
MATH 3311, FALL 2025: LECTURE 6, SEPTEMBER 8

Video: https://youtu.be/iNN3AeOVgGk

Definition 1. A group G is cyclic if there exists g ∈ G such that

G = {gn : n ∈ Z}.

In this case, we say that g is generator for the cyclic group G or that g generates G.

In Homework 2, you will show the following:

Fact 1. Z and Z/nZ are cyclic.

Fact 2. Every cyclic group is isomorphic to either Z (if infinite) or to Z/nZ (if finite of order n).

Definition 2. A group G is abelian if for all g, h ∈ G, we have g ∗ h = h ∗ g.

Observation 1. Every cyclic group is abelian.

Proof. This just amounts to seeing that gn ∗ gm = gn+m = gm+n = gm ∗ gn. □

The multiplicative group (Z/nZ)×

In Homework 1, you checked using Bezout’s lemma that, when p is a prime, the set (Z/pZ)× = (Z/pZ)\{0}
of non-zero bins mod-p is a group under multiplication. The main point is that every non-zero bin admits a
multiplicative inverse, which is a translation of the fact that, for p ∤ a, we can find integers s and t such that

1 = gcd(a, p) = sa+ tp.

This ensures that sa is in the same bin as 1 mod-p and so s functions as the multiplicative inverse for a mod-p.
Suppose that we replace p with any integer n (not necessarily prime). Then the same reasoning works as

long as gcd(a, n) = 1. In other words:

Fact 3. When gcd(a, n) = 1, the bin of a mod-n admits a multiplicative inverse. Therefore, the set

(Z/nZ)× = {a ∈ Z/nZ : gcd(a, n) = 1}

forms a group under multiplication.

Example 1. One really has to discard all the elements not relatively prime to n to get multiplicative invertibility.
If, for instance, we work with n = 4, then the non-zero entries in Z/4Z are represented by 1, 2, 3. Recall the
multiplication table for these elements:

· 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

Note that the second row and column have two features you wouldn’t want in a group: Repetitions and an
entry from outside the set being considered, in this case, the element 0. If we threw away 2 however (note that
2 is not relatively prime to 4), the remaining elements 1, 3 do give a multiplicative group of order 2.

Example 2. Consider the group (Z/8Z)×. This is a group of order 4. However, note that we have

32 = 52 = 72 = 1 ∈ (Z/8Z)×.
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It turns out that we can set up an isomorphism of groups

Z/2Z× Z/2Z ≃−→ (Z/8Z)×

(1, 1) 7→ 1

(1, 0) 7→ 3

(0, 1) 7→ 5

(1, 0) 7→ 7

Here, the left hand side is a direct product, which we will see next.

Definition 3. Given groups G and H , their direct product G × H is the group whose underlying set is the
Cartesian product G×H of sets equipped with the structure of a group as follows:

• The operation is (g1, h1) ∗ (g2, h2) = (g1 ∗ g2, h1 ∗ h2).
• The identity is (eG, eH).
• Inverses are given by (g, h)−1 = (g−1, h−1).

Observation 2. The direct product of abelian groups is also abelian.

This is because you can check the condition for being abelian in each co-ordinate separately.

Example 3. If n,m ∈ Z, then we can consider the direct product Z/nZ×Z/mZ: this is an abelian group of order
nm by the previous observation. The group Z/2Z × Z/2Z is therefore abelian of order 4, but it is not cyclic,
because every element in it is its own inverse, and so its multiples can never give the whole group.

Dihedral groups

Definition 4. The dihedral group D2n is the group consisting of the rigid symmetries of the regular n-gon:
These consist of the rotations through multiples of 2π/n, as well as reflections across medians. It is a finite
group of order 2n: There are n rotations (through each multiple of 2π/n) and n reflections (across each of the
medians).

Example 4. Let us look at the case where n = 3, which gives us a group of order 6 that you already considered
in homework 2.

We have two particular elements of D6: σ, which is rotation counterclockwise by 2π
3 ; and τ , which is

reflection across the median through the vertex 1. We see that τ fixes the vertex 1 and switches vertices 2 and
3.

Consider σ ◦ τ : you can check that this fixes the vertex 3 and switches vertices 1 and 2. Therefore, it is
reflection across the median through the vertex 3.

Similarly, τ ◦ σ is reflection across the median through the vertex 2. In particular, we have σ ◦ τ ̸= τ ◦ σ,
which shows that D6 is non-abelian.

Now, we also have σ2, which is rotation counterclockwise by 4π
3 . It satisfies:

σ2 : 1 7→ 3 7→ 2 7→ 1.

You can now check that σ2 ◦ τ fixes the vertex 2 and switches 1 and 3. In other words, it is equal to τ ◦ σ.
So we can write down every element of D6 in terms of σ and τ :

• We have the three rotations e, σ, σ2 (the first being the trivial rotation).
• We have the three reflections τ, σ ◦ τ, σ2 ◦ τ .

What happens when we compose them? We have to use the equality τ ◦ σ = σ2 ◦ τ to get back an element
in the form above. For instance, we have

(σ2 ◦ τ) ◦ σ = σ2 ◦ (τ ◦ σ) = σ2 ◦ (σ2 ◦ τ) = σ4 ◦ τ = σ ◦ τ.
Here, in the last equality I’m using the fact that σ3 = e.


