

MATH 3311, FALL 2025: LECTURE 16, OCTOBER 3

Video: https://youtu.be/_HzhpdIR7xI

Recall from last time: If we have a subgroup $H \leq G$, then we have the surjective function

$$\pi : G \xrightarrow{g \mapsto gH} G/H$$

from G onto the set of cosets of H in G .

Proposition 1 (Existence of quotient groups). *The following are equivalent:*

- (1) *There exists some homomorphism $f : G \rightarrow G'$ such that $H = \ker f$;*
- (2) *$H \trianglelefteq G$ is a normal subgroup;*
- (3) *The function π is a homomorphism of groups: That is, there is a (necessarily unique) structure of a group on G/H such that π satisfies $(g_1H)(g_2H) = \pi(g_1)\pi(g_2) = \pi(g_1g_2) = g_1g_2H$.*

The main point here is that the operation $(g_1H)(g_2H) = g_1g_2H$ is *well-defined* exactly when H is normal in G .

Definition 1. When the equivalent conditions of the proposition hold, we say that G/H the **quotient group** of G by H and that $\pi : G \rightarrow G/H$ is the **quotient homomorphism**. By construction, we have

$$H = \ker \pi.$$

Observation 1. Suppose that $H \trianglelefteq G$ is a normal subgroup and $\pi : G \rightarrow G/H$ is the quotient homomorphism. Suppose that we have a homomorphism of groups $\bar{f} : G/H \rightarrow G'$. Then the composition $f = \bar{f} \circ \pi$ satisfies $H \leq \ker f$.

This is because π kills H , and therefore the composition $\bar{f} \circ \pi$ must also necessarily kill H . We can view this as a diagram

$$\begin{array}{ccc} G & & \\ \pi \downarrow & \searrow f & \\ G/H & \xrightarrow{\bar{f}} & G'. \end{array}$$

where the diagonal arrow kills H because the left vertical arrow does.

In fact, we can considerably strengthen the observation into the following *fundamental* result, which tells us exactly how to build homomorphisms out of the quotient group.

Proposition 2 (The Factoring Triangle). *Suppose that $H \trianglelefteq G$ is a normal subgroup and that $f : G \rightarrow G'$ is a group homomorphism. Consider the following picture:*

$$\begin{array}{ccc} G & & \\ \pi \downarrow & \searrow f & \\ G/H & \xrightarrow{\quad ? \exists \bar{f} \quad} & G'. \end{array}$$

The following are equivalent:

- (1) *There exists a (necessarily unique) homomorphism $\bar{f} : G/H \rightarrow G'$ such that $f = \bar{f} \circ \pi$. In this case, we will say that f **factors through** π .*
- (2) *$f(H) = \{e\}$, or equivalently $H = \ker \pi \leq \ker f$.*

Consequence 1. Giving a homomorphism $\bar{f} : G/H \rightarrow G'$ is equivalent to giving a homomorphism $f : G \rightarrow G'$ such that $H \leq \ker f$, equivalently such that $f(H) = \{e\}$.

Slogan 1. G/H is the guardian to the world where H is dead, i.e. smushed down to the identity.

Example 1. If $H = n\mathbb{Z} \leq \mathbb{Z} = G$, then we see that giving a homomorphism $\bar{f} : \mathbb{Z}/n\mathbb{Z} \rightarrow G'$ is equivalent to giving a homomorphism $f : \mathbb{Z} \rightarrow G'$ such that $f(n\mathbb{Z}) = \{e\}$. Since n generates $n\mathbb{Z}$, this is equivalent to saying that $f(n) = e$.

Now, every homomorphism $f : \mathbb{Z} \rightarrow G'$ is given by $f(a) = g^a$ for some fixed $g \in G'$. This satisfies $f(n) = e$ precisely when $g^n = e$. In other words, we obtain a canonical bijection

$$\text{Hom}(\mathbb{Z}/n\mathbb{Z}, G') = \{g \in G' : g^n = e\}$$

This gives a quick and systematic way of recovering the results of HW 3, Problem 5. In terms of the factoring triangle, we have

$$\begin{array}{ccc} \mathbb{Z} & & \\ \pi \downarrow & \searrow f : a \mapsto g^a \text{ such that } g^n = f(1)^n = e & \\ \mathbb{Z}/n\mathbb{Z} & \xrightarrow{\bar{f}} & G'. \end{array}$$

Proof of the factoring triangle. Observation 1 shows (1) \Rightarrow (2). Let us show (2) \Rightarrow (1). The only possible definition for \bar{f} is given by

$$\bar{f}(gH) = f(g) \in G'.$$

The main question here, as always when things are defined in terms of coset representatives, is if the assignment is *independent* of the representative g . If g' is another representative, then we have $g' = gh$ for some $h \in H$. But then

$$\bar{f}(g'H) = f(g') = f(gh) = f(g)f(h) = f(g)e = f(g) \in G'$$

where we have used the assumption that $f(H) = \{e\}$ to see that $f(h) = e$.

More succinctly, as sets we have $f(gH) = \{f(g)\}$ because $f(H) = \{e\}$: so the value of f on something only depends on its coset with respect to H . \square

Example 2. Take $G = \mathbb{Z} \times \mathbb{Z}$, and take $H \leq G$ to be the subgroup generated by $(1, 1)$. You can easily see

$$H = \{(a, a) \in \mathbb{Z} \times \mathbb{Z}\}.$$

Since we are in an abelian situation everything is normal, and so we can make sense of the quotient G/H . To understand the quotient homomorphism, it is enough to write down some surjective homomorphism

$$f : G \rightarrow G'$$

with $\ker f = H$. You can easily check that the function

$$f : G = \mathbb{Z} \times \mathbb{Z} \xrightarrow{(a,b) \mapsto b} \mathbb{Z}$$

given by projection onto the second coordinate is such a homomorphism. Therefore, we have

$$\bar{f} : G/H \xrightarrow{\sim} \mathbb{Z}.$$

Note that we didn't have to know anything about the explicit coset description for G/H !

Example 3. Let us look at the subgroup $H = \langle(1, 1)\rangle$ now. I claim that we have

$$(\mathbb{Z} \times \mathbb{Z})/\langle(1, 1)\rangle$$

is isomorphic to \mathbb{Z} .

We will do this fully in the next lecture, but for now, let us understand the following: In order to construct a homomorphism $(\mathbb{Z} \times \mathbb{Z})/\langle(1, 1)\rangle \rightarrow \mathbb{Z}$, we just have to construct a homomorphism

$$f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$

such that $\langle(1, 1)\rangle \leq \ker f$. It is easy to see that one such homomorphism is given by $f((a, b)) = b - a$. This gives us a factoring triangle:

$$\begin{array}{ccc}
 \mathbb{Z} \times \mathbb{Z} & & \\
 \pi \downarrow & \searrow f \text{ such that } f((a, b)) = b - a & \\
 (\mathbb{Z} \times \mathbb{Z})/\langle(2, 3)\rangle & \xrightarrow{\exists \bar{f}} & \mathbb{Z}.
 \end{array}$$