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Video: https://youtu.be/4SjNOMIaywA
Fields

We now move on to a new topic, which we will briefly touch on this semester. We will return to it in much
greater detail starting next semester.

Example 1. Consider Z/pZ: this is an additive abelian group, but it is also equipped with a multiplication
operation such that (Z/pZ)* = (Z/pZ)\{0} is a group under multiplication. This means that one can do linear
algebra as one is used to: Row reduction works because we can always ‘divide’ by non-zero entries.

Let us abstract the properties used for doing linear algebra in the following definition:

Definition 1. A field is a 5-tuple (k, +,0, -, 1) where:
o (k,+,0) is an additive abelian group;
o hkxk IV, pisa binary operation;
e 1 € k\{0} is a non-zero element.
This data is required to satisfy the following properties:

(1) (Commutativity for -) Forall z,y € k, wehavez -y =y - ;

(2) (Associativity for -) Forall z,y,z € k, wehavez - (y-2) = (x-y) - 2
(3) (Identiy for -) Forallz € k, wehavel -z =z -1=u;

(4) (Distributivity) For all z,y, z € k, we have

z-(y+z)=z-y+zx-2
(5) (Inverses for -) If z € kX = k\{0}, then there exists z~! € k such that zz~! = 1.
Remark 1. The conditions (1), (2), (3) and (5) together imply that (k*, -, 1) is an abelian group.

Remark 2. If we drop condition (5), then what we have is called a commutative ring. An example of a tuple
with this property is (Z, +, 0, -, 1): Only £1 € Z\{0} are invertible for -.

Example 2. (Q,+,0,+,1) is a field. As are (R, +,0,-,1) and (C,+,0,-,1).

Example 3. Example 1 shows that (Z/pZ,+,0,-,1) is a field when p is prime. We will denote his field by F,:
the finite field with p elements.

Example 4 (Non-example). If nisnota prime, then (Z/nZ, +,0, -, 1) is not a field, because the non-zero elements
that are not prime to n are not invertible. This is however an example of a commutative ring.

Factl. If kisafieldand z € k,then0- 2 =0=xz - 0.

Proof. 0-2=(0+0)-2=0-2+0-=z.
Canceling 0 -  from both sides now gives us the result. O

Fact 2. For z € k, we have (—1) -z = —uz.

Proof. x4+ (-1)-z=1-2+(-1)-2=(1+(-1))-2=0-2=0.
This shows that x and (—1) -  are additive inverses. O

Remark 3. Remember that the element 1 is not literally the number 1. It is only the identity element for the
- operation. Similarly, —1 is not literally negative one, but rather the additive inverse to the multiplicative
identity. The above facts show that these abstract notions have familiar behaviors.

Observation 1. If z,y € k* are non-zero elements then z - y # 0

Proof. This is because £* is closed under multiplication. O
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Example 5 (Non-example). If k; and ko are fields, then the direct product k; x ks can be equipped with coor-
dinatewise addition and multiplication. However, we have (1,0)-(0,1) = (1-0,0-1) = (0, 0). This shows that
k1 x ko cannot be a field.

So how can we construct new fields if we direct products won’t do? Before we try to answer this, let us
look at the following nice example.

Example 6 (Fields of order 4). Suppose that k is a field of order 4. Write 1,05 for the multiplicative and
additive identity elements. Then every element of the additive group  is killed by 4. In particular 4 - 1;, = qﬂ
But we can write this as

0=Qp+1p+ 1+ 1) = Qe+ 1) Qe+ 1k) = (2 11)(2- 1)
By Observation 1, this means that 2 - 1, = 0. Now, for any element « € k, we have
2cx=zx+ax=1p- x4+l c=1xg+ 1) - z2=0-2=0.

Therefore, every element of k is killed by 2. That is, we have z = —z.
Now, let us write the elemnts of k as {0k, 1x,z,y}. Let us consider the element x + 1;: A little thought
shows that this has to be equal to y. Similarly, the element z? also has to be y. This shows that we have

r+l=2c?-z-1=0s22+2+1=0.

The last equivalence is because a = —a forall a € k.

Here, 2 is not an element of the field, but is the actual integer. This is the usual scaling by integers in an additive abelian group.



