MATH 3311, FALL 2025: LECTURE 1, AUGUST 25

Video link: https://yvoutu.be/QBkOzRrhIék

What is algebra? In simple terms, it's what turns up when we notice that ostensibly different kinds of
mathematical objects have the same essential structures governing their behavior. We then extract this essen-
tial structure and formalize it in the shape of axioms, which can then be used to argue more abstractly about
those objects, with a view towards developing results that can apply to other objects with the same essential
structure.

In this course, we will be looking examples of such essential structures, which will include groups, rings
and fields.

Example 1. Let us step back for a moment to high school algebra and consider the equation 2% — 2 = 0. This
has two solutions: +v/2. How do we tell them apart? Well, one is positive and the other negative. How do we
distinguish the positive one? It is the only one of the two that has a real square-root, namely v/2.

Example 2. Consider instead the equation z? 4+ 1 = 0. This also has two (imaginary) solutions +i. How do we
tell these apart? We can’t! Unlike in the previous example, there is no god-given choice. What we can say is
simply that there are two roots, which are negatives of each other.

Example 3. To get a better feel, let us look at another equation z? + = + 1. By the quadratic formula, the zeros
are

1+4v/3
—

Note that the double sign + accounts for the ambiguity in the choice of i: regardless of which choice we make,
we will still get the same pair of complex numbers, though we don’t have a way of necessarily distinguishing
one from the other.

This is because there is a symmetry, complex conjugation, given by the operation a + b — a — b, which
flips one zero to another, and we have no way of breaking the symmetry. This is true actually for any quadratic
equation that does not admit real solutions: it will have two zeros each of which is the complex conjugate of
the other, and we have no systematic way of breaking the symmetry between them.

Example 4. Take a more elaborate example: 2° — 1 = 0. The solutions to this equation are the five fifth roots
of 1: there is the obvious one, 1 itself, but also 4 more complex solutions, (5 = /% (2, (2, (4. The key point
here is how multiplication works for complex numbers. The complex number of length 1 at an angle of § to
the real axis is ¢?’. Moreover, we have (¢?)" = ¢i"? ; ¢?™m™ = 1, for any integers n, m.

This shows that (2 = €?™ = 1. Similarly, (¢?)® = e*™ = 1, etc.

In general, if ¢, = €2m/™ ig a solution to 2" — 1 = 0, as is any power of (.

Getting back to the solutions to z° — 1, they lie on the vertices of a regular pentagon circumscribed by the
unit circle.
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Certainly, we can distinguish 1 from the other four: It is the only real solution. However, it is not possible to
distinguish the other four among themselves in any natural way. One can talk about the angle at which they
lie, but why should the counterclockwise angle be any more natural than the clockwise one? We could have
named any one of them (5, and it would still be true that the non-real solutions are (s, (2, (3, (# (check this!).

What kinds of symmetry do these roots possess? Complex conjugation actually still gives one: It flips (5
and ¢2 as well as ¢Z and (3. But there is also a slightly more hidden symmetry. If we start taking cubes of the
non-trivial fifth roots, we find the following:

GG E=Gr G =EE =0
Here, I have repeatedly made use of the following phenomenon, which is a consequence of the fact that (¥ = 1:
(& only depends on the remainder m leaves when you divide by 5. This is because ¢ g T — (C2)ICE = 19¢E = (L.
This shows that the symmetries of the non-trivial zeros of 2° — 1 actually interchange each of them with any
other, and there is no reasonable way to break this symmetry in order to distinguish any particular subset.



