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Fields

We now move on to a new topic, which we will briefly touch on this semester. We will return to it in much
greater detail starting next semester.

Example 1. Consider Z/pZ: this is an additive abelian group, but it is also equipped with a multiplication
operation such that (Z/pZ)× = (Z/pZ)\{0} is a group under multiplication. This means that one can do linear
algebra as one is used to: Row reduction works because we can always ‘divide’ by non-zero entries.

Let us abstract the properties used for doing linear algebra in the following definition:

Definition 1. A field is a 5-tuple (k,+, 0, ·, 1) where:
• (k,+, 0) is an additive abelian group;

• · : k × k
(x,y)7→x·y−−−−−−→ k is a binary operation;

• 1 ∈ k\{0} is a non-zero element.
This data is required to satisfy the following properties:

(1) (Commutativity for ·) For all x, y ∈ k, we have x · y = y · x;
(2) (Associativity for ·) For all x, y, z ∈ k, we have x · (y · z) = (x · y) · z;
(3) (Identiy for ·) For all x ∈ k, we have 1 · x = x · 1 = x;
(4) (Distributivity) For all x, y, z ∈ k, we have

x · (y + z) = x · y + x · z
(5) (Inverses for ·) If x ∈ k× = k\{0}, then there exists x−1 ∈ k such that xx−1 = 1.

Remark 1. The conditions (1), (2), (3) and (5) together imply that (k×, ·, 1) is an abelian group.

Remark 2. If we drop condition (5), then what we have is called a commutative ring. An example of a tuple
with this property is (Z,+, 0, ·, 1): Only ±1 ∈ Z\{0} are invertible for ·.

Example 2. (Q,+, 0, ·, 1) is a field. As are (R,+, 0, ·, 1) and (C,+, 0, ·, 1).

Example 3. Example 1 shows that (Z/pZ,+, 0, ·, 1) is a field when p is prime. We will denote his field by Fp:
the finite field with p elements.

Example 4 (Non-example). If n is not a prime, then (Z/nZ,+, 0, ·, 1) is not a field, because the non-zero elements
that are not prime to n are not invertible. This is however an example of a commutative ring.

Fact 1. If k is a field and x ∈ k, then 0 · x = 0 = x · 0.

Proof. 0 · x = (0 + 0) · x = 0 · x+ 0 · x.
Canceling 0 · x from both sides now gives us the result. □

Fact 2. For x ∈ k, we have (−1) · x = −x.

Proof. x+ (−1) · x = 1 · x+ (−1) · x = (1 + (−1)) · x = 0 · x = 0.
This shows that x and (−1) · x are additive inverses. □

Remark 3. Remember that the element 1 is not literally the number 1. It is only the identity element for the
· operation. Similarly, −1 is not literally negative one, but rather the additive inverse to the multiplicative
identity. The above facts show that these abstract notions have familiar behaviors.

Observation 1. If x, y ∈ k× are non-zero elements then x · y ̸= 0

Proof. This is because k× is closed under multiplication. □
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Example 5 (Non-example). If k1 and k2 are fields, then the direct product k1 × k2 can be equipped with coor-
dinatewise addition and multiplication. However, we have (1, 0) · (0, 1) = (1 · 0, 0 · 1) = (0, 0). This shows that
k1 × k2 cannot be a field.

So how can we construct new fields if we direct products won’t do? Before we try to answer this, let us
look at the following nice example.

Example 6 (Fields of order 4). Suppose that k is a field of order 4. Write 1k, 0k for the multiplicative and
additive identity elements. Then every element of the additive group k is killed by 4. In particular 4 · 1k = 01.
But we can write this as

0 = (1k + 1k + 1k + 1k) = (1k + 1k)(1k + 1k) = (2 · 1k)(2 · 1k)
By Observation 1, this means that 2 · 1k = 0. Now, for any element x ∈ k, we have

2 · x = x+ x = 1k · x+ 1k · x = (1k + 1k) · x = 0 · x = 0.

Therefore, every element of k is killed by 2. That is, we have x = −x.
Now, let us write the elemnts of k as {0k, 1k, x, y}. Let us consider the element x + 1k: A little thought

shows that this has to be equal to y. Similarly, the element x2 also has to be y. This shows that we have

x+ 1 = x2 ⇔ x2 − x− 1 = 0 ⇔ x2 + x+ 1 = 0.

The last equivalence is because a = −a for all a ∈ k.

1Here, 2 is not an element of the field, but is the actual integer. This is the usual scaling by integers in an additive abelian group.


