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Video: https://www.youtube.com/watch?v=jbJ8KdTihOs
Conjugacy in Sn and An

Observation 1. If α = (a1 · am) is an m-cycle and σ ∈ Sn is any permutation, then σασ−1 is also an m-cycle,
and we in fact have

σασ−1 = (σ(a1) · · · σ(am)).

Remark 1. This should be thought of as an analogy with change of basis: If A is an invertible matrix and
B is any square matrix of the same dimension, then ABA−1 can be thought of as still describing the linear
transformation corresponding to B, but with respect to a different basis. Similarly, σασ−1 is doing the same
thing as α, except that we have changed our labeling from {1, 2, . . . , n} to {σ(1), . . . , σ(n)}.

Example 1. If α = (2 3 4) and σ = (1 2), then

σασ−1 = (σ(2) σ(3) σ(4)) = (1 3 4).

Remark 2. If
σ = α1α2 · · ·αr

is the decomposition into disjoint cycles, then

τστ−1 = τ(α1 · · ·αr)τ
−1 = (τα1τ

−1)(τα2τ
−1) · · · (ταrτ

−1).

What this means is that σ and τστ−1 have the same cycle type.
Conversely, if σ and β have the same cycle type, then we can find a τ such that τστ−1 = β. For example, if

σ = (1 2 3)(4 5) , β = (a b c)(d e),

then any permutation τ that satisfies τ(1) = a, τ(2) = b, τ(3) = c, τ(4) = d, τ(5) = e will work for the equality

τστ−1 = (τ(1) τ(2) τ(3))(τ(4) τ(5)) = β.

Definition 1 (Cycle type). Given an element σ ∈ Sn, the cycle type of σ is an n-tuple (m1,m2, . . . ,mn) of
non-negative integers, where for each i, mi is the number of i-cycles in the disjoint cycle decomposition of σ
(including 1-cycles for fixed points!).

This gives us the following observation:

Observation 2. Two permutations σ, β ∈ Sn are conjugate to each other (that is, there exists τ ∈ Sn such that
τστ−1 = β) if and only if they have the same cycle type. In other words, we have a bijection

{conjugacy classes in Sn} ↔ {cycle types}.
Recall that conjugacy classes in a group G are the orbits for the conjugation action of G on itself.

Observation 3. Orbit-stabilizer tells us that, for any group G and h ∈ G we have a bijection,

G/CG(h)
≃−→ {ghg−1 : g ∈ G} = Conjugacy class of h.

In particular, if G is finite, then we have

|G| = |CG(h)| · |Conjugacy class of h|.
In problem 6 on HW 8, we looked at the case of a subgroup H ≤ G of index 2. In this case, for h ∈ H , we

obtain two equalities:

|G| = |CG(h)| · |Conjugacy class of h in G|;
|G|/2 = |H| = |CH(h)| · |Conjugacy class of h in H|.

The main point of that problem now is that, since the factors on the right in the second equation are less than
or equal to those in the first, exactly one of the following holds:
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• |CG(h)| = 2|CH(h)|: In other words, there is an element g ∈ G\H such that ghg−1 = h;
• The conjugacy class of h in H is half the size of its conjugacy class in G.

This leads to:

Observation 4. The conjugacy class of an element σ ∈ An consists of all elements of the same cycle type if
and only if there is an odd element in the centralizer CSn

(σ).

Example 2. Consider the case of a 3-cycle α = (1 2 3) ∈ A5. Its conjugacy class in S5, consisting of all 3-cycles,
has

(
5
3

)
· 2 = 20 elements. This shows that |CS5(α)| has size |S5|/20 = 120/20 = 6. One can actually write

down all the elements in this centralizer: They are all obtained from products of powers of (1 2 3) and the
odd element (4 5). Note that the presence of the odd element ensures that the conjugacy class in A5 is still
comprised of all 3-cycles.

Example 3. Consider the case of a 5-cycle β = (1 2 3 4 5): Its conjugacy class in S5 consisting of all 5-cycles,
has 4! = 24 elements. Therefore, its centralizer has 120/24 = 5 elements, which are all generated by powers
of β. In particular, this centralizer has no odd elements, which tells us that the set of 5-cycles splits into two
conjugacy classes in A5.


