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Video: https://youtu.be/K_Q8XrbIPF8
Recall from last time the following summary of the structure of group actions:

Proposition 1. If G ~ X is a group action, then we have

x=|]o

where O C X are the distinct orbits. Moreover, if x € O (so that O = O(x)), then there is an isomorphism of group
actions
G/Gy = O(z).

If we have a subgroup H < G, then we have the surjective function

G qn

from G onto the set of cosets of H in G.

Question 1. When does G/ H have the structure of a group? More precisely, when can we view 7 as a group
homomorphism?

Example 1. If G = Z and H = nZ, then Z/nZ has a group structure as an additive group such that the natural

aza(medn), /nZ is a group homomorphism.

surjective function Z
Let us make some quick observations.

Observation 1. The only possible group structure on GG/ H for which 7 is a homomorphism is given in terms
of coset representatives by

(91H)(92H) = g192H.
Observation 2. If 7 is a group homomorphism, then H = ker 7.

Proof. The way the group operation in G/H is supposed to work, the identity coset H plays the role of the
identity element. Therefore, we have

kermr={geG: n(g)=gH=H}=H
where the second equality follows from the obsevation that gif = H precisely when g € H. O
Observation 3. For any group homomorphism f : G — G, ker f < G is a normal subgroup.

Proof. We need to verify the following properties:
(1) e € ker f: This is because f(e) = e.
(2) If hy, ho € ker f, then g1 g2 € ker f: This is because

f(hihg) = f(h1)f(h2) =e-e=e.
(3) If h € ker f, then h=! € ker f: This is because
FRH=fh) =t =e
(4) (Normality) If h € ker f and g € G, then ghg™! € ker f: This is because
flghg™) = f(9) f (W) f(9)™" = f(9)ef(9) ™" = f(9)f(9) ™" = flgg™") = fle) =e.

Combining the two previous observations, we find:

Observation 4. If 7 is a group homomorphism, then H = ker 7 is a normal subgroup of G.
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So normality is a necessary condition for 7 to be a homomorphism of groups; or, equivalently, for the oper-
ation (g1 H)(g2H) = g192H to be well-defined. Let us see an example where this fails.

Example 2. If G = Dy, and H < G is the subgroup generated by 7, then G/H has size n (why?). If we take the
coset o H and ‘multiply’ it by itself we get
(cH)(cH) = o’H.

But we can also represent o H as o7 H. If we use this instead for the first factor, then we get

(cTH)(cH) =070 H.
Since o7 = 70!, we can rewrite the right hand side as

ro toH =7H = H.
Clearly, this is not equal to 0? H. This shows that the operation we wanted to define is not well-defined, and
this is happening precisely because H is not normal in G.

Proposition 2 (Existence of quotient groups). The following are equivalent for a subgroup H < G:

(1) There exists some homomorphism f : G — G’ such that H = ker f;

(2) H <G is a normal subgroup;

(3) The function 7 is a homomorphism of groups: That is, there is a (necessarily unique) structure of a group on
G/ H such that  satisfies (g1 H)(g2H) = 7(g1)7(92) = 7(g192) = g192H.

Proof. (1)=(2): This is Observation 3.
(3)=-(1): This is Observation 2. Basically, we can take f to be the homomorphism 7 : G — G/H.
To complete the circle, we must show (2)=-(3). This amounts to the assertion that the operation

(91H)(92H) = g192H

on G/H is well-defined independent of the choice of coset representatives. If we replace g1 H and go H with
g1h1H and goho H for hy, hy € H, then the product now becomes

(91h1H)(g2h2H) = g1hig2ho H
= g1higo H
= 9192(95 ' g2) H
= 9192H,
where in the last equality, we have used the normality of H to conclude that g, 'h1g- € H. O

Definition 1. When the equivalent conditions of the proposition hold, we say that G/H the quotient group
of G by H and that 7 : G — G/H is the quotient homomorphism. By construction, we have

H = kerm.



