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Again, we will fix a finite group G and a prime p. Let m ≥ 0 be the integer such that pm is the largest power

of p dividing the order |G|.
We have seen the following theorems already:

Theorem 1 (Sylow Theorem A). There exists a subgroup Q ≤ G of order |Q| = pm. That is, Sylp(G) is non-empty.

Theorem 2 (Sylow Theorem B). The conjugation action of G on Sylp(G) is transitive. That is, if P,Q ∈ Sylp(G)

are two Sylow p-subgroups of G, then there exists g ∈ G such that gPg−1 = Q.

Proof. Let’s review the proof. We want to show that, for P,Q ∈ Sylp(G), there exists g ∈ G such that Q =

gPg−1.
This in turn is equivalent to knowing

Q ≤ gPg−1.

Indeed, Q and gPg−1 both have order pm by hypothesis.
We now observe that gPg−1 = GgP where GgP ≤ G is the stabilizer of the coset gP ∈ G/P for the left

multiplication action1 Therefore, we have to show:
There exists g ∈ G such that Q ≤ GgP , which is equivalent to knowing that the action of Q on G/P via left

multiplication has a fixed point.
That is, we need to know that (G/P )Q is non-empty, or equivalently that

|(G/P )Q| ̸= 0.

For this, we will prove something that is a bit stronger. Indeed, since Q is a p-group, we can apply our
fundamental congruence for group actions by p-groups on finite sets to deduce that we have

|(G/P )Q| ≡ |G/P | (mod p).

Now, we finally use our hypothesis that P is a Sylow p-subgroup. This implies that |G/P | = [G : P ] is not
divisible by p. Therefore, we have

|(G/P )Q| ̸≡ 0 (mod p).

In particular, (G/P )Q is non-empty, and hence there is gP ∈ G/P that is fixed by Q. As we established above,
this means that Q = gPg−1. □

We also saw the following corollaries:

Corollary 1. If P,Q ∈ Sylp(G) are two Sylow p-subgroups that P is isomorphic to Q.

Corollary 2. If P ∈ Sylp(G), then the following are equivalence:
(1) P ⊴G is normal in G;
(2) P is the unique Sylow p-subgroup.

Corollary 3. If G is abelian, then G has a unique Sylow p-subgroup.

Today, we will state and prove the last of the Sylow theorems.

Theorem 3 (Sylow Theorem C). Let np = |Sylp(G)| be the number of Sylow p-subgroups of G.
(1) np = [G : NG(P )] and np | [G : P ] for any P ∈ Sylp(G).
(2) np ≡ 1 (mod p).

1Quick proof: hgP = h(gP ) = gP ⇔ g−1hg ∈ P ⇔ h ∈ gPg−1.
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Proof. The first part is essentially an immediate consequence of orbit-stabilizer, applied to G ↷ Sylp(G).
The stabilizer of P ∈ Sylp(G) for this (conjugation) action is exactly the normalizer NG(P ) ≤ G. Moreover,
Theorem B tells us that we have exactly one orbit, whose size is np. Thus, orbit-stabilizer gives us

[G : NG(P )] = |G|/|NG(P )| = np.

Moreover, we have
[G : P ] = [G : NG(P )][NG(P ) : P ] = np[NG(P ) : P ].

This shows that np is a factor of [G : P ].
For part (2), we will use the fundamental congruence for the action of p-groups. We will apply it to the

action P ↷ Sylp(G) to get the congruence

|Sylp(G)P | ≡ |Sylp(G)| ≡ np (mod p).(0.0.0.1)

Now, Q ∈ Sylp(G)P means that P fixes Q under the conjugation action. In other words, for all x ∈ P , we
have xQx−1 = Q. Equivalently, we are saying that every such x is in NG(Q). Thus we find:

Q ∈ Sylp(G)P ⇔ P ≤ NG(Q)

⇔ P,Q ≤ NG(Q) ⇔ P,Q ∈ Sylp(NG(Q)).

The second line holds because we always have Q ≤ NG(Q), and the last line is because pm is the largest power
of p dividing |G|, and is therefore also the largest power of p dividing |NG(Q)|.

Now, we come to the key observation: Q⊴NG(Q) is normal in NG(Q) (by the definition of the normalizer).
But now Corollary 2 tells us that Q is the unique Sylow p-subgroup of NG(Q). Therefore, we find:

P,Q ∈ Sylp(NG(Q)) ⇔ Q = P.

Putting everything together, we find that

Sylp(G)P = {P}
has exactly one element. So (0.0.0.1) now gives us

1 ≡ np (mod p)

which gives us assertion (2). □

Example 1. Suppose that |G| = 48 = 24 · 3. Then n2 ≡ 1 (mod 2) is odd and n2 | 3. So the only possibilities are
n2 = 1, 3. If n2 = 1, then there is exactly one Sylow 2-subgroup (of order 16), which is normal. If n2 = 3, then
we have three such subgroups. But we can still obtain some more information about G by now looking at the
action G ↷ Syl2(G), which gives a non-trivial group homomorphism ρ : G → S3.


