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Complements

Definition 1. Suppose that we have a normal subgroup K ⊴ G of a group G. A complement for K in G is a
subgroup H ≤ G such that:

(i) G = HK = {hk : h ∈ H, k ∈ K};
(ii) H ∩K = {e}.

Remark 1. Recall that HK ≤ G is always a subgroup and can be realized as the pre-image of π(H) ≤ G/K via
the quotient homomorphism π : G→ G/K. In fact, the factoring triangle gives us an isomorphism

H/(H ∩K)
≃−→ π(H) = HK/K ≤ G/K.

Observation 1. Given K ⊴G as above, and H ≤ G, the following are equivalent:

(1) H is a complement for K;

(2) H
π|H−−→ G/K is an isomorphism;

(3) Every element g ∈ G can be written uniquely in the form g = hk for h ∈ H and k ∈ K.

Proof. (1)⇔(2): Saying that (2) holds is equivalent to saying that HK = G (surjectivity) and H ∩ K = {e}
(injectivity),

Let us show (1)⇔(3): Assuming (1), we see that every element g ∈ G can be written in the form g = hk
for some h ∈ H and k ∈ K. If we can do this in two ways, so that g = h1k1 = h2k2, then we get an equality
h−1
2 h1 = k2k

−1
1 . The left hand side is in H and the right hand side is in K, telling us that this common element

is in H ∩K = {e}. But that means that h2 = h1 and k2 = k1. The proof of (3)⇒(1) is similar: If g belongs to
H ∩K, then we can write g = h · e or g = e · k where h ∈ H and k ∈ K. The only way for this to be possible is
if g = h = k = e. □

Example 1. Suppose that |G| = pqm where p < q are primes. Let Q ≤ G be the Sylow q-subgroup: this has
index p and so is normal (why?). If P ≤ G is any Sylow p-subgroup, it will be a complement for Q. Indeed,
consider the homomorphism π|P : P → G/Q. Both the source and target of this homomorphism have order
p and so must be cyclic of order p. The homomorphism is non-trivial, since its kernel is P ∩ Q = {e}, and so
must in fact be an isomorphism (why?).

What happens if the complement is also normal? Things actually have to be extra simple in this case.

Proposition 1. Suppose that K ⊴G and H ≤ G is a complement to K. Then the following are equivalent:

(1) H ⊴G is also normal;
(2) H and K commute: hk = kh for all h ∈ H and k ∈ K;
(3) The function

ψ : H ×K
(h,k)7→hk−−−−−−→ G

is an isomorphism of groups.

Proof. (1)⇒(2): This is the most interesting part. Given h ∈ H and k ∈ K consider the element k−1hkh−1 ∈ G.
Writing it as k−1 · (hkh−1) and using the normality of K shows that this element belongs to K. On the other
hand, writing it as (k−1hk) · h−1 and using the normalizty of H shows that it also belongs to H . But since
H ∩K = {e}, we conclude that we have

k−1hkh−1 = e⇔ hkh−1 = k ⇔ hk = kh.
1
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(2)⇒(3): That the function is a bijection is just another reformulation of (3) of Proposition 1. We need to
check that it is a homomorphism:

ψ((h1, k1)) · f((h2, k2)) = (h1k1)(h2k2)

= h1(k1h2)k2

= h1(h2k1)k2 = (h1h2)(k1k2)

= ψ((h1h2, k1k2)).

Here, in the third line, we have used the fact that H and K commute.
(3)⇒(1): This is because the subgroups H ≃ {(h, e) : h ∈ H} ≤ H ×K and K ≃ {(e, k) : k ∈ K} are both

normal in H ×K and these are carried via the isomorphism ψ onto the subgroups H,K ≤ G. □

Definition 2. When the equivalent conditions of the proposition hold, we will say that G is an internal direct
product of the subgroups H and K.


