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Complements
Recall from last time the notion of a complement to a normal subgroup.

Observation 1. Given K ⊴G normal, and H ≤ G, the following are equivalent:
(1) H is a complement for K;

(2) H
π|H−−→ G/K is an isomorphism;

(3) Every element g ∈ G can be written uniquely in the form g = hk for h ∈ H and k ∈ K.

Example 1 (Non-example). Consider G = Z and K = nZ with n ≥ 2. There is no subgroup H ≤ Z with
H

≃−→ Z/nZ. Indeed, Z/nZ is a finite group, and the only finite subgroup of Z is {0} (why?). Therefore, this is
a situation in which we have a normal subgroup with no complement.

We also saw that when the complement is also normal, then we actually have a direct product.

Proposition 1. Suppose that K ⊴G and H ≤ G is a complement to K. Then the following are equivalent:
(1) H ⊴G is also normal;
(2) H and K commute: hk = kh for all h ∈ H and k ∈ K;
(3) The function

ψ : H ×K
(h,k)7→hk−−−−−−→ G

is an isomorphism of groups.

Definition 1. When the equivalent conditions of the proposition hold, we will say that G is an internal direct
product of the subgroups H and K.

Remark 1. If H ×K is the direct product of H and K, we can view H and K as the subgroups

H ≃ {(h, e) : h ∈ H} ; K ≃ {(e, k) : k ∈ K}

of H ×K. These subgroups are both normal and are complements to each other.

Remark 2. Whenever H is a complement to K ⊴G, the function

H ×K
(h,k)7→hk−−−−−−→ G

is a bijection. This is essentially a reformulation of (3) of Observation 1. Note that this is not necessarily an
isomorphism of groups, because in the direct product H ×K, H and K commute with each other, while this is
not necessarily the case in G.

Given the previous remark, we can ask: What kind of structure does H × K have that would make this
bijection an actual isomorphism? This leads to the notion of a semi-direct product.

Semi-direct products

Observation 2. If K ⊴G and H ≤ G is a complement, then H acts on K via conjugation: h · k = hkh−1. This
corresponds to a homomorphism of groups

ρ : H → Aut(K) ≤ Bij(K)

such that, for h ∈ H and k ∈ K, ρ(h)(k) = hkh−1 ∈ K.

Proof. The main points are:
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(1) The function
k 7→ hkh−1

is a bijection from K to K: That it takes K to K is because K ⊴G is normal. It is a bijection, because it
can be undone by conjugating by h−1.

(2) The function above is actually a homomorphism:

h(k1k2)h
−1 = (hk1h

−1)(hk2h
−1).

□

Observation 3. The following are equivalent:
(1) ρ is trivial;
(2) H and K commute;
(3) G is an internal direct product of H and K.

Proof. The triviality of ρ is just saying that hkh−1 = k for all h ∈ H and k ∈ K, and this is equivalent to saying
that H and K commute. The rest now follows from Proposition 1. □

Observation 4. If we have g1 = h1k1, g2 = h2k2 in G (where h1, k1 and h2, k2 are uniquely determined), then
we see that

g1g2 = (h1k1)(h2k2)

= h1h2(h
−1
2 k1h2)k2

= h1h2ρ(h
−1
2 )(k1)k2.

Remark 3. The h−1
2 showing up here is a bit annoying. So what we will do now is switch the order of appearance

of H and K. If we can write g = hk, then we can also write it in the form (hkh−1)h, where hkh−1 ∈ K. In
other words, every element of G can also be written uniquely in the form kh for some k ∈ K and h ∈ H (note
that the k will not be the same as when we write it as product in the other order!!). From this perspective, we
can rewrite the calculation in the previous observation:

g1g2 = (k1h1)(k2h2)

= k1(h1k2h
−1
1 )h1h2

= (k1ρ(h1)(k2))(h1h2).

This leads to the following abstract definition.

Definition 2. Suppose that H,K are groups and that we have a homomorphism

ρ : H → Aut(K)

Then the semi-direct product K ⋊ρ H is the unique group with underlying set K ×H and with product given
by

(k1, h1) · (k2, h2) = (k1ρ(h1)(k2), h1h2).


