

MATH 3311, FALL 2025: LECTURE 30, NOVEMBER 10

Video: <https://youtu.be/MplmxboN4Hw>

Semi-direct products and complements

Definition 1. Suppose that H, K are groups and that we have a homomorphism

$$\rho : H \rightarrow \text{Aut}(K)$$

Then the **semi-direct product** $K \rtimes_{\rho} H$ is the *unique group* with underlying set $K \times H$ and with product given by

$$(k_1, h_1) \cdot (k_2, h_2) = (k_1 \rho(h_1)(k_2), h_1 h_2).$$

Proposition 1. $K \rtimes_{\rho} H$ with the above multiplication is a group with (e, e) as the identity. Moreover:

- (1) K is isomorphic to the normal subgroup $\{(k, e) : k \in K\} \leq K \rtimes_{\rho} H$ (we will use this to view K as a normal subgroup of $K \rtimes_{\rho} H$);
- (2) H is isomorphic to the subgroup $\{(e, h) : h \in H\} \leq K \rtimes_{\rho} H$ (we will use this to view H as a subgroup of $K \rtimes_{\rho} H$);
- (3) H is a complement for K in $K \rtimes_{\rho} H$;
- (4) The conjugation action of H on K is given by the homomorphism

$$\rho : H \rightarrow \text{Aut}(K)$$

that was part of the data for defining the semi-direct product.

We now want to relate semi-direct products and complements. First, we have the following two observations from Lecture 28.

Observation 1. Suppose that we have $K \trianglelefteq G$ and $H \leq G$ is a complement for K . The conjugation action of H on K yields a homomorphism $\rho : H \rightarrow \text{Aut}(K)$ satisfying $\rho(h)(k) = hkh^{-1}$ for $h \in H$ and $k \in K$.

Observation 2. The function

$$\psi : K \times H \xrightarrow{(k,h) \mapsto kh} G$$

is a bijection of groups.

Observation 3. The above function ψ is an isomorphism of groups $K \rtimes_{\rho} H \xrightarrow{\sim} G$.

Proof. We have to show that, with the multiplication in $K \rtimes_{\rho} H$, we have

$$\psi((k_1, h_1)(k_2, h_2)) = \psi((k_1, h_1))\psi((k_2, h_2)).$$

The left hand side is

$$\psi((k_1 \rho(h_1)(k_2), h_1 h_2)) = k_1 \rho(h_1)(k_2) h_1 h_2 = k_1 h_1 k_2 h_1^{-1} h_1 h_2 = k_1 h_1 k_2 h_2.$$

The right hand side is

$$\psi((k_1, h_1))\psi((k_2, h_2)) = (k_1 h_1)(k_2 h_2) = k_1 h_1 k_2 h_2.$$

The two sides are now clearly equal. □

Definition 2. In the above situation, we will say that G is a(n internal) semi-direct product of K by H . It is a *non-trivial* semidirect product if ρ is non-trivial. Equivalently, if G is not an internal direct product of K and H . (Why are these equivalent?).

Example 1. Suppose that $K = \mathbb{Z}/n\mathbb{Z}$. Then we know that $\text{Aut}(\mathbb{Z}/n\mathbb{Z}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$. Therefore, semidirect products of $\mathbb{Z}/n\mathbb{Z}$ by another group H are produced from homomorphisms $\rho : H \rightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$.

- (1) We could take $H = (\mathbb{Z}/n\mathbb{Z})^{\times}$ and ρ to be the identity. This gives us a semidirect product $(\mathbb{Z}/n\mathbb{Z}) \rtimes_{\rho} (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(2) If $H = \mathbb{Z}/5\mathbb{Z}$, then giving a non-trivial homomorphism $H \rightarrow (\mathbb{Z}/n\mathbb{Z})^\times$ amounts to giving an element of order 5 in $(\mathbb{Z}/n\mathbb{Z})^\times$. For example if $n = 11$, the element $4 \in (\mathbb{Z}/11\mathbb{Z})^\times$ has order 5, and so we obtain a non-trivial semidirect product

$$\mathbb{Z}/11\mathbb{Z} \rtimes_{\rho} \mathbb{Z}/5\mathbb{Z}$$

where $\rho : \mathbb{Z}/5\mathbb{Z} \rightarrow (\mathbb{Z}/11\mathbb{Z})^\times$ is given by $\rho(a) = 4^a$.

This essentially ends our discussion of possibly non-abelian groups this semester. We will now move on to a better understanding of *abelian* groups, and in particular the *finitely generated* ones.

Definition 3. Suppose that G is a group and $X \subset G$ is a subset. The **subgroup generated by X** , denoted $\langle X \rangle \leq G$ is the smallest subgroup of G containing X .

Remark 1. This notion makes sense, since the intersection of any collection of subgroups containing X is once again a subgroup containing X , so $\langle X \rangle$ can be taken to be the intersection of all subgroups containing X .

Remark 2. More concretely, we have

$$\langle X \rangle = \{x_1^{\pm 1} x_2^{\pm 2} \cdots x_m^{\pm m} : x_i \in X, m \geq 1\}.$$

That is, we take all possible products of elements of X as well as of their inverses.

Remark 3. If $X = \{x\}$ is a singleton, then $\langle X \rangle = \langle x \rangle$ is just the cyclic subgroup generated by the element x .

Definition 4. G is **finitely generated** if there is a finite subset $X \subset G$ such that $\langle X \rangle = G$. In other words, there is a finite set of symbols such that every element of G can be expressed as a product of such symbols.

We will be concerned with the problem of *classifying* finitely generated abelian groups. That is, we want a complete, non-redundant list of such groups up to isomorphism.