
MATH 3311, FALL 2025: LECTURE 38, DECEMBER 3

Video: https://youtu.be/p_a_4dQblrg
The uniqueness part of the fundamental theorem for finitely generated abelian groups
Last time we saw:

Proposition 1. If p is a prime, the uniqueness part of the fundamental theorem holds for finite p-groups

We will use this to show the uniqueness in the elementary divisors formulation of the Fundamental Theo-
rem.

Theorem 1. Let G be a finite abelian group. There exists a canonical list of prime powers pr11 , . . . , prmm unique up to
permutation such that

G ≃ Z/pr11 Z× · · · × Z/prmm Z.
The prime powers pr11 , . . . , prmm are called the elementary divisors of G.

Proof of uniqueness.

Step 1. Reduce to the case where all the elementary divisors are powers of the same prime.
For this, we need the following observations

Observation 1. If G is a finite abelian group, then for any prime p there is a unique Sylow p-subgroup Gp ≤ G.

Observation 2. If G = Z/pr11 Z× · · · × Z/prnn Z, then we have

Gp ≃
∏
pk=p

Z/prkZ.

Therefore, the elementary divisors of G that are powers of p are determined completely by the elementary
divisors (or invariant factors) of Gp, which is a finite p-group.

Step 2. Prove uniqueness when G is a finite p-group.

This is Proposition 1.
□

Fields

We now move on to a new topic, which we will briefly touch on this semester. We will return to it in much
greater detail starting next semester.

Example 1. Consider Z/pZ: this is an additive abelian group, but it is also equipped with a multiplication
operation such that (Z/pZ)× = (Z/pZ)\{0} is a group under multiplication. This means that one can do linear
algebra as one is used to: Row reduction works because we can always ‘divide’ by non-zero entries.

Let us abstract the properties used for doing linear algebra in the following definition:

Definition 1. A field is a 5-tuple (k,+, 0, ·, 1) where:
• (k,+, 0) is an additive abelian group;

• · : k × k
(x,y)7→x·y−−−−−−→ k is a binary operation;

• 1 ∈ k\{0} is a non-zero element.
This data is required to satisfy the following properties:

(1) (Commutativity for ·) For all x, y ∈ k, we have x · y = y · x;
(2) (Associativity for ·) For all x, y, z ∈ k, we have x · (y · z) = (x · y) · z;
(3) (Identiy for ·) For all x ∈ k, we have 1 · x = x · 1 = x;
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(4) (Distributivity) For all x, y, z ∈ k, we have

x · (y + z) = x · y + x · z
(5) (Inverses for ·) If x ∈ k× = k\{0}, then there exists x−1 ∈ k such that xx−1 = 1.

The conditions (1), (2), (3) and (5) together imply that (k×, ·, 1) is an abelian group.


