

MATH 3311, FALL 2025: LECTURE 14, SEPTEMBER 29

Video: <https://youtu.be/anbBkE7HBWQ>

Recall from last time:

Proposition 1. If $f : G \rightarrow G'$ is a homomorphism of groups, then $\ker f \trianglelefteq G$ is a normal subgroup and there is a natural bijection

$$G/\ker f \xrightarrow{\cong} \text{im } f$$

which carries each left coset $g(\ker f)$ to $g \cdot e = f(g)e = f(g)$.

Remark 1. Note that $\text{im } f$ is a subgroup of G' and so in particular is a group. This means that the above natural bijection also equips the set of cosets $G/\ker f$ with the structure of a group. In fact, since $f(g_1)f(g_2) = f(g_1g_2)$, the group structure is determined by the formula

$$g_1(\ker f) \cdot g_2(\ker f) = g_1g_2(\ker f).$$

This formula isn't always well-defined.

Example 1. Take $G = S_3 = \{e, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$ and $H = \langle \tau \rangle = \{e, \tau\}$.

Consider the 'product'

$$\sigma H \cdot \sigma^2 H = \sigma^3 H = eH = H.$$

If we instead wrote the first term as $\sigma\tau H$, then we would get

$$\sigma\tau H \cdot \sigma^2 H = \sigma\tau\sigma^2 H = \sigma^2\tau H = \sigma^2 H \neq H.$$

Here, we have used the formula $\tau\sigma^2 = \sigma\tau$, which is valid in $S_3 = D_6$.

Therefore, depending on how we write down the coset $\sigma H = \sigma\tau H$, we get different answers for the possible product. This shows that the operation is not well-defined.

The difference between this and the case of a kernel is that the latter is always normal, while $H = \langle \tau \rangle \leq S_3$ is not:

$$\sigma\tau\sigma^{-1} = \sigma\tau\sigma^2 = \sigma\sigma\tau = \sigma^2\tau \notin H.$$

But normality fixes everything.

Proposition 2. Suppose that $H \trianglelefteq G$ is a normal subgroup. Then:

(1) The operation

$$\begin{aligned} G/H \times G/H &\rightarrow G/H \\ (g_1H, g_2H) &\mapsto g_1g_2H \end{aligned}$$

is well-defined.

(2) This operation equips G/H with the structure of a group with identity given by the coset H .

(3) The function

$$\begin{aligned} \pi : G &\rightarrow G/H \\ g &\mapsto gH \end{aligned}$$

is a surjective homomorphism.

Proof. Suppose that we have $h \in H$. Then we have $g_1H = g_1hH$ and $g_2H = g_2hH$. We have:

$$(g_1H)(g_2H) = g_1g_2H = g_1g_2H;$$

$$\begin{aligned}
(g_1hH)(g_2H) &= g_1hg_2H \\
&= g_1(g_2g_2^{-1})hg_2H \\
&= g_1g_2(g_2^{-1}hg_2)H \\
&= g_1g_2H.
\end{aligned}$$

Here in the last equality we have used the fact that $g_2^{-1}hg_2 \in H$ by the normality of H .

Thus, no matter how we represent our cosets our answer in the end is the same: g_1g_2H . This shows well-definedness.

To see that this equips G/H with the structure of a group, we need to check:

- (1) (Identity) $H \cdot gH = eH \cdot gH = egH = gH$.
- (2) (Associativity)

$$g_1H(g_2H \cdot g_3H) = g_1H \cdot g_2g_3H = g_1(g_2g_3)H = (g_1g_2)g_3H = g_1g_2H \cdot g_3H = (g_1H \cdot g_2H) \cdot g_3H.$$

- (3) (Inverses) $g^{-1}H \cdot gH = g^{-1}gH = eH = H$.

Finally, the fact that $\pi : G \rightarrow G/H$ is a surjection is clear, and that it is a homomorphism is just:

$$\pi(g_1)\pi(g_2) = g_1H \cdot g_2H = g_1g_2H = \pi(g_1g_2).$$

□

Remark 2. The proof of (1) above shows that, in order for the group operation on G/H to be well-defined, we must have $g_2^{-1}hg_2 \in H$ for all $g_2 \in G$ and $h \in H$. This is of course just saying that H is normal. In other words, normality is both *necessary* and *sufficient* for the group operation on G/H to be well-defined.

Definition 1. If $H \trianglelefteq G$ is a normal subgroup, the set G/H equipped with the group operation above is called the **quotient of G by H** , and the homomorphism $\pi : G \xrightarrow{g \mapsto gH} G/H$ is called the **quotient homomorphism**.

Example 2. In H@ 5, it is shown that any subgroup of an abelian group is normal.

In particular, $n\mathbb{Z} \leq \mathbb{Z}$ is normal. Here, the quotient group $\mathbb{Z}/n\mathbb{Z}$ is just what we already know, and the quotient homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ is the function carrying each integer a to $a(\text{mod } n) = a + n\mathbb{Z}$.