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Video: https://youtu.be/KnWNwfHrFqs
The uniqueness part of the fundamental theorem for finitely generated abelian groups
What we have to show: If we have

G ≃ Z/d1Z× · · · × Z/dmZ× Zr

and
G ≃ Z/d′1Z× · · · × Z/d′m′Z× Zr′

with 2 ≤ d1 | · · · | dm and 2 ≤ d′1 | · · · | d′m then in fact m′ = m and r′ = r.
Last time we saw:

Proposition 1. In the above situation, we have r′ = r.

Proof. In Homework 11, we saw: If f : G
≃−→ H is an isomorphism, then we obtain isomorphisms

Gtors ≃−→ Htors ; Gtf ≃−→ Htf .

Moreover, it is not difficult to see that, if

G ≃ Z/d1Z× · · · × Z/dmZ× Zr

then Gtf ≃ Zr. Therefore, applying this to the two different presentations of G, we find that Zr ≃ Zr′ . This
can only happen if r = r′: see problem 3 on Homework 12. □

So we can focus now on the torsion parts, which are finite abelian groups. We begin by focusing even more
specifically at the situation of finite abelian p-groups for a fixed prime p.

Observation 1. If G is a finite abelian p-group, and

G ≃ Z/d1Z× · · · × Z/dmZ

with 2 ≤ d1 | · · · | dm, then di = pki with
1 ≤ k1 ≤ · · · ≤ km

Therefore, uniqueness in this case is telling us that the integers k1 ≤ · · · ≤ km are determined uniquely by
G. An equivalent formulation: For each positive integer k, let mk be the number of times k shows up in the
list k1, . . . , km.

Example 1. If G = Z/pZ× Z/pZ× Z/p3Z× Z/p4Z, then we have

m1 = 2,m2 = 0,m3 = 1,m4 = 1

and mk = 0 for all k ≥ 5.

Uniqueness is now implied by:

Proposition 2. The integers {mk : k ≥ 1} are determined uniquely by the finite abelian p-group G.

To see this, we must somehow extract this numerical information in an intrinsic way; that is, without using
any particular product representation.

Definition 1. If G is an abelian group (with the operation written additively), then for any n ∈ Z, we set:

nG = {n · a : a ∈ G}.

This is a subgroup of G and normal, because G is abelian.
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Fact 1. If G = Z/mZ, then nG ≤ G is the subgroup generated by n (mod m). Moreover, nG is isomorphic to
gcd(n,m)Z/nZ. In particular, if G = Z/pkZ, we have

pℓG ≃

{
pkZ/pℓZ if k > ℓ

0 if k < ℓ.

Proof. This was shown in problem 5 of Homework 6, but the point is that multiples of both m and n are dead
in G/nG, and so is any linear combination of them, which means that gcd(n,m) must die in G/nG. □

Consequence 1. Suppose that
G ≃ (Z/pZ)m1 × · · · × (Z/prZ)mr .

Then
pℓG ≃

∏
k>ℓ

(pℓZ/pkZ)mk .

Proof. This is a consequence of the previous fact and the folllowing observations about direct products of
abelian groups: If G1, G2 are abelian groups, then n(G1 ×G2) = nG1 × nG2. □

Proof of Proposition 1. By the consequence above, if we have

G ≃ (Z/pZ)m1 × · · · × (Z/prZ)mr ,

then we get
|pℓG| = pmℓ+1 · p2mℓ+2 · · · p(r−ℓ)mr

which we can rewrite as
logp |pℓG| = mℓ+1 + 2mℓ+2 + · · ·+ (r − ℓ)mr.

The left hand side is an intrinsic quantity attached to G and is independent of the product decomposition
chosen for G. As ℓ ranges between 1 and r, this gives us r equations in the ‘unknowns’ m1, . . . ,mr. This is a
linear system of equations governed by the matrix of coefficients

A =


1 2 3 · · · r
0 1 2 · · · r − 1
0 0 1 · · · r − 2
...

...
...

. . .
...

0 0 0 · · · 1

 .

This matrix is always invertible as an integer matrix, since its determinant is 1. This implies that the integers
m1, . . . ,mr are uniquely determined by these equations, and are therefore intrinsic to G. More precisely, if A−1

is the inverse matrix, then we have 
m1

m2

...
mr

 = A−1


logp |G|
logp |pG|

· · ·
logp |pr−1G|


□

Example 2. If G = Z/pZ×Z/pZ×Z/p3Z×Z/p4Z, then we go up to r = 4, and the column matrix on the right
is 

logp |G|
logp |pG|

· · ·
logp |pr−1G|

 =


9
5
3
1


Example 3. If G′ = Z/pZ× Z/p2Z× Z/p2Z× Z/p4Z, then we have

logp |G′|
logp |pG′|

· · ·
logp |pr−1G′|

 =


9
5
2
1


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To go from uniqueness of abelian p-groups to all finite abelian groups, we need an alternate formulation of
the Fundamental Theorem:

Theorem 1. Let G be a finite abelian group. There exists a canonical list of prime powers pr11 , . . . , prmm unique up to
permutation such that

G ≃ Z/pr11 Z× · · · × Z/prmm Z.
The prime powers pr11 , . . . , prmm are called the elementary divisors of G.

As you will verify on Homework 12, to establish uniqueness of invariant factors, it is sufficient to do so for
elementary divisors.

Example 4. Consider Z/12Z × Z/36Z × Z/72Z: this is given in terms of invariant factors. We will use the
Chinese Remainder Theorem (Homework 10, problem 8) to rewrite this (up to isomorphism) as the product

Z/22Z× Z/3Z× Z/23Z× Z/32Z× Z/23Z× Z/32Z
This gives the list of elmentary divisors.


