
Illusie , FG-IL 1.1 

1r. Douanier Rousseau Marina 
Paris 

Cher Illusie, 

Le travail avance, mais avec une lenteur ridicule.
 J'en suis 

encore aux préliminaires sur les groupes de
 Bareotti-Tate sur une 

base quelconque » il n'est, pas encore question de mettre des
 puissan 

ces divisées dans le coup ! La raison de cette lenteur réside en 

partie dans le manque de fondements divers. Les sorties
 préliminaire 

sur les groupes de BT (pat Tate, Raynaud) étaient faits
 en se plaçant 

dans le cadre des anneaux de base proartiniens, à coups
 de références 

à Gabriel SGA 3 VI. Cette méthode ne marche plus du tout sur des 

bases quelconques. A chaque fois que j'ai voulu alors
 démontrer 

quelque chose sur un groupe de BT G = lim G(n) (G(n) = Ker p .id
G
), 

j'ai été obligé de démontrer dos choses plus précises
 sur les G(n) 

séparément. En un sens c'est tant mieux, car on comprend finalement j 

mieux que ce qui se passe ; mais il m'a fallu du temps
 avant d'en pre 

dre mon parti ! De plus, à certains moments, je suis oblige d'utilis 

une théorie de déformations pour des schémas en groupes
 plats mais 

non lisses, qui doit certainement être correcte, et qui devrait sans 

doute figurer dans ta thèse, mais que tu n'as pas dû écrire
 encore,; 

sans doute. Je vais donc commencer par te soumettre ce que tu
 devras 

* 

bien prouver. 

1. Théorie des déformations des schémas en groupes plats
 localement 

de présentation finie. 

Si G est un tel groupe sur une base S, le complexe cotangent 

relatif est parfait et d'amplitude parfaite contenue dans 

[-l
t
0] (G étant une intersection complète relative sur S), et il est 

isomorphe à l'image inverse d'un complexe canonique sur S , 

A 
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f(S) , 
G./S 

qui est 1'image inverse du complexe L
0

 k par la section unité . 

l'ont observé Mazur et Robert, une suite exacte 

0 — Gt — G — G" — 0 

de groupes donne lieu à un triangle exact 

1 

G"? R yG 
, 

d'où une suite exacte à six termes que je me dispense d'écrire. ( 

évidemment dépend de façon contravariante de G)« 

Dans le cas général, il faudrait sans doute considérer plutôt 

comme un complexe dans Dparf(BG) (BG le topos classifiant 

i.e. un complexe de Modules à opérations de G. Pour la suite, je 

téresserai uniquement au cas G commutatif, où il faut considérer-

opérations en question comme triviales, i.e. il n'est plus la peine 

d'en parler» Je te recommande néanmoins d'étudier également le 

non commutatif, bien que je n'en connaisse pas d'application pour 

moment. Note d'ailleurs que même le cas lisse (commutatif ou ne 

intéressant et apparemment pas trivial, cf. ma lettre à Giraud 

a un an» 

Supposons maintenant comme d'habitude que S soit un vu' 

ge infinitésimal du premier ordre du sous-schéma S
o
 (je me dispose 

d'introduire encore les deux sempiternels idéaux J < K, JK = 0
 est 

défini par l'Idéal Jo Soient G,H deux schémas en groupes plats 

localement de présentation finie sur S et commutatifs (je n'en 

dérerai pas d'autres, pour simplifier). Soit 

uo : G
o

 → Ho Go → Ho 

un homomorphisme des groupes restreints à So, on se propose de 
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prolonger en un. homornorphisme de groupes 

u : G G → H o 

L'indétermination à ce Pb est, comme il est bien connu, dans 

(l.l) Esto(G
o

, , 

où on pose comme d' habitude 

= RHom( ,) o 
o ° I 

Il faut d'autre part définir une obstruction 

(1.2) (u
o
) Ext1(G (1.2) (u
o

) G Ext1 ( , 

dont l'annulation soit nécessaire et suffisante pour l'existence d'un 

prolongement u«. Cette obstruction doit avoir les propriétés do 

transitivité habituelles pour un composé d'homomorphismes. 

Partons maintenant d'un G
o sur So , et étudions toutes les façons 

de le prolonger en un G sur S
o Si on a deux tels prolongements, on 

peut grâce a ce qui précède| définir leur "différence" comme un élément 

du Ext3* de (1.2). On doit prouver alors que l'on obtient de cette 

façon sur l'ensemble des solutions du problème une structure de 

pseudo-torseur sous le Ext1. . 

Enfin, il faut définir une classe canonique 

(1.3) c(G
o
) Ext2(G

o
, ) , 

ne dépendant que du Groupe Go sur So et de l'extension infinité éime 

S de S
o
 (donc, finalement, d'un homomorphisme L. →J J de degré 

1 dans ), dont l'annulation soit nécessaire et suffisante pour 

qu'il existe un G prolongeant Go . Les situations analogues que tu 

sais suggèrent que ces obstructions, pour des S variables, se dédui-

sent toutes d'un même morphisme canonique (ne dépendant plus que du 

Groupe G
o
 sur S ) o o 

% 

E 
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(1.4) 

qui soit un morphisme de_ degré l dans D(S
o
) resp. dans D(S

o
, Z). 

Cet homomorphisme serait sans doute une sorte de dérivée logarithmique 

généralisée. Peut-être est-elle déjà dans tes papiers ? 

En fait
,
 tout ceci est encore un peu trop particulier, comme de 

juste. En J'ai en effet besoin d'une théorie des déformations pour 

des groupes annulés par un entier n fixé (savoir, des groupes 

qui est annulé 

tels que G(n), où G est un BT) ! Tout ce qui précède doit rester 

alors valable, à condition que n annule Os et qu'on remplace les 

i i 
Extiz par des * En fait, la condition que n annule OS, assez 

naturelle dans le contexte concret où j'ai à travailler, l'est beau-

coup moins ici. Pour bien faire, il faudrait une théorie commune 

au cas de schémas de Z-modules et de schémas de Z/nZ-rnodules, en 

se fixant un anneau R de "multiplie ation complexe", et en étudiant 

la question des déformations de schémas en groupes (et d'homomorphis-

G 
mes de tels) sur lesquels R opère. Alors R opère également sur j 

et il faudrait alors définir, plus précisément, comme un objet 

(1.5) Ob D(S, RO
Z

OS) ) . . 
G 

La définition serait sans doute analogue à celle de comme objet 

de D(BG) dans le cas non commutatif, qui correspondrait à l'opération 

de G (jouant le rôle de R) sur lui-même par automorphismes intérieurs. 

et on s'attend à une formulation commune (en termes de groupes à 

G opérateurs ± quelconques). De même serait regardé comme un 

complexe de ROZOS-Modules (mais le v se. rapportant toujours à la 

structure de Complexe de O
S
-Modules sous-jacente !), ce qui donnerait . —S 

un sens aux J), et ce seraient eux les groupes 
— 
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qui devraient remplacer (pour i = 0, l, 2) les groupes Ext1 envisagés plus 

haut. Dans quelle mesure il faudra prendre pour R un anneau constant, 

ou pourra-t-on le remplacer par un Anneau ± quelconque, je n' ai pas 

essayé d'y réfléchir. 

Relations avec le calcul des Ext" par résolutions canoniques 

Pour simplifier je prends le cas R = Z . Je ne doute pas qu'on 

puisse trouver également une résolution canonique dans la catégorie 

des R-Modules (R Anneau quelconque) tronquée degré 3» par 

essentiellement les mêmes considérations qui m'ont fait trouver la 

résolution qu'il fallait dans le cas R = Z ; le cas du tronqué 

2 est d'ailleurs explicité dans mon exposé SGA.7 VII, quelque part en 

remarque. 

Si M est un Groupe abélien sur un topos, je rappelle comment 

on définit sa résolution canonique tronquée: 

L(2.1) Lo(M) : 

H 

dont les composantes sont, en degré i, des sommes directes finies 

de faisceaux de la forme Z[MJ ] , avec 

( L
o
(M) = Z[M] 

L
2
(M) = Z( MxMxM] Z [MxM] 

\ L3(M) = S [MxMxMxM]M + Z [MxMxM] Z[MxM] + Z [M]. 

L'opérateur différentiel est donné par 

5 
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z[x]= X 

d
1
[x,y] = - ([x+y] - [x] - [y] = [y] - [x+y] + [x] 

d2[x,y] = - ([x+y] - [x] - [y] = [y] - [x+y] + [x] 

d
3
[x,y,z,t] = [y,z,t] - [x+y,z,t] + [x, y+z, t] - [x,y,z+t] + [x,y,z] 

d
3
[x,y,z] = [x,y,z] - [x,y,z] + [ y,z,x] - ([x,y+z] - [x,y] _ [x,z]) 

d
3
[x,y,z,t] = [y,z,t] - [x+y,z,t] + [x, y+z, 

d
3
[x] = [x,x] 

Je ne garantie pas à 100% les signes, n'ayant pas refait les
 calculs. 

L.(M) désigne un complexe quelconque prolongeant le complexe tronqué 

précédent. On aura donc , pour toux groupe abélien N » 

(2.4) Exti(M,N) ≈ Exti(l.(M),N) pour i ≤ 2 , 

et d ' autre part on a Xa suite spectrale hs,.ô——— 

(2.5) Ext*(L.(M),N)<= Ep,q
2
 = Hp( 1Extq(L

i

(M),N)) 

Enfin, les Extq(L
i
 (M),N) intervenant dans le terme initial s'expliciter, 

(pour i ≤ 3) en termes de la cohomologie desKH spatiale dos puissances 

cartésiennes Mi de M (i ≤ 4) à coefficients dans H, grâce à la formule 

générale , 

(2.6) Extq(Z[X), N) ≈ Hq(X,N
X

) . | 

On obtient ainsi une façon très efficiente de Z "calculer" les 

Ext1 (i ≤ 2). (Je ne doute pas que la résolution (2.l) peut se prolonger 

une résolution du même type, mais infinie, de sorte que l'on obtiendra . 

un mode de calcul des Ext1 pour i quelconque#) Supposons par exemple 
affine 

qu'on travaille sur un schéma que N soit un Module quasi-cohérent S 

S et M un schéma affine sur S ? Alors la suite spectrale dégénère et fou: 

rit un calcul des Ext
i par cochaines, via j 

(2.7) Exti(L. (M), N) ≈ Hi(Hom(L.(M) , N) ) • 

S 
Sous les mêmes hypothèses, sauf S affine, on trouve de même un calcul fi 

£ 
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i 
faisceaux Ext1 On trouve qu'ils sont quasi-cohérents, et la suite 

spectrale (2.5) montre qu'il en est de même dès que M est un schéma 
coll.rent sur S (i.e. quasi-compact quasi—séparé sur S). 

Du point de vue de la théorie hypothétique du les considéra-
tions précédentes permettent de donner des arguments heuristiques très 
forts pour la validité des conjectures que j'ai avancées, - ce sont es-

sentiellement les arguments qui me donnaient confiance dans ma lettre à 
Giraud. Pour le Ext

1
(M,fH) resp. le Ext

2
(M,N), on obtient en effet une 

, , à quotients 
filtration à ceux resp. trois crans, parfaitement bien explicitables 
grâce à (2.5), (2.6) et (2.2). Or les quotients en question semblent 
exactement ceux qui apparaissent dans les questions d'obstruction du 
quandon essaie de faire lea prolongements demandés "par morceaux! Ainsi, 
dans la question du prolongement de uo à u, une première obstruction est 
celle, bien connue, au prolongement de uo comme morphisme de/schémas 
sans plus, elle se trouve dans u

*
o(J)), 

1 
et en regardant de plus près, on doit constater que cette obstruction peut s'identifier comme un élément 

de E
0,1

 E
0,1 

peut s'identifier comme un élément de E
0,1
  E

0,1

 de la suite spectrale 
(2.5) (mais où if devient un complexe ). Ensuite, un prolongement 
u non née. additif étant trouvé, on cherche comment le corriger pour qu' 
il devienne additif, et l'obstruction se trouvera dans E2

1,0
 = E

1,0 

De m ê m e , 

dans la question de prolonger G
0
 en un Groupe plat G, une pre-

mière obstruction bien connue est celle à trouver un schéma plat plus 
qui prolonge Go , cette obstruction se trouve dans 
et doit s'interpréter comme étant dans ainsi 
choisi, on essaie de le corriger par un élément du Ext

1

(Lo
Go/So

, uo(J)) (J)) 
pour pouvoir également prolonger la loi multiplicative de Go en un mor-



8 FG-IL 1.1 

phisme sans plus GxG → G : cette obstruction doit s'interpréter comme un 

élément du . . Enfin, G, u étant trouvé, on essaie de corri 

ger successivement G et u, pour* satisfaire à la condition d' associativité 

et de commutativité, et on doit trouver maintenant une obstruction dans 

n'ai pas vérifié en détail que toutes ces 

interprétations des groupes d'obstructions successives sont correctes, 

mais j'avais fait la vérification dans le temps dans le cas lisse, et 

je te conseille de le faire dans le cas présent, pour te familiariser 

avec la manipulation de la résolution canonique et de la suite spectrale 

associée. Je suis d'ailleurs convaincu que cette résolution canonique 

sera indispensable pour prouver les conjectures que j'ai énoncées au 

n° 1. 

3. Théorèmes de nullité pour Ext2 (G,M), pour M quasi-cohérent. 

C'est le suivant: 

Théorème 3.1. Soient G un schéma en groupes commutatif plat localement 

de présentation finie sur S, M un faisceau en groupes sur S (on travaille 
' | : 

avec une topologie sur (Sch)
/S intermédiaire entre fppf et fpqc, disons) 

dont la restriction au sous—site des schémas S' plats sur S soit isomor-

phe au faisceau défini par un Module quasi-cohérent convenable sur S. 

Alors dans chacun des deux cas a), b) suivants on a 

Ext2(G,M) = 0 
II 

Ext1 (G,M) est quasi-cohérent pour i £ 2, enfin 

Ext2(G,M)=0 

si on supppse de plus S affine. ' 

a) S est artinien, la fibres géométriques dus groupes G/G° sont 

des Z-modules de type fini (cette dernière condition étaht donc automa-

tique si G est de présentation finie sur S). 

% 
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ent pour la topologie envisagée, G admet une suite de 
chacun 

dont les quotients successifs sont tous d'un des types 

ô 

Groupe Z
S

 • 

Groupe de type multiplicatif. 

Groupe additif 

• ■ schéma abélien. Faux ! 

Schéma en groupes fini localement libre. J g ) (l2, ba) ≠ 0 

vais pas donner d'indication de la démonstration ici, qui est 
que tu pourras consulter si tu le désires. 

les notes détaillées, Bienentendu, elle s'appuie de 

telle sur la résolution canonique du n° 2 . Il n'est pas 
2 

qu'on ait la nullité du Ext sans hypothèse supplémentaire 

a) ou b), même si G est étale quasi-fini et séparé sur S: 

prendre G de la forme  (U), où U est un ouvert de 

la -forme Z/nZ , n annulant OS s alors le Ext
2
 est une 

2i (M) par R ix (M) ( Il est possible cependant que 

de 3.1 restent valables dès que G est affine (donc la 

s'applique). 

pose d'une théorie du type du n° 1 , 3.1 a des conséquent 
' 

pour la théorie des déformations de G (sous les hypothèses 

déformer G au dessus de tout voisinage infinitésimal 
soit lisse et que 
3 soit affine J'ignore si cette conclusion est 

schéma en groupes commutatifs lisse sur une base affi-

• les exemples donnés après 3.1 ne donnent évidemment pas 

le \ cela. 

s'oppose seulement G
0
 plat de et localement de présentation 

à une des conditions a), b) de 3.1 , alors la théorie 

9 
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du n° l montrerait seulement que l'obstruction à prolonger se trouve 

dans , J)) , puisque Ext2(G
o

, Ext°(/G°, J)) = 0 

on vertu de 3.1. Sauf erreur, cette obstruction peut effectivement être 

n on nulle, car simes souvenirs sont exacts, on montre-que ne se re-
p 

monte pas en car nulle. 

4. Relations avec le tapis Mazur-Roberts . 

Cgci est un retour à la situation du n° 1 ; il s'agit 

de choses dont apparemment on peut se passer pour les groupes de BT. 

4.1. Soit d'abord 

i: So → S 

un morphisme de topos annelés. Si G et H sont des (complexes de) Modules 

sur S, on désigne par G
o
 , H

o
 leurs images inverses sur S

o
 (au sens des* 

catégories dérivées, bien sur; en fait, on va s'intéresser surtout 

au cas où S, S
o
 sont annelés par un même anneau constant x, par exemple Z) 

on définit alors le RHom relatif 

(4.1.1) RHOM(S/S ;G,H)  D (Ab) 

donnant lieu à des Ext1 relatifs 

(4.1.2) Exti(S/S ;G,K) < ᵟb Ab ) 

par le triangle exact 
1 RHom(G , H ) Go, Ho) 

(4.1.2) 
RHom(S/S ; G, H) → RHom(G, H) , 

qui donne naissance à une suite exacte longue de Ext
i

 sur S,sur S
O

 | 

et sur S/So, que je me dispense d'écrire. Lors que G est 

l'anneau structural de S (disons Z ) on trouve des invariants 

(4.1.4) RI(S/S
o
, H) , Hi (S/So , H) , 

ne dépendant pas essentiellement de la structure de Module de H (mais 
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seulement de sa structure de groupe, donnant lieu à une suite exacte 

analogue. On définit de même, si on y tient, RHom(S/S ; , ), 

(S/S
o

, ) de la façon évidente , en particulier le deuxième est défini 

par le triangle exact 
Ri (H ) 

(4.1.5) 

, H) H H 

On peut alors expliciter les invariants (4.1.1) en termes de (S/S -): 

(4.1.6) RHom(S/So; G,H) , H) , 
t 

donc 

(4.1.7) Exti(S/S
o

; G, H) ≈ Exti(G, RT (S/3 , H)) . 

Le triangle exact (4.1.3) est déduit du triangle (4.1.5) en lui appliqua 

le foncteur exact RHom(G, -) , et de même pour la suite exacte longue 

correspondante . 

La signification géométrique des Ext
i
(S/So; G, H) en basses dimensi-

ons (i ≤ 2) est claire (supposant pour simplifier G, H de degré zéro): 

i = 0 : homomorphismes de G dans H qui deviennent nuls sur S ; 
classes d'isomorphie d' 

: extensions de G parH munies d'une trivialisation sur S ; 

i # 2 : groupe où prennent leurs valeurs les obstructions à "descendre" 
E 

à S, comme extension de G par H, une extension donnée E0 

de G
o
 par Ho 

Lorsque G est l'Anneau structural de S, on trouve de même pour les 

H (S/S
o
, H) (i ≤ 2) d es interprétations en termes de sections nulles sur 

S , de torseurs trivialisés sur S , et de gerbes neutralisées sur S o 
(pour faire plaisir à Giraud)• Tout ceci montre donc que les invariants 

introduits sont bons. 

Nous revenons maintenant au cas d'une immersion nilpotente d'ordre 
j 

1 comme au nol, G étant un schéma en groupes commutatifs plat locale-

12 
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ment de présentation finie sur S* Je propose alors l'isomorphisme 

suivant(suggéré par le travail de Mazur-Roberts): 

(4.1.9) , J)) 

Pour ceci, je rappelle d' abord la suite exacte évidente "de Mazur-

Roberts " 

(4.1.10) 

provenant de la théorie générale d!obstructions au prolongement infinité. 
' 

sifflai de sections# Dans certains cas (malheureusement trop restrictifs) 

Mazur-Roberts prouvent qu'on peut mettre uh zéro à droite. Je ne crois 

pas trop déraisonnable d'espèrer qu'il en est toujours ainsi# D'autre 

part, je crois qu'il ne doit pas être difficile de définir une flèche 
canonique 
(4.1.11) , 

telle que les flèches induites sur les H° et H1 donnent naissance 

a la suite exacte (4.l.10). Si = L. est représenté par un complexe 

explicite 0 , du général non-sense (plus ou moins 

explicité par Deligne dans SGA 4 XVIII) doit montrer que la donnée d'une 
homomorphisme 

flèche (4.1#11) revient à la donnée d'un de"champs de Picard " 

qui, a tout torseur sous G muni d'une trivialisation du torseur associé 
• 

de Groupe Go (ou ce qui revient au même, d'une trivialisation de sa 

restriction à S
o

) associe une extension de L par J, une trivialisation 

de l'image inverse de celle-ci sur L
1
 , cette trivialisation étant tel— 

, 
le que son image inverse sur est la trivialisation évidente «•• Or 

j'ai l'impression qu'un tel homomorphisme de champs doit pouvoir s'obte-

nir par pull-back à partir de la situation universelle , en utilisant 
' (sous G, 

le fait que pour tout torseur individuellement trigialisé par sur So), 

l'obstruction à remonter la trivialisation peut se décrire 

comme une extension de Lo par J etc# Ce que je dis est bien vaseux, 

*1 
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je suis néanmoins convaincu qu'un general non-sense convenable doit • 

ner (4.1.11)o 

Si ceci est correct, et si on peut mettre un zéro à droite dans 

(4.1.10), il en résulterait donc qu'on a même un isomorphisme (4.1.1 

On en conclurait en tous cas un homomorphisme(4.1.9)? et ce dernier 
induirait 
est un nisomorphisme pour les Hi pour i ≤ 1. Comme les H

1
 du L

o 

(resp. de (S/S , G-)) pour i ≤ 2 sont nuls (resp. sont isomorphes aux 
i-1 ) » on voit que le fait que (4.1.9) soit unn isomorphisme serai 

alors équivalent aux relations 

(4.1.11) Rii(G ) = 0 pour i ≥ l . 
(4 .1.11) 

Je ne sais trop s'il y a lieu d'espérer que ces relations/sont bien s: 

faites. Du moins est-il facile de vérifier que l'on a 

(4.1.12) R1i
*
 (G

o
) = 0 , 

utilisant le fait que tout torseur sous G est une intersection comp o 
relative sur So , donc splittable, après extension étale surjective de 

localement libre 
base, par un morphisme fini surjectif qui est également d'intersection 

complète, donc qui se remonte à S . «, Donc sous réserve que le 

reste marche bien, on trouvera un homomorphisme (4.1.9) qui est indu 

un isomorphisme pour les Hi

 pour i ≤ 2, donc un isomorphisme pour 2 

Ext ( ? , ) pour i 2, ce qui est suffisant pour les applications 

géométriques qu'on a à envisager. Voici les applications en question 
H j 

A) Soient comme précédemment sur S, 

soit B un Groupe commutatif quelconque sur S. On se donne une extensi 

E
o de Ho par x Ho , et on se propose d'étudier les prolongements po 

sibles en une extension E de G par Ho Les sorites cohomologiques nous 

disent que l'indétermination se trouve dans ). 
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et l' obstruction à l'existence est dans Ext (G , RГ (3/3 ,H)) . Moyennant 

pour Ho l'isomorphisme (4.1.9)r ces deux groupes s'interprètent comme 

Ext1(G
o

 Lo) et Ext2(G Lo) , avec Lo = J , les Ext1 étant o i o 

calculés sur S o 

B) Dans le cas particulier où , on trouve la théorie des 

déformations de torseurs sous H, que je t'avais proposée après 

la lecture de Mazur-Roberts. 

G) Application à la définition de l'obstruction 1.2. C'est 

clair, grâce à la suite exacte longue déduite de (4*1*5) en appliquant 

Exti(G, - ) , et notant que l'homomorphisme 

Exti(G, H) → Exti(G
o
,H
o

) 

s'identifie à l'homomorphisme obtenu en appliquant Exti(G, - ) à 

H→Ri (Ho ) . En fait, ici on n'a même pas besoin du zéro à droite 
l O 

dans (4.1.10) (on doit calculer un Ext , par un Ext"), il suffit de 

savpir définir (4.1.11), ce qui fournira en effet un homomorphism© 

Ext1(G, →→ Ext
1
(G,i (L

o
 ) 

(le conoyau étant précisément contenu dans Hom(G,Q), où Q est le concy 

de la dernière flèche de (4.1.10), – mais peu importe). 

Bien entendu, ici encore, il faudrait pour bien faire introduite 

un anneau de multiplication complexe R. Pour traiter les extensions de 

groupes de BT, on aura par exemple besoin du cas R = z/pnZ ! 

À suivre : fascicule de résultats sur les groupes BT 

du groupe de BT tronquis (point "sovitale") 

Je vais déjà faire partir ces notices, sans attendre d'avis 

écrit le reste. Bien cordialement. A Grotheu 
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5 . Propriétés cohomologiques des groupes de . 

5.1. S désigne un schéma. On munit (Sch)
xS

 donc aussi (Sch.)
/S

 d'une 

topologie intermédiaire entre fppf et fppf, qui jouera un rôle de figu-. 
| 

rant pour disposer d' une bonne notion de faisceau® On désigne par p 

un nombre premier fixé une fois pour toutes® Pour tout entier n ≥ O, 

on pose  = Z/pnZ. Donc les /\
n

- Modu!es sur S sont les Groupes (abé 

liens) sur S annulés par n. Si G est un Groupe sur S, on posera géné-

ralement 

G(n) Ker pnid
G
 =

 n
G 

C'est un  - Module. On écrira souvent G(n)ppour indiquer qu' un Groupe 
n 

est annulé par p i.e. est un 
n
-Module. 

Soit G(n) un 
n
- Module

r
 et soit 1 ≤ i ≤  n -1. Alors il revient au 

même que G(n) soit un 
n
-Module plat, ou que l'on ait 

(5.1.1) pn-iG(n) = G(i) 

(où on poso bien sûr G(i) = Ker pi id
G(n)

 = G(n)(i) . ..). Bans 

ce cas les pSl définissent une filtration décroissante dont le gradué 

associé est simplement G(l) o gr(
n
) - G(1)ΩF

P
[t] / (tn) » Donc G(n) 

alors,, 
est représentable par un schéma en groupes fini localement libre sur 

S si et seulement si G(l) l'est, et alors tous les G ( i ) le sont. 

Inversement, si on part d'un n -Module G(n) qui est
 un schéma en grou-

pes fini localement libre sur S, pour que G(n) soit plat i.e. pour 

qu'onnait (5.1.1), il faut et il suffit que l'homomorphisme 

(5.1.2) P
n-i

idG(n) : G(n) → G(i) 

soit plat, et le critère habituel de platitude par fibres (NB on n'a 

besoin de savoir G(i) plat, seulement loc. de prés. finie, pour que ce 

critère marche) montre qu'il revient au même de dire que (5.1.2) soit ; 

un épimorphisme fibre par fibre, ou encore soit fidèlement plat. À re 

J 
16 
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tenir donc que c'est une condition géométrique sur les fibres géométri-

ques. 

On appellera groupe de Barsotti-Tate tronqué d'échelon. n (p sous-

entendu, sinon on dirait: p-groupe de Bx tronqué …) un G-(n) qui est 

à la fois un 
n
-Module plat et un schéma fini localement libre sur S. 

Par abus de langage, on dira parfois,une pour un tel groupe et un n' ≥ n, 

que "G(n) provient d'un G(n') " si on peut trouver un groupe de BT tron-

qué d'échelon n' G(n') tel que G(n) soit isomorphe à G(n')(n). 

5.2. Boit G un Groupe sur S. On dit que G est p-divisible si 

p.id
G

 est un épimorphisme. Alors les G(n) sont des 
n

 -Modules plats, 

et G(∞ ) = lim G(n) = sous-Groupe de p-torsion de G est également 

p-divisiblc. Si G est un groupe de p-torsion (i.e. G = lim G(n)) 
→ 

p-divisible, alors il revient au même, on vertu de 5.l. de dire que 

G(l) est un schéma fini localement libre sur S, ou que tous les G(n) 

le sont (ou seulement vnG(n), avec n ≥ l). Un tel groupe s'appelera un 

groupe de Barsotti-Tate sur S (ou p—groupe de BT sur S, si p n'est pas 

sous-entendu). Les groupes de Barsotti-Tate sur S forment une catégo-

rie équivalente à celle des systèmes inductifs de Groupes G(n), satis-

faisant les conditions : 

a) Le morphisme de transition G(n) →G(n') (n' ≥ n) induit un 

isomorphisme G(n) → G(n' ) (n). 

b) G(n) est un À
n
-Module plat pour tout n . 

c) G(l) est un schéma fini localement libre sur S (ou encore : 

tous les G(n) sont des schémas finis localement libres sur S). 

Les sorties 5.1 montrent d'ailleurs que cette notion, tout comme 

celle de groupe de BT tronqué, ne dépend pas essentiellement du choix de 

la topologie T. 



17 FG-IL 1.1 

Je passe sur les sorites: stabilités par changement de base, 

extensions de groupes de BT est itout, etc. 

Les propriétés cohomologiques de base des groupes de BT tronqués 

G(n) concernent d'une part la structure du complexe et sa dépend an 

i ce do n, d'autre part le calcul des - ) , où - désigne un 

complexe de modules. Voici les faits principaux: 

Théorème 5.3. Soit N ≥ 1 un entier tel que pN.1
S
 = 0. Soit G(n) 

un groupe de BT tronqué d'échelon n sur S. 

a) Pour tout couple d'entiers k, m tels que k<pm , on a 

(5.3.1) Inf
k
G  G(m+N-1), 

i.e. le k.ème voisinage infinitésimal Inf G de la section unité de G 

coincide avec le même voisinage dans G(m+N) . En particulier on a 

Inf G  G(N), donc si N ≤ n' ≤ n, l'homomorphisme 

(5.3.2) 
→ 

est un isomorphisme. 
Supposons n ≥ N l. dans la suite de l'énoncé, 

b) Pour tout entier k < p " , G est "lisse tronqué d'échélon 

k le long de la section unité" , i.e. la structure de Inf
k
G comme schéma 

augmenté sur S est la même que si G était lisse: donc , s –G(n) 
est localement libre, et 

Gri(G(n),c) 

est un isomorphisme pour k. 

c) Les Modules 

(5.3.3) et 

sont localement libres de même rang. Si n ≥ n' ≥ N, alors 

1'inclusion 

G(n') →> G(n) 

A 
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induit un isomorphisme 

(5.3.4) 

G(n) → G(n') ( 5(G(n)Ω A » ) 
'n 

(pour mémoire, cf. a)) , et si n' ≤ n-N , l'homomor-

phisme nul 

(5.3.5) →G(' ) 

La projection 

(5.3.6) G(n) → G(n' ) (G(n)Ω n' ) 
n n 

induit un isomorphisme 

(5.3.7) ' 

et si ≤ n-N, l'homomorphisme nul 

(5.3.8) . 

d) Supposons n ≥ 2N, > N et qu'il existe un G(2N) dont 

provienne G(n). Alors on a un isomorphisme canonique 

(5e3»9) n 
G(n) *°cr G(n) 

Indications sur la démonstration. Une fois admis que est 

localement libre (énoncé dans b)), c) deviennent évidents en 

utilisant la suite exacte à six termes associée au triangle exact de 

Mazur-Roberts d'une extension de groupes. Pour en déduire d), on note 

que les deux termes de (5.3.9) ne changent pas si on remplace n par N, 

à isomorphismes canoniques près établis clans c), et on prend alors 

l'isomorphisme cobord associé à l'extension G(2N) de G(N) par G(N). 

D'autre part, les résultats de c) impliquent que si n' est 
tel que N ≤ n' n-N, 
alors 1'homomorphisme 

→ 

déduit de l'inclusion G(n') → G(n) est nul, pour tout J quasi-cohéren 

sur S, ce qui, géométriquement, implique qu'une obstruction à prolonger 

»£> 
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à un voisinage infinitésimal du premier ordre un S-morphisme donné 

X->G(n<), avec X affine, devient nul si on regarde X comme morphisme 
à valeurs dans G(n). On utilise ceci pour se tirer par les lacets de 
soulier et prouver a) et b) par récurrence sur N ... ofest un peu alam-

<1 c.ns m..s notes, et je no me sens guère l'envie do revenir dessus 
maintenant ? 

On retiendra entre autres que si n ≥ 2N, il n'y a plus guère qu'un 
seul Module Os vraiment fondamental associé à la donnée de G(n) et des G(n') correspondants 

c'est -G(n) (ou, au choix, son dual J = Lie(G(n)), 

Modules canoniques qui s'introduisent en pratique étant canoniquement 
isomorphes à celui-là ! 

Théorème 5.4. Soit G(n) un groupe de BT tronqué d'échelon n. On 
suppose, lorsque n=l, que G(n)=G(l) provient d'un groupe de BT tronqué 
réd'échelon 2. On suppose S affine, Soit M un Groupe sur S 
(en pratique, ce sera un S-Module) annulé par p

n

 , et tel que la res-
triction de M aux arguments plats soit isomorphe au Groupe défini par 
un Module quasi-cohérent sur S. Sous ces conditions on a 

(5.4.1) Exi
À i = 1.2. = 0 pour i = l, 2 . 
n 

Compte tenu de la suite exacte infinité 

-
et du fait que le dernier terme écrit est nul par 3.1 b) 5°, notre 
assertion équivaut aussi à la suivante: 

Corollaire 5.5. Soient G(n), M comme dans 5.4. Alors l'homoraorphiene 
canonique (associant à une classe d'une extension E de G(n) par M l'homo-
morphisme G(n) → M déduit par passage au quotient de p

n

idE ) 
(15.5.1) 

(n) Hom(G(n) , M) 
est un isomorphisme. 



20                    FG-IL 1.1 

une deuxième fois 
La démonstration n'est pas difficile, on utilisant b) 5° : 

La réduction au cas où S est le spectre d'un corps et M=p se fait en 

utilisant les résolutions canoniques du n° 2, et la formule d'adjonction 

nous ramène (puisque = G(1) ) au cas n = l. Alors la suite 
n 

exacte 

nous montre que 

i : Ext1 (G(2), M) → Ext
1
(G (1), M) 

est surjectif (car Ext (G(l), M) = 0 ; NB tous les Ext
1
 seront sur sauf 

mention o.u contraire), or son composé avec 

q* : Ext1 (G(1), M) → Ext
1
(G(2) 

est égal à (iq) = (p.idG(2))* = 0 (car p annule M), d'où il résulte 

que q* lui-même est nul, donc par la suite exacte des Ext que 

te) Hom(G(l), M) → Ext
1
(G(l), M) 

est surjectif ; la même suite exacte montre que cet homomorphisme est 

injectif,, puisque Hom(G(l), M) → Hom(G(2), M) est un isomorphisme. Donc 

(k) est un isomorphisme, et pour prouver que (5.5.1) est un isomorphisme 
on est ramené à prouver que le composé de (k) avec (5.5.1) l'est. Or on 

constate que c'est l'identité, cqfd. 

... Pour compléter (5.4.1), il faut expliciter dans certains cas joli 
la valeur du Ext

0
 . Pour ceci on introduit le dual de Cartier G(n)* do 

G(n), et son algèbre de Lie J* . Avec cette notation, on a 

5.6. G(n), M comme dans 5.4, sauf qu'on ne suppose pas néces 
sainement M annulé par p

n
 ni qu'il existe un G(2). On a un isomorphisme 

canonique 

(5.6.1) Hom(G(n), M) = Hom , 

et si p
n

lS = 0, les deux membres sont 

TA 
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à (où M' est le Module dont il est question isomorphes à Г (S, y Ω
OS
 M') 

dans 5.4) . 

On est en effet ramené au cas où M
 lui-même est un Module quasi-

cohérent. Alors (5.6.1) s'obtient en se rappelant que Lie(G
mS

)  O
s

 cano-

niquement, donc, posant D = Spec(O
S
 + M) (schéma de nombres duauu) , 

on trouve que le premier membre est
 isomorphe à , 

par SGA 5 III, donc par définition de
 G(n)* à Ker(G(n)* (D) → G(n)* (S))j 

qui n'est autre que le deuxième membre
 do 5.6. La dernière assertion 

provient de 5.3 b). 

Corollaire 5.7. Soient S un schéma affine, M.un Module
 sur S 

Module 

dont la restriction aux arguments plats
 soit isomorphe au Module définit 

par un Module quasi-cohérent, n' ≥ n ≥ des entiers 0, G(n') et H(n') 

des groupes de BT tronqués à d'échelon n',
 Composant 1'homomorphisme | 

de changement de base 
n'

 → 
n

 avec l'homomorphisme 

déduit de la projection H(n' )→ H(n), 

on trouve un homomorphisme L 

(5.7.1) Ext
i ) . 

Cet homomorphisme est surjectif pour i=l. j 

On montre en effet que l'homomorphisme (5.7.1 ) peut s'inter 

ter comme obtenu on appliquant
 à 1'homomorphisme 

dans D(
n'S
)
n
,
3

) 

déduit de H(n') → H(n), et on insère cette flèche dans le triangle 

exact de Mazur-Roberts déduit de la structure
 d'extension 

0 → H(n'-n) — H(n' ) → H(n) 0 0 . 

Alors la conclusion de 5.7 résulte de la suite exacte
 des Ex 

2l 
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correspondante, et do 

(G(n'). = 0 , 

qui provient elle-même des deux relations (5.4.l) (appliquées respecti-

v ement au H
r

. et au du complexe do coefficients). En fait,(5.4.1) 

est essentiellement équivalent à; 

Corollaire 5.8. Hypothèses sur S, n, G(n) comme dans 5.4. Soit Lo un 

i 
complexe de /\

n
-Modules tel que pour i ≠ 0, 1 et que H (L*) satis-

fasse, pour i = 0, 1, aux conditions énoncées sur M dans 5.4. Alors 

(5.8.1) Ext.2(G(n),Lo) = 0 

6. Applications aux déformations des groupes. de_Barsotti-Tate. 

Il suffit de conjuguer lesrésultats cohomologiques du n° 5 avec 

la théorie conjecturale d'obstructions du n° 2, pour obtenir les résul-

tats suivants (qui pour l'instant sont donc également conjecturaux). 

Dans toute la suite, on se donne une nilimmersion 

i: So →> S 

d'Idéal J (je ne suppose pas nécessairement J localement nilpotent). 

Si on a un Groupe G,H sur S, G , H désigne la restriction à S • » • 

6.1. "Pour mémoire" d'abord une trivialité: supposons i d'ordre k et 
ou plus 

= 0 alors tout ' homomorphisme de groupes de BT tronqués u(n) : 

G(n) →~* H(n) , tel que u(n)0 - 0, induit zéro sur G(n-kN) i.e. 

on a u(n-kN) est nul. Par suite, si u : G →H est un homomorphisme de 

groupes de BT tel que u
0
 = 0 , alors u = 0 , i.e. un homomorphisme u: G → H 

est connu quandon connaît u0 

(NB même en car. p, ce résultat ne s'étend pas à une nilimmersion 

qui ne se ait pas localement nilpotente. Dans le cas d'une immersion 

localement nilpotente, je nesaig-sj: le résultat précédent reste 

23 
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valable sans supposer p localement nilpotent sur S 
M = , G

1

 = (Q
p
 / Z

p
)S on 

6.2. Gardons les natations hypothèses et notations k, N de 6.1. 
; 

Supposons maintenant n ≥N, et dans le cas n=l, supposons que G(l) pro-

vienne d'un G(2). On suppose maintenant S affine. On se donne un 

homomorphisme 

qu'on se propose de prolonger en u(n) : G(n) → H(n). Àlorss 
et mais ) provient d'un G

0
(2 N) 

a) Si k = l, on a une obstruction à l'existence de u(n) qui est un 

élément du 

( où = Lie n)'
v

 H
0
(n) ; ce sont des Modules localement 

libres sur l'anneau A de S). 

b) Soit n' tel que kN ≤ n' ≤ n. Si u (n1-) se prolonge en un u(n') , 

alors u0(n) se prolonge en Un u(n) (mais il ne sera pas vrai en 

général qu'on pourra choisir u(n) prolongeront en même temps le u(n') 

déjà choisi !). 
N.B. b) résultats aussitôt de ∞) par résonnance sur le … 

De ceci, on déduit les mêmes énoncés en remplaçant G (n), Hï (n) par 

. des groupes de BT G,H sur S, et partant d'un Uq: G0 →> H0 qu'on se propo-

se de prolonger en u: G On définira ici l'algèbre de Lie d'un 

groupe de BT sur un schéma où p est nilpotent par 

Lie G = Lie G(n) pour n grand , 

cela a un sens grâce à 5.3 a) (et on définirait encore Lie G par 

recollement, dès que p est seulement localement nilpotent). Alors 

désignera encore Lie G , où G* est le groupe de BT dual de G
0
 , 

défini essentiellement par G*
0

(n) = Go (n)* (dual de Cartier). 

2^ 
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affine 

6.3. On part maintenant d'un groupe de BT
 tronqué G

Q

(n) sur S. 

On ne suppose pas nécessairement Sx P
 nilpotent sur S, mais si n=l, on 

suppose que G
0
(1) provient d'un G

0

(2). On a alors ce qui suit : 

a) Il existe un groupe de BT tronqué
 d'échelon n G(n) sur S qui 

prolonge G
0
(n). 

h) Soit E(G (n), S) l'ensemble des classes
 d'isomorphisme de tels 

prolongement. Soit n' ≤ n, et considérons
 l'application canonique 

(6.3.1) E(G
o
(n), S) → E(G

0
(n'), S) 

induite par G(n) → G(n') (= G(n*)(n')). l'application précédente est 

surjective. 

c) Soient k, N comme dans 6.1. Alors, si n' ≥ Nk, l'application 

(6.3.1) est bijective. et n ≥ 2N ou N ≤ n < 2N et G
0
N) provient du G

0
(2N) 

d) Supposons de plus k = l. Alors E(G
o

(n), S) est muni de façon 

naturelle d'une structure de tenseur sous le groupe ' j 

(Pour a) et b), le passage à la limite habituel nous
 ramène au 

cas A noethérien, donc J nilpotent, soit J
k+1=0. Pour prouver a), on 

se ramène alors par récurrence au cas k = l, et on applique 5.8 et 5.7 

respectivement (oh on n'a pas fait d'hypothèse de nilpotence
 do p !). 

D'antre part c) résulte de 6.2 b), et d) des calculs du n° 5 ...) 

Un passage à la limite sur n essentiellement trivial nous donne 

maintenant le résultat analogue pour les prolongements d'un G
0

 : 

, Théorème 6.4. Soit S
0
 → S une nilimmersion, avec S affine, G

0

 un 

groupe, de BT sur S0. 
groupe,de BT sur S

0
. 

a) Il existe un groupe de BT G sur S
 prolongeant G

0

. j 

b) L'application 

(6.4.1) E(G
0
, S) → E(G

0
(n), S) 

est surjective. 

25 
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T 
■ 

| 
c) Si k, N sont comme dans 6.1, alors pour n ≥ kN, l'application 

précédente (6.4.1) est bijective (mais attention, on ne prétend pas 
que cela corresponde à une équivalence de catégorie 1). -
que cela corresponde à une équivalence de catégories !). 

d) Si de plus k = l, l'ensemble E(G0, S) est de façon naturelle un 

torseur sous 
' 

6.5. Soient V un anneau local noethérien complet do corps 

résiduel k de car, p , G0 un groupe de BT sur k. Alors le foncteur dos 

déformations de G
0 sur des W-algèbres locales artiniennes est pro-repre-

sentable. (Il résulte de 6.4 que l'algèbre B sur V/ qui le proreprésente 

est une algèbre de séries formelles sur W à dd* indéterminées, où 
* d et d* sont respectivement les dimensions du groupe formel G0 et o 

. De plus, si G est la déformation universelle de G o 
au dessus do B , il résulte de 6.4 que la déformation G(n) de G (n) 

i 
sur B est verselle au sens de Schlessinger, pour tout n ≥ 1. (Mais bien 

des sir le foncteur déformations de G0(n) n'est pas en général représenta-

ble). 

6.6. On obtient un énoncé analogue à 6.3 concernant le problème dê 

prolongement de S0 à S d'une extension de groupes de BT tronqués 

E
o
(n) d'un G

0
(n) par un H0(n), quand on se donne déjà G(n) et H(n) sur 

S. Je me borne à énoncer le résultat correspondant pour des groupes do 

Braootti-Tate pas tronqués, qui s'en déduit comme 6.4 de 6.3: On se donne 

donc des groupas de BT G et H sur S, et une extension E de G par H . 
0 0 par H o 

On suppose toujours S affine. Alors 

a) E
o se prolonge en une extension E de G par H. 

b) L'application 

(6.6.1) E(E
o
, S) → E(3o(n), S) j 

! 

26 
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qu' on devine est surjective pour tout n. 

c) Si k, N sont comme dans 6.1, alors (6.6.1) est bijective pour 

n ≥ kN. 

d) Si de plus k = l, l'ensemble E(Eo, S) est un torseur sous 

remarquons que dans tous les cas, E(E0, S) est muni d'une struc-

ture de tenseur sous le groupe commutat H), et d) ne fait 

qu'expliciter ce groupe dans le cas particulier envisagé. 

Remarques 6.7. On peut encore traduire 6.6 en termes de variétés de 

modules formelles comme dans 6.5* Une chose nouvelle assez remarquab-

le, c'est que lorsqu'on part d'une extension triviale de G
0

 par , 

le schéma modulaire obtenu, comme il pro-représente un 

joncteur en groupes, est un groupe de lie formel sur W. (Dans le cas 

d'une extension quelconque E°, le schéma modulaire formel correspondant 

est un torseur sous le groupe de Lie formel précédent.) Lorsque par 

exemple G
0
 = , H est bien connu que ce groupe formel n'est au*' 

que le groupe formel H associé à H (NB ici on a dû partir do 

groupes de BT G et H sur W , pas sur k). En particulier, c'est un 

groupe de BT (du moins sur W artinien ...). Je suspecte qu'il en est 

ainsi dans le cas général. Le groupe formel obtenu se comporte à cer-

tains égards comme un Hom(G,H) interne dans la catégorie des groupes 

de BT, ou comme un produit tensoriel de G* par H. Je pense qu'il ne 

devrait pas être difficile, s'inspirant de ce qui précède, de défnnir 

un tel groupe formel H(G,H) pour deux groupes de BT G,H sur une basa 

quelconque où p serait nilpotent, et qu'il aura peut-être à jouer un 

rôle dans le développement de la théorie des groupes de BT. 
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