
MATH 3311, FALL 2025: LECTURE 15, OCTOBER 1

Video: https://youtu.be/K_Q8XrbIPF8
Recall from last time the following summary of the structure of group actions:

Proposition 1. If G ↷ X is a group action, then we have

X =
⊔

O

where O ⊂ X are the distinct orbits. Moreover, if x ∈ O (so that O = O(x)), then there is an isomorphism of group
actions

G/Gx
≃−→ O(x).

If we have a subgroup H ≤ G, then we have the surjective function

π : G
g 7→gH−−−−→ G/H

from G onto the set of cosets of H in G.

Question 1. When does G/H have the structure of a group? More precisely, when can we view π as a group
homomorphism?

Example 1. If G = Z and H = nZ, then Z/nZ has a group structure as an additive group such that the natural

surjective function Z a7→a (mod n)−−−−−−−−→ Z/nZ is a group homomorphism.

Let us make some quick observations.

Observation 1. The only possible group structure on G/H for which π is a homomorphism is given in terms
of coset representatives by

(g1H)(g2H) = g1g2H.

Observation 2. If π is a group homomorphism, then H = kerπ.

Proof. The way the group operation in G/H is supposed to work, the identity coset H plays the role of the
identity element. Therefore, we have

kerπ = {g ∈ G : π(g) = gH = H} = H

where the second equality follows from the obsevation that gH = H precisely when g ∈ H . □

Observation 3. For any group homomorphism f : G → G′, ker f ≤ G is a normal subgroup.

Proof. We need to verify the following properties:
(1) e ∈ ker f : This is because f(e) = e.
(2) If h1, h2 ∈ ker f , then g1g2 ∈ ker f : This is because

f(h1h2) = f(h1)f(h2) = e · e = e.

(3) If h ∈ ker f , then h−1 ∈ ker f : This is because

f(h−1) = f(h)−1 = e−1 = e.

(4) (Normality) If h ∈ ker f and g ∈ G, then ghg−1 ∈ ker f : This is because

f(ghg−1) = f(g)f(h)f(g)−1 = f(g)ef(g)−1 = f(g)f(g)−1 = f(gg−1) = f(e) = e.

□

Combining the two previous observations, we find:

Observation 4. If π is a group homomorphism, then H = kerπ is a normal subgroup of G.
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So normality is a necessary condition for π to be a homomorphism of groups; or, equivalently, for the oper-
ation (g1H)(g2H) = g1g2H to be well-defined. Let us see an example where this fails.

Example 2. If G = D2n and H ≤ G is the subgroup generated by τ , then G/H has size n (why?). If we take the
coset σH and ‘multiply’ it by itself we get

(σH)(σH) = σ2H.

But we can also represent σH as στH . If we use this instead for the first factor, then we get

(στH)(σH) = στσH.

Since στ = τσ−1, we can rewrite the right hand side as

τσ−1σH = τH = H.

Clearly, this is not equal to σ2H . This shows that the operation we wanted to define is not well-defined, and
this is happening precisely because H is not normal in G.

Proposition 2 (Existence of quotient groups). The following are equivalent for a subgroup H ≤ G:
(1) There exists some homomorphism f : G → G′ such that H = ker f ;
(2) H ⊴G is a normal subgroup;
(3) The function π is a homomorphism of groups: That is, there is a (necessarily unique) structure of a group on

G/H such that π satisfies (g1H)(g2H) = π(g1)π(g2) = π(g1g2) = g1g2H .

Proof. (1)⇒(2): This is Observation 3.
(3)⇒(1): This is Observation 2. Basically, we can take f to be the homomorphism π : G → G/H .
To complete the circle, we must show (2)⇒(3). This amounts to the assertion that the operation

(g1H)(g2H) = g1g2H

on G/H is well-defined independent of the choice of coset representatives. If we replace g1H and g2H with
g1h1H and g2h2H for h1, h2 ∈ H , then the product now becomes

(g1h1H)(g2h2H) = g1h1g2h2H

= g1h1g2H

= g1g2(g
−1
2 h1g2)H

= g1g2H,

where in the last equality, we have used the normality of H to conclude that g−1
2 h1g2 ∈ H . □

Definition 1. When the equivalent conditions of the proposition hold, we say that G/H the quotient group
of G by H and that π : G → G/H is the quotient homomorphism. By construction, we have

H = kerπ.


