular P./t, P, — {f(T) € K.[T]: f(0) € Qpr}. In addition, for the case d = 1, we get a short
exact sequence

0— Qpr = B =P 5 K, — 0,

which is referred to as the fundamental short exact sequence in p-adic hodge theory.

Dec 3, 2018. Monday.
Let’s summarize our progress so far.
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So far we have been assuming that F' = K” is algebraically closed. We are interested in X, =

Proj(Py,. ), where Py, . is the graded algebra 450 BY"=P" This Proj construction satisfies the
axioms (A1-3) for a curve over K = Q,, (see[5.3). Restating under our setting, we have showed that

(A1) B =1 =Qpr,

(A2) Ud21(B¢7':pd — {0})/Qy;. is freely generated by the degree 1 part (B* =7 — {0})/Qy;, and

(A3) for t € B®"=P, we have Py, /tPy,, = {f(T) € K,[T]: f(0) € Q,}, where = € Prim; is such
that /obtained by
(a) first considering the image of ¢ under the Div map: Div(t) = >, .,[¢""(m,)] € Div(X,),
(b) and then looking at the untilt Aj.¢[p~!]/m, where m, = ().

We remark that such an z requires a choice of m;, and hence m, is determined only up to a ¢"-

translate. Even if a specific m,, is chosen, x, being the generator of m,, is still not unique.

We make a few observations in particular:
(a) |X,|, the set of closed points of X,, is in bijection with (B® =7 — {0})/Q,, via the map
(V*(t) C X,.) <= [t]. (This is essentially summarizing the proof of (A3).)
(b) X, is a Dedekind scheme, with H°(X,,Ox,) = Q,r, and H'(X,,Ox,) = 0. (See November
26.)
(¢) There is a (trivial) degree function on |X|, with deg(z) = 1 for all points z, and such that for
all f e K(X), 32, ¢ xordy(f)deg(y) = 0. (See November 26.)
(d) The Picard group of X, is generated by a point and so Pic(X,) =2 Z. (?)
Last lecture we ended with a glimpse of the fundamental short exact sequence, and this time we

will prove it. Fixing a pair of choices ¢t and x, we saw that the map O, : Aj,y — K, can be extended
to B — K.

Proposition 5.16. For all d > 1, we have a short exact sequence
0— B =r""" L pot=rt O ey,
Proof. First we prove exactness in the middle. Suppose z € B¢T:Pd, then
0, (z) = 0 iff [m,] appears in Div(z) with nonzero coefficient
iff Div(t) = Z[qu" (m,)] appears as a summand in Div(z)
iff ¢t | z.

Now it remains to show surjectivity on the right, for which it’s enough to consider the d = 1 case,
since if 1 € K, has preimage z € B® =P, then by multiplying with suitably large power of z, one
can prove the surjectivity for any d. Though we will not prove the surjectivity here, let us make two

remarks:

(a) The surjectivity does not require F' to be algebraically closed, and
(b) The proof is analogous to the surjectivity of £ : mC, — {0} — C,, (¢ for log), given by = —
log(z + 1).

One can refer to the term periods of cyclotomic groups. O
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Whend=r=1andF = (CEJ, for some certain choice of ¢, whose divisor Div(t) is the ¢"-translates
of m,, we can retrieve K, = C, as an untilt of (C;. We call this choice of t the Fontaine’s cyclotomic

period. We then retrieve the short exact sequence
0—Q, 5B 5 K,~C, —0.

In literature, it’s more common to write (B, )¢=P := B*=P.

cris
5.4. Vector Bundles on the Fargues-Fontaine Curves.

Consider the two curves X, = Proj(,5 B‘i’m:pd) and X, = Proj(D > B¢T:pd). Then we

have a natural map

Wﬁm) : Xom — X, given by Be=r" _, g =" sending z — z.

M __ (m)

This map of Q,r-algebras induces B =p" ®q, Qprm = B¢ —pdm, hence 7, is

(a) finite étale (because it is a base change of a finite étale map), and is

(b) totally split over every closed point (ie. the fiber of any closed point is m distinct points)m

We also know that

—_~—

Pic(X,) = Z with inverse given by d — Ox, (d) = Py, [d].

Let’s setup some notations:

(a) For all d,h € Z, we define Ox, (d, h) := (Wﬁh))*(’)xrh (d), and
(b) for A=d/h € Q with (d, h) =1, define Ox,(A) := Ox,.(d, h).
(c¢) In addition, for A € Q, define o(X) to be the order of A € Q/Z.

We shall use the following main result without proof:

Theorem 5.17. Let F be an algebraically closed field as all along. Then every vector bundle on X,
is of the form of direct sums of Ox, (\). (Aut group?)

In any case, let’s investigate some properties of the vector bundles Ox (A) and Ox, (d,h).

Proposition 5.18. Let A € Q.

(a) Without assuming (d, h) = 1, we have Ox, (d, h) = Ox, (d/h)&d (L),
(b) (Rank) Ox, ()) is a vector bundle of rank o(X).
(¢) Considering the map 7r7(~m) : Xom — X, we have
(i) (Pushforward) (Wﬁm))*(’)XT(d, h) = Ox,. (md,h), and
(i) (Pullback) (x{™).Ox,, (d,h) = Ox, (d, mh).
In particular, we have (ﬂﬁm))*OXT()\) = Oy, (m\)°PM/eloA)
(d) (Tensor) We have
(i) Ox, (di,h1) ® Ox,(da, ha) = Ox, (hady + hids, hihs).
(ii) Ox, (M) ® Ox,.(A2) 2 Ox,. (M + )\2)0(/\1)0()‘2)/0()‘1+/\2).
(e) (Derived Hom) We have

50This is a usual phenomenon for a curve over Qp.
511 believe Fontaine might have used m(\) for this, but using o(\) as the notation will avoid some unfortunate
terminology complications.
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Dec 5, 2018. Wednesday.
Recall that X, = Proj(Pg,,) and we have a natural map ™ X — X, Today we will prove

most of the claims in [5.18
Let us start by (a), the claim Oy, (d, h) = Ox, (d/h)sd(dh),

Observe that (Wih))*Oth = Ox, ®q,» Qpn = O% , and that (m(«h))*(’)xr(d) = Ox,, (dh).
Writing § = ged(d, h), we then have a factoring

(h/8)

™1 =7TT.

5
T = 7T£h) : Xop w Xr(h/J) —) X,.

Hence we have

Ox, (d,h) = m.0x,, (d)
= m 71 ,:Ox,, (d)
= mo 71 ,+O0x,, (d/d - §)
vy (4/9)
=m0, (Ox, 0,0 ([d/8) © O, o) (1)
= Ox,(d/h)’,

E3
= T2 xT1,%Tq Ox

where in (f) we used the projection formula. a

Next we will prove part (b), the claim that Ox, (A) is a vector bundle of rank o()). Equivalently,
if A = d/h in lowest terms, then o(\) = h. Let us first restate the claim in another way. Let us
define for M a vector bundle on X,., the degree of M is deg(M) = degx (M) := deg(det(M)) =
det( A" ™ M). We also define the slope of M to be (M) = deg(M)/ rank(M). Part (b) will then
say that u(Ox,.(N)) = A.

Proof. The rank is o(\) from the definition, since it’s the pushforward of Ox , (d) via (7T7(~h)),
where Ox,, (d) is a line bundle and 7" is a degree h (finite) étale cover. For the claim on the slope,

we see that
degy, det(Ox, (V) = (1/h) degx,, (") det(Ox, (N)))-

Now it’s a matter of understanding what this is. We claim that if M is a vector bundle over X,
then det((ﬂ'ﬁh))*M ) & (7T7(~h))* det(M). This follows from the following three facts:

(a) Tensors behave well under pullbacks.
(b) Exterior powers are quotients of tensors.

(¢) Quotients behave well under flat maps.

So now we transfer our study to det((w&h))*oxr (A)). We claim that (ﬂﬁh))*OXT A\ = (wgh))* (wﬁh))*Oth (d)
is just Ox,, (d)". To see this, we translate this back to commutative algebra language, which says
that if R — S is a finite Galois(?) map, then M ®g S = M ®s (S ®@r S) = [lgas/ry M as

R-modules.
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Hence det((7")*Ox. (\)) = det(Ox.,, (d)") = Ox., (dh). Hence deg(Ox. (\)) = (1/h) deg(Ox., (dh)) =
dh/h =d, and p(Ox, (N)) =d/h = A as claimed.

We also note that with this, we conclude that the slope of a vector bundle is insensitive to taking

powers of the vector bundle. (7)
We shall postpone the proof of part (c¢) till next lecture.

So part (d), we must show that Ox, (di,h1) ® Ox, (da, he) = Ox, (hady + hida, h1hs). Consider
the diagram [[hmm]]

Observe that the slope of a vector bundle is insensitive to taking powers of the vector bundle.

(iii) 7™ Xpp — X, Prop says that (7\"))*Ox., (d,h) = Ox. (md, h), and (7\™),Ox. (d,h) =
Ox, (d,mh), and in particular, (wﬁm))*oxr()\) = Ox,, (mA\)m)/mmA),

Proof. Consider the (diamond figure: X, pm, 2y X B X, and 2 X, = X, and
composition is ¢). Then Ox,(d,h) = m .0x,,(d) and Ox,,  (md,h) = p2.0x,,,(md). WTS
m3m1,+O0x,, (d) = p2..Ox., , (md). Faithfully flat descent says we can pullback everything to X, pm,

and work it out, so let’s do so via p5. Then
LHS = ¢*m .0Ox,, (d) (not very sure. let’s move on.)
(iV) OXT (dl, hl) X OXT(d27 hz) = OXT(h2d1 + hldz, hlhg).

Proof. Draw a similar diamond diagram (with h becoming h; and m becoming hs). p; has degree
hs and py has degree hy. Consider q.(Op,pyr(hodr) ®0Xh1h2r OXh,thT(h1d2)’ which is definitely
same as RHS. On the other hand, this is also ¢.(p7Ox, , R0x, 4. p30x,,,(d2)). Claim this is
= p1,.0Ox, , (d1) ®o, P2,«p30x,, . (d2). This is just commutative algebra: On level of modules,
first thing is (S3 ®g, M1) ®s, (S5 ®s, M2) = My ®g, S5 ®s, My = (M1 ®g, S1) ®r (M2 ®s, S2) =
the second guy. The main claim is S3 = S; ®g Sa. This is because Xy, Xx, Xnyr = (Qprir q,r
Xr) xx, (Qprar ®q,» X;) = ... seems right if relatively prime, otherwise use (a) to bootstrap it up.

In particular, Ox, (A1) ®o,. Ox, (A2) = Ox, (A1 + Ag)something,

Finally for Hom and Ext statements, can be checked after pullback to any X, (along finite flat
maps...) Hence can assume that A\, A € Z and write dy, dy for clarity. In this case, this becomes the
assertion H°(X,., O(ds,d;)) = 0 if d < d;. This follows from the fact that Pg, has no negative
degree graded term, (used also that Ay > Ay is preserved by pullback, since just multiply by degree

of cover)

Finally Ext: proof: Can assume that \;, Ao = dy, do € Z, because this becomes H!(X,., Ox, (dz —
d1)) = 0 if d; < dy. But we know that H'(X,,Ox,) = 0. Since we have a nonzero map Ox, —
Ox, (d) for all d > 0, we have H'(X,,Ox.) - H'(X,,Ox,(d)). Coker is torsion, so has no H'....

also kernel is 0?7 dedekind scheme so torsion free is free....

Dec 12, 2018. Wednesday.
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Recall: f: A — A’ such that 4, = A7, then deg(A) < deg(A’) and equality holds iff f is an

isomorphism.

Lemma. B C A is a subobject of minimal rank such that u(B) > p(A) and p(B) maximal, then

B is semistable and is a strict subobject.

Proof. By schematic closure, there is B C B’ C A such that B’ strict inA and B, = B7’7. But
then deg(B) < deg(B’), and equality by maximality, and B = B’. Check that subobject of B has

smaller p — this is semistability.

Want to build semistable guys because slope filtration gives this, and one would want to know

how to build semistable guys.

Last time we talked about C = Fil Vecty, and C — C’ = Vectg. All our filtrations are exhaustive,
descending, separated... Then deg((M, Fil*)) = i where i € Z is such that gri,. A M # 0. Then
check that i = ), i dim griy; . M.

Idea: We have M®* — A'"? M, and Fil" M®F =" Fil'* M ® - ® Fil** M, and endow

11++lJ=TL
the quotient filtration to /\wp M. One way to check is that to write down M = @, ., M? such
that Fil" M = ®;>,M*. Choose bases {e(?),.. e } for M;, then A" M is spanned by

o dim gr%il M
%
. i Em .
/\lEZ,lSmSgr%“ M =M

Check that degree satisfies the degree axiom.

Choose K/Kj totally ramified, then Ko = W (k)[1/p] where k = charp is perfect (no need
alg closed). Look at C = MF;; — C' = lIsock, where MFI? is triples (M, ¢, Fil® Mf) where
(M, ) € lsock, and Fil* M is a filtration on M ®g, K. Rank is the obvious one, filtration has
usual conditions, and deg = — deg(M, ¢) + deg(M, Fil* Mg ). Need target to be Isock, (cannot be
M itself, or else cant satisfy the degree).

Remark: Can also use M F f; — Fil Vecty for generic fiber functor, in this case, can take degree
to be deg(M, ¢) — deg(Mp, Fil®* M), but target is not abelian.

Next define Category of Modifications.

Choose a point co € X, a closed point, and consider C := Modx ~, containing (&1, &z, ), where

51,52 € Vectx (VbS) and f : 51 |X—{oo}:_> 52 |X—{oo}'

Set B;FR,oo = @X,oo. Also, up to a Q, multiple, oo correspond to t € B®=P. Set Biroo =
OX’OO[t;OI].
Consider O, : Aint[p~!] = Cwo, then B;R’oo = @Ainf[p_l]/(ker Ooo)™.

n

There is a functor (&1,&2,&) — 5’1(52,00) C gl’oo[tgol], where a—m =& ® OXB;ROO' This
induces an equivalence between Modx ~, and category of pairs (&, EOO), where £ € Vecty is a vb
(that is &), and Eo C Ex [tl] is a BIR’OO-lattice. Ounly works because working over dedekind

domain.

In other words, there is a unique & C € |x_jo} such that &', C E and for all z # 0o € | X]|,

we have & = &,.
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N ~ ~b
Fix K/Kj, and write L = K™ be the max unram extn of Ky in K, and write F = K . &
arises from an isocrystal M € lsocy. Let B, = B[l/ts]?~!. Then (1) Spec B, = X — {oo}.
(X =Projép B¢’:pd, and degree 0 with ¢, inverted is ¢ invariant.)
&= @dZO(M ®r B)‘Zs:pd7 then (2) £ |X—{oo}H (M ®p, B[l/too})d):l.
Observation: go\o[l/too] = ((M®LB[tgol])¢:1®BeB[t;ol])@)g[l/tm]BdR’oo) = M®LB[1/too])®B[1/t(x,]
Bir,co = M ®1, Byr,co-

B, — B[l/ts) > Bir,co. (Reasoning.)
So we have to find a B;‘R ~o-lattice.

What oo should we take? There’s a canonical choice because we started without °.

~ =b =b =
I'x acts on K, so by functoriality of tilting, ', acts on F' = K . Concretely, = @K as

monoids, and RHS has ' action. So I'x acts on Aj,r = W(O%b). Then O : App~!] — K is
I'x-equivariant, hence kernel is I'i-stable. Can check that I'x acts on B in a ¢-equivariant way
(from action on Aj,t), so 'k acts on X. So we have a category VectFXK of I'g-equivariant vbs on X.

Concretely, it’s a category of pairs (£, {as }oer, ) Where a, : 0*E =5 £ with 1-cocycle condition.

—_~—

So if (M, ¢) € Isock,, then E(M, ¢) = Ps0(M @5, B)?=P*. There’s a ' action acts on second
factor (I'k fixes K and hence on K so we are ok). So £(M, ¢) € Vectl;(K . [[K wont embed inside

Ajns unless K/Kj is unram.||

This gives a functor from Isocg, — Vectg(K . Look at modifications to include the galois data.
Consider Mod?foo = (&1,&2,&) where £,& € Vectg’{ and ¢ is I'g-equivariant isom. Then as saw
before, I\/Iodggfoo is equivalent to the category of pairs (£, Fw ), where € € VectE{K and Eo C Exot]
is a I'g-stable B;Ryoo—lattice. If £ = E(M, ), where (M, ¢) € Isock,, then Eo, € M ®k, Bar.co 1S
a I'g-stable lattice (and a trivial object in Repr, (Bir,o0))-

Proposition. there’s a canonical bijection from I' i -stable BJR «o-lattices Eoo C M ®k, Bir,o to
filtrations Fil®* Mk on M.

In other words, Modggfo’gms = (&£1,6,8) C Modggfoo where & = £(M, ¢), for some (M, ) €

Isock,, is equivalent to M Ff;

Proof. Bijection is given by the assignment: E; — Fﬂ%x Mg = (téoE'm)FK C (M ®xk,
BdRyoo)FK = (M ®k, ng,oo since ' only acts on second factor. To see this is well defined,
we have to check the following: ngﬁw = K. Proof: B(}LR,OO is a DVR with residue field % Its
kernel is generated by t.,. We saw earlier on in the term that if x : 'x — Z, is the cyclotomic
character, then %(Xi)rk is K if i = 0 and 0 otherwise. Main point that becomes I'x acts on t,, via

the cyclotomic character . This is because elements of B*=P can be described as follows:

Choose ac € mp —{0}, then look at [14+a] € A and claim that |[14+a]—1], < 1 for any p € (0,1).
With claim, we then have log[1 + a] (the usual power series) is > oo (—=1)" " !([1+a] —1)")/n € B

(converges), and its image under ¢ is multiplication by p, so log[l + a] € B®=P. Take 1 + a = ¢
where £ = ((pn )n>0 € O=. Then
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[e] =1 € ker(©s) C Ajns. Then logle] € ker(O4) C B is a multiple of to. So we can take log[e]

to be too. This then implies I' acts on ¢, via x (because it does so on logle]).

With this, so By . = (Ujez th Bag.oo) < - But
0— (tngchrR,oo)FK - (téoB;R,oo)FK - F(XZ)FK

but RHS is nonzero if i = 0. So unless i = 0, we have (t'J1BJ, )'* = (#!'BJ; . )T*. When i = 0,
middle is nonzero, but left is zero, so one can show that B;r}’%ro’; = K. This amounts to showing that
HY(T'k,tooBjp o) = 0 (equivalently that H'(I'x, K(x*)) = 0if i > 0.

After all this, we show that Eoo — Myg. How to think about the inverse? It’s given by follows:

Take a filtration Fil* My — Eoo = 3,07 tod Bip oo ®x Fil' Mk

One direction of inverse is easy: filtration to lattice to filtration is easy. (you do get Fil* M K)-
Other direction: Any lattice from inverse functor from a filtration is isomorphic to Z?:l t’ggB;Rm
as ['g-reps. Key observation: every F., is isom to such a lattice (or I'x-rep). This is proved by
induction on dim M. 1-dim is fine... For induction, if 0 — M’ — M — M’ — 0, and hit with
B4Rr,, then inside of middle we have EOO, and its image on the right and intersection on the left

both are I'x-stable, and so by hypothesis looks like desired form.

The result comes down to seeing ker(H*(I'x,t. B, o) — H' (T, Biroo)) = 0. (trivial after
®BaRr, o is trivial to begin with).

There’s a degree function on modifications, which is deg(€2). On M F, the degree is deg(M, Fil M)—
deg(M, ¢), and upshot is they are the same. (wrong degree on M F, should be +).

Semistability notions: if {S*E} is the slope filtration and {S*(M, ¢, Fil*)} is too, then S*E; is
obtained from S*(M, ¢, Fil®) for any .

I'k,cris,ss=0

Show semistable of degree zero in MF = Mod " . But RHS has that & is ss of slope
0iff & = HY(X, &) ®q, Ox. Since I'c acts on the left, and T'x acts on HY, so we can define a
functor from Mod — Repr, (Q,), and to conclude, gets galois reps from M Fg. Image in Rep is
actually Repfﬂ’zs (Qp), the category of crystalline galois reps. ss = 0 is classically weakly admissible.
This functor to reps is really where classification of vector bundles is needed to ensure the rep is of

the correct rank.

What would happen without classification? M € MF maps to & = E(M,¢), and 52700 =
Fil’(M ®k, Baroo = i jmoFil' M @ t1, Biy, ). HO(X,&) — H(X — {00}, &) = HO(X —
{0}, &1) = (M ®x, B[1/t])?=!. Patch in oo condition to get H(X, &) = (M ®x, B[1/1]))?=' N
Fil’(M ®c, Bar,oo)-

What is this really though: if we have seen this before, then we’ll know: H?(X,Ox()\)) = Q, if
A =0, 0if A <0, and inf dim if A > 0. For example, H°(X,Ox (1)) = B?=?, and from the fund
lemma 0 — Qptoo B~ — K — 0. So H°(X, &) is inf dim unless it’s ss of slope 0.
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Index.

Yet to be updated.
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