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Finitely generated abelian groups

Definition 1. Suppose that G is a group and X ⊂ G is a subset. The subgroup generated by X , denoted
⟨X⟩ ≤ G is the smallest subgroup of G containing X .

Remark 1. This notion makes sense, since the intersection of any collection of subgroups containing X is once
again a subgroup containing X , so ⟨X⟩ can be taken to be the intersection of all subgroups containing X .

Remark 2. More concretely, we have

⟨X⟩ = {x±1
1 x±2

2 · · ·x±−1
m : xi ∈ X, m ≥ 1}.

That is, we take all possible products of elements of X as well as of their inverses.

Remark 3. If X = {x} is a singleton, then ⟨X⟩ = ⟨x⟩ is just the cyclic subgroup generated by the element x.

Definition 2. G is finitely generated if there is a finite subset X ⊂ G such that ⟨X⟩ = G. In other words, there
is a finite set of symbols such that every element of G can be expressed as a product of such symbols.

We will be concerned with the problem of classifying finitely generated abelian groups. That is, we want a
complete, non-redundant list of such groups up to isomorphism. But before we enter the abelian realm, let us
look at the following non-abelian example.

Example 1. Take

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
This is actually a group under matrix multiplication: The condition on the determinant tells us that we can
write the inverse as (

a b
c d

)−1

=

(
d −b
−c a

)
Elements of SL2(Z) can be obtained as follows. Note that the condition ad − bc = 1 shows that the pairs

a, b, a, c, c, d and b, d are all relatively prime. In other words, the entries of each row and column of the matrix
have to be relatively prime to each other.

Conversely, if a, b are relatively prime, then by Bezout we can find c, d such that ad− bc = 1 (why?), and so
we can find a matrix in SL2(Z) with the first row given by (a, b). For example, we have(

2 3
−1 −1

)
∈ SL2(Z).

In particular, SL2(Z) is an infinite group.
In any case, two matrices we can find in here are

T =

(
1 1
0 1

)
; S =

(
0 −1
1 0

)
Note that we have Tm =

(
1 m
0 1

)
for any m ∈ Z and we have S2 = −I2 is the negative identity matrix. So T

does not have finite order while S has order 4.
A non-trivial result now is that SL2(Z) = ⟨{S, T}⟩: So this is a non-abelian, finitely generated infinite group.

Let us now move firmly into the abelian world. The starting point for our classification is the following
observation.
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Definition 3. For 1 ≤ i ≤ m, the i-th standard basis vector −→e i ∈ Zm is the element with 1 as its i-th coordinate
and 0s everywhere else. For example, in Z3, we have

−→e 1 = (1, 0, 0),−→e 2 = (0, 1, 0),−→e 3 = (0, 0, 1).

Remark 4. The element (a1, . . . , am) ∈ Zm can be written (uniquely) as a linear combination
∑m

i=1 ai
−→e i.

Observation 1. Suppose that G is an abelian group and X = {x1, . . . , xm} ⊂ G is a finite subset of elements.
Then there is a unique homomorphism

f : Zm → G

such that f(−→e i) = xi for i = 1, . . . ,m.

Proof. The point is that, because of the homomorphism property, given this description for standard basis
vectors, we must have

f((a1, . . . , an)) = f(

m∑
i=1

ai
−→e i) = f(a1

−→e 1 + · · ·+ am
−→e m) = f(a1

−→e 1)f(a2
−→e 2) · · · f(am−→e m) = xa1

1 · · ·xam
m .

Here, in the third and fourth equalities, we have used the homomorphism property of f : Note that f(ai−→e i) =
f(−→e i)

ai , because we are using multiplicative notation for the operation in G.
So the only possibility for f as a function is f((a1, . . . , am)) = xa1

1 · · ·xam
m . We need to know that this is a

homomorphism. For this, note:

f((a1, . . . , am)) · f((b1, . . . , bm)) = (xa1
1 · · ·xam

m )(xb1
1 · · ·xbm

m )

= xa1+b1
1 · · ·xam+bm

m

= f((a1 + b1, . . . , am + bm))

= f((a1, . . . , am) + (b1, . . . , bm)).

Here, in the second line, we have used the abelianness of G to collect all the powers of each xi together. □

Remark 5. We didn’t actually use the full strength of abelianness of G. You just needed the elements x1, . . . , xm

to commute with each other. So we can say that there is a canonical bijection

Hom(Zm, G)
f 7→(f(−→e 1,...,f(

−→e m)))−−−−−−−−−−−−−−→
≃

{m-tuples of commuting elements in G}.

Observation 2. If f is as in Observation 1, then we have

im f = ⟨X⟩ ≤ G.

Proof. This follows from the description of f in the proof of Observation 1, combined with Remark 2. □

Observation 3. If f is as in Observation 1, then f is surjective if and only if ⟨X⟩ = G.

Putting this all together, we get:

Proposition 1. Suppose that G is an abelian group. Then the following are equivalent:
(1) G is finitely generated.
(2) There exists m ≥ 1 and a surjective homomorphism f : Zm → G.
(3) There exists m ≥ 1 and a subgroup H ⊴ Zm such that we have an isomorphism

Zm/H
≃−→ G.

Proof. Observations 1-3 tell us that (1)⇔(2), and the equivalence (2)⇔(3) is just the first isomorphism theorem.
□


