

MATH 3311, FALL 2025: LECTURE 27, NOVEMBER 3

Video: <https://youtu.be/s0p3kYcMWX0>

Complements

Definition 1. Suppose that we have a normal subgroup $K \trianglelefteq G$ of a group G . A **complement** for K in G is a subgroup $H \leq G$ such that:

- (i) $G = HK = \{hk : h \in H, k \in K\}$;
- (ii) $H \cap K = \{e\}$.

Remark 1. Recall that $HK \leq G$ is always a subgroup and can be realized as the pre-image of $\pi(H) \leq G/K$ via the quotient homomorphism $\pi : G \rightarrow G/K$. In fact, the factoring triangle gives us an isomorphism

$$H/(H \cap K) \xrightarrow{\cong} \pi(H) = HK/K \leq G/K.$$

Observation 1. Given $K \trianglelefteq G$ as above, and $H \leq G$, the following are equivalent:

- (1) H is a complement for K ;
- (2) $H \xrightarrow{\pi|_H} G/K$ is an isomorphism;
- (3) Every element $g \in G$ can be written uniquely in the form $g = hk$ for $h \in H$ and $k \in K$.

Proof. (1) \Leftrightarrow (2): Saying that (2) holds is equivalent to saying that $HK = G$ (surjectivity) and $H \cap K = \{e\}$ (injectivity),

Let us show (1) \Leftrightarrow (3): Assuming (1), we see that every element $g \in G$ can be written in the form $g = hk$ for some $h \in H$ and $k \in K$. If we can do this in two ways, so that $g = h_1k_1 = h_2k_2$, then we get an equality $h_2^{-1}h_1 = k_2k_1^{-1}$. The left hand side is in H and the right hand side is in K , telling us that this common element is in $H \cap K = \{e\}$. But that means that $h_2 = h_1$ and $k_2 = k_1$. The proof of (3) \Rightarrow (1) is similar: If g belongs to $H \cap K$, then we can write $g = h \cdot e$ or $g = e \cdot k$ where $h \in H$ and $k \in K$. The only way for this to be possible is if $g = h = k = e$. \square

Example 1. Suppose that $|G| = pq^m$ where $p < q$ are primes. Let $Q \leq G$ be the Sylow q -subgroup: this has index p and so is normal (why?). If $P \leq G$ is any Sylow p -subgroup, it will be a complement for Q . Indeed, consider the homomorphism $\pi|_P : P \rightarrow G/Q$. Both the source and target of this homomorphism have order p and so must be cyclic of order p . The homomorphism is non-trivial, since its kernel is $P \cap Q = \{e\}$, and so must in fact be an isomorphism (why?).

What happens if the complement is also normal? Things actually have to be extra simple in this case.

Proposition 1. Suppose that $K \trianglelefteq G$ and $H \leq G$ is a complement to K . Then the following are equivalent:

- (1) $H \trianglelefteq G$ is also normal;
- (2) H and K commute: $hk = kh$ for all $h \in H$ and $k \in K$;
- (3) The function

$$\psi : H \times K \xrightarrow{(h,k) \mapsto hk} G$$

is an isomorphism of groups.

Proof. (1) \Rightarrow (2): This is the most interesting part. Given $h \in H$ and $k \in K$ consider the element $k^{-1}hkh^{-1} \in G$. Writing it as $k^{-1} \cdot (hkh^{-1})$ and using the normality of K shows that this element belongs to K . On the other hand, writing it as $(k^{-1}hk) \cdot h^{-1}$ and using the normality of H shows that it also belongs to H . But since $H \cap K = \{e\}$, we conclude that we have

$$k^{-1}hkh^{-1} = e \Leftrightarrow hkh^{-1} = k \Leftrightarrow hk = kh.$$

(2) \Rightarrow (3): That the function is a bijection is just another reformulation of (3) of Proposition 1. We need to check that it is a homomorphism:

$$\begin{aligned}
 \psi((h_1, k_1)) \cdot f((h_2, k_2)) &= (h_1 k_1)(h_2 k_2) \\
 &= h_1(k_1 h_2)k_2 \\
 &= h_1(h_2 k_1)k_2 \\
 &= (h_1 h_2)(k_1 k_2) \\
 &= \psi((h_1 h_2, k_1 k_2)).
 \end{aligned}$$

Here, in the third line, we have used the fact that H and K commute.

(3) \Rightarrow (1): This is because the subgroups $H \simeq \{(h, e) : h \in H\} \leq H \times K$ and $K \simeq \{(e, k) : k \in K\}$ are both normal in $H \times K$ and these are carried via the isomorphism ψ onto the subgroups $H, K \leq G$. \square

Definition 2. When the equivalent conditions of the proposition hold, we will say that G is an **internal direct product** of the subgroups H and K .