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The sign homomorphism
Recall from last time the following:

Definition 1. (Cycle notation) Given m ∈ {2, . . . , n}, an m-cycle α ∈ Sn is an element written in the form

(a1 a2 · · · am),

where a1, a2, . . . , am ∈ {1, 2, . . . , n} are distinct elements, and where, as a permutation of {1, 2, . . . , n}, α be-
haves as follows:

• It moves the elements a1, . . . , am like so: a1 7→ a2 7→ · · · 7→ am−1 7→ am

• It fixes all elements not in the subset {a1, . . . , am}.
A cycle is an element α ∈ Sn that is an m-cycle for some integer m.

Remark 1. Note that there isn’t a unique way to write a cycle: (a1 a2 · · · am) is the same as (am a1 · · · am−1)
or (a2 a3 · · · am a1).

Definition 2. A 2-cycle in Sn will be called a transposition.

Definition 3. We will say that two cycles (a1 a2 · · · am) and (b1 · · · br) are disjoint if

{a1, . . . , am} ∩ {b1, . . . , br} = ∅.
In general, a list of cycles α1, . . . , αs is disjoint if all the cycles in the list are pairwise disjoint.

Remark 2. • The basic property of disjoint cycles is that they act on entirely different parts of the set
{1, 2, . . . , n} and hence do not really interact with each other. This means that if α, β ∈ Sn are disjoint
cycles, then

αβ = βα.

• Note that the disjointness is essential for the above equality to hold. For example, since (1 2) and (2 3)
are not disjoint, we have

(1 2)(2 3) = (1 2 3) ̸= (1 3 2) = (2 3)(1 2).

Observation 1. Every permutation in Sn can be written as a product of disjoint cycles uniquely up to the
order of multiplication. This is the disjoint cycle decomposition.

Proof. Suppose that we have α ∈ Sn. Then we can look at the cyclic group H = ⟨α⟩ acting on the set
{1, 2, . . . , n}. This divides up {1, 2, . . . , n} into disjoint orbits for the action of H .

{1, 2, . . . , n} =

s⊔
i=1

Oi.

The action of α on each orbit Oi is now described by an mi-cycle τi (why?), where |Oi| = mi. Now α is the
product τ1τ2 · · · τs of disjoint cycles. □

Example 1. Let’s take α ∈ S9 to be the permutation given by

1 7→ 5 ; 2 7→ 7 ; 3 7→ 2 ; 4 7→ 1 ; 5 7→ 8 ; 6 7→ 9 ; 7 7→ 3 ; 8 7→ 6; 9 7→ 4

The orbits for the action of ⟨α⟩ are exactly {1, 5, 8, 6, 9, 4} and {2, 7, 3}, and each orbit contributes a cycle that
describes what α does to it, so that

α = (1 5 8 6 9 4)(2 7 3) = (2 7 3)(1 5 8 6 9 4)

We would like to prove:
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Theorem 1 (The sign homomorphism). There is a unique surjective homomorphism

sgn : Sn → {±1}
such that sgn(τ) = −1 for every transposition τ ∈ Sn.

The main input into this theorem is the following result.

Proposition 1. If σ ∈ Sn can be written as

σ = α1 · · ·αk = β1 · · ·βl,

where αi, βj ∈ Sn are transpositions. Then we have

k ≡ l (mod 2)

.

Proof. we note that the equality
α1 · · ·αk = β1 · · ·βl

translates to
e = αkαk−1 · · ·α1β1 · · ·βl

Therefore, we have expressed e as a product of k + l transpositions. The second part of the proposition is
now a consequence of the following fact (note that k + l ≡ 0 (mod 2) is equivalent to k ≡ l (mod 2)):

Fact 1. If e = τ1 . . . τm where τi ∈ Sn are transpositions, them m ≡ 0 (mod 2).

We will show this by induction on m. If m = 0, there is nothing to show. It is not possible to have m = 1,
since then we would have

e = (a1 b1),

which is absurd, since e cannot move anything while (a1 b1) switches a1 and b1.
Now, suppose that we have

e = (a1 b1)(a2 b2) · · · (am−1 bm−1)(am bm).

We have the following rules for multiplying transpositions that form the rules of the game:

(a b)(c d) = (c d)(a b) (a b)(a b) = e (a c)(a b) = (a b)(b c) (b c)(a b) = (a c)(b c).

Now, look at the last pair of transpositions (am−1 bm−1), (am bm). Their product has the following possi-
bilities:

(am−1 bm−1)(am bm) =



(am bm)(am−1, bm−1), if the two are disjoint.
e, if the two are equal.
(am bm)(bm−1 bm), if am = am−1, bm ̸= bm−1.
(am bm)(am−1 bm), if am = bm−1, bm ̸= am−1.
(am am−1)(am−1 bm), if bm = bm−1, am ̸= am−1.
(am bm−1)(bm−1 bm), if bm = am−1, am ̸= bm−1.

In the second situation, we have reduced e to a product of m− 2 transpositions

e = (a1 b1) · · · (am−2 bm−2).

By induction on m, this means that m− 2 is even, and hence that m is even.
In all other situations, we have moved am over one step to the left while ensuring that it doesn’t appear in

the last transposition.
Proceeding in this fashion, we will have accomplished one of two things:

• We will have moved am all the way to the left, so that it appears in the first transposition in the product
and nowhere else. But this is impossible, since the product is supposed to be e which cannot move am.

• So what we must have actually accomplished is that, at some point, we reduced the number of trans-
positions by 2, and concluded by induction that m is even.

□


