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Video: https://youtu.be/CTsybBm-r3I

Group actions

Let us recall the following from last time.

Definition 1. A group action or simply action of a group G on a set X is a group homomorphism

ρ : G → Bij(X).

We will use the notation G ↷ X (read ‘G acting on X’) to denote that we have an action of G on X .

While this is a very compact definition, it packs a lot of information! To see this, define a function

G×X → X

(g, x) 7→ ρ(g)(x) = g · x.
Then this function has several properties that fall out of the homomorphism condition, which we see in the

following picture, where, for fixed x ∈ X , we view every element g ∈ G as being a path from x to g · x.
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(1) For all x ∈ X , g1, g2 ∈ G, (g1g2) · x = g1 · (g2 · x).1 This is because we have

(g1g2) · x = ρ(g1g2)(x) = (ρ(g1) ◦ ρ(g2))(x) = ρ(g1)(ρ(g2)(x)) = g1 · (g2 · x).
Here, we have used the homomorphism property ρ(g1g2) = ρ(g1) ◦ ρ(g2).

(2) For all x ∈ X , e · x = ρ(e)(x) = Id(x) = x. This is because ρ(e) = Id.

Conversely, suppose that we are given a function G×X
(g,x)7→g·x−−−−−−→ X with these properties—that is, satis-

fying:
(1) (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and x ∈ X ;
(2) e · x = x for all x ∈ X .

Consider the function
ρ(g) : X

x7→g·x−−−−→ X.

Observation 1. ρ(g) is a bijection with inverse ρ(g−1). That is, ρ(g) ∈ Bij(X).

Proof. We have

(ρ(g−1) ◦ ρ(g))(x) = ρ(g−1)(g · x)
= g−1 · (g · x)
= (g−1g) · x
= e · x = x.

1From now on, we will, like in high school algebra, use concatenation of symbols (like gh) instead of bringing in the group operation
every time (like g ∗ h). This doesn’t imply that the group operation is necessarily multiplication: For instance, it could be composition of
functions, or it could be addition in a group like Z or Z/nZ.
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Note that in the second-to and third-to-last equalities, we have used the defining properties of group actions.
□

In fact, the first property tells us:

Observation 2. The function
G

g 7→ρ(g)−−−−−→ Bij(X)

is a homomorphism. Therefore, we have two equivalent ways of thinking about group actions G ↷ X : Either
as the data of such a homomorphism ρ or as a function G×X → X satisfying the two properties given above.

Remark 1. One thing to take away from this is that group actions give us a systematic way of producing
homomorphisms out of a group: any time we have G ↷ X , we get a homomorphism ρ : G → Bij(X). At this
moment, we don’t have many other systematic ways of producing homomorphisms.

Example 1. Every group G acts on itself! The group action is given by

G×G
(g,h)7→gh−−−−−−→ G.

The corresponding homomorphism is the homomorphism m : G → Bij(G) you already saw in problem 8 on
HW 2. You saw there that it was actually injective,

This action is called the left multiplication action of G on itself.

Example 2. The group Sn acts on the set {1, . . . , n} by definition. The action is given by

(σ, i) 7→ σ(i).

The corresponding homomorphism
Sn → Bij({1, . . . , n}) = Sn

is just the identity homomorphism.

Example 3. More generally, any time a group G acts on the finite set {1, . . . , n}, we get a homomorphism
G → Sn.

Example 4. Every group G admits a trivial action on any set X , given by g · x = x for all g ∈ G and x ∈ X .
This corresponds to the trivial homomorphism ρ : G → Bij(X) given by ρ(g) = e for all g ∈ G. Note that this
homomorphism is far from injective unless G = {e} is itself the trivial group.

Stabilizers and orbits

Definition 2. Suppose that we have a group action G ↷ X . For x ∈ X , the stabilizer of x is the subset

Gx = {g ∈ G : g · x = x} ⊂ G.

If g · x = x so that g ∈ Gx, we will say that g stabilizes or fixes x.

Observation 3. Gx ≤ G is a subgroup.

Proof. We need to know that e ∈ Gx, which is clear since e · x = x. We also need to know that, if g1, g2 ∈ Gx,
then g1g2 ∈ Gx. This is because

(g1g2) · x = g1 · (g2 · x) = g1 · x = x,

where the last two equalities are using the fact that g1, g2 ∈ Gx. Finally, we need to know that g ∈ Gx implies
that g−1 ∈ Gx. This follows from

g−1 · x = g−1 · (g · x) = (g−1g) · x = e · x = x.

□

Complementary to a stabilizer is:

Definition 3. The orbit of x is the subset

O(x) = {g · x : g ∈ G} ⊂ X.

This is the set of all elements of X that are ‘reachable’ from x via the paths provided by G.
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Example 5. Consider the action of G = S3 (or D6: it’s the same thing here) on the set X = {1, 2, 3}. Then the
stabilizer G1 of 1 consists of exactly two elements G1 = {e, τ}, where τ is the reflection across the median
through the vertex 1 in the equilateral triangle. The orbit of 1 is the entire set O(1) = X , since we can get
from 1 to any other vertex via a rotation, for instance. Therefore, we have |G1| = 2 and |O(1)| = 3, and their
product is 6 = |G|.

The numerology in the previous example is no coincidence. It is a special case of the following:

Proposition 1 (Orbit-Stabilizer formula). Suppose that G is a finite group. Then O(x) is finite, and we have

|G| = |Gx| · |O(x)|.


